1
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Li Z, Huang M, Li Y, Wang Y, Ma Y, Ma L, Jiang H, Ngai T, Tang J, Guo Q. Emulsion-Based Multi-Phase Integrated Microbeads with Inner Multi-Interface Structure Enable Dual-Modal Imaging for Precision Endovascular Embolization. Adv Healthc Mater 2024; 13:e2400281. [PMID: 39081117 DOI: 10.1002/adhm.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/16/2024] [Indexed: 10/30/2024]
Abstract
Microsphere-based embolic agents have gained prominence in transarterial embolization (TAE) treatment, a critical minimally invasive therapy widely applied for a variety of diseases such as hypervascular tumors and acute bleeding. However, the development of microspheres with long-term, real-time, and repeated X-ray imaging as well as ultrasound imaging remains challenging. In this study, emulsion-based dual-modal imaging microbeads with a unique internal multi-interface structure is developed for TAE treatment. The embolic microbeads are fabricated from a solidified oil-in-water (O/W) emulsion composed of crosslinked CaAlg-based aqueous matrix and dispersed radiopaque iodinated oil (IO) droplets through a droplet-based microfluidic fabrication method. The CaAlg-IO microbeads exhibit superior X-ray imaging visibility due to the incorporation of exceptionally high iodine level up to 221 mgI mL-1, excellent ultrasound imaging capability attributed to the multi-interface structure of the O/W emulsion, great microcatheter deliverability thanks to their appropriate biomechanical properties and optimal microbead density, and extended drug release behavior owing to the biodegradation nature of the embolics. Such an embolic agent presents a promising emulsion-based platform to utilize multi-phased structures for improving endovascular embolization performance and assessment capabilities.
Collapse
Affiliation(s)
- Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Man Huang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yingnan Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yongchao Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Le Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hongliang Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - To Ngai
- Department of Chemistry, Chinese University of Hong Kong, Shatin, N. T., Hong Kong, 999077, P. R. China
| | - Jianbo Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Chen P, Varghese P J G, Zhao K, Hu J. Mechanical investigation of a Tandem embolization-visualization system for minimally invasive procedures. J Mech Behav Biomed Mater 2024; 160:106739. [PMID: 39276435 DOI: 10.1016/j.jmbbm.2024.106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Transcatheter arterial embolization is a minimally invasive intervention process in which the blood supply to a tumor or an abnormal area of tissue is blocked. One of the most commonly used embolic agents in clinics is microsphere (MS). In order to understand the flow behavior of microspheres in arteries, it is essential to study their mechanical properties systematically. In this work, calcium-alginate MSs with varying calcium concentrations were synthesized using a coaxial airflow method. Indocyanine green (ICG) was added as a fluorescent dye. The effect of ICG concentration change on microspheres was investigated by studying morphology, imageability, rheology, and swelling behavior. Then the effect of calcium chloride concentration change on microspheres was studied by conducting rheological tests, atomic force microscopy tests, hemolysis assay, and thrombogenicity assay. Results showed that microspheres with higher ICG concentrations have longer lasting fluorescence and lower storage modulus (G'). Higher concentrations of calcium chloride led to higher G', while the local Young's modulus obtained by AFM test was not significantly affected. The MSs with and without ICG showed good hemocompatibility and thrombogenicity.
Collapse
Affiliation(s)
- Peng Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - George Varghese P J
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - Keren Zhao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695
| | - Jingjie Hu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA, 27695.
| |
Collapse
|
4
|
Wang Y, Ren Z, Wu H, Cao Y, Yu B, Cong H, Shen Y. Immobilized Drugs on Dual-Mode Imaging Ag 2S/BaSO 4/PVA Embolic Microspheres for Precise Localization, Rapid Embolization, and Local Antitumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43283-43301. [PMID: 39106313 DOI: 10.1021/acsami.4c07852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Transcatheter arterial embolization (TAE) in interventional therapy and tumor embolism therapy plays a significant role. The choice of embolic materials that have good biocompatibility is an essential component of TAE. For this study, we produced a multifunctional PVA embolization material that can simultaneously encapsulate Ag2S quantum dots (Ag2S QDs) and BaSO4 nanoparticles (BaSO4 NPs), exhibiting excellent second near-infrared window (NIR-II) fluorescence imaging and X-ray imaging, breaking through the limitations of traditional embolic microsphere X-ray imaging. To improve the therapeutic effectiveness against tumors, we doped the doxorubicin (DOX) antitumor drug into microspheres and combined it with a clotting peptide (RADA16-I) on the surface of microspheres. Thus, it not only embolizes rapidly during hemostasis but also continues to release and accelerate tumor necrosis. In addition, Ag2S/BaSO4/PVA microspheres (Ag2S/BaSO4/PVA Ms) exhibited good blood compatibility and biocompatibility, and the results of embolization experiments on renal arteries in rabbits revealed good embolic effects and bimodal imaging stability. Therefore, they could serve as a promising medication delivery embolic system and an efficient biomaterial for arterial embolization. Our research work achieves the applicability of NIR-II and X-ray dual-mode images for clinical embolization in biomedical imaging.
Collapse
Affiliation(s)
- Yumei Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Zekai Ren
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
5
|
Ma Y, Li Z, Luo Y, Chen Y, Ma L, Liu X, Xiao J, Huang M, Li Y, Jiang H, Wang M, Wang X, Li J, Kong J, Shi P, Yu H, Jiang X, Guo Q. Biodegradable Microembolics with Nanografted Polyanions Enable High-Efficiency Drug Loading and Sustained Deep-Tumor Drug Penetration for Locoregional Chemoembolization Treatment. ACS NANO 2024; 18:18211-18229. [PMID: 38946122 DOI: 10.1021/acsnano.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Transarterial chemoembolization (TACE), the mainstay treatment of unresectable primary liver cancer that primarily employs nondegradable drug-loaded embolic agents to achieve synergistic vascular embolization and locoregional chemotherapy effects, suffers from an inferior drug burst behavior lacking long-term drug release controllability that severely limits the TACE efficacy. Here we developed gelatin-based drug-eluting microembolics grafted with nanosized poly(acrylic acid) serving as a biodegradable ion-exchange platform that leverages a counterion condensation effect to achieve high-efficiency electrostatic drug loading with electropositive drugs such as doxorubicin (i.e., drug loading capacity >34 mg/mL, encapsulation efficiency >98%, and loading time <10 min) and an enzymatic surface-erosion degradation pattern (∼2 months) to offer sustained locoregional pharmacokinetics with long-lasting deep-tumor retention capability for TACE treatment. The microembolics demonstrated facile microcatheter deliverability in a healthy porcine liver embolization model, superior tumor-killing capacity in a rabbit VX2 liver cancer embolization model, and stabilized extravascular drug penetration depth (>3 mm for 3 months) in a rabbit ear embolization model. Importantly, the microembolics finally exhibited vessel remodeling-induced permanent embolization with minimal inflammation responses after complete degradation. Such a biodegradable ion-exchange drug carrier provides an effective and versatile strategy for enhancing long-term therapeutic responses of various local chemotherapy treatments.
Collapse
Affiliation(s)
- Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yao Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Le Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Man Huang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingnan Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hongliang Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiangtao Li
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jian Kong
- Department of Interventional Radiology, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong 518057, China
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
- Department of Physiology, Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, 117593 Singapore
- Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
6
|
Xu A, Sun Y, Guo M. Monodisperse Polyaspartic Acid Derivative Microspheres for Potential Tumor Embolization Therapy. Macromol Biosci 2024; 24:e2400047. [PMID: 38589022 DOI: 10.1002/mabi.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/16/2024] [Indexed: 04/10/2024]
Abstract
Polyaspartic acid derivatives are a well-known kind of polypeptide with good biocompatibility and biodegradability, and thus have been widely used as biomedical materials, including drug-loaded nano-scale micelles or macroscopic hydrogels. In this work, for the first time, monodisperse polyaspartic acid derivative microspheres with diameter ranging from 120 to 350 µm for potential tumor embolization therapy are successfully prepared by single emulsion droplet microfluidic technique. The obtained microsphere shows fast cationic anticancer drug doxorubicin hydrochloride loading kinetics with high loading capacity, which is much better than those of the commercial ones. Additionally, drug release behaviors of the drug-loaded microspheres with different diameters in different media are also studied and discussed in detail. These results provide some new insights for the preparation and potential application of polyaspartic acid derivative-based monodisperse microspheres, especially for their potential application as embolic agent.
Collapse
Affiliation(s)
- Anqi Xu
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuchen Sun
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mingyu Guo
- State-Local Joint Engineering Laboratory for Novel Functional Polymer Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
7
|
Keum H, Albadawi H, Zhang Z, Graf E, Santos PRD, Gunduz S, Oklu R. Bioengineered Ionic Liquid for Catheter-Directed Tissue Ablation, Drug Delivery, and Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309412. [PMID: 38305472 PMCID: PMC11161330 DOI: 10.1002/adma.202309412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/03/2023] [Indexed: 02/03/2024]
Abstract
Delivery of therapeutics to solid tumors with high bioavailability remains a challenge and is likely the main contributor to the ineffectiveness of immunotherapy and chemotherapy. Here, a catheter-directed ionic liquid embolic (ILE) is bioengineered to achieve durable vascular embolization, uniform tissue ablation, and drug delivery in non-survival and survival porcine models of embolization, outperforming the clinically used embolic agents. To simulate the clinical scenario, rabbit VX2 orthotopic liver tumors are treated showing successful trans-arterial delivery of Nivolumab and effective tumor ablation. Furthermore, similar results are also observed in human ex vivo tumor tissue as well as significant susceptibility of highly resistant patient-derived bacteria is seen to ILE, suggesting that ILE can prevent abscess formation in embolized tissue. ILE represents a new class of liquid embolic agents that can treat tumors, improve the delivery of therapeutics, prevent infectious complications, and potentially increase chemo- and immunotherapy response in solid tumors.
