1
|
Khan A. Cleavable azobenzene linkers for the design of stimuli-responsive materials. Chem Commun (Camb) 2024; 60:6591-6602. [PMID: 38872512 DOI: 10.1039/d4cc02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The azo linkage (NN) is one of the very few functional groups in organic chemistry that exhibits sensitivity towards thermal, chemical, photochemical, and biological stimuli. Consequently, this property has given rise to a distinct class of responsive materials. For example, thermal sensitivity has led to generation of free radical initiators useful in curing and polymerization applications. Chemically-induced cleavage has aided the development of self-immolative polymers and reactive scaffolds for proteomics applications. Photo-isomerization capability has given rise to photo-responsive systems. Azobenzene cleavage in biologically reducing environments, such as that of the colon, and under tumor hypoxia conditions has led to diagnostic, therapeutic, and delivery materials. Such conditions have also allowed for control over formation (assembly) and disruption (disassembly) of micellar nanoparticles. The aim of this review article is to look beyond the prevalent photosensitivity aspect of the aromatic azo compounds and draw attention to the azo scission reaction as a trigger of the change in the structure and properties of organic materials. Thus, the main discussion begins with the mechanism of the reductive cleavage. Then, its application in the design of molecules that can be activated as drugs and fluorescent sensors, (nano)materials with potential to release active substances, and polymers with side-chain and main-chain self-immolative capacity is discussed. Finally, the status and future challenges in this field are discussed.
Collapse
Affiliation(s)
- Anzar Khan
- National Institute for Research and Development of Isotopic and Molecular Technologies - INCDTIM, 67-103 Donat Street, 400293 Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Wang Q, Serda M, Li Q, Sun T. Recent Advancements on Self-Immolative System Based on Dynamic Covalent Bonds for Delivering Heterogeneous Payloads. Adv Healthc Mater 2023; 12:e2300138. [PMID: 36943096 DOI: 10.1002/adhm.202300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/10/2023] [Indexed: 03/23/2023]
Abstract
The precisely spatial-temporal delivery of heterogeneous payloads from a single system with the same pulse is in great demand in realizing versatile and synergistic functions. Very few molecular architectures can satisfy the strict requirements of dual-release translated from single triggers, while the self-immolative systems based on dynamic covalent bonds represent the "state-of-art" of ultimate solution strategy. Embedding heterogeneous payloads symmetrically onto the self-immolative backbone with dynamic covalent bonds as the trigger, can respond to the quasi-bio-orthogonal hallmarks which are higher at the disease's microenvironment to simultaneously yield the heterogeneous payloads (drug A/drug B or drug/reporter). In this review, the modular design principles are concentrated to illustrate the rules in tailoring useful structures, then the rational applications are enumerated on the aspects of drug codelivery and visualized drug-delivery. This review, hopefully, can give the general readers a comprehensive understanding of the self-immolative systems based on dynamic covalent bonds for delivering heterogeneous payloads.
