1
|
Zhang Y, Qiu Y, Karimi AB, Smith BR. Systematic review: Mechanisms of photoactive nanocarriers for imaging and therapy including controlled drug delivery. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-07014-z. [PMID: 39722062 DOI: 10.1007/s00259-024-07014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The design of smart, photoactivated nanomaterials for targeted drug delivery systems (DDS) has garnered significant research interest due in part to the ability of light to precisely control drug release in specific cells or tissues with high spatial and temporal resolution. The development of effective light-triggered DDS involves mechanisms including photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement, which permit response to ultraviolet (UV), visible (Vis), and/or Near Infrared (NIR) light. This review explores recent advancements in light-responsive small molecules, polymers, and nanocarriers, detailing their underlying mechanisms and utility for drug delivery and/or imaging. Furthermore, it highlights key challenges and future perspectives in the development of light-triggered DDS, emphasizing the potential of these systems to revolutionize targeted therapies. METHOD A systematic literature search was performed using Google Scholar as the primary database and information source. We searched the recently published literature (within 15 years) with the following keywords individually and in relevant combinations: light responsive, nanoparticle, drug release, mechanism, photothermal, photosensitization, photopolymerization, photocleavage, and photoisomerization. RESULTS We selected 117 scientific articles to assess the strength of evidence after screening titles and abstracts. We found that six mechanisms (photocleavage, photoisomerization, photopolymerization, photosensitization, photothermal phenomena, and photorearrangement) have primarily been used for light-triggered drug release and categorized our review accordingly. Azobenzene/spiropyran-based derivatives and o-nitrobenzyl/Coumarin derivatives are often used for photoisomerization and photocleavage-enabled drug delivery, while free radical polymerization and cationic polymerization comprise two main mechanisms of photopolymerization. One hundred two is the primary active radical oxygen species employed for photosensitization, which is a key factor that impacts the therapeutic effects in Photodynamic therapy, but not in photothermal therapy. CONCLUSION The comprehensive review serves as a guiding compass for light-triggered DDS for biomedical applications. This rapidly advancing field is poised to generate breakthroughs for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yapei Zhang
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Yunxiu Qiu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ali Bavandpour Karimi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Chemical Engineering and Material Science, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Cell and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Wu C, Yu Q, Huang C, Li F, Zhang L, Zhu D. Microneedles as transdermal drug delivery system for enhancing skin disease treatment. Acta Pharm Sin B 2024; 14:5161-5180. [PMID: 39807331 PMCID: PMC11725105 DOI: 10.1016/j.apsb.2024.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 01/16/2025] Open
Abstract
Microneedles (MNs) serve as a revolutionary paradigm in transdermal drug delivery, heralding a viable resolution to the formidable barriers presented by the cutaneous interface. This review examines MNs as an advanced approach to enhancing dermatological pathology management. It explores the complex dermis structure and highlights the limitations of traditional transdermal methods, emphasizing MNs' advantage in bypassing the stratum corneum to deliver drugs directly to the subdermal matrix. The discourse outlines the diverse typologies of MNs, including solid, coated, hollow, hydrogel, and dissolvable versions. Each type is characterized by its unique applications and benefits. The treatise details the deployment of MNs in the alleviation of cutaneous cancers, the administration of inflammatory dermatoses such as psoriasis and atopic dermatitis, and their utility in wound management. Additionally, the paper contemplates the prospects of MNs within the realm of aesthetic dermatology and the burgeoning market traction of cosmetic MN formulations. The review summarizes the scientific and commercial challenges to the clinical adoption of MN therapeutics, including dosage calibration, pharmacodynamics, biocompatibility, patient compliance, sterilization, mass production, and regulatory oversight. It emphasizes the need for ongoing research, innovation, and regulatory harmonization to overcome these obstacles and fully realize MNs' potential in treating skin diseases and improving patient welfare.