Collapse
Affiliation(s)
- Hyeongseop Keum
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| | - Zefu Zhang
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Erin Graf
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| | - Pedro Reck Dos Santos
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Department of Cardiothoracic Surgery, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| | - Seyda Gunduz
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Department of Medical Oncology, Istinye University Bahcesehir Liv Hospital, Istanbul 34517, Turkey
| | - Rahmi Oklu
- The Laboratory for Patient-Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
8
|
Gao F, Rafiq M, Cong H, Yu B, Shen Y. Current research status and development prospects of embolic microspheres containing biological macromolecules and others. Int J Biol Macromol 2024; 267:131494. [PMID: 38608974 DOI: 10.1016/j.ijbiomac.2024.131494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Transcatheter arterial embolization (TACE) has been used in the treatment of malignant tumors, sudden hemorrhage, uterine fibroids, and other diseases, and with advances in imaging techniques and devices, materials science, and drug release technology, more and more embolic agents that are drug-carrying, self-imaging, or have multiple functions are being developed. Microspheres provide safer and more effective therapeutic results as embolic agents, with their unique spherical appearance and good embolic properties. Embolic microspheres are the key to arterial embolization, blocking blood flow and nutrient supply to the tumor target. This review summarizes some of the currently published embolic microspheres, classifies embolic microspheres according to matrix, and summarizes the characteristics of the microsphere materials, the current status of research, directions, and the value of existing and potential applications. It provides a direction to promote the development of embolic microspheres towards multifunctionalization, and provides a reference to promote the research and application of embolic microspheres in the treatment of tumors.
Collapse
Affiliation(s)
- Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
9
|
Fu J, Lin G, Fang C, Chen B, Deng X, Chen J, Yang W, Huang Y, Qin A, Li X, Zeng C, Li X, Du L. Preparation, evaluation and application of MRI detectable sunitinib-loaded calcium alginate/poly(acrylic acid) hydrogel microspheres. Int J Biol Macromol 2024:131730. [PMID: 38688794 DOI: 10.1016/j.ijbiomac.2024.131730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Transcatheter arterial chemoembolization (TACE) is an effective method for the treatment of unresectable hepatocellular carcinoma. Although many embolic agents have been developed in TACE, there are few ideal embolic agents that combine drug loading, imaging properties and vessel embolization. Here, we developed novel magnetic embolic microspheres that could simultaneously load sunitinib malate (SU), be detected by magnetic resonance imaging (MRI) and block blood vessels. Calcium alginate/poly (acrylic acid) hydrogel microspheres (CA/PAA-MDMs) with superparamagnetic iron oxide nanoparticles (SPIONs) modified by citric acid were prepared by a drip and photopolymerization method. The embolization and imaging properties of CA/PAA-MDMs were evaluated through a series of experiments such as morphology, X-ray diffraction and X-ray photoelectron spectroscopy, magnetic responsiveness analysis, elasticity, cytotoxicity, hemolysis test, in vitro MRI evaluation, rabbit ear embolization and histopathology. In addition, the ability of drug loading and drug release of CA/PAA-MDMs were investigated by using sunitinib (SU) as the model drug. In conclusion, CA/PAA-MDMs showed outstanding drug loading capability, excellent imaging property and embolization effect, which would be expected to be used as a potential biodegradable embolic agent in the clinical interventional therapy.
Collapse
Affiliation(s)
- Jijun Fu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511436, PR China
| | - Guanli Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Chenchen Fang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Baiqi Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Xingmei Deng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Junhong Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Weiqi Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Yugang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511436, PR China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Xufeng Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China
| | - Caifang Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China.
| | - Xin Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511436, PR China.
| | - Lingran Du
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Second Affiliated Hospital and The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 511436, PR China; The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511436, PR China.
| |
Collapse
|
10
|
Zhang JL, Yuan B, Zhang H, Wang MQ. Transcatheter arterial embolization with N-butyl cyanoacrylate for postoperative hemorrhage treatment following pancreatoduodenectomy. Emerg Radiol 2024; 31:179-185. [PMID: 38334821 DOI: 10.1007/s10140-024-02211-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Postoperative hemorrhage (PPH) is a severe complication of pancreatoduodenectomy (PD) with a mortality rate of 5-20.2% and mortality due to hemorrhage of 11-58%. Transcatheter arterial embolization (TAE) has been widely recommended for PPH, however, TAE with N-butyl cyanoacrylate (NBCA) for PPH treatment has been reported rarely. Therefore, this study aimed to evaluate the safety and efficacy of TAE with NBCA for PPH treatment following PD. METHODS This retrospective study included 14 male patients (mean age, 60.93 ± 10.97 years) with postoperative hemorrhage following PD treated with TAE using NBCA as the main embolic agent from October 2019 to February 2022. The clinical data, technical and success rate, and complications were analyzed. RESULTS Among the 14 patients who underwent TAE, the technical and clinical success rates were 100 and 85.71%, respectively. Angiography revealed contrast extravasation in 12 cases and a pseudoaneurysm in 3 cases. One patient developed a serious infection and died 2 days after the TAE. CONCLUSION TAE with NBCA for PPH treatment following PD, especially for massive hemorrhage caused by a pancreatic fistula, biliary fistula, or inflammatory corrosion, can result in rapid and effective hemostasis with high safety.
Collapse
Affiliation(s)
- Jin Long Zhang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, People's Republic of China
| | - Bing Yuan
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Heng Zhang
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China
- Department of Radiology, National Clinical Research Center for Geriatric Diseases/Second Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Mao Qiang Wang
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
11
|
Liao J, Zhou Y, Zhao X, Hou B, Zhang J, Huang H. Chitin microspheres: From fabrication to applications. Carbohydr Polym 2024; 329:121773. [PMID: 38286547 DOI: 10.1016/j.carbpol.2023.121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
Chitin microspheres (CMs) have attracted increasing attention due to their biocompatibility, uniform size and shape, large surface area, and porous structure. Considerable research efforts have been focused on developing CMs and promoting their applications in various areas. In this context, this review aims to describe the most recent progress in the fabrication and application of CMs. Different routes that can be used to prepare CMs, such as the drip method and the emulsion method, are emphatically introduced. Moreover, the applications of CMs as drug delivery systems, wound dressings, three-dimensional (3D) scaffolds, water purification, and functional supporting materials in the fields of biomedicine, tissue engineering, environmental protection, and energy storage are also highlighted. We hope this review can provide a comprehensive and useful database for further innovation of CMs.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Yuhang Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xingyue Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bo Hou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
12
|
Wang M, Gao Y, Liu X, Li Z, Xiao J, Gao X, Gibson MI, Guo Q. Cirrhotic hepatocellular carcinoma-based decellularized liver cancer model for local chemoembolization evaluation. Acta Biomater 2024; 176:144-155. [PMID: 38244660 DOI: 10.1016/j.actbio.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Transarterial chemoembolization (TACE) is a common treatment for unresectable intermediate stage hepatocellular carcinoma (HCC) and involves the combination of chemotherapy agents and embolic materials to target and block the blood supply to the tumor, leading to localized treatment. However, the selection of clinical chemoembolization agents remains limited, and the effectiveness of various agents is still under investigation. Meanwhile, replicating the complex vasculature and extracellular matrix (ECM) circumstances of HCC in in vitro models for evaluating embolic agents proves to be challenging. Herein, we developed a decellularized cancerous liver model with translucent appearance, a complicated hepatic vascular system and tissue-specific ECM for the evaluation of embolic agents. Inkpad oil and microparticles were used to illustrate different systems of vascular structures between healthy and HCC rats' livers. Quantitative analysis with AngioTool revealed significant differences in vessel density and lacunarity between the two groups. Proteomics showed higher secretion of collagens in the HCC rat liver models than in healthy livers. Utilizing this in vitro model, we investigated the impact of tumor-specific vascular structure and ECM composition on chemoembolization performance, the two key factors inaccessible by currently available drug release testing platforms. Our findings revealed that the presence of an aberrant vascular system and the distorted ECM within the model led to drug retention. This preclinical model holds great promise as a valuable tool for evaluating embolic agents and studying their performance in the tumor microenvironment. STATEMENT OF SIGNIFICANCE: Transarterial chemoembolization (TACE), which employs drug-eluting embolic agents to obstruct the tumor-feeding vessels while locally releasing chemotherapeutic drugs into the tumor, has become the first-line treatment of unresectable liver cancer over past two decades. Nevertheless, the advancement of effective drug-eluting embolic agents has been retarded due to the lack of appropriate in vitro models for assessing the local embolization and chemotherapy performances in TACE. Here we developed a cirrhotic hepatocellular carcinoma-based decellularized liver cancer model, which preserves the aberrant vasculatures and tumor-specific extracellular matrix of liver cancer, for TACE evaluation. This model incorporates a blood flow simulation component to assess the dynamics of drug release behaviors of chemoembolic agents within tumor-mimicking conditions, more accurately replicating the in vivo environment for the locoregional assessments as compared to conventional in vitro models.
Collapse
Affiliation(s)
- Meijuan Wang
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanan Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Xiaoya Liu
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhihua Li
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xu Gao
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Matthew I Gibson
- Department of Chemistry and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK; Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Qiongyu Guo
- Department of Biomedical Engineering, Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
13
|
Tao S, Lin B, Zhou H, Sha S, Hao X, Wang X, Chen J, Zhang Y, Pan J, Xu J, Zeng J, Wang Y, He X, Huang J, Zhao W, Fan JB. Janus particle-engineered structural lipiodol droplets for arterial embolization. Nat Commun 2023; 14:5575. [PMID: 37696820 PMCID: PMC10495453 DOI: 10.1038/s41467-023-41322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embolization (utilizing embolic materials to block blood vessels) has been considered one of the most promising strategies for clinical disease treatments. However, the existing embolic materials have poor embolization effectiveness, posing a great challenge to highly efficient embolization. In this study, we construct Janus particle-engineered structural lipiodol droplets by programming the self-assembly of Janus particles at the lipiodol-water interface. As a result, we achieve highly efficient renal embolization in rabbits. The obtained structural lipiodol droplets exhibit excellent mechanical stability and viscoelasticity, enabling them to closely pack together to efficiently embolize the feeding artery. They also feature good viscoelastic deformation capacities and can travel distally to embolize finer vasculatures down to 40 μm. After 14 days post-embolization, the Janus particle-engineered structural lipiodol droplets achieve efficient embolization without evidence of recanalization or non-target embolization, exhibiting embolization effectiveness superior to the clinical lipiodol-based emulsion. Our strategy provides an alternative approach to large-scale fabricate embolic materials for highly efficient embolization and exhibits good potential for clinical applications.
