1
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Thirumalai A, Girigoswami K, Pallavi P, Harini K, Gowtham P, Girigoswami A. Cancer therapy with iRGD as a tumor-penetrating peptide. Bull Cancer 2023; 110:1288-1300. [PMID: 37813754 DOI: 10.1016/j.bulcan.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
One of the primary threats in tumor treatment revolves around the limited ability to penetrate tumor sites, leading to reduced therapeutic effectiveness, which remains a critical concern. Recently gaining importance are novel peptides, namely CRGDK/RGPD/EC (iRGD), that possess enhanced tumor-penetrating and inhibitory properties. These peptides specifically target and penetrate tumors by binding to αvβ integrins, namely αvβ3 and αvβ5, as well as NRP-1 receptors. Remarkably abundant on both the vasculature and tumor cell surfaces, these peptides show promising potential for improving tumor treatment outcomes. As a result, iRGD penetrated deep into the tumor tissues with biological products, contrast agents (imaging agents), antitumor drugs, and immune modulators after co-injecting them with peptides or chemically linked to peptides. The synthesis of iRGD peptides is a relatively straightforward process compared to the synthesis of other traditional peptides, and they significantly improved tumor tissue penetration inhibiting tumor metastasis effectively. Recent studies demonstrate the effectiveness of iRGD-driven dual-targeting chemotherapeutics on cancer cells, and the nanocarriers were modified with iRGD, serving as a favorable delivery strategy of payloads for deeper tumor regions. This review aims to provide an overview to emphasize the recent advancements and advantages of iRGD in treating and imaging various cancers.
Collapse
Affiliation(s)
- Anbazhagan Thirumalai
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Koyeli Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pragya Pallavi
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Karthick Harini
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Pemula Gowtham
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India
| | - Agnishwar Girigoswami
- Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Medical Bionanotechnology, Faculty of Allied Health Sciences, TN-603103 Kelambakkam, Chennai, India.
| |
Collapse
|
3
|
Shen C, Li M, Duan Y, Jiang X, Hou X, Xue F, Zhang Y, Luo Y. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma. Front Immunol 2023; 14:1170207. [PMID: 37304265 PMCID: PMC10250615 DOI: 10.3389/fimmu.2023.1170207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common liver malignancy with a poor prognosis and increasing incidence, remains a serious health problem worldwide. Immunotherapy has been described as one of the ideal ways to treat HCC and is transforming patient management. However, the occurrence of immunotherapy resistance still prevents some patients from benefiting from current immunotherapies. Recent studies have shown that histone deacetylase inhibitors (HDACis) can enhance the efficacy of immunotherapy in a variety of tumors, including HCC. In this review, we present current knowledge and recent advances in immunotherapy-based and HDACi-based therapies for HCC. We highlight the fundamental dynamics of synergies between immunotherapies and HDACis, further detailing current efforts to translate this knowledge into clinical benefits. In addition, we explored the possibility of nano-based drug delivery system (NDDS) as a novel strategy to enhance HCC treatment.
Collapse
Affiliation(s)
- Chen Shen
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Li
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujuan Duan
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jiang
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fulai Xue
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Yao Luo
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lechuga-Islas VD, Trejo-Maldonado M, Anufriev I, Nischang I, Terzioğlu İ, Ulbrich J, Guerrero-Santos R, Elizalde-Herrera LE, Schubert US, Guerrero-Sánchez C. All-Aqueous, Surfactant-Free, and pH-Driven Nanoformulation Methods of Dual-Responsive Polymer Nanoparticles and their Potential use as Nanocarriers of pH-Sensitive Drugs. Macromol Biosci 2023; 23:e2200262. [PMID: 36259557 DOI: 10.1002/mabi.202200262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/16/2022] [Indexed: 01/19/2023]
Abstract
All-aqueous, surfactant-free, and pH-driven nanoformulation methods to generate pH- and temperature-responsive polymer nanoparticles (NPs) are described. Copolymers comprising a poly(methyl methacrylate) (PMMA) backbone with a few units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) are solubilized in acidic buffer (pH 2.0) to produce pH-sensitive NPs. Copolymers of different molar mass (2.3-11.5 kg mol-1 ) and DMAEMA composition (7.3-14.2 mol%) are evaluated using a "conventional" pH-driven nanoformulation method (i.e., adding an aqueous polymer solution (acidic buffer) into an aqueous non-solvent (basic buffer)) and a robotized method for pH adjustment of polymer dispersions. Dynamic light scattering, zeta-potential (ζ), and sedimentation-diffusion analyses suggest the formation of dual-responsive NPs of tunable size (from 20 to 110 nm) being stable for at least 28 days in the pH and temperature intervals from 2.0 to 6.0 and 25 to 50 °C, respectively. Ultraviolet-visible spectroscopic experiments show that these NPs can act as nanocarriers for the pH-sensitive dipyridamole drug, expanding its bioavailability and potential controlled release as a function of pH and temperature. These approaches offer alternative strategies to prepare stimuli-responsive NPs, avoiding the use of harmful solvents and complex purification steps, and improving the availability of biocompatible polymer nanoformulations for specific controlled release of pH-sensitive cargos.