Collapse
Affiliation(s)
- Chaoxiong Wu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingyu Yu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chenlu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Fangzhou Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
3
|
Zhang D, Liu X, Li X, Cai X, Diao Z, Qiu L, Chen X, Liu Y, Sun J, Cui D, Ye Q, Yin T. A Multifunctional Low-Temperature Photothermal Nanomedicine for Melanoma Treatment via the Oxidative Stress Pathway Therapy. Int J Nanomedicine 2024; 19:11671-11688. [PMID: 39553457 PMCID: PMC11566580 DOI: 10.2147/ijn.s487683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Melanoma is a highly aggressive and dangerous malignant skin tumor and there is an urgent need to develop effective therapeutic approaches against melanoma. The main objective of this study was to construct a multifunctional nanomedicine (GNR@PEG-Qu) to investigate its therapeutic effect on melanoma from the oxidative stress pathway. Methods First, the nanomedicine GNR@PEG-Qu was synthesized and characterized, and its photothermal and antioxidant properties were confirmed. In addition, in vivo imaging capabilities were observed. Finally, the tumor inhibitory effects of GNR@PEG-Qu in vivo and in vitro as well as its biosafety were observed. Results GNR@PEG-Qu shows good photothermal and anti-oxidation properties. Following exposure to 1064 nm laser irradiation in the second near-infrared II (NIR-II) window, GNR@PEG-Qu shows anti-tumor ability through low-temperature photothermal therapy (PTT) adjuvant drug chemotherapy. GNR@PEG-Qu makes full use of the antioxidant capacity of quercetin, reduces ROS levels in melanoma, alleviates oxidative stress state, and achieves "oxidative stress avoidance" at the tumor site. Quercetin can also downregulate the expression of the heat shock protein Hsp70, which will improve the thermal sensitivity of the tumor site and enhance the efficacy of low-temperature PTT. Conclusion GNR@PEG-Qu nanoagent exhibits synergistic treatment and high tumor inhibition effects, which is a promising strategy developed to achieve oxidative stress avoidance and synergistic therapy of melanoma using quercetin (Qu)-coated gold nanorod (GNR@PEG).
Collapse
Affiliation(s)
- Dou Zhang
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xuyi Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xiong Li
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Xinyi Cai
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Zhenying Diao
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Long Qiu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Xuelin Chen
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Yuyu Liu
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Jianbo Sun
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Daxiang Cui
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
| | - Qiaoyuan Ye
- Department of Dermatology and Venereology, Second Clinical Medical College of Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| | - Ting Yin
- Research Center of Nano Technology and Application Engineering, The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
- Dongguan Biomedical Nano Engineering Technology Research Center, Guangdong Medical University, Dongguan, Guangdong, 523808, People’s Republic of China
| |
Collapse
|
4
|
Wang Y, Yu B, Cai M, Li Z, Yang L, Zhang H, Liu W, Wang M. Multifunctional long afterglow nanoparticles with enhanced photothermal effects for in vivo imaging and tumor-targeting therapy. Talanta 2024; 279:126629. [PMID: 39106649 DOI: 10.1016/j.talanta.2024.126629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/17/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Considering the excellent properties such as deep tissue penetration, high signal-to-noise ratio, and in-situ recharge and reactivation, near-infrared luminescence long afterglow nanoparticles show considerable promise for biological application, especially in multifunctional imaging, targeting, and synergistic therapeutic. In this paper, Zn3Ga4GeO11: 0.1 % Cr3+, 1 % Yb3+, 0.1 % Tm3+@Ag-FA (ZGGO@Ag-FA, ZGA-FA) nanoparticles were synthesized by in-situ growth of Ag nanoparticles on the surface of long afterglow nanoparticles, and further modified with folic acid. Through precise adjustments, the luminescent properties of ZnGa2O4 were enhanced and notably boosted the photothermal effect of Ag by leveraging the upconversion emission of ZGGO, with a photothermal conversion efficiency reaching about 59.9 %. The ZGA-FA nanoparticles are ultra-small, measuring less than 50 nm. The modification with folic acid provides the ZGA-FA nanoparticles with excellent tumor-targeting capabilities, demonstrating effective enrichment and retention in tumor tissues, thus enabling long-term imaging and therapy through in vivo re-excitation. Due to its stable photothermal effect, outstanding near-infrared (NIR) afterglow imaging, and red-light charged characteristics, combined with effective tumor-targeting abilities, the therapeutic strategy proposed by this study has significant potential for clinical applications.