Collapse
Affiliation(s)
- Qingbing Wang
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, 200025, P. R. China
- Key Laboratory of Smart Drug Delivery Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, Katowice, 40-006, Poland
| | - Quan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Boyanghu Road, Tianjin, 301617, P. R. China
- College of Chemistry and Chemical Engineering, Hubei University, 368 Youyidadao Avenue, Wuhan, 430062, P. R. China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| |
Collapse
|
3
|
Suárez-Cruz A, Molina-Pinilla I, Hakkou K, Rangel-Núñez C, Bueno-Martínez M. Novel poly(azoamide triazole)s containing twin azobenzene units in the backbone. Synthesis, characterization, and in vitro degradation studies. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Liu G, Yang L, Chen G, Xu F, Yang F, Yu H, Li L, Dong X, Han J, Cao C, Qi J, Su J, Xu X, Li X, Li B. A Review on Drug Delivery System for Tumor Therapy. Front Pharmacol 2021; 12:735446. [PMID: 34675807 PMCID: PMC8524443 DOI: 10.3389/fphar.2021.735446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingjing Han
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Wang Y, Ding R, Zhang Z, Zhong C, Wang J, Wang M. Curcumin-loaded liposomes with the hepatic and lysosomal dual-targeted effects for therapy of hepatocellular carcinoma. Int J Pharm 2021; 602:120628. [PMID: 33892061 DOI: 10.1016/j.ijpharm.2021.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Curcumin can induce cancer cell apoptosis through lysosomal permeabilization pathway. However, the poor selectivity of curcumin restricts its use in the therapy of hepatocellular carcinoma. Because galactose group can recognize ASGPR overexpressed on hepatoma cells and morpholine group can target to the lysosome, they are integrated into a dual-targeted lipid material with low toxicity. The corresponding galactose-morpholine modified liposomes loaded with curcumin (Gal-Mor-LPs) were prepared and evaluated in comparison with conventional liposomes (LPs) and galactose modified liposomes (Gal-LPs). The in vitro and in vivo hepatic targeting capacity of liposomes followed a trend of LPs < Gal-LPs < Gal-Mor-LPs. The endocytosis of Gal-Mor-LPs was competitively inhibited by galactose, which confirmed the galactose modified liposomes entered hepatoma cells via ASGPR-mediated pathway. Gal-Mor-LPs displayed more excellent lysosomal targeting efficacy than LPs and Gal-LPs due to the attraction of acidic lysosome on basic morpholine group of Gal-Mor-LPs. The in vivo tumor inhibition effects of formulations also followed a trend of free curcumin < LPs < Gal-LPs < Gal-Mor-LPs, confirming that hepatic and lysosomal dual-targeting vehicle can improve the antitumor efficacy of curcumin. Moreover, the curcumin-loaded liposomes modified with galactose and morpholine moieties show good biocompatibility in vivo.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Ruihua Ding
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China; Medical College, Guangxi University, Nanning 530004, PR China
| | - Zan Zhang
- Guangxi Institute for Food and Drug Control, Nanning 530021, PR China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, PR China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning 530004, PR China.
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
Kim J, Lee S, Na K. Glycyrrhetinic Acid-Modified Silicon Phthalocyanine for Liver Cancer-Targeted Photodynamic Therapy. Biomacromolecules 2020; 22:811-822. [PMID: 33356155 DOI: 10.1021/acs.biomac.0c01550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To supplement shortcomings of existing treatments and enhance the therapeutic effect for liver cancer, a novel photosensitizer is designed using silicon phthalocyanine (SiPC) and a unique targeting moiety, glycyrrhetinic acid (GA). The SiPC is modified with a hydrophilic polymer and finally bound with GA. The solubility, fluorescence, singlet oxygen generation, and UV-vis absorbance are analyzed, and receptor-dependent intracellular influx is estimated in various cell lines. Using flow cytometry and confocal microscopy, intracellular fluorescence was detected in liver cancer because of GA receptor overexpression. To prove in vitro photodynamic therapeutic effects, the sample treated cells are irradiated and viability of liver cancer cells decreases in proportion to laser power. Then, it is confirmed that GA-modified SiPC effectively accumulated in liver cancer of HepG2 tumor-bearing mouse. Additionally, the PDT-combined therapeutic effect of GA-modified SiPC is observed in the tumor model and shown to have a tumor growth inhibition effect (60.36 times higher than the control group) and supported by histological analyses. These results demonstrate that the newly modified SiPC can be applied to liver cancer-specific treatment with high therapeutic efficacy. Consequently, novel SiPC has the potential to alter conventional liver cancer-targeted therapy and chemotherapy in clinical use.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Sanghee Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
7
|
Synthesis of azobenzenes with high reactivity towards reductive cleavage: Enhancing the repertoire of hypersensitive azobenzenes and examining their dissociation behavior. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Eom T, Khan A. Hypersensitive azobenzenes: facile synthesis of clickable and cleavable azo linkers with tunable and high reducibility. Org Biomol Chem 2020; 18:420-424. [PMID: 31904038 DOI: 10.1039/c9ob02515d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this work is to show that by increasing the number of donor substituents in a donor/acceptor system, the sensitivity of the azobenzene linkage towards a reductive cleavage reaction can be enhanced to unprecedented high levels. For instance, in a triple-donor system, less than a second constitutes the half-life of the azo (N[double bond, length as m-dash]N) bond. Synthetic access to such redox active scaffolds is highly practical and requires only 1-2 synthetic steps. The fundamental molecular design is also adaptable. This is demonstrated through scaffold functionalization by azide, tetraethylene glycol, and biotin groups. The availability of the azide group is shown in a copper-free 'click' reaction suitable in context with protein conjugation and proteomics application. Finally, the clean nature of the scission process is demonstrated with the help of liquid chromatography coupled with mass analysis. This work, therefore, describes development of cleavable azobenzene linkers that can be accessed with synthetic ease, can be multiply functionalized, and show a clean and rapid response to mild reducing conditions.