Collapse
Affiliation(s)
- Víctor D Lechuga-Islas
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Melisa Trejo-Maldonado
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Ilya Anufriev
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - İpek Terzioğlu
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Department of Polymer Science and Technology, Middle East Technical University, Dumlupınar Blv. 1, Çankaya, Ankara, 06800, Turkey
| | - Jens Ulbrich
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany
| | - Ramiro Guerrero-Santos
- Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Luis E Elizalde-Herrera
- Department of Macromolecular Chemistry and Nanomaterials, Research Center of Applied Chemistry (CIQA), Enrique Reyna H. 140, Saltillo, 25294, Mexico
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
5
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
6
|
Figueiredo P, Lepland A, Scodeller P, Fontana F, Torrieri G, Tiboni M, Shahbazi MA, Casettari L, Kostiainen MA, Hirvonen J, Teesalu T, Santos HA. Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy. Acta Biomater 2021; 133:231-243. [PMID: 33011297 DOI: 10.1016/j.actbio.2020.09.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
Nanomedicines represent innovative and promising alternative technologies to improve the therapeutic effects of different drugs for cancer ablation. Targeting M2-like tumor-associated macrophages (TAMs) has emerged as a favorable therapeutic approach to fight against cancer through the modulation of the tumor microenvironment. However, the immunomodulatory molecules used for this purpose present side effects upon systemic administration, which limits their clinical translation. Here, the biocompatible lignin polymer is used to prepare lignin nanoparticles (LNPs) that carry a dual agonist of the toll-like receptors TLR7/8 (resiquimod, R848). These LNPs are targeted to the CD206-positive M2-like TAMs using the "mUNO" peptide, in order to revert their pro-tumor phenotype into anti-tumor M1-like macrophages in the tumor microenvironment of an aggressive triple-negative in vivo model of breast cancer. Overall, we show that targeting the resiquimod (R848)-loaded LNPs to the M2-like macrophages, using very low doses of R848, induces a profound shift in the immune cells in the tumor microenvironment towards an anti-tumor immune state, by increasing the representation of M1-like macrophages, cytotoxic T cells, and activated dendritic cells. This effect consequently enhances the anticancer effect of the vinblastine (Vin) when co-administered with R848-loaded LNPs. STATEMENT OF SIGNIFICANCE: Lignin-based nanoparticles (LNPs) were successfully developed to target a potent TLR7/8 agonist (R848) of the tumor microenvironment (TME). This was achieved by targeting the mannose receptor (CD206) on the tumor supportive (M2-like) macrophages with the "mUNO" peptide, to reprogram them into an anti-tumor (M1-like) phenotype for enhanced chemotherapy. LNPs modified the biodistribution of the R848, and enhanced its accumulation and efficacy in shifting the immunological profile of the cells in the TME, which was not achieved by systemic administration of free R848. Moreover, a reduction in the tumor volumes was observed at lower equivalent doses of R848 compared with other studies. Therefore, the co-administration of R848@LNPs is a promising chemotherapeutic application in aggressive tumors, such as the triple-negative breast cancer.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Anni Lepland
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Giulia Torrieri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mattia Tiboni
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Urbino, Italy
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 56184-45139 Zanjan, Iran
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tambet Teesalu
- Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California, Santa Barbara, 93106, CA, USA; Cancer Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, CA, USA.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
7
|
Chang N, Zhao Y, Ge N, Qian L. A pH/ROS cascade-responsive and self-accelerating drug release nanosystem for the targeted treatment of multi-drug-resistant colon cancer. Drug Deliv 2021; 27:1073-1086. [PMID: 32706272 PMCID: PMC7470062 DOI: 10.1080/10717544.2020.1797238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The efficacy of chemotherapeutic agents for colon cancer treatment is limited by multidrug resistance (MDR) and insufficient intracellular release of the administered nanomedicine. To overcome these limitations, we constructed a pH/ROS cascade-responsive and self-accelerating drug release nanoparticle system (PLP-NPs) for the treatment of multidrug-resistant colon cancer. The PLP-NPs comprised a reactive oxygen species (ROS)-sensitive polymeric paclitaxel (PTX) prodrug (DEX-TK-PTX), a pH-sensitive poly(l-histidine) (PHis), and beta-lapachone (Lapa), a ROS-generating agent. We found that PLP-NPs could accumulate in tumor tissue through enhancement of the permeability and retention (EPR) effect, and were subsequently internalized by cancer cells via the endocytic pathway. Within the acidic endo-lysosomal environment, PHis protonation facilitated the escape of the PLP-NPs from the lysosome and release of Lapa. The released Lapa generated a large amount of ROS, consumed ATP, and downregulated P-glycoprotein (P-gp) production through the activity of NQO1, an enzyme that is specifically overexpressed in tumor cells. In addition, the generated ROS promoted the release of PTX from DEX-TK-PTX to kill cancer cells, while ATP depletion inhibited P-gp-mediated MDR. In vitro and in vivo experiments subsequently confirmed that PLP-NPs induced tumor-specific cytotoxicity and overcame the MDR of colon cancer. Our findings indicate that the use of the PLP-NPs system represents a promising strategy to counter MDR in the treatment of colon cancer.