Collapse
Affiliation(s)
- Yunjian Wang
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Yu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China; College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, 730070, PR China
| | - Mingqin Cai
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhihui Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Lu Yang
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, PR China
| | - Hongbi Zhang
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Weisheng Liu
- The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China.
| | - Min Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Pouso MR, Melo BL, Gonçalves JJ, Mendonça AG, Correia IJ, de Melo-Diogo D. Development of dual-crosslinked Pluronic F127/Chitosan injectable hydrogels incorporating graphene nanosystems for breast cancer photothermal therapy and antibacterial applications. Eur J Pharm Biopharm 2024; 203:114476. [PMID: 39209129 DOI: 10.1016/j.ejpb.2024.114476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Nanomaterials with responsiveness to near-infrared light can mediate the photoablation of cancer cells with an exceptional spatio-temporal resolution. However, the therapeutic outcome of this modality is limited by the nanostructures' poor tumor uptake. To address this bottleneck, it is appealing to develop injectable in situ forming hydrogels due to their capacity to perform a tumor-confined delivery of the nanomaterials with minimal off-target leakage. In particular, injectable in situ forming hydrogels based on Pluronic F127 have been emerging due to their FDA-approval status, biocompatibility, and thermosensitive sol-gel transition. Nevertheless, the application of Pluronic F127 hydrogels has been limited due to their fast dissociation in aqueous media. Such limitation may be addressed by combining the thermoresponsive sol-gel transition of Pluronic F127 with other polymers with crosslinking capabilities. In this work, a novel dual-crosslinked injectable in situ forming hydrogel based on Pluronic F127 (thermosensitive gelation) and Chitosan (ionotropic gelation in the presence of NaHCO3), loaded with Dopamine-reduced graphene oxide (DOPA-rGO; photothermal nanoagent), was developed for application in breast cancer photothermal therapy. The dual-crosslinked hydrogel incorporating DOPA-rGO showed a good injectability (through 21 G needles), in situ gelation capacity and cytocompatibility (viability > 73 %). As importantly, the dual-crosslinking improved the hydrogel's porosity and prevented its premature degradation. After irradiation with near-infrared light, the dual-crosslinked hydrogel incorporating DOPA-rGO produced a photothermal heating (ΔT ≈ 22 °C) that reduced the breast cancer cells' viability to just 32 %. In addition, this formulation also demonstrated a good antibacterial activity by reducing the viability of S. aureus and E. coli to 24 and 33 %, respectively. Overall, the dual-crosslinked hydrogel incorporating DOPA-rGO is a promising macroscale technology for breast cancer photothermal therapy and antimicrobial applications.