Collapse
Affiliation(s)
- Sijian Tao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Houwang Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Suinan Sha
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xuejiao Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jianping Chen
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiabin Xu
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Junling Zeng
- Laboratory Animal Research Center of Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Ying Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Xiaofeng He
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China
| | - Jiahao Huang
- School of Biomedical Engineering, Southern Medical University, 510515, Guangzhou, P. R. China.
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, P. R. China.
| | - Wei Zhao
- Division of Vascular and Interventional Radiology, Department of General Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, P. R. China.
| | - Jun-Bing Fan
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, 510515, Guangzhou, P. R. China.
| |
Collapse
|
14
|
Liu X, Wang X, Luo Y, Wang M, Chen Z, Han X, Zhou S, Wang J, Kong J, Yu H, Wang X, Tang X, Guo Q. A 3D Tumor-Mimicking In Vitro Drug Release Model of Locoregional Chemoembolization Using Deep Learning-Based Quantitative Analyses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206195. [PMID: 36793129 PMCID: PMC10104640 DOI: 10.1002/advs.202206195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Primary liver cancer, with the predominant form as hepatocellular carcinoma (HCC), remains a worldwide health problem due to its aggressive and lethal nature. Transarterial chemoembolization, the first-line treatment option of unresectable HCC that employs drug-loaded embolic agents to occlude tumor-feeding arteries and concomitantly delivers chemotherapeutic drugs into the tumor, is still under fierce debate in terms of the treatment parameters. The models that can produce in-depth knowledge of the overall intratumoral drug release behavior are lacking. This study engineers a 3D tumor-mimicking drug release model, which successfully overcomes the substantial limitations of conventional in vitro models through utilizing decellularized liver organ as a drug-testing platform that uniquely incorporates three key features, i.e., complex vasculature systems, drug-diffusible electronegative extracellular matrix, and controlled drug depletion. This drug release model combining with deep learning-based computational analyses for the first time permits quantitative evaluation of all important parameters associated with locoregional drug release, including endovascular embolization distribution, intravascular drug retention, and extravascular drug diffusion, and establishes long-term in vitro-in vivo correlations with in-human results up to 80 d. This model offers a versatile platform incorporating both tumor-specific drug diffusion and elimination settings for quantitative evaluation of spatiotemporal drug release kinetics within solid tumors.
Collapse
Affiliation(s)
- Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Department of PharmacyShenzhen Children's HospitalShenzhenGuangdong518026P. R. China
| | - Xueying Wang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Meijuan Wang
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Xiaoyu Han
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Sijia Zhou
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Jiahao Wang
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
| | - Jian Kong
- Department of Interventional RadiologyFirst Affiliated Hospital of Southern University of Science and TechnologySecond Clinical Medical College of Jinan UniversityShenzhen People's HospitalShenzhenGuangdong518020P. R. China
| | - Hanry Yu
- Mechanobiology InstituteNational University of SingaporeSingapore117411Singapore
- Department of PhysiologyInstitute of Digital Medicineand Mechanobiology InstituteNational University of SingaporeSingapore117593Singapore
| | - Xiaobo Wang
- Department of MolecularCellular and Developmental Biology (MCD)Centre de Biologie Integrative (CBI)University of ToulouseCNRSUPSToulouse31062France
| | - Xiaoying Tang
- Department of Electronic and Electrical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Jiaxing Research InstituteSouthern University of Science and TechnologyJiaxingZhejiang314000P. R. China
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare EngineeringGuangdong Provincial Key Laboratory of Advanced BiomaterialsDepartment of Biomedical EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
15
|
Gao Y, Xiao J, Chen Z, Ma Y, Liu X, Yang D, Leo HL, Yu H, Kong J, Guo Q. Engineering orthotopic tumor spheroids with organ-specific vasculatures for local chemoembolization evaluation. Biomater Sci 2023; 11:2115-2128. [PMID: 36723179 DOI: 10.1039/d2bm01632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Developing a three-dimensional (3D) in vitro tumor model with vasculature systems suitable for testing endovascular interventional therapies remains a challenge. Here we develop an orthotopic liver tumor spheroid model that captures the organ-level complexity of vasculature systems and the extracellular matrix to evaluate transcatheter arterial chemoembolization (TACE) treatment. The orthotopic tumor spheroids are derived by seeding HepG2 cell colonies with controlled size and location surrounding the portal triads in a decellularized rat liver matrix and are treated by clinically relevant drug-eluting beads embolized in a portal vein vasculature while maintaining dynamic physiological conditions with nutrient and oxygen supplies through the hepatic vein vasculature. The orthotopic tumor model exhibits strong drug retention inside the spheroids and embolization location-dependent cellular apoptosis responses in an analogous manner to in vivo conditions. Such a tumor spheroid model built in a decellularized scaffold containing organ-specific vasculatures, which closely resembles the unique tumor microenvironment, holds the promise to efficiently assess various diagnostic and therapeutic strategies for endovascular therapies.
Collapse
Affiliation(s)
- Yanan Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China. .,Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Dishuang Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.,Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore 138669, Singapore.,Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Jian Kong
- Department of Interventional Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
16
|
Microspheres as a Carrier System for Therapeutic Embolization Procedures: Achievements and Advances. J Clin Med 2023; 12:jcm12030918. [PMID: 36769566 PMCID: PMC9917963 DOI: 10.3390/jcm12030918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The targeted delivery of anti-cancer drugs and isotopes is one of the most pursued goals in anti-cancer therapy. One of the prime examples of such an application is the intra-arterial injection of microspheres containing cytostatic drugs or radioisotopes during hepatic embolization procedures. Therapy based on the application of microspheres revolves around vascular occlusion, complemented with local therapy in the form of trans-arterial chemoembolization (TACE) or radioembolization (TARE). The broadest implementation of these embolization strategies currently lies within the treatment of untreatable hepatocellular cancer (HCC) and metastatic colorectal cancer. This review aims to describe the state-of-the-art TACE and TARE technologies investigated in the clinical setting for HCC and addresses current trials and new developments. In addition, chemical properties and advancements in microsphere carrier systems are evaluated, and possible improvements in embolization therapy based on the modification of and functionalization with therapeutical loads are explored.
Collapse
|
17
|
Yang SH, Ju XJ, Deng CF, Cai QW, Tian XY, Xie R, Wang W, Liu Z, Pan DW, Chu LY. In Vitro Study on Effects of Physico-Chemo-Mechanical Properties of Embolic Microspheres on Embolization Performances. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shi-Hao Yang
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chuan-Fu Deng
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Quan-Wei Cai
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Yu Tian
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wei Wang
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
18
|
Tian P, Liu W, Yang S, Zhang J. Amphiphilic drug slow release microspheres fabricated using polyvinyl alcohol,
10‐Undecen‐1‐ol
, and multi‐walled carbon nanotubes. J Appl Polym Sci 2022. [DOI: 10.1002/app.53498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pan Tian
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Wanjing Liu
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Shengdu Yang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| | - Junhua Zhang
- State Key Laboratory of Polymer Materials Engineering Polymer Research Institute, Sichuan University Chengdu China
| |
Collapse
|
19
|
Ambrosio L, Sanchez Terrero C, Prado MO, Parodi L, Zarlenga AC, Cardoso Cúneo J. Anti-tumoral effect of doxorubicin-loaded poly(vinyl alcohol)/poly(vinyl acetate) microspheres in a rat model. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Go G, Yoo A, Nguyen KT, Nan M, Darmawan BA, Zheng S, Kang B, Kim CS, Bang D, Lee S, Kim KP, Kang SS, Shim KM, Kim SE, Bang S, Kim DH, Park JO, Choi E. Multifunctional microrobot with real-time visualization and magnetic resonance imaging for chemoembolization therapy of liver cancer. SCIENCE ADVANCES 2022; 8:eabq8545. [PMID: 36399561 PMCID: PMC9674283 DOI: 10.1126/sciadv.abq8545] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/30/2022] [Indexed: 05/28/2023]
Abstract
Microrobots that can be precisely guided to target lesions have been studied for in vivo medical applications. However, existing microrobots have challenges in vivo such as biocompatibility, biodegradability, actuation module, and intra- and postoperative imaging. This study reports microrobots visualized with real-time x-ray and magnetic resonance imaging (MRI) that can be magnetically guided to tumor feeding vessels for transcatheter liver chemoembolization in vivo. The microrobots, composed of a hydrogel-enveloped porous structure and magnetic nanoparticles, enable targeted delivery of therapeutic and imaging agents via magnetic guidance from the actuation module under real-time x-ray imaging. In addition, the microrobots can be tracked using MRI as postoperative imaging and then slowly degrade over time. The in vivo validation of microrobot system-mediated chemoembolization was demonstrated in a rat liver with a tumor model. The proposed microrobot provides an advanced medical robotic platform that can overcome the limitations of existing microrobots and current liver chemoembolization.