Collapse
Affiliation(s)
- Na Chang
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Yufei Zhao
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Ning Ge
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| | - Liting Qian
- Department of Radiation Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China), Hefei, China
| |
Collapse
|
8
|
Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, Sun Q, Lin G. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther 2020; 5:262. [PMID: 33154350 PMCID: PMC7644763 DOI: 10.1038/s41392-020-00342-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Therapeutic efficacy against cancer relies heavily on the ability of the therapeutic agents to reach their final targets. The optimal targets of most cancer therapeutic agents are usually biological macromolecules at the subcellular level, which play a key role in carcinogenesis. Therefore, to improve the therapeutic efficiency of drugs, researchers need to focus on delivering not only the therapeutic agents to the target tissues and cells but also the drugs to the relevant subcellular structures. In this review, we discuss the most recent construction strategies and release patterns of various cancer cell subcellular-targeting nanoformulations, aiming at providing guidance in the overall design of precise nanomedicine. Additionally, future challenges and potential perspectives are illustrated in the hope of enhancing anticancer efficacy and accelerating the translational progress of precise nanomedicine.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tongtong Qi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shengnan Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaogang Zhao
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Qifeng Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Guimei Lin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
10
|
Gauger AJ, Hershberger KK, Bronstein LM. Theranostics Based on Magnetic Nanoparticles and Polymers: Intelligent Design for Efficient Diagnostics and Therapy. Front Chem 2020; 8:561. [PMID: 32733850 PMCID: PMC7359411 DOI: 10.3389/fchem.2020.00561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Theranostics is a fast-growing field due to demands for new, efficient therapeutics which could be precisely delivered to the target site using multimodal imaging with enhancing auxiliary actions. In this review article we discuss theranostic nanoplatforms containing polymers and magnetic nanoparticles along with other components. Magnetic nanoparticles allow for both diagnostic and therapeutic (hyperthermia) capabilities, while polymers can be reservoirs for drugs and are easily functionalized for cell targeting. We focus on the most important design strategies to achieve optimal theranostic effects as well as the roles of different components included in theranostics, reviewing the literature from the last 5 years.
Collapse
Affiliation(s)
- Andrew J. Gauger
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | | | - Lyudmila M. Bronstein
- Department of Chemistry, Indiana University, Bloomington, IN, United States
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 2020; 49:1253-1321. [PMID: 31998912 DOI: 10.1039/c9cs00283a] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.
Collapse
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu Y, Yang G, Zou D, Hui Y, Nigam K, Middelberg APJ, Zhao CX. Formulation of Nanoparticles Using Mixing-Induced Nanoprecipitation for Drug Delivery. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04747] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Da Zou
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yue Hui
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Krishna Nigam
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz khas, New Delhi 110016, India
| | - Anton P. J. Middelberg
- Faculty of Engineering, Computer, and Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
13
|
Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019; 7:320. [PMID: 31803728 PMCID: PMC6873787 DOI: 10.3389/fbioe.2019.00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Non-invasive tracking for monitoring the selective delivery and transplantation of biotargeted agents in vivo has been employed as one of the most effective tools in the field of nanomedicine. Different nanoprobes have been developed and applied to bioimaging tissues and the treatment of diseases ranging from inflammatory and cardiovascular diseases to cancer. Herein, we will review the recent advances in the development of optics-responsive nanomaterials, including organic and inorganic nanoparticles, for multimodal bioimaging and targeted therapy. The main focus is placed on nanoprobe fabrication, mechanistic illustrations, and diagnostic, or therapeutical applications. These nanomedicine strategies have promoted a better understanding of the biological events underlying diverse disease etiologies, thereby facilitating diagnosis, illness evaluation, therapeutic effect, and drug discovery.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin Li
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, China
| |
Collapse
|
14
|
Cao L, Li X, Wu T, Cai X, Zhang Y, Ji J, Zhang X, Gao Y, Feng F. Facile Synthesis of a Carnosine‐Pendent Cationic Polymer via Free Radical Polymerization and Application in Gene Delivery. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Leilei Cao
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xiao Li
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Tiantian Wu
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xuetong Cai
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Yajie Zhang
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Jinkai Ji
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Xiaoran Zhang
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Yajing Gao
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| | - Fude Feng
- Department of Polymer Science & EngineeringSchool of Chemistry & Chemical EngineeringNanjing University Nanjing 210023 P. R. China
| |
Collapse
|
15
|
iRGD: A Promising Peptide for Cancer Imaging and a Potential Therapeutic Agent for Various Cancers. JOURNAL OF ONCOLOGY 2019; 2019:9367845. [PMID: 31346334 PMCID: PMC6617877 DOI: 10.1155/2019/9367845] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 06/04/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Poor penetration into the tumor parenchyma and the reduced therapeutic efficacy of anticancer drugs and other medications are the major problems in tumor treatment. A new tumor-homing and penetrating peptide, iRGD (CRGDK/RGPD/EC), can be effectively used to combine and deliver imaging agents or anticancer drugs into tumors. The different “vascular zip codes” expressed in different tissues can serve as targets for docking-based (synaptic) delivery of diagnostic and therapeutic molecules. αv-Integrins are abundantly expressed in the tumor vasculature, where they are recognized by peptides containing the RGD integrin recognition motif. The iRGD peptide follows a multistep tumor-targeting process: First, it is proteolytically cleaved to generate the CRGDK fragment by binding to the surface of cells expressing αv integrins (αvβ3 and αvβ5). Then, the fragment binds to neuropilin-1 and penetrates the tumor parenchyma more deeply. Compared with conventional RGD peptides, the affinity of iRGD for αv integrins is in the mid to low nanomolar range, and the CRGDK fragment has a stronger affinity for neuropilin-1 than that for αv integrins because of the C-terminal exposure of a conditional C-end Rule (CendR) motif (R/KXXR/K), whose receptor proved to be neuropilin-1. Consequently, these advantages facilitate the transfer of CRGDK fragments from integrins to neuropilin-1 and consequently deeper penetration into the tumor. Due to its specific binding and strong affinity, the iRGD peptide can deliver imaging agents and anticancer drugs into tumors effectively and deeply, which is useful in detecting the tumor, blocking tumor growth, and inhibiting tumor metastasis. This review aims to focus on the role of iRGD in the imaging and treatment of various cancers.
Collapse
|
16
|
Figueiredo P, Sipponen MH, Lintinen K, Correia A, Kiriazis A, Yli-Kauhaluoma J, Österberg M, George A, Hirvonen J, Kostiainen MA, Santos HA. Preparation and Characterization of Dentin Phosphophoryn-Derived Peptide-Functionalized Lignin Nanoparticles for Enhanced Cellular Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901427. [PMID: 31062448 PMCID: PMC8042775 DOI: 10.1002/smll.201901427] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Indexed: 05/18/2023]
Abstract
The surface modification of nanoparticles (NPs) using different ligands is a common strategy to increase NP-cell interactions. Here, dentin phosphophoryn-derived peptide (DSS) lignin nanoparticles (LNPs) are prepared and characterized, the cellular internalization of the DSS-functionalized LNPs (LNPs-DSS) into three different cancer cell lines is evaluated, and their efficacy with the widely used iRGD peptide is compared. It is shown that controlled extent of carboxylation of lignin improves the stability at physiological conditions of LNPs formed upon solvent exchange. Functionalization with DSS and iRGD peptides maintains the spherical morphology and moderate polydispersity of LNPs. The LNPs exhibit good cytocompatibility when cultured with PC3-MM2, MDA-MB-231, and A549 in the conventional 2D model and in the 3D cell spheroid morphology. Importantly, the 3D cell models reveal augmented internalization of peptide-functionalized LNPs and improve antiproliferative effects when the LNPs are loaded with a cytotoxic compound. Overall, LNPs-DSS show equal or even superior cellular internalization than the LNPs-iRGD, suggesting that DSS can also be used to enhance the cellular uptake of NPs into different types of cells, and release different cargos intracellularly.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mika H Sipponen
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Monika Österberg
- School of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory Department of Oral Biology, University of Illinois, Chicago, IL, 60612, USA
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
17
|
Zhou Y, Han Y, Li G, Yang S, Xiong F, Chu F. Preparation of Targeted Lignin⁻Based Hollow Nanoparticles for the Delivery of Doxorubicin. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E188. [PMID: 30717357 PMCID: PMC6409628 DOI: 10.3390/nano9020188] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
Abstract
Due to their exceptional absorption capacity, biodegradability, and non-toxicity, nanoparticles (NPs) from lignin have emerged as vehicles for inorganic particles and drug molecules. However, the method for preparing targeted lignin particles is still complex and lacks sufficient research. Herein, a succinct strategy was proposed for the preparation of targeted lignin-based drug delivery NPs to load Doxorubicin Hydrochloride (DOX). The lignin hollow NPs (LHNPs) were used as a platform for the preparation of targeted delivery material by incorporating magnetic NPs and folic acid (FA) via layer-by-layer self-assembling. The results showed that the surface of LHNPs was covered uniformly by Fe₃O₄ NPs and grafted with folic acid. The folic-magnetic-functionalized lignin hollow NPs (FA-MLHNPs) could respond to magnetic field and folic acid receptors. In addition, the targeting performance of the FA-MLHNPs increased the cellular uptake of NPs in the case of HeLa cells. This research not only supported the modified NPs platform as a highly efficient nano-delivery method but also provided a facile approach to utilize renewable lignin biomaterials.
Collapse
Affiliation(s)
- Yu Zhou
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China.
| | - Yanming Han
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China.
| | - Gaiyun Li
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China.
| | - Sheng Yang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China.
| | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Fuxiang Chu
- Research Institute of Wood Industry, Chinese Academy of Forestry, Xiangshan Road, Beijing 100089, China.
| |
Collapse
|
18
|
Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Adv Healthc Mater 2019; 8:e1801137. [PMID: 30362268 DOI: 10.1002/adhm.201801137] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 01/04/2023]
Abstract
MXene nanosheets have emerged as biocompatible transition metal structures, which illustrate desirable performance for various applications due to their unique structural, physicochemical, and compositional features. MXenes are currently expanding their usage territory from mechanical, optical, chemical, and electronic fields toward biomedical areas. This is mainly originated from their large surface area and strong absorbance in near-infrared region, which in combination with their facile surface functionalization with various polymers or nanoparticles, make them promising nanoplatforms for drug delivery, cancer therapy, precise biosensing and bioimaging. The facile surface modification of the MXenes can mediate the better in vivo performance of them through reduced toxicity, enhanced colloidal stability, and extended circulation within the body. Herein, the synthesis and state-of-the-art progresses of MXene nanosheets designed for biomedical applications, including structural- and dose-dependent antimicrobial activity, photothermal therapy, drug delivery, and implants are emphasized. Furthermore, biosensing applications are highlighted and a comprehensive discussion on photoacoustic imaging, magnetic resonance imaging, computed tomography imaging, and optical imaging of MXenes is presented. The challenges and future opportunities of applying MXene nanomaterials in the area of biomedicine are also discussed.
Collapse
Affiliation(s)
| | - Mohammad-Ali Shahbazi
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads DK-2800 Kgs, Lyngby Denmark
- Department of Pharmaceutical Nanotechnology; School of Pharmacy; Zanjan University of Medical Sciences; 45139-56184 Zanjan Iran
- Drug Research Program; Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Helsinki FI-00014 Finland
| | - Ali Reza Rafieerad
- St. Boniface Hospital Research Centre; Department of Physiology; University of Manitoba; Winnipeg Canada
| | - Aziz Maleki
- Department of Micro- and Nanotechnology; Technical University of Denmark; Ørsteds Plads DK-2800 Kgs, Lyngby Denmark
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC); Zanjan University of Medical Sciences; 45139-56184 Zanjan Iran
| | - Ahmad Amiri
- Department of Mechanical Engineering; Texas A&M University; College Station TX 77483 USA
- Department of Pharmaceutical Nanotechnology; School of Pharmacy; Zanjan University of Medical Sciences; 45139-56184 Zanjan Iran
| |
Collapse
|
19
|
Jiang Y, Pang X, Liu R, Xiao Q, Wang P, Leung AW, Luan Y, Xu C. Design of an Amphiphilic iRGD Peptide and Self-Assembling Nanovesicles for Improving Tumor Accumulation and Penetration and the Photodynamic Efficacy of the Photosensitizer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31674-31685. [PMID: 30133254 DOI: 10.1021/acsami.8b11699] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment for many diseases, including infections and tumors. Nevertheless, clinical utilization of PDT is severely restricted due to the shortcomings of the photosensitizers, especially their low water solubility and poor tumor selectivity. iRGD (internalizing RGD, CRGDKGPDC), a nine-unit cyclic peptide, was applied as an active ligand to realize tumor homing and tissue penetration. Herein, we innovatively fabricated a novel OFF-ON mode iRGD-based peptide amphiphile (PA) to self-assemble into spherical nanovesicles to enhance the tumor-targeting and tumor-penetrating efficacy of PDT. To introduce the self-assembling feature into iRGD, a hydrophilic arginine-rich sequence and hydrophobic alkyl chains were sequentially linked to the iRGD motif. A short proline sequence was selected to control the morphology of the self-assembled aggregates. Next, the photosensitizer hypocrellin B (HB) was encapsulated into PA vesicles with a high loading efficiency. The aggregation-caused quenching effect inactivated HB in the PA vesicles; however, the iRGD-peptide-based material was able to be selectively degraded in tumor cells. Thus, the HB fluorescence was recovered to achieve tumor-targeted imaging. This approach endows HB-loaded PA vesicles (HB-PA) with tumor-targeted activation, preferable tumor accumulation, and deep tumor penetration, thus leading to an excellent fluorescence-imaging-guided photodynamic efficacy both in vitro and in vivo. These amphiphilic iRGD aggregates provide a novel strategy for improving the accumulation, penetration, and imaging-guided photodynamic efficacy of photosensitizers.
Collapse
Affiliation(s)
- Yue Jiang
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Xin Pang
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Ruiling Liu
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
| | - Qicai Xiao
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Pan Wang
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| | - Albert Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education , The University of Hong Kong , Hong Kong , P. R. China
| | - Yuxia Luan
- School of Pharmaceutical Science , Shandong University , 44 West Wenhua Road , Jinan 250012 , Shandong , P. R. China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , P. R. China
- School of Chinese Medicine, Faculty of Medicine , The Chinese University of Hong Kong , Shatin , Hong Kong , P. R. China
| |
Collapse
|
20
|
Gholami L, Tafaghodi M, Abbasi B, Daroudi M, Kazemi Oskuee R. Preparation of superparamagnetic iron oxide/doxorubicin loaded chitosan nanoparticles as a promising glioblastoma theranostic tool. J Cell Physiol 2018; 234:1547-1559. [DOI: 10.1002/jcp.27019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Leila Gholami
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Bita Abbasi
- Department of Radiology Mashhad University of Medical Sciences Mashhad Iran
| | - Majid Daroudi
- Department of Modern Sciences and Technologies Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
- Nuclear Medicine Research Center (NMRC), Mashhad University of Medical Sciences Mashhad Iran
| | - Reza Kazemi Oskuee
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Department of Medical Biotechnology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
21
|
Liu S, Jia H, Yang J, Pan J, Liang H, Zeng L, Zhou H, Chen J, Guo T. Zinc Coordination Substitute Amine: A Noncationic Platform for Efficient and Safe Gene Delivery. ACS Macro Lett 2018; 7:868-874. [PMID: 35650761 DOI: 10.1021/acsmacrolett.8b00374] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amines have been extensively involved in vector design thus far, however, their clinical translation has been impeded by several obstacles: cytotoxicity, polyplex serum instability and low efficacy in vivo. In pursuit of functional groups to substitute amines in vector design to address these disadvantages is of great significance. Herein, we report well-tailored noncationic copolymers that contain hydrophilic, hydrophobic, and zinc coordinative moieties through reversible addition-fragmentation chain transfer (RAFT) polymerization for efficient and safe gene delivery. These polymers are capable of condensing DNA, enabling the formation of uncharged polyplexes. Especially, the zinc coordinative ligand can simultaneously benefit strong DNA binding, robust cellular uptake, efficacious endosomal destabilization, low cytotoxicity, and avoidance of serum protein adsorption. The coordinative module holds great promise to substitute amines and inspires the development of next-generation gene vectors. More importantly, the coordinative copolymers illuminate the possibility and potential of noncationic gene delivery systems for clinical applications.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiting Jia
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jixiang Yang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jianping Pan
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiyun Liang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Liheng Zeng
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hao Zhou
- Department of Biochemistry and Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Jiatong Chen
- Department of Biochemistry and Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Balasubramanian V, Poillucci A, Correia A, Zhang H, Celia C, Santos HA. Cell Membrane-Based Nanoreactor To Mimic the Bio-Compartmentalization Strategy of a Cell. ACS Biomater Sci Eng 2018; 4:1471-1478. [PMID: 30159384 PMCID: PMC6108536 DOI: 10.1021/acsbiomaterials.7b00944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
Abstract
![]()
Organelles
of eukaryotic cells are structures made up of membranes,
which carry out a majority of functions necessary for the surviving
of the cell itself. Organelles also differentiate the prokaryotic
and eukaryotic cells, and are arranged to form different compartments
guaranteeing the activities for which eukaryotic cells are programmed.
Cell membranes, containing organelles, are isolated from cancer cells
and erythrocytes and used to form biocompatible and long-circulating
ghost nanoparticles delivering payloads or catalyzing enzymatic reactions
as nanoreactors. In this attempt, red blood cell membranes were isolated
from erythrocytes, and engineered to form nanoerythrosomes (NERs)
of 150 nm. The horseradish peroxidase, used as an enzyme model, was
loaded inside the aqueous compartment of NERs, and its catalytic reaction
with Resorufin was monitored. The resulting nanoreactor protected
the enzyme from proteolytic degradation, and potentiated the enzymatic
reaction in situ as demonstrated by maximal velocity (Vmax) and Michaelis constant (Km), thus suggesting the high catalytic activity of nanoreactors compared
to the pure enzymes.
Collapse
Affiliation(s)
- Vimalkumar Balasubramanian
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Andrea Poillucci
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland.,Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti I-66100, Italy
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Hongbo Zhang
- Department of Pharmaceutical Science, Åbo Akademy University, BioCity, Artillerigatan 6A, Turku FI-20520, Finland.,Turku Center of Biotechnology, Åbo Akademi University, Tykistokatu 6, Turku FI-20520, Finland
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, Chieti I-66100, Italy.,Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, Texas 77030, United States
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Viikinkaari 5E, Helsinki FI-00014, Finland
| |
Collapse
|
23
|
Yang S, Wang Y, Ren Z, Chen M, Chen W, Zhang X. Stepwise pH/reduction-responsive polymeric conjugates for enhanced drug delivery to tumor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:234-243. [DOI: 10.1016/j.msec.2017.08.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/03/2017] [Accepted: 08/10/2017] [Indexed: 02/05/2023]
|
24
|
Balasubramanian V, Liu Z, Hirvonen J, Santos HA. Bridging the Knowledge of Different Worlds to Understand the Big Picture of Cancer Nanomedicines. Adv Healthc Mater 2018; 7. [PMID: 28570787 DOI: 10.1002/adhm.201700432] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Explosive growth of nanomedicines continues to significantly impact the therapeutic strategies for effective cancer treatment. Despite the significant progress in the development of advanced nanomedicines, successful clinical translation remains challenging. As cancer nanomedicine is a multidisciplinary field, the fundamental problem is that the knowledge gaps stem from different vantage points in the understanding of cancer nanomedicines. The complexities and heterogenecity of both nanomedicines and cancer are further demanding the integration of highly diverse expertise to develop clinically translatable cancer nanomedicines. This progress report aims to discuss the current understanding of cancer nanomedicines between different research areas in terms of nanoparticle engineering, formulation, tumor patho-physiology and clinical medicine, as well as to identify the knowledge gaps lying at the interface between the different fields of research in nanomedicine. Here we also highlight for the necessity to harmonize the multidisciplinary effort in the research of nanomedicines in order to bridge the knowledge and to advance the full understanding in cancer nanomedicines. A paradigm shift is needed in the strategic development of disease specific nanomedicines in order to foster the successful translation into clinic of future cancer nanomedicines.
Collapse
Affiliation(s)
- Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Zehua Liu
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology; Drug Research Program; Faculty of Pharmacy; University of Helsinki; FI-00014 Helsinki Finland
| | - Hélder A. Santos
- Helsinki Institute of Life Science; HiLIFE; University of Helsinki; FI-00014 Helsinki Finland
| |
Collapse
|
25
|
Han K, Ma Z, Han H. Functional peptide-based nanoparticles for photodynamic therapy. J Mater Chem B 2018; 6:25-38. [DOI: 10.1039/c7tb02804k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photodynamic therapy as a non-invasive approach has obtained great research attention during the last decade.
Collapse
Affiliation(s)
- Kai Han
- State Key Laboratory of Agricultural Microbiology
- College of Science
- Bio-Medical Center of Huazhong Agricultural University
- Huazhong Agricultural University
- Wuhan 430070
| | - Zhaoyu Ma
- State Key Laboratory of Agricultural Microbiology
- College of Science
- Bio-Medical Center of Huazhong Agricultural University
- Huazhong Agricultural University
- Wuhan 430070
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology
- College of Science
- Bio-Medical Center of Huazhong Agricultural University
- Huazhong Agricultural University
- Wuhan 430070
| |
Collapse
|
26
|
|
27
|
Paik BA, Mane SR, Jia X, Kiick KL. Responsive Hybrid (Poly)peptide-Polymer Conjugates. J Mater Chem B 2017; 5:8274-8288. [PMID: 29430300 PMCID: PMC5802422 DOI: 10.1039/c7tb02199b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(Poly)peptide-polymer conjugates continue to garner significant interest in the production of functional materials given their composition of natural and synthetic building blocks that confer select and synergistic properties. Owing to opportunities to design predefined architectures and structures with different morphologies, these hybrid conjugates enable new approaches for producing micro- or nanomaterials. Their modular design enables the incorporation of multiple responsive properties into a single conjugate. This review presents recent advances in (poly)peptide-polymer conjugates for drug-delivery applications, with a specific focus on the utility of the (poly)peptide component in the assembly of particles and nanogels, as well as the role of the peptide in triggered drug release.
Collapse
Affiliation(s)
- Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
| | - Shivshankar R Mane
- The Institude For Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstr. 18, 76128 Karlsruhe, Germany
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716-3106
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE 19716-3106
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711
| |
Collapse
|
28
|
Guo L, Niu G, Zheng X, Ge J, Liu W, Jia Q, Zhang P, Zhang H, Wang P. Single Near-Infrared Emissive Polymer Nanoparticles as Versatile Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700085. [PMID: 29051852 PMCID: PMC5644228 DOI: 10.1002/advs.201700085] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/22/2017] [Indexed: 05/30/2023]
Abstract
Attaining consistently high performance of diagnostic and therapeutic functions in one single nanoplatform is of great significance for nanomedicine. This study demonstrates the use of donor-acceptor (D-A) structured polymer (TBT) to develop a smart "all-five-in-one" theranostic that conveniently integrates fluorescence/photoacoustic/thermal imaging and photodynamic/photothermal therapy into single nanoparticle. The prepared nanoparticles (TBTPNPs) exhibit near-infrared emission, high water solubility, excellent light resistance, good pH stability, and negligible toxicity. Additionally, the TBTPNPs exhibit an excellent singlet oxygen (1O2) quantum yield (40%) and high photothermal conversion efficiency (37.1%) under single-laser irradiation (635 nm). Apart from their two phototherapeutic modalities, fluorescence, photoacoustic signals, and thermal imaging in vivo can be simultaneously achieved because of their enhanced permeability and retention effects. This work demonstrates that the prepared TBTPNPs are "all-five-in-one" phototheranostic agents that can exhibit properties to satisfy the "one-fits-all" requirement for future phototheranostic applications. Thus, the prepared TBTPNPs can provide fundamental insights into the development of PNP-based nanoagents for cancer therapy.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guangle Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiechao Ge
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qingyan Jia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Panpan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| | - Hongyan Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and DevicesTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
29
|
Figueiredo P, Ferro C, Kemell M, Liu Z, Kiriazis A, Lintinen K, Florindo HF, Yli-Kauhaluoma J, Hirvonen J, Kostiainen MA, Santos HA. Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine (Lond) 2017; 12:2581-2596. [PMID: 28960138 DOI: 10.2217/nnm-2017-0219] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM To carboxylate kraft lignin toward the functionalization of carboxylated lignin nanoparticles (CLNPs) with a block copolymer made of PEG, poly(histidine) and a cell-penetrating peptide and then evaluate the chemotherapeutic potential of the innovative nanoparticles. MATERIALS & METHODS The produced nanoparticles were characterized and evaluated in vitro for stability and biocompatibility and the drug release profiles and antiproliferative effect were also assessed. RESULTS The prepared CLNPs showed spherical shape and good size distribution, good stability in physiological media and low cytotoxicity in all the tested cell lines. A poorly water-soluble cytotoxic agent was successfully loaded into the CLNPs, improving its release profiles in a pH-sensitive manner and showing an enhanced antiproliferative effect in the different cancer cells compared with a normal endothelial cell line. CONCLUSION The resulting CLNPs are promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Patrícia Figueiredo
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cláudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Kalle Lintinen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts & Biosystems, Aalto University, FI-00076, Aalto, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry & Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.,Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
30
|
Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications. Nat Commun 2017; 8:470. [PMID: 28883395 PMCID: PMC5589938 DOI: 10.1038/s41467-017-00545-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022] Open
Abstract
Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics. Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.
Collapse
|
31
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
32
|
Almeida PV, Shahbazi MA, Correia A, Mäkilä E, Kemell M, Salonen J, Hirvonen J, Santos HA. A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine (Lond) 2017; 12:1401-1420. [PMID: 28524813 DOI: 10.2217/nnm-2017-0034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the chemotherapeutic potential of a novel multifunctional nanocomposite encapsulating both porous silicon (PSi) and gold (Au) nanoparticles in a polymeric nanocomplex. MATERIALS & METHODS The nanocomposite was physicochemically characterized and evaluated in vitro for biocompatibility, cellular internalization, endosomolytic properties, cytoplasmatic drug delivery and chemotherapeutic efficacy. RESULTS The nanocomposites were successfully produced and exhibited adequate physicochemical properties and superior in vitro cyto- and hemocompatibilities. The encapsulation of PSi nanoparticles in the nanocomplexes significantly enhanced their cellular internalization and enabled their endosomal escape, resulting in the efficient cytoplasmic delivery of these nanosystems. Sorafenib-loaded nanocomposites showed a potent in vitro antiproliferative effect on MDA-MB-231 breast cancer cells. CONCLUSION The multifunctional nanocomposite herein presented exhibits great potential as a chemotherapeutic nanoplatform.
Collapse
Affiliation(s)
- Patrick V Almeida
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland.,Department of Micro- & Nanotechnology, Technical University of Denmark, 2800 KGs. Lyngby, Denmark
| | - Alexandra Correia
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland
| | - Ermei Mäkilä
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland.,Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, FI-20014 Finland
| | - Marianna Kemell
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, A.I. Virtasen aukio 1 (P.O. Box 55), FI-00014 Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics & Astronomy, University of Turku, FI-20014 Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry & Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E (P.O. Box 56), FI-00014 Finland.,Helsinki Institute of Life Science, HiLIFE, University of Helsinki, FI-00014Helsinki, Finland
| |
Collapse
|
33
|
Manshian BB, Jiménez J, Himmelreich U, Soenen SJ. Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials 2017; 127:1-12. [DOI: 10.1016/j.biomaterials.2017.02.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/18/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
|
34
|
Janoniene A, Liu Z, Baranauskiene L, Mäkilä E, Ma M, Salonen J, Hirvonen J, Zhang H, Petrikaite V, Santos HA. A Versatile Carbonic Anhydrase IX Targeting Ligand-Functionalized Porous Silicon Nanoplatform for Dual Hypoxia Cancer Therapy and Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13976-13987. [PMID: 28383881 DOI: 10.1021/acsami.7b04038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxia occurs in most solid tumors, and it has been shown to be an independent prognostic indicator of a poor clinical outcome for patients with various cancers. Therefore, constructing a nanosystem specifically targeting cancer cells under hypoxia conditions is a promising approach for cancer therapy. Herein, we develop a porous silicon (PSi)-based nanosystem for targeted cancer therapy. VD11-4-2, a novel inhibitor for carbonic anhydrase IX (CA IX), is anchored on PSi particles (VD-PSi). As CA IX is mainly expressed on the cancer cell membrane under hypoxia condition, this nanocomplex inherits a strong affinity toward hypoxic human breast adenocarcinoma (MCF-7) cells; thus, a better killing efficiency for the hypoxia-induced drug resistance cancer cell is observed. Furthermore, the release of doxorubicin (DOX) from VD-PSi showed pH dependence, which is possibly due to the hydrogen-bonding interaction between DOX and VD11-4-2. The fluorescence resonance energy transfer effect between DOX and VD11-4-2 is observed and applied for monitoring the DOX release intracellularly. Protein inhibition and binding assays showed that VD-PSi binds and inhibits CA IX. Overall, we developed a novel nanosystem inheriting several advantageous properties, which has great potential for targeted treatment of cancer cells under hypoxic conditions.
Collapse
Affiliation(s)
- Agne Janoniene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , LT-10257 Vilnius, Lithuania
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Zehua Liu
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Lina Baranauskiene
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , LT-10257 Vilnius, Lithuania
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics, University of Turku , FI-20014 Turku, Finland
| | - Ming Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics, University of Turku , FI-20014 Turku, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Hongbo Zhang
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Department of Pharmaceutical Science, Åbo Akademi University , FI-20520 Turku, Finland
| | - Vilma Petrikaite
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University , LT-10257 Vilnius, Lithuania
- Department of Drug chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences , LT-44307 Kaunas, Lithuania
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Drug Research Program, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| |
Collapse
|
35
|
Su Y, Hu J, Huang Z, Huang Y, Peng B, Xie N, Liu H. Paclitaxel-loaded star-shaped copolymer nanoparticles for enhanced malignant melanoma chemotherapy against multidrug resistance. Drug Des Devel Ther 2017; 11:659-668. [PMID: 28293102 PMCID: PMC5345981 DOI: 10.2147/dddt.s127328] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma (MM) is the most dangerous type of skin cancer with annually increasing incidence and death rates. However, chemotherapy for MM is restricted by low topical drug concentration and multidrug resistance. In order to surmount the limitation and to enhance the therapeutic effect on MM, a new nanoformulation of paclitaxel (PTX)-loaded cholic acid (CA)-functionalized star-shaped poly(lactide-co-glycolide) (PLGA)-D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) nanoparticles (NPs) (shortly PTX-loaded CA-PLGA-TPGS NPs) was fabricated by a modified method of nanoprecipitation. The particle size, zeta potential, morphology, drug release profile, drug encapsulation efficiency, and loading content of PTX-loaded NPs were detected. As shown by confocal laser scanning, NPs loaded with coumarin-6 were internalized by human melanoma cell line A875. The cellular uptake efficiency of CA-PLGA-TPGS NPs was higher than those of PLGA NPs and PLGA-TPGS NPs. The antitumor effects of PTX-loaded NPs were evaluated by the MTT assay in vitro and by a xenograft tumor model in vivo, demonstrating that star-shaped PTX-loaded CA-PLGA-TPGS NPs were significantly superior to commercial PTX formulation Taxol®. Such drug delivery nanocarriers are potentially applicable to the improvement of clinical MM therapy.
Collapse
Affiliation(s)
- Yongsheng Su
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Jian Hu
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Zhibin Huang
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Yubin Huang
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Bingsheng Peng
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| | - Ni Xie
- Core Laboratory, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, People’s Republic of China
| | - Hui Liu
- Department of Burn and Plastic Surgery, The People’s Hospital of Baoan Shenzhen Affiliated to Southern Medical University
| |
Collapse
|
36
|
Figueiredo P, Lintinen K, Kiriazis A, Hynninen V, Liu Z, Bauleth-Ramos T, Rahikkala A, Correia A, Kohout T, Sarmento B, Yli-Kauhaluoma J, Hirvonen J, Ikkala O, Kostiainen MA, Santos HA. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 2017; 121:97-108. [DOI: 10.1016/j.biomaterials.2016.12.034] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/29/2016] [Accepted: 12/31/2016] [Indexed: 02/03/2023]
|
37
|
Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1267-1280. [DOI: 10.1016/j.msec.2016.11.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|