Collapse
Affiliation(s)
- Manuel R Pouso
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade Da Beira Interior, Covilhã, Portugal
| | - Joaquim J Gonçalves
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade Da Beira Interior, Covilhã, Portugal
| | - António G Mendonça
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; Departamento de Química, Universidade Da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade Da Beira Interior, Covilhã, Portugal; University of Coimbra, CERES, Department of Chemical Engineering, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação Em Ciências Da Saúde, Universidade Da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
6
|
Gao Y, Li Y, Yan X, Zhu Y, Xu Z, Xu Y, Yu S, Wan J, Liu J, Sun H. NIR-II light-powered core-shell prodrug nanomotors enhance cancer therapy through synergistic oxidative stress-photothermo modulation. Acta Biomater 2024; 185:396-409. [PMID: 39053815 DOI: 10.1016/j.actbio.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Near-infrared-II (NIR-II) photothermal therapy is emerging as a cutting-edge modality for tumor ablation due to its good biosafety, high penetration ability and spatiotemporal controllability. Despite efforts, establishing a link between cellular metabolic regulation and photothermal performance is still promising in synergistic cancer therapy. Herein, we developed a core-shell semiconducting polymer@metal-phenolic network (SP@GFP) nanomotor by assembling diphenol-terminated cisplatin prodrug ligand (cPt-DA) and iron (III) (Fe3+) through metal coordination on SP particles in the presence of GOx and DSPE-PEG-cRGD, for NIR-II-propelled self-propulsion and synergistic cancer therapy. Remotely driving the SP@GFP nanomotor with an NIR-II laser through a thermophoresis mechanism would allow for in-depth penetration and accumulation. The synergistic photothermal effect and continuous Fe2+-mediated ROS generation of SP@GFP nanomotor could activate photothermal, chemotherapeutic effects and ferroptosis pathway for cancer cells through reshaping cellular metabolic pathways (HSP and GPX4). By combining the concepts of chemotherapeutic prodrugs, catalytic ROS generation, photothermal response and cellular metabolic regulation, the NIR-II laser-controlled core-shell SP@GFP nanomotor displayed improved outcomes for enhanced cancer therapy through synergistic oxidative stress-photothermo modulation. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Yuwei Gao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - Xuesha Yan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - Yan Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - Zhengwei Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - You Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - Shuangjiang Yu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China
| | - Junhua Wan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China.
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China.
| | - Hongcheng Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, Zhejiang, PR China.
| |
Collapse
|
7
|
Bagherpour S, Pérez-García L. Recent advances on nanomaterial-based glutathione sensors. J Mater Chem B 2024; 12:8285-8309. [PMID: 39081041 DOI: 10.1039/d4tb01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Glutathione (GSH) is one of the most common thiol-containing molecules discovered in biological systems, and it plays an important role in many cellular functions, where changes in physiological glutathione levels contribute to the progress of a variety of diseases. Molecular imaging employing fluorescent probes is thought to be a sensitive technique for online fluorescence detection of GSH. Although various molecular probes for (intracellular) GSH sensing have been reported, some aspects remain unanswered, such as quantitative intracellular analysis, dynamic monitoring, and compatibility with biological environment. Some of these drawbacks can be overcome by sensors based on nanostructured materials, that have attracted considerable attention owing to their exceptional properties, including a large surface area, heightened electro-catalytic activity, and robust mechanical resilience, for which they have become integral components in the development of highly sensitive chemo- and biosensors. Additionally, engineered nanomaterials have demonstrated significant promise in enhancing the precision of disease diagnosis and refining treatment specificity. The aim of this review is to investigate recent advancements in fabricated nanomaterials tailored for detecting GSH. Specifically, it examines various material categories, encompassing carbon, polymeric, quantum dots (QDs), covalent organic frameworks (COFs), metal-organic frameworks (MOFs), metal-based, and silicon-based nanomaterials, applied in the fabrication of chemo- and biosensors. The fabrication of nano-biosensors, mechanisms, and methodologies employed for GSH detection utilizing these fabricated nanomaterials will also be elucidated. Remarkably, there is a noticeable absence of existing reviews specifically dedicated to the nanomaterials for GSH detection since they are not comprehensive in the case of nano-fabrication, mechanisms and methodologies of detection, as well as applications in various biological environments. This research gap presents an opportune moment to thoroughly assess the potential of nanomaterial-based approaches in advancing GSH detection methodologies.
Collapse
Affiliation(s)
- Saman Bagherpour
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Lluïsa Pérez-García
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Universitat de Barcelona, Av. Joan XXIII 27-31, Barcelona, 08028, Spain.
- Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, Barcelona, 08028, Spain
| |
Collapse
|
8
|
Hu M, Yingyu Z, Zhang M, Wang Q, Cheng W, Hou L, Yuan J, Yu Z, Li L, Zhang X, Zhang W. Functionalizing tetrahedral framework nucleic acids-based nanostructures for tumor in situ imaging and treatment. Colloids Surf B Biointerfaces 2024; 240:113982. [PMID: 38788473 DOI: 10.1016/j.colsurfb.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Timely in situ imaging and effective treatment are efficient strategies in improving the therapeutic effect and survival rate of tumor patients. In recent years, there has been rapid progress in the development of DNA nanomaterials for tumor in situ imaging and treatment, due to their unsurpassed structural stability, excellent material editability, excellent biocompatibility and individual endocytic pathway. Tetrahedral framework nucleic acids (tFNAs), are a typical example of DNA nanostructures demonstrating superior stability, biocompatibility, cell-entry performance, and flexible drug-loading ability. tFNAs have been shown to be effective in achieving timely tumor in situ imaging and precise treatment. Therefore, the progress in the fabrication, characterization, modification and cellular internalization pathway of tFNAs-based functional systems and their potential in tumor in situ imaging and treatment applications were systematically reviewed in this article. In addition, challenges and future prospects of tFNAs in tumor in situ imaging and treatment as well as potential clinical applications were discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Zhang Yingyu
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Mengxin Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ligong Hou
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Jingya Yuan
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Zhidan Yu
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Lifeng Li
- Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xianwei Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Wancun Zhang
- Health Commission of Henan Province Key Laboratory for Precision Diagnosis and Treatment of Pediatric Tumor, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory for Prevention and Treatment of Pediatric Disease, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
9
|
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B 2024; 12:4289-4306. [PMID: 38595070 DOI: 10.1039/d4tb00365a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The past few decades have witnessed substantial progress in biomedical materials for addressing health concerns and improving disease therapeutic and diagnostic efficacy. Conventional biomedical materials are typically created through an ex vivo approach and are usually utilized under physiological environments via transfer from preparative media. This transfer potentially gives rise to challenges for the efficient preservation of the bioactivity and implementation of theranostic goals on site. To overcome these issues, the in situ synthesis of biomedical materials on site has attracted great attention in the past few years. Peptides, which exhibit remarkable biocompability and reliable noncovalent interactions, can be tailored via tunable assembly to precisely create biomedical materials. In this review, we summarize the progress in the self-assembly of peptides in living cells for disease diagnosis and therapy. After a brief introduction to the basic design principles of peptide assembly systems in living cells, the applications of peptide assemblies for bioimaging and disease treatment are highlighted. The challenges in the field of peptide self-assembly in living cells and the prospects for novel peptide assembly systems towards next-generation biomaterials are also discussed, which will hopefully help elucidate the great potential of peptide assembly in living cells for future healthcare applications.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yushi Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China.
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
10
|
Rodrigues CF, Correia IJ, Moreira AF. Red blood cell membrane-camouflaged gold-core silica shell nanorods for cancer drug delivery and photothermal therapy. Int J Pharm 2024; 655:124007. [PMID: 38493844 DOI: 10.1016/j.ijpharm.2024.124007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Gold core mesoporous silica shell (AuMSS) nanorods are multifunctional nanomedicines that can act simultaneously as photothermal, drug delivery, and bioimaging agents. Nevertheless, it is reported that once administrated, nanoparticles can be coated with blood proteins, forming a protein corona, that directly impacts on nanomedicines' circulation time, biodistribution, and therapeutic performance. Therefore, it become crucial to develop novel alternatives to improve nanoparticles' half-life in the bloodstream. In this work, Polyethylenimine (PEI) and Red blood cells (RBC)-derived membranes were combined for the first time to functionalize AuMSS nanorods and simultaneously load acridine orange (AO). The obtained results revealed that the RBC-derived membranes promoted the neutralization of the AuMSS' surface charge and consequently improved the colloidal stability and biocompatibility of the nanocarriers. Indeed, the in vitro data revealed that PEI/RBC-derived membranes' functionalization also improved the nanoparticles' cellular internalization and was capable of mitigating the hemolytic effects of AuMSS and AuMSS/PEI nanorods. In turn, the combinatorial chemo-photothermal therapy mediated by AuMSS/PEI/RBC_AO nanorods was able to completely eliminate HeLa cells, contrasting with the less efficient standalone therapies. Such data reinforce the potential of AuMSS nanomaterials to act simultaneously as photothermal and chemotherapeutic agents.