Collapse
Affiliation(s)
- Gwangjun Go
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Ami Yoo
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Kim Tien Nguyen
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Minghui Nan
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Bobby Aditya Darmawan
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Shirong Zheng
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- College of AI Convergence, Chonnam National University, Gwangju 34931, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Doyeon Bang
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- College of AI Convergence, Chonnam National University, Gwangju 34931, Korea
| | - Seonmin Lee
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Kyu-Pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Seong Soo Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Kyung Mi Shim
- Department of Veterinary Surgery, College of Veterinary Medicine and Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Se Eun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Biomaterial R&BD Center, Chonnam National University, Gwangju 61186, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
21
|
Ambrosio Téllez L, Verón MG, Cúneo JC, Prado MO. Synthesis and mechanical behavior of poly (vinyl alcohol) / poly (vinyl acetate) microspheres. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2075273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Luisa Ambrosio Téllez
- Medical and Industrial Applications Division, Department Nuclear Materials, National Atomic Energy Commission (CNEA), San Carlos de Bariloche, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Medicine faculty, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Nuclear Medicine Oncological Center, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina (COMNIR)
| | - María Gisela Verón
- Medical and Industrial Applications Division, Department Nuclear Materials, National Atomic Energy Commission (CNEA), San Carlos de Bariloche, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Jorge Cardoso Cúneo
- Medicine faculty, University of Buenos Aires (UBA), Buenos Aires, Argentina
- Nuclear Medicine Oncological Center, Institute of Oncology Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina (COMNIR)
- Department of Gastroenterological Surgery, Institute of Oncology Angel H. Roffo, Buenos Aires, Argentina
| | - Miguel Oscar Prado
- Medical and Industrial Applications Division, Department Nuclear Materials, National Atomic Energy Commission (CNEA), San Carlos de Bariloche, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
22
|
Embolization therapy with microspheres for the treatment of liver cancer: State-of-the-art of clinical translation. Acta Biomater 2022; 149:1-15. [PMID: 35842035 DOI: 10.1016/j.actbio.2022.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023]
Abstract
Embolization with microspheres is a therapeutic strategy based on the selective occlusion of the blood vessels feeding a tumor. This procedure is intraarterially performed in the clinical setting for the treatment of liver cancer. The practice has evolved over the last decade through the incorporation of drug loading ability, biodegradability and imageability with the subsequent added functionality for the physicians and improved clinical outcomes for the patients. This review highlights the evolution of the embolization systems developed through the analysis of the marketed embolic microspheres for the treatment of malignant hepatocellular carcinoma, namely the most predominant form of liver cancer. Embolic microspheres for the distinct modalities of embolization (i.e., bland embolization, chemoembolization and radioembolization) are here comprehensively compiled with emphasis on material characteristics and their impact on microsphere performance. Moreover, the future application of the embolics under clinical investigation is discussed along with the scientific and regulatory challenges ahead in the field. STATEMENT OF SIGNIFICANCE: Embolization therapy with microspheres is currently used in the clinical setting for the treatment of most liver cancer conditions. The progressive development of added functionalities on embolic microspheres (such as biodegradability, imageability or drug and radiopharmaceutical loading capability) provides further benefit to patients and widens the therapeutic armamentarium for physicians towards truly personalized therapies. Therefore, it is important to analyze the possibilities that advanced biomaterials offer in the field from a clinical translational perspective to outline the future trends in therapeutic embolization.
Collapse
|
23
|
Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics (Basel) 2022; 7:biomimetics7020077. [PMID: 35735593 PMCID: PMC9221114 DOI: 10.3390/biomimetics7020077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Minimally invasive endovascular embolization is a widely used clinical technique used for the occlusion of blood vessels to treat various diseases. Different occlusive agents ranging from gelatin foam to synthetic polymers such as poly(vinyl alcohol) (PVA) have been commercially used for embolization. However, these agents have some drawbacks, such as undesired toxicity and unintended and uncontrolled occlusion. To overcome these issues, several polymer-based embolic systems are under investigation including biocompatible and biodegradable microspheres, gelling liquid embolic with controlled occlusive features, and trackable microspheres with enhanced safety profiles. This review aims to summarize recent advances in current and emerging polymeric materials as embolization agents with varying material architectures. Furthermore, this review also explores the potential of combining injectable embolic agents and cell therapy to achieve more effective embolization with the promise of outstanding results in treating various devastating diseases. Finally, limitations and challenges in developing next-generation multifunctional embolic agents are discussed to promote advancement in this emerging field.
Collapse
|
24
|
He P, Xiong Y, Ye J, Chen B, Cheng H, Liu H, Zheng Y, Chu C, Mao J, Chen A, Zhang Y, Li J, Tian J, Liu G. A clinical trial of super-stable homogeneous lipiodol-nanoICG formulation-guided precise fluorescent laparoscopic hepatocellular carcinoma resection. J Nanobiotechnology 2022; 20:250. [PMID: 35658966 PMCID: PMC9164554 DOI: 10.1186/s12951-022-01467-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Applying traditional fluorescence navigation technologies in hepatocellular carcinoma is severely restricted by high false-positive rates, variable tumor differentiation, and unstable fluorescence performance. RESULTS In this study, a green, economical and safe nanomedicine formulation technology was developed to construct carrier-free indocyanine green nanoparticles (nanoICG) with a small uniform size and better fluorescent properties without any molecular structure changes compared to the ICG molecule. Subsequently, nanoICG dispersed into lipiodol via a super-stable homogeneous intermixed formulation technology (SHIFT&nanoICG) for transhepatic arterial embolization combined with fluorescent laparoscopic hepatectomy to eliminate the existing shortcomings. A 52-year-old liver cancer patient was recruited for the clinical trial of SHIFT&nanoICG. We demonstrate that SHIFT&nanoICG could accurately identify and mark the lesion with excellent stability, embolism, optical imaging performance, and higher tumor-to-normal tissue ratio, especially in the detection of the microsatellite lesions (0.4 × 0.3 cm), which could not be detected by preoperative imaging, to realize a complete resection of hepatocellular carcinoma under fluorescence laparoscopy in a shorter period (within 2 h) and with less intraoperative blood loss (50 mL). CONCLUSIONS This simple and effective strategy integrates the diagnosis and treatment of hepatocellular carcinoma, and thus, it has great potential in various clinical applications.
Collapse
Affiliation(s)
- Pan He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yongfu Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China
| | - Jinfa Ye
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Biaoqi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hao Liu
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yating Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Amoy Hopeful Biotechnology Co., Ltd, Xiamen, 361027, China
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Aizheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637600, China.
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
25
|
Leng F, Lei S, Luo B, Lv S, Huang L, Jiang X. Size-tunable and biodegradable thrombin-functionalized carboxymethyl chitin microspheres for endovascular embolization. Carbohydr Polym 2022; 286:119274. [DOI: 10.1016/j.carbpol.2022.119274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
|
26
|
Samarage HM, Kim WJ, Zarrin D, Goel K, Chin-Hsiu Wang A, Johnson J, Kaneko N, Nour M, Szeder V, Tateshima S, Jahan R, Duckwiler G, Colby GP. The "Bright Falx" Sign-Midline Embolic Penetration Is Associated With Faster Resolution of Chronic Subdural Hematoma After Middle Meningeal Artery Embolization: A Case Series. Neurosurgery 2022; 91:389-398. [PMID: 35551167 DOI: 10.1227/neu.0000000000002038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic subdural hematomas (CSDHs) are common in the elderly population and patients taking antiplatelet/anticoagulation medications. Middle meningeal artery (MMA) embolization has become an adjunctive treatment to observation and surgery. Despite many embolization techniques, best practices for optimal CSDH resolution remain unknown. OBJECTIVE To report a retrospective case series of MMA embolization for CSDHs regarding rate of hematoma improvement and the significance of distal embolic penetration into the falx. METHODS Retrospective chart review was performed on all patients who underwent MMA embolization for CSDHs between January 2017 and June 2021. Patient demographics, clinical presentation, anticoagulant use, and radiographic features were collected. Pre-embolization and postembolization computed tomography scans were analyzed for volumetric changes and assessed for midline penetration of embolic material in the falx. RESULTS MMA embolization was performed in 37 patients and 53 hemispheres. Older patients took longer to obtain complete resolution of CSDHs (r = 0.47, P = .03). Patients with larger pre-embolization (r = 0.57, P = .007) and postembolization (r = 0.56, P = .008) CSDH volumes took longer to completely resolve. Patients who had n-butyl cyanoacrylate embolization with midline penetration, as evidenced by the "bright falx" sign, had faster improvement rates than those who did not (5.64 cm3/d vs 1.2 cm3/d, P = .02). CONCLUSION Distal penetration of embolic material, particularly n-butyl cyanoacrylate, into the falx may lead to more rapid improvement of CSDH.
Collapse
Affiliation(s)
- Hasitha Milan Samarage
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Wi Jin Kim
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - David Zarrin
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Keshav Goel
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Anthony Chin-Hsiu Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Jeremiah Johnson
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA
| | - Naoki Kaneko
- Department of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, California, USA
| | - May Nour
- Department of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, California, USA
| | - Viktor Szeder
- Department of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, California, USA
| | - Satoshi Tateshima
- Department of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, California, USA
| | - Reza Jahan
- Department of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, California, USA
| | - Gary Duckwiler
- Department of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, California, USA
| | - Geoffrey Philip Colby
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, USA.,Department of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
27
|
Luo Y, Ma Y, Chen Z, Gao Y, Zhou Y, Liu X, Liu X, Gao X, Li Z, Liu C, Leo HL, Yu H, Guo Q. Shape-Anisotropic Microembolics Generated by Microfluidic Synthesis for Transarterial Embolization Treatment. Adv Healthc Mater 2022; 11:e2102281. [PMID: 35106963 DOI: 10.1002/adhm.202102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/29/2021] [Indexed: 11/11/2022]
Abstract
Particulate embolic agents with calibrated sizes, which employ interventional procedures to achieve endovascular embolization, have recently attracted tremendous interest in therapeutic embolotherapies for a wide plethora of diseases. However, the particulate shape effect, which may play a critical role in embolization performances, has been rarely investigated. Here, polyvinyl alcohol (PVA)-based shape-anisotropic microembolics are developed using a facile droplet-based microfluidic fabrication method via heat-accelerated PVA-glutaraldehyde crosslinking reaction at a mild temperature of 38 ° C. Precise geometrical controls of the microembolics are achieved with a nearly capsule shape through regulating surfactant concentration and flow rate ratio between dispersed phase and continuous phase in the microfluidics. Two specific models are employed, i.e., in vitro decellularized rabbit liver embolization model and in vivo rabbit ear embolization model, to systematically evaluate the embolization behaviors of the nonspherical microembolics. Compared to microspheres of the same volume, the elongated microembolics demonstrated advantageous endovascular navigation capability, penetration depth and embolization stability due to their comparatively smaller radial diameter and their central cylindrical part providing larger contact area with distal vessels. Such nonspherical microembolics present a promising platform to apply shape anisotropy to achieve distinctive therapeutic effects for endovascular treatments.
Collapse
Affiliation(s)
- Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Department of Biomedical Engineering National University of Singapore Engineering Drive 3, Engineering Block 4, #04‐08 Singapore 117583 Singapore
| | - Yanan Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yuping Zhou
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xuezhe Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xu Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Zhihua Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuang Liu
- Cryo‐EM Center Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Hwa Liang Leo
- Department of Biomedical Engineering National University of Singapore Engineering Drive 3, Engineering Block 4, #04‐08 Singapore 117583 Singapore
| | - Hanry Yu
- Mechanobiology Institute National University of Singapore Singapore 117411 Singapore
- Institute of Bioengineering and Nanotechnology Agency for Science Technology and Research Singapore 138669 Singapore
- Department of Physiology Yong Loo Lin School of Medicine National University of Singapore Singapore 117593 Singapore
- Singapore‐MIT Alliance for Research and Technology Singapore 138602 Singapore
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
28
|
Li Z, Chen Z, Gao Y, Xing Y, Zhou Y, Luo Y, Xu W, Chen Z, Gao X, Gupta K, Anbalakan K, Chen L, Liu C, Kong J, Leo HL, Hu C, Yu H, Guo Q. Shape memory micro-anchors with magnetic guidance for precision micro-vascular deployment. Biomaterials 2022; 283:121426. [DOI: 10.1016/j.biomaterials.2022.121426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
|
29
|
Mohr I, Vogeler M, Pfeiffenberger J, Sprengel SD, Klauss M, Radeleff B, Teufel A, Chang DH, Springfeld C, Longerich T, Merle U, Mehrabi A, Weiss KH, Mieth M. Clinical effects and safety of different transarterial chemoembolization methods for bridging and palliative treatments in hepatocellular carcinoma. J Cancer Res Clin Oncol 2022; 148:3163-3174. [PMID: 35076764 PMCID: PMC9508038 DOI: 10.1007/s00432-021-03900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/24/2021] [Indexed: 01/09/2023]
Abstract
Purpose We assessed and compared clinical effects and safety endpoints of three methods of transarterial chemoembolization (TACE), conventional (cTACE), with drug-eluting beads (DEB-TACE), and with degradable starch microspheres (DSM-TACE), used in patients with hepatocellular carcinoma (HCC) in the bridging to liver transplant (LT) and the palliative setting. Methods In our center, 148 patients with HCC underwent 492 completed TACE procedures between 2008 and 2017 (158 for bridging to LT; 334 for palliative treatment) which we analyzed retrospectively. Of these procedures, 348 were DEB-TACE, 60 cTACE, and 84 DSM-TACE. Results The cTACE procedure revealed a significantly longer period of hospitalization (p = 0.02), increased occurrence of nausea (p = 0.025), and rise in alanine transaminase (ALT) levels (p = 0.001), especially in the palliative setting. In the bridging to LT cohort, these clinical endpoints did not reach statistical significance. Conclusions The clinical safety of different TACE methods for HCC in both the palliative and the bridging to LT setting was equivalent. In the palliative setting, the cTACE procedure revealed an increased risk for adverse clinical effects such as nausea, elevation of ALT, and a prolonged period of hospitalization what might either be related to the systemic effects of the chemotherapeutic agent or to the differences in both collectives. Thus, further studies must be conducted on a larger number of TACE procedures to effectively explore the clinical side effects of the various TACE variants.
Collapse
Affiliation(s)
- Isabelle Mohr
- Internal Medicine IV, Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Marie Vogeler
- Internal Medicine IV, Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Jan Pfeiffenberger
- Internal Medicine IV, Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | | | - Miriam Klauss
- Department of Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Boris Radeleff
- Department of Diagnostic and Interventional Radiology, Sana Klinikum Hof, Hof, Germany
| | - Andreas Teufel
- Department of Gastroenterology and Hepatology, Mannheim University Hospital, Mannheim, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - De-Hua Chang
- Department of Radiology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, Heidelberg University Hospital, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Thomas Longerich
- Department of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Uta Merle
- Internal Medicine IV, Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Karl Heinz Weiss
- Internal Medicine, Salem Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, INF 110, 69120, Heidelberg, Germany.
- Liver Cancer Center Heidelberg (LCCH), Heidelberg, Germany.
| |
Collapse
|
30
|
Yi Z, Sun Z, Shen Y, Luo D, Zhang R, Ma S, Zhao R, Farheen J, Iqbal MZ, Kong X. The sodium hyaluronate microspheres fabricated by solution drying for transcatheter arterial embolization. J Mater Chem B 2022; 10:4105-4114. [DOI: 10.1039/d2tb00413e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcatheter arterial embolization (TAE) is an effective therapeutic method for several clinical ailments. Interminably, the polymer microsphere is reflected as one of the idyllic embolic materials due to the exceptional...
Collapse
|
31
|
Gao X, Chen Z, Chen Z, Liu X, Luo Y, Xiao J, Gao Y, Ma Y, Liu C, Leo HL, Yu H, Guo Q. Visualization and Evaluation of Chemoembolization on a 3D Decellularized Organ Scaffold. ACS Biomater Sci Eng 2021; 7:5642-5653. [PMID: 34735119 DOI: 10.1021/acsbiomaterials.1c01005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transarterial chemoembolization (TACE) has emerged as the mainstay treatment for patients suffering from unresectable intermediate hepatocellular carcinoma and also holds the potential to treat other types of hypervascular cancers such as renal cell carcinoma. However, an in vitro model for evaluating both embolic performance and drug-release kinetics of the TACE embolic agents is still lacking since the current models greatly simplified the in vivo vascular systems as well as the extracellular matrices (ECM) in the organs. Here, we developed a decellularized organ model with preserved ECM and vasculatures as well as a translucent appearance to investigate chemoembolization performances of a clinically widely used embolic agent, i.e., a doxorubicin-loaded ethiodised oil (EO)-based emulsion. We, for the first time, utilized an ex vivo model to evaluate the liquid-based embolic agent in two organs, i.e., liver and kidneys. We found that the EO-based emulsion with enhanced stability by incorporating an emulsifier, i.e., hydrogenated castor oil-40 (HCO), showed an enhanced occlusion level and presented sustained drug release in the ex vivo liver model, suggesting an advantageous therapeutic effect for TACE treatment of hepatocellular carcinoma. In contrast, we observed that drug-release burst happened when applying the same therapy in the kidney model even with the HCO emulsifier, which may be explained by the presence of the specific renal vasculature and calyceal systems, indicating an unfavorable effect in the renal tumor treatment. Such an ex vivo model presents a promising template for chemoembolization evaluation before in vivo experiments for the development of novel embolic agents.
Collapse
Affiliation(s)
- Xu Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zijian Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.,Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, 117583 Singapore
| | - Zhengchang Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaoya Liu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yucheng Luo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jingyu Xiao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanan Gao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yutao Ma
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuang Liu
- Cryo-EM Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, 117583 Singapore
| | - Hanry Yu
- Mechanobiology Institute, National University of Singapore, 117411 Singapore.,Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, 138669 Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593 Singapore.,Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Qiongyu Guo
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
32
|
Hagan AE, Znati SA, Carter R, Westhorpe A, Macfarlane WM, Phillips GJ, Lloyd AW, Sharma RA, Lewis AL. Vandetanib-eluting radiopaque beads for chemoembolization: physicochemical evaluation and biological activity of vandetanib in hypoxia. Anticancer Drugs 2021; 32:897-908. [PMID: 33929994 DOI: 10.1097/cad.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vandetanib-eluting radiopaque beads (VERB) have been developed for use in transarterial chemoembolization of liver tumours, with the goal of combining embolization with local delivery of antiangiogenic therapy. The objective of this study was to investigate how embolization-induced hypoxia may affect antitumoural activity of vandetanib, an inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR), in the context of hepatocellular carcinoma (HCC) treatment. We studied the effect of vandetanib on proliferation, cell cycle and apoptosis of HCC cells, in hypoxic conditions, as well as the direct effects of the beads on 3D HCC spheroids. Vandetanib suppressed proliferation and induced apoptosis of HCC cells in vitro and was equipotent in hypoxic and normoxic conditions. High degrees of apoptosis were observed among cell lines in which vandetanib suppressed ERK1/2 phosphorylation and upregulated the proapoptotic protein Bim, but this did not appear essential for vandetanib-induced cell death in all cell lines. Vandetanib also suppressed the hypoxia-induced secretion of VEGF from HCC cells and inhibited proliferation of endothelial cells. Incubation of tumour spheroids with VERB led to sustained growth inhibition equivalent to the effect of free drug. We conclude that vandetanib has both antiangiogenic and direct anticancer activity against HCC cells even in hypoxic conditions, warranting the further evaluation of VERB as novel anticancer agents.
Collapse
Affiliation(s)
- Alice E Hagan
- Biocompatibles UK Ltd, a BTG International group company, Lakeview, Riverside Way, Watchmoor Park, Camberley, (now a Boston Scientific Corp. company)
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton
| | - Sami A Znati
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Rebecca Carter
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Adam Westhorpe
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Wendy M Macfarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton
| | - Gary J Phillips
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton
| | - Andrew W Lloyd
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton
| | - Ricky A Sharma
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, Paul O'Gorman Building, London, UK
| | - Andrew L Lewis
- Biocompatibles UK Ltd, a BTG International group company, Lakeview, Riverside Way, Watchmoor Park, Camberley, (now a Boston Scientific Corp. company)
| |
Collapse
|
33
|
Liu L, Liang X, Xu X, Zhang X, Wen J, Chen K, Su X, Teng Z, Lu G, Xu J. Magnetic mesoporous embolic microspheres in transcatheter arterial chemoembolization for liver cancer. Acta Biomater 2021; 130:374-384. [PMID: 34082098 DOI: 10.1016/j.actbio.2021.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug loading, and imaging properties have not yet been constructed. Herein, we report a new magnetic mesoporous embolic microsphere that can simultaneously be loaded with doxorubicin (Dox), block vessels, and be observed by magnetic resonance imaging (MRI). The microspheres were prepared by decorating magnetic polystyrene/Fe3O4 particles with mesoporous organosilica microparticles (denoted as PS/Fe3O4@MONs). The PS/Fe3O4@MONs were uniformly spherical and large (50 µm), with a high specific surface area, uniform mesopores, and a Dox loading capacity of 460.8 µg mg-1. Dox-loaded PS/Fe3O4@MONs (PS/Fe3O4@MON@Dox) effectively inhibited liver cancer cell growth. A VX2 rabbit liver tumor model was constructed to study the efficacy of TACE with PS/Fe3O4@MON@Dox. In vivo, PS/Fe3O4@MON@Dox could be smoothly delivered through an arterial catheter to achieve chemoembolization. Moreover, PS/Fe3O4@MON@Dox and residual tumor parenchyma could be distinguished on MRI, which is of great significance for evaluating the efficacy of TACE. Histopathology showed that PS/Fe3O4@MON@Dox could be deposited in the tumor vessels, completely blocking the blood supply. Overall, PS/Fe3O4@MON@Dox showed good drug loading, embolization and imaging performance as well as potential for use in TACE. STATEMENT OF SIGNIFICANCE: Transcatheter arterial chemoembolization (TACE) is the main treatment for liver cancer. Although many embolic agents have been exploited in TACE, embolic agents combining embolization, drug-loading, and imaging properties have not yet been constructed. In this work, we prepared magnetic mesoporous microspheres as a new embolic agent that can simultaneously load doxorubicin (Dox), block blood vessels and enable magnetic resonance imaging. Overall, this new embolic microsphere-mediated TACE strategy for liver cancer showed good therapeutic effects, and the PS/Fe3O4@MON@Dox embolic microspheres provide a new avenue for improving the efficacy of TACE for liver cancer and postoperative evaluation.
Collapse
|
34
|
Enhanced Embolization Efficacy with the Embolic Microspheres Guided by the Aggregate Gradation Theory Through In Vitro and Simulation Evaluation. Cardiovasc Eng Technol 2021; 12:398-406. [PMID: 33844137 DOI: 10.1007/s13239-021-00534-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Size of the embolic microspheres is of critical importance in the transcatheter arterial chemoembolization (TACE) of hepatocellular carcinoma (HCC) to achieve the optimal embolization therapy. In this regard, to optimize the size distribution of the embolic microspheres and enhance the embolization efficacy, the aggregate gradation theory is used to formulate the microspheres. METHODS Finite element analysis (FEA) and in vitro experiments confirmed a better embolic efficacy for the poly(vinyl alcohol) (PVA) microspheres formulated according to the aggregate gradation theory. RESULTS The average volume flow of the graded group was 1.31 × 10-4 mL/s in vitro experiment, which was lowest among all the groups suggesting the graded group had the optimal embolic effect. The graded group has the largest pressure gradient of 314.22 Pa/μm in FEA among all the groups, which can be attributed to the highest packing density of the graded group compared with other groups. CONCLUSIONS The graded embolic microspheres have a larger drag coefficient compared with the narrow size distribution groups both in vitro experiment and FEA. These findings can be used to formulate the embolic agents with optimal size distributions and are significant for the improvement of clinical embolization therapy.
Collapse
|
35
|
Antón R, Antoñana J, Aramburu J, Ezponda A, Prieto E, Andonegui A, Ortega J, Vivas I, Sancho L, Sangro B, Bilbao JI, Rodríguez-Fraile M. A proof-of-concept study of the in-vivo validation of a computational fluid dynamics model of personalized radioembolization. Sci Rep 2021; 11:3895. [PMID: 33594143 PMCID: PMC7886872 DOI: 10.1038/s41598-021-83414-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
Radioembolization (RE) with yttrium-90 (90Y) microspheres, a transcatheter intraarterial therapy for patients with liver cancer, can be modeled computationally. The purpose of this work was to correlate the results obtained with this methodology using in vivo data, so that this computational tool could be used for the optimization of the RE procedure. The hepatic artery three-dimensional (3D) hemodynamics and microsphere distribution during RE were modeled for six 90Y-loaded microsphere infusions in three patients with hepatocellular carcinoma using a commercially available computational fluid dynamics (CFD) software package. The model was built based on in vivo data acquired during the pretreatment stage. The results of the simulations were compared with the in vivo distribution assessed by 90Y PET/CT. Specifically, the microsphere distribution predicted was compared with the actual 90Y activity per liver segment with a commercially available 3D-voxel dosimetry software (PLANET Dose, DOSIsoft). The average difference between the CFD-based and the PET/CT-based activity distribution was 2.36 percentage points for Patient 1, 3.51 percentage points for Patient 2 and 2.02 percentage points for Patient 3. These results suggest that CFD simulations may help to predict 90Y-microsphere distribution after RE and could be used to optimize the RE procedure on a patient-specific basis.
Collapse
Affiliation(s)
- Raúl Antón
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
| | - Javier Antoñana
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Jorge Aramburu
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Ana Ezponda
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Elena Prieto
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Asier Andonegui
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
| | - Julio Ortega
- Universidad de Navarra, TECNUN Escuela de Ingeniería, 20018, Donostia-San Sebastián, Spain
- Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Isabel Vivas
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Lidia Sancho
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 28027, Madrid, Spain
| | - Bruno Sangro
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Hepatology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
- CIBEREHD, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas, 28029, Madrid, Spain
| | - José Ignacio Bilbao
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain
- Department of Radiology, Clínica Universidad de Navarra, 31008, Pamplona, Spain
| | - Macarena Rodríguez-Fraile
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008, Pamplona, Spain.
- Department of Nuclear Medicine, Clínica Universidad de Navarra, 31008, Pamplona, Spain.
| |
Collapse
|
36
|
Go G, Yoo A, Song HW, Min HK, Zheng S, Nguyen KT, Kim S, Kang B, Hong A, Kim CS, Park JO, Choi E. Multifunctional Biodegradable Microrobot with Programmable Morphology for Biomedical Applications. ACS NANO 2021; 15:1059-1076. [PMID: 33290042 DOI: 10.1021/acsnano.0c07954] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We described a magnetic chitosan microscaffold tailored for applications requiring high biocompatibility, biodegradability, and monitoring by real-time imaging. Such magnetic microscaffolds exhibit adjustable pores and sizes depending on the target application and provide various functions such as magnetic actuation and enhanced cell adhesion using biomaterial-based magnetic particles. Subsequently, we fabricated the magnetic chitosan microscaffolds with optimized shape and pore properties to specific target diseases. As a versatile tool, the capability of the developed microscaffold was demonstrated through in vitro laboratory tasks and in vivo therapeutic applications for liver cancer therapy and knee cartilage regeneration. We anticipate that the optimal design and fabrication of the presented microscaffold will advance the technology of biopolymer-based microscaffolds and micro/nanorobots.
Collapse
Affiliation(s)
- Gwangjun Go
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Ami Yoo
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
| | - Hyeong-Woo Song
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
| | - Hyun-Ki Min
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
| | - Shirong Zheng
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Kim Tien Nguyen
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
| | - Seokjae Kim
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
| | - Byungjeon Kang
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Ayoung Hong
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Chang-Sei Kim
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Jong-Oh Park
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| | - Eunpyo Choi
- Korea Institute of Medical Microrobotics (KIMIRo), 43-26 Cheomdangwagi-ro, Buk-gu, Gwangju, 61011, Korea
- School of Mechanical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
| |
Collapse
|
37
|
Li X, Ji X, Chen K, Ullah MW, Li B, Cao J, Xiao L, Xiao J, Yang G. Immobilized thrombin on X-ray radiopaque polyvinyl alcohol/chitosan embolic microspheres for precise localization and topical blood coagulation. Bioact Mater 2021; 6:2105-2119. [PMID: 33511310 PMCID: PMC7807145 DOI: 10.1016/j.bioactmat.2020.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Trans-catheter arterial embolization (TAE) plays an important role in treating various diseases. The available embolic agents lack X-ray visibility and do not prevent the reflux phenomenon, thus hindering their application for TAE therapy. Herein, we aim to develop a multifunctional embolic agent that combines the X-ray radiopacity with local procoagulant activity. The barium sulfate nanoparticles (BaSO4 NPs) were synthesized and loaded into the polyvinyl alcohol/chitosan (PVA/CS) to prepare the radiopaque BaSO4/PVA/CS microspheres (MS). Thereafter, thrombin was immobilized onto the BaSO4/PVA/CS MS to obtain the thrombin@BaSO4/PVA/CS MS. The prepared BaSO4/PVA/CS MS were highly spherical with diameters ranging from 100 to 300 μm. In vitro CT imaging showed increased X-ray visibility of BaSO4/PVA/CS MS with the increased content of BaSO4 NPs in the PVA/CS MS. The biocompatibility assessments demonstrated that the MS were non-cytotoxic and possessed permissible hemolysis rate. The biofunctionalized thrombin@BaSO4/PVA/CS MS showed improved hemostatic capacity and facilitated hemostasis in vitro. Additionally, in vivo study performed on a rabbit ear embolization model confirmed the excellent X-ray radiopaque stability of the BaSO4/PVA/CS MS. Moreover, both the BaSO4/PVA/CS and thrombin@BaSO4/PVA/CS MS achieved superior embolization effects with progressive ischemic necrosis on the ear tissue and induced prominent ultrastructural changes in the endothelial cells. The findings of this study suggest that the developed MS could act as a radiopaque and hemostatic embolic agent to improve the embolization efficiency. Excellent in vitro and in vivo visibility of BaSO4/PVA/CS MS. Excellent cytocompatibility and hemocompatibility of BaSO4/PVA/CS MS. Enhanced hemostatic capacity and hemostasis of thrombin@BaSO4/PVA/CS MS. Potential application of thrombin@BaSO4/PVA/CS MS for in vivo embolization.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiongfa Ji
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Kun Chen
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Muhammad Wajid Ullah
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Basen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiameng Cao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jun Xiao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
38
|
Park DH, Jung YJ, Steve Jeo Kins SJK, Kim YD, Go JS. Prevention of Microsphere Blockage in Catheter Tubes Using Convex Air Bubbles. MICROMACHINES 2020; 11:mi11121040. [PMID: 33260919 PMCID: PMC7760967 DOI: 10.3390/mi11121040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 05/04/2023]
Abstract
This paper presents a novel method to prevent blockages by embolic microspheres in catheter channels by using convex air bubbles attached to the channels' inner wall surface. The clogging by microspheres can occur by the arching of the microspheres in the catheter. A few studies have been done on reducing the blockage, but their methods are not suitable for use with embolic catheters. In this study, straight catheter channels were fabricated. They had cavities to form convex air bubbles; additionally, a straight channel without the cavities was designed for comparison. Blockage was observed in the straight channel without the cavities, and the blockage arching angle was measured to be 70°, while no blockage occurred in the cavity channel with air bubbles, even at a geometrical arching angle of 85°. The convex air bubbles have an important role in preventing blockages by microspheres. The slip effect on the air bubble surface and the centrifugal effect make the microspheres drift away from the channel wall. It was observed that as the size of the cavity was increased, the drift distance became larger. Additionally, as more convex air bubbles were formed, the amount of early drift to the center increased. It will be advantageous to design a catheter with large cavities that have a small interval between them.
Collapse
|
39
|
Huang D, Dai H, Tang K, Chen B, Zhu H, Chen D, Li N, Wang Y, Liu C, Huang Y, Yang J, Zhang C, Lin R, He W. A versatile UCST-type composite microsphere for image-guided chemoembolization and photothermal therapy against liver cancer. NANOSCALE 2020; 12:20002-20015. [PMID: 32996987 DOI: 10.1039/d0nr04592f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of novel chemoembolization agents to improve the treatment efficacy of transarterial chemoembolization (TACE) against liver cancer remains an urgent need in clinical practice. Herein, a versatile composite microsphere with upper critical solution temperature (UCST) properties was prepared to encapsulate polydopamine coated superparamagnetic iron oxide nanoparticles (SPION@PDA) and doxorubicin for simultaneous chemoembolization and photothermal therapy. The microspheres were spherical with an average diameter of 100-300 μm and exhibited favorable drug loading capability as well as strong photothermal effect. Strikingly, synergistic enhancement of photothermal therapy and chemotherapy against chemoresistant liver cancer cells was achieved. The in vivo therapeutic efficacy and safety evaluations were performed using rabbit VX2 liver tumor models. It was revealed that a single treatment of the combination of TACE and photothermal procedure resulted in 87.5% complete response and 12.5% partial response for the microsphere group, whereas all tumors in the control group progressed rapidly. Contrast-enhanced computed tomography (CT) evaluation indicated that the tumor diameter decreased by 91.5% after treatment, while that in the control group increased by 86.5%. The pathology-proven tumor necrotic rate was 87.2%, which significantly surpassed that of 65.2% in the control group. Furthermore, serum liver enzyme and biochemical studies indicated a temporary liver injury which can be fully recovered. Our findings demonstrated that this microsphere may be advantageous for enhancing therapeutic efficacy of TACE against liver cancer.
Collapse
Affiliation(s)
- Dan Huang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Karina A, Benzina A, Tazhibayeva S, Fan H, Koole LH. Polymer microparticles with a cavity designed for transarterial chemo-embolization with crystalline drug formulations. J Biomed Mater Res B Appl Biomater 2020; 109:401-409. [PMID: 32860336 DOI: 10.1002/jbm.b.34708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 11/05/2022]
Abstract
Transarterial chemo-embolization with drug-eluting embolic beads (DEB-TACE) is still evolving. Recent developments include the introduction of radiopaque (X-ray imageable) drug-eluting particles. Here, we report on conceptually different radiopaque polymeric drug-eluting embolic particles, which are (i), cross-linked poly(methacrylates); (ii), radiopaque; (iii), microporous. Furthermore, the particles are not perfectly spherical: they have a large indentation in the sense that they are either a spherical/cup-shaped or ellipsoid/mouth-shaped. The micropores and the large indentation can confer useful features upon the particles, since they can be filled with a crystalline lipophilic chemotherapeutic drug. It is important, in this respect that (i), many potent chemotherapeutics are lipophilic and crystalline; (ii), available drug-eluting beads (DEBs) have the limitation that they can only be used in combination with water-soluble chemotherapeutic agents. Cup- and mouth-shaped particles were obtained in a Cu(0) catalyzed free-radical polymerization reaction. The microparticles could be charged with crystalline drug, in such a manner that the crystals reside in both the micropores and the large cavity, and in quantities that would be required for effective local chemotherapy. The antifungal drug voriconazole, lipophilic, and crystalline, was used to demonstrate this. We believe that the ability of the microporous/cavitated DEBs to carry lipophilic chemotherapeutic drugs is especially important. DEB-TACE is likely to become a cornerstone method of interventional oncology in the years ahead, and the new embolic particles described herein hold the promise of becoming scope widening for the technique.
Collapse
Affiliation(s)
- Aigerim Karina
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Abderazak Benzina
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Samal Tazhibayeva
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Haiyan Fan
- Department of Chemistry, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Levinus H Koole
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
41
|
Gao Y, Li Z, Hong Y, Li T, Hu X, Sun L, Chen Z, Chen Z, Luo Z, Wang X, Kong J, Li G, Wang HL, Leo HL, Yu H, Xi L, Guo Q. Decellularized liver as a translucent ex vivo model for vascular embolization evaluation. Biomaterials 2020; 240:119855. [DOI: 10.1016/j.biomaterials.2020.119855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/25/2022]
|
42
|
Li X, Ji X, Chen K, Ullah MW, Yuan X, Lei Z, Cao J, Xiao J, Yang G. Development of finasteride/PHBV@polyvinyl alcohol/chitosan reservoir-type microspheres as a potential embolic agent: from in vitro evaluation to animal study. Biomater Sci 2020; 8:2797-2813. [PMID: 32080688 DOI: 10.1039/c9bm01775e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a prevalent urological disease affecting elders. Currently, the prostatic artery embolization (PAE) is considered as a minimally invasive and safe technique to treat BPH. However, various drug-loaded embolic agents have not been thoroughly investigated in BPH therapy. In this study, finasteride/poly(3-hydroxybutyrate-3-hydroxyvalerate)@polyvinyl alcohol/chitosan (FNS/PHBV@PVA/CS) reservoir-type microspheres were prepared via the solid-in-water-in-oil (S/W/O) emulsion crosslinking method with the aim to reduce the burst effect and control localized drug delivery. The structure and properties of the drug and resultant microspheres were characterized via field emission scanning electron microscopy (FESEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results showed that the drug-loaded hybrid microspheres were well-dispersed and spherical with a mean diameter of 238.1 ± 27.3 μm. All samples exhibited excellent thermal stability. The FNS/PHBV microspheres were successfully encapsulated inside the PVA/CS polymeric matrix, which effectively suppressed the burst effect and prolonged the drug release up to 51 days. In vitro biocompatibility assessment indicated that the microspheres possessed excellent cytocompatibility and hemocompatibility. Furthermore, in vivo studies performed in the rabbit ear embolization model showed the formation of progressive ischemic necrosis after treatment for various periods. Histopathological studies revealed that the microspheres completely occluded the blood vessels with minimal foreign body response and formed the fibrotic area at the periphery of embolized arteries. Furthermore, the auricular vascular endothelial cells showed acute ultrastructural changes, associated with the ischemic necrosis induced by the embolization procedures. All these findings suggest that the FNS/PHBV@PVA/CS hybrid microspheres could be used as a promising drug delivery system for potential applications in BPH therapy.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heo JY, Noh JH, Park SH, Ji YB, Ju HJ, Kim DY, Lee B, Kim MS. An Injectable Click-Crosslinked Hydrogel that Prolongs Dexamethasone Release from Dexamethasone-Loaded Microspheres. Pharmaceutics 2019; 11:pharmaceutics11090438. [PMID: 31480552 PMCID: PMC6781549 DOI: 10.3390/pharmaceutics11090438] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Our purpose was to test whether a preparation of injectable formulations of dexamethasone (Dex)-loaded microspheres (Dex-Ms) mixed with click-crosslinked hyaluronic acid (Cx-HA) (or Pluronic (PH) for comparison) prolongs therapeutic levels of released Dex. Dex-Ms were prepared using a monoaxial-nozzle ultrasonic atomizer with an 85% yield of the Dex-Ms preparation, encapsulation efficiency of 80%, and average particle size of 57 μm. Cx-HA was prepared via a click reaction between transcyclooctene (TCO)-modified HA (TCO-HA) and tetrazine (TET)-modified HA (TET-HA). The injectable formulations (Dex-Ms/PH and Dex-Ms/Cx-HA) were fabricated as suspensions and became a Dex-Ms-loaded hydrogel drug depot after injection into the subcutaneous tissue of Sprague Dawley rats. Dex-Ms alone also formed a drug depot after injection. The Cx-HA hydrogel persisted in vivo for 28 days, but the PH hydrogel disappeared within six days, as evidenced by in vivo near-infrared fluorescence imaging. The in vitro and in vivo cumulative release of Dex by Dex-Ms/Cx-HA was much slower in the early days, followed by sustained release for 28 days, compared with Dex-Ms alone and Dex-Ms/PH. The reason was that the Cx-HA hydrogel acted as an external gel matrix for Dex-Ms, resulting in the retarded release of Dex from Dex-Ms. Therefore, we achieved significantly extended duration of a Dex release from an in vivo Dex-Ms-loaded hydrogel drug depot formed by Dex-Ms wrapped in an injectable click-crosslinked HA hydrogel in a minimally invasive manner. In conclusion, the Dex-Ms/Cx-HA drug depot described in this work showed excellent performance on extended in vivo delivery of Dex.
Collapse
Affiliation(s)
- Ji Yeon Heo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jung Hyun Noh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Da Yeon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48547, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
44
|
Caine M, Chung T, Kilpatrick H, Bascal Z, Willis S, Tang Y, de Baere T, Dreher M, Lewis A. Evaluation of novel formulations for transarterial chemoembolization: combining elements of Lipiodol emulsions with Drug-eluting Beads. Am J Cancer Res 2019; 9:5626-5641. [PMID: 31534507 PMCID: PMC6735388 DOI: 10.7150/thno.34778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
There are currently two methods widely used in clinical practice to perform transarterial chemoembolization (TACE). One is based on mixing an aqueous drug with an iodized oil (Lipiodol) and creating an emulsion that is delivered intraarterially, followed by embolization with a particulate agent. The other is based on a one-step TACE using Drug-eluting Beads (DEBs) loaded with drug. It is not recommended to mix Lipiodol with DEBs due to incompatibility. For the first time, novel DEB: Lipiodol: doxorubicin (Dox) emulsions are identified using lyophilized polyvinyl alcohol (PVA) hydrogels (non-iodinated or iodinated) DEBs. Methods: 15 DEB emulsions (50mg Dox) were assessed for stability and deliverability in vitro and in vivo in a swine model. Dox release from selected formulations was measured in vitro using a vascular flow model and in vivo in a VX2 rabbit tumor model. Results: Both DEB formats were shown to be able to form emulsions, however only Iodinated DEBs consistently met defined handling criteria. Those based on the non-iodinated DEB achieved >99%+ Dox loading in <5 minutes but were generally less stable. Those prepared using iodinated DEBs, which are more hydrophobic, were able to form stable Pickering-like emulsions (separation time ≥ 20 minutes) and demonstrated handling, administration and imaging observations more akin to Lipiodol™ TACE emulsions in both embolization models. Controlled Dox release and hence beneficial in vivo pharmacokinetics associated with DEB-TACE were maintained. Conclusions: This study demonstrates that it is possible to formulate novel DEB emulsions suitable for TACE that combine positive elements of both Lipiodol™ based and DEB-TACE procedures.
Collapse
|
45
|
Tanitame K, Tanitame N, Takahashi Y, Tamai E, Kurose T. The opacity of mineral ion-loaded bead (DC beads ®) on low-keV monochromatic images from dual energy CT and T1-weighted gradient-echo MRI. Jpn J Radiol 2019; 37:660-665. [PMID: 31338722 DOI: 10.1007/s11604-019-00856-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To evaluate the opacity of DC beads® (DCB) loaded with mineral ions on low-keV monochromatic images from dual energy computed tomography (DECT) and T1-weighted gradient-echo (T1-GRE) MRI. MATERIALS AND METHODS Fe2+ or Ca2+-loaded DCBs were prepared by mixing DCBs in 100 mM FeSO4 or CaSO4 solution and scanned by DECT from 10 min to 27 h after mixing. The Hounsfield units (HUs) of sedimented DCBs on 40-keV monochromatic images were measured. Next, we mixed DCBs in 100, 10, 5 and 1 mM FeSO4 solutions, and scanned these solutions from 15 to 120 min after mixing using a 3 T MR scanner. The signal-noise ratios (SNRs) of sedimented DCBs on T1-GRE were measured. Venous blood was scanned to compare with DCBs. RESULTS The CT values of DCBs in FeSO4 and CaCl2 solutions gradually increased, and were 113.3 and 43.1 HU at 27 h, respectively; that of blood was 17.8 HU. The SNR of DCB in 1 mM FeSO4 solution increased and achieved equilibrium at 120 min, and was 120.5 and higher than in the other FeSO4 solutions. The SNR of blood was 49.7. CONCLUSION Optimally Fe2+-loaded DCBs can be discriminated from venous blood on 40-keV monochromatic images from DECT and T1-GRE.
Collapse
Affiliation(s)
- Keizo Tanitame
- Department of Diagnostic Radiology, Hiroshima Prefectural Hospital, Minami-ku, Ujinakanda, 1-5-54, Hiroshima, 734-8530, Japan.
| | - Nobuko Tanitame
- Department of Radiology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Yuji Takahashi
- Department of Clinical Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Erika Tamai
- Department of Radiology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - Taichi Kurose
- Department of Diagnostic Radiology, Hiroshima Prefectural Hospital, Minami-ku, Ujinakanda, 1-5-54, Hiroshima, 734-8530, Japan
| |
Collapse
|
46
|
Hagan A, Caine M, Press C, Macfarlane WM, Phillips G, Lloyd AW, Czuczman P, Kilpatrick H, Bascal Z, Tang Y, Garcia P, Lewis AL. Predicting pharmacokinetic behaviour of drug release from drug-eluting embolization beads using in vitro elution methods. Eur J Pharm Sci 2019; 136:104943. [PMID: 31152772 DOI: 10.1016/j.ejps.2019.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/03/2019] [Accepted: 05/27/2019] [Indexed: 12/18/2022]
Abstract
Drug-eluting Embolic Bead - Transarterial Chemoembolisation (DEB-TACE) is a minimally invasive embolising treatment for liver tumours that allows local release of chemotherapeutic drugs via ion exchange, following delivery into hepatic arterial vasculature. Thus far, no single in vitro model has been able to accurately predict the complete kinetics of drug release from DEB, due to heterogeneity of rate-controlling mechanisms throughout the process of DEB delivery. In this study, we describe two in vitro models capable of distinguishing between early phase and late phase drug release by mimicking in vivo features of each phase. First, a vascular flow system (VFS) was used to simulate the early phase by delivering DEB into a silicon vascular cast under high pulsatile flow. This yielded a burst release profile of drugs from DEB which related to the dose adjusted Cmax observed in pharmacokinetic plasma profiles from a preclinical swine model. Second, an open loop flow-through cell system was used to model late phase drug release by packing beads in a column with an ultra-low flow rate. DEB loaded with doxorubicin, irinotecan and vandetanib showed differential drug release rates due to their varying chemical properties and unique drug-bead interactions. Using more representative in vitro models to map discrete phases of DEB drug release will provide a better capability to predict the pharmacokinetics of developmental formulations, which has implications for treatment safety and efficacy.
Collapse
Affiliation(s)
- Alice Hagan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK; Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK.
| | - Marcus Caine
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Cara Press
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Wendy M Macfarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Gary Phillips
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Andrew W Lloyd
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Moulsecoomb, Brighton BN2 4GJ, UK
| | - Peter Czuczman
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Hugh Kilpatrick
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Zainab Bascal
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Yiqing Tang
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Pedro Garcia
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK
| | - Andrew L Lewis
- Biocompatibles UK Ltd, a BTG International Group Company, Lakeview, Riverside Way, Watchmoor Park, Camberley, GU15 3YL, UK.
| |
Collapse
|
47
|
Characterizing Drug-Polymer Bead Interactions Using Isothermal Titration Calorimetry. J Pharm Sci 2019; 108:1772-1778. [DOI: 10.1016/j.xphs.2018.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022]
|
48
|
Olesen MTJ, Winther AK, Fejerskov B, Dagnaes-Hansen F, Simonsen U, Zelikin AN. Bi-Enzymatic Embolization Beads for Two-Armed Enzyme-Prodrug Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Morten T. Jarlstad Olesen
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Center; Aarhus University; Aarhus 8000 Denmark
| | - Anna K. Winther
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
| | | | | | - Ulf Simonsen
- Department of Biomedicine; Aarhus University; Aarhus 8000 Denmark
| | - Alexander N. Zelikin
- Department of Chemistry; Aarhus University; Aarhus 8000 Denmark
- iNano Interdisciplinary Nanoscience Center; Aarhus University; Aarhus 8000 Denmark
| |
Collapse
|
49
|
Kamperman T, Karperien M, Le Gac S, Leijten J. Single-Cell Microgels: Technology, Challenges, and Applications. Trends Biotechnol 2018; 36:850-865. [PMID: 29656795 DOI: 10.1016/j.tibtech.2018.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/13/2022]
Abstract
Single-cell-laden microgels effectively act as the engineered counterpart of the smallest living building block of life: a cell within its pericellular matrix. Recent breakthroughs have enabled the encapsulation of single cells in sub-100-μm microgels to provide physiologically relevant microniches with minimal mass transport limitations and favorable pharmacokinetic properties. Single-cell-laden microgels offer additional unprecedented advantages, including facile manipulation, culture, and analysis of individual cell within 3D microenvironments. Therefore, single-cell microgel technology is expected to be instrumental in many life science applications, including pharmacological screenings, regenerative medicine, and fundamental biological research. In this review, we discuss the latest trends, technical challenges, and breakthroughs, and present our vision of the future of single-cell microgel technology and its applications.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/DBE_MIRA
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/UTwente
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands. https://twitter.com/utwenteEN
| | - Jeroen Leijten
- Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands.
| |
Collapse
|
50
|
Du Q, Li L, Liu Y, Zeng J, Li J, Zheng C, Zhou G, Yang X. Fabrication of inherently radiopaque BaSO4@BaAlg microspheres by a one-step electrospraying method for embolization. J Mater Chem B 2018; 6:3522-3530. [DOI: 10.1039/c8tb00542g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inherently radiopaque BaSO4@BaAlg microspheres were fabricated by a one-step electrospraying method for embolization and noninvasive examination after operations.
Collapse
Affiliation(s)
- Qing Du
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Ling Li
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Yiming Liu
- Department of Radiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Jian Zeng
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Jianye Li
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| | - Chuansheng Zheng
- Department of Radiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Guofeng Zhou
- Department of Radiology
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430022
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine
- College of Life Science and Technology
- Huazhong University of Science and Technology
- Wuhan 430074
- P. R. China
| |
Collapse
|