Collapse
Affiliation(s)
- Taejun Eom
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea.
| | | |
Collapse
|
9
|
Sandoval-Yañez C, Castro Rodriguez C. Dendrimers: Amazing Platforms for Bioactive Molecule Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E570. [PMID: 31991703 PMCID: PMC7040653 DOI: 10.3390/ma13030570] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Today, dendrimers are the main nanoparticle applied to drug delivery systems. The physicochemical characteristics of dendrimers and their versatility structural modification make them attractive to applied as a platform to bioactive molecules transport. Nanoformulations based on dendrimers enhance low solubility drugs, arrival to the target tissue, drugs bioavailability, and controlled release. This review describes the latter approaches on the transport of bioactive molecules based on dendrimers. The review focus is on the last therapeutic strategies addressed by dendrimers conjugated with bioactive molecules. A brief review of the latest studies in therapies against cancer and cardiovascular diseases, as well as future projections in the area, are addressed.
Collapse
Affiliation(s)
- Claudia Sandoval-Yañez
- Institute of Applied Chemical Sciences, Faculty of Engineering, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, San Miguel 8910060, Santiago-Chile, Chile
| | - Cristian Castro Rodriguez
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avenida General Velásquez 1775, Arica-Chile 1000007, Chile;
| |
Collapse
|
10
|
Chi X, Liu K, Luo X, Yin Z, Lin H, Gao J. Recent advances of nanomedicines for liver cancer therapy. J Mater Chem B 2020; 8:3747-3771. [DOI: 10.1039/c9tb02871d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review highlights recent advancements in nanomedicines for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Kun Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Zhenyu Yin
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma
- Zhongshan Hospital
- Xiamen University
- Xiamen 361004
- China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
| |
Collapse
|
11
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
12
|
Eom T, Yoo W, Kim S, Khan A. Biologically activatable azobenzene polymers targeted at drug delivery and imaging applications. Biomaterials 2018; 185:333-347. [DOI: 10.1016/j.biomaterials.2018.09.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/30/2022]
|
13
|
Ye C, Zhao J, Zheng Y, Wu C, Chen Y, Wu H, An X, Huang M, Wang S. Preparation of Poly(lactic-co-glycolic acid)-Based Composite Microfibers for Postoperative Treatment of Tumor in NIR I and NIR II Biowindows. Macromol Biosci 2018; 18:e1800206. [PMID: 30188003 DOI: 10.1002/mabi.201800206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Indexed: 12/17/2022]
Abstract
In this work, a novel kind of electrospun microfiber to deliver a photothermal agent and an anticancer drug to tumor sites is explored. Photothermal therapy agent (MoS2 nanosheets) and doxorubicin (DOX) are incorporated with poly(lactic-co-glycolic acid) (PLGA) microfiber via electrospinning a solution of PLGA, MoS2 , and DOX. The designed microfiber with uniform fibrous morphology and negligible in vitro/in vivo hemo-/histo-toxicity is used as a durable photothermal agent, which shows an excellent photothermal transform ability and acceptable photothermal stability in both the first and second near-infrared light (NIR I and II) biowindows. The synergistic in vivo tumor chemotherapy and photothermal therapy efficiency of the composite microfibers are studied in postoperative treatment of cancer. It is found that the tumor postoperative reoccurrence can be completely prohibited owing to the synergistic tumor therapy efficiency in both the NIR I and NIR II biowindows.
Collapse
Affiliation(s)
- Changqing Ye
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, P. R. China
| | - Yuting Zheng
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Chenyao Wu
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Ying Chen
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Huan Wu
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Xiao An
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| |
Collapse
|
14
|
Wu J, Yuan J, Ye B, Wu Y, Xu Z, Chen J, Chen J. Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy. Front Pharmacol 2018; 9:663. [PMID: 30065648 PMCID: PMC6056621 DOI: 10.3389/fphar.2018.00663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles (NPs) have demonstrated a potential for hepatocarcinoma therapy. However, the effective and safe NP-mediated drug transportation is still challenging due to premature leakage and inaccurate release of the drug. Herein, we designed a series of core cross-linking galactose-based glycopolymer-drug conjugates (GPDs) NPs with both redox-responsive and pH-sensitive characteristics to target and program drug release. Glycopolymer is comprised of galactose-containing units, which gather on the surface of GPD NPs and exhibit specific recognition to hepatocarcinoma cells, which over-express the asialoglycoprotein receptor. GPD NPs are stable in a normal physiological environment and can rapidly release the drug in hepatocarcinoma cells, which are reductive and acidic, by combining disulfide bond cross-linked core, as well as boronate ester-linked hydrophilic glycopolymer chain and the hydrophobic drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jingxiao Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Duan W, Liu Y. Targeted and synergistic therapy for hepatocellular carcinoma: monosaccharide modified lipid nanoparticles for the co-delivery of doxorubicin and sorafenib. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2149-2161. [PMID: 30034219 PMCID: PMC6047861 DOI: 10.2147/dddt.s166402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Purpose Targeted hepatocellular carcinoma therapy was carried out to improve the efficacy of liver cancer treatment. The purpose of this study was to design an N-acetylgalactosamine (NAcGal) modified and pH sensitive doxorubicin (DOX) prodrug (NAcGal-DOX) for the construction of lipid nanoparticles (LNPs). Methods NAcGal-DOX and sorafenib (SOR) co-loaded LNPs were designed and the synergistic effects were evaluated on human hepatic carcinoma (HepG2) cells in vitro and anti-hepatic carcinoma mice model in vivo. Results Cellular uptake efficiency of NAcGal modified LNPs was significantly higher than unmodified LNPs. NAcGal modified LNPs showed the most significant inhibition effect among all the samples tested. The results revealed that the LNPs system achieved significant synergistic effects, best tumor inhibition ability and the lowest systemic toxicity. Conclusion These results proved that the NAcGal conjugated and pH sensitive co-delivery nano-system could be a promising strategy for treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wendu Duan
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei Province 071000, People's Republic of China,
| | - Yan Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei Province 071000, People's Republic of China,
| |
Collapse
|
16
|
Kuruvilla SP, Tiruchinapally G, Kaushal N, ElSayed ME. Effect of N-acetylgalactosamine ligand valency on targeting dendrimers to hepatic cancer cells. Int J Pharm 2018; 545:27-36. [DOI: 10.1016/j.ijpharm.2018.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
|
17
|
Prasad M, Lambe UP, Brar B, Shah I, J M, Ranjan K, Rao R, Kumar S, Mahant S, Khurana SK, Iqbal HMN, Dhama K, Misri J, Prasad G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 2018; 97:1521-1537. [PMID: 29793315 DOI: 10.1016/j.biopha.2017.11.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years nanotechnology has revolutionized the healthcare strategies and envisioned to have a tremendous impact to offer better health facilities. In this context, medical nanotechnology involves design, fabrication, regulation, and application of therapeutic drugs and devices having a size in nano-range (1-100 nm). Owing to the revolutionary implications in drug delivery and gene therapy, nanotherapeutics has gained increasing research interest in the current medical sector of the modern world. The areas which anticipate benefits from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic problems. The development of nanotherapeutics with multi-functionalities has considerable potential to fill the lacunae existing in the present therapeutic domain. Nanomedicines in the field of cancer management have enhanced permeability and retention of drugs thereby effectively targeting the affected tissues. Polymeric conjugates of asparaginase, polymeric micelles of paclitaxel have been recmended for various types of cancer treatment .The advancement of nano therapeutics and diagnostics can provide the improved effectiveness of the drug with less or no toxicity concerns. Similarly, diagnostic imaging is having potential future applications with newer imaging elements at nano level. The newly emerging field of nanorobotics can provide new directions in the field of healthcare. In this article, an attempt has been made to highlight the novel nanotherapeutic potentialities of polymeric nanoparticles, nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, dendrimers, nanocapsules and nanosponges based approaches. The useful applications of these nano-medicines in the field of cancer, nutrition, and health have been discussed in details. Regulatory and safety concerns along with the commercial status of nanosystems have also been presented. In summary, a successful translation of emerging nanotherapeutics into commercial products may lead to an expansion of biomedical science. Towards the end of the review, future perspectives of this important field have been introduced briefly.
Collapse
Affiliation(s)
- Minakshi Prasad
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India.
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Ikbal Shah
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Manimegalai J
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandip Kumar Khurana
- Central Institute for Research on Buffaloes, Sirsa Road, Hisar, Haryana, 125001, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L., CP 64849, Mexico
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Jyoti Misri
- Division of Animal Health, Indian Council of Agriculture Research, New Delhi, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, 250110, India
| |
Collapse
|
18
|
Dendrimer-doxorubicin conjugates exhibit improved anticancer activity and reduce doxorubicin-induced cardiotoxicity in a murine hepatocellular carcinoma model. PLoS One 2017; 12:e0181944. [PMID: 28829785 PMCID: PMC5567696 DOI: 10.1371/journal.pone.0181944] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the 2nd leading cause of cancer-related deaths every year globally. The most common form of treatment, hepatic arterial infusion (HAI), involves the direct injection of doxorubicin (DOX) into the hepatic artery. It is plagued with limited therapeutic efficacy and the occurrence of severe toxicities (e.g. cardiotoxicity). We aim to improve the therapeutic index of DOX delivered via HAI by loading the drug onto generation 5 (G5) poly(amidoamine) (PAMAM) dendrimers targeted to hepatic cancer cells via N-acetylgalactosamine (NAcGal) ligands. DOX is attached to the surface of G5 molecules via two different enzyme-sensitive linkages, L3 or L4, to achieve controllable drug release inside hepatic cancer cells. We previously reported on P1 and P2 particles that resulted from the combination of NAcGal-targeting with L3- or L4-DOX linkages, respectively, and showed controllable DOX release and toxicity towards hepatic cancer cells comparable to free DOX. In this study, we demonstrate that while the intratumoral delivery of free DOX (1 mg/kg) into HCC-bearing nod scid gamma (NSG) mice achieves a 2.5-fold inhibition of tumor growth compared to the saline group over 30 days, P1 and P2 particles delivered at the same DOX dosage achieve a 5.1- and 4.4-fold inhibition, respectively. Incubation of the particles with human induced pluripotent stem cell derived cardiomyocytes (hiPSC CMs) showed no effect on monolayer viability, apoptosis induction, or CM electrophysiology, contrary to the effect of free DOX. Moreover, magnetic resonance imaging revealed that P1- and P2-treated mice maintained cardiac function after intraperitoneal administration of DOX at 1 mg/kg for 21 days, unlike the free DOX group at an equivalent dosage, confirming that P1/P2 can avoid DOX-induced cardiotoxicity. Taken together, these results highlight the ability of P1/P2 particles to improve the therapeutic index of DOX and offer a replacement therapy for clinical HCC treatment.
Collapse
|