Collapse
Affiliation(s)
- Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal; AEROG-LAETA, Aerospace Sciences Department, Universidade da Beira Interior, Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal.
| |
Collapse
|
11
|
Du M, He X, Wang D, Jiang Z, Zhao X, Shen J. An NIR-II-enhanced nanozyme to promote wound healing in methicillin-resistant Staphylococcus aureus infections. Acta Biomater 2024; 179:300-312. [PMID: 38518865 DOI: 10.1016/j.actbio.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/24/2024]
Abstract
Deep tissue bacterial infections, especially methicillin-resistant Staphylococcus aureus (MRSA) infections, pose challenges to clinical therapy due to their low debridement efficiency and relapsing. Molybdenum disulfide (MoS2) is used in the antibacterial field as a classic photothermal agent (NIR-I) with good biocompatibility. However, due to its limited NIR-I tissue penetration ability and single treatment mode, MoS2 has poor therapeutic effects on deep tissue infection. Herein, we prepared a defect-type hybrid 2H-MoS2 nanozyme (MoWS2) using hydrothermal method fabricate the MoWS2 composite, which is a new antibacterial strategy involving photothermal and enzyme catalysis, and further enhances the activity of the nanozyme through overheating. The regulation of 2H-MoS2 defects through tungsten ion doping endows MoWS2 with better near-infrared two-region absorption (NIR-II) and enzyme catalytic performance. Antibacterial activity experiments in vitro have shown that MoWS2 can achieve efficient bactericidal activity and biofilm clearance through hyperthermia and reactive oxygen species (ROS). Deep MRSA infection experiments have shown that MoWS2 rapidly removes bacteria from subcutaneous infected tissues through photothermal therapy (PTT) and chemodynamic therapy (CDT), accelerates the dissipation of abscesses, and promotes the healing of infected wounds. Additionally, the versatile treatment mode of MoWS2 was further confirmed through tissue sectioning and immunofluorescence staining analysis. Overall, these results provide a feasible approach for achieving efficient treatment of deep tissue infections through tungsten ion doping to regulate defective 2H-MoS2. STATEMENT OF SIGNIFICANCE: The photothermal effect of MoS2 nanosheets in the NIR-I (650-900 nm) window in anti-MRSA therapy is considered to be highly reliable and efficient in PTA. However, most of the developed PPT therapies or antimicrobial systems based on PTT therapies developed with 1T-MoS2 have in vivo sterilization temperatures of more than 55°C, which have the risk of damaging the normal tissues of the skin. In this study, we prepared W@MoS2 with a good photothermal effect (36.9%) in the NIR-II window and good peroxidase-like activity. The combined effect of PTT and CDT has a stronger bactericidal effect while avoiding high-temperature damage, which makes the W@MoS2 material more advantageous in terms of antimicrobial effect.
Collapse
Affiliation(s)
- Mengxuan Du
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiaojun He
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Danyan Wang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Zhengting Jiang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Xiaoliang Zhao
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China.
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
12
|
Alomari RA, Athinarayanan J, Periasamy VS, Alshatwi AA. Mucilage-assisted fabrication of molybdenum trioxide nanostructures for photothermal ablation of breast cancer cells. Biotechnol Appl Biochem 2024; 71:326-335. [PMID: 38112040 DOI: 10.1002/bab.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Nanostructures have been used for various biomedical applications due to their optical, antibacterial, magnetic, antioxidant, and biocompatible properties. Cancer is a prevalent disease that severely threatens human life and health. Thus, innovative and effective therapeutic approaches are urgently required for cancer. Photothermal therapy (PTT) is a promising approach to killing cancer cells. In this investigation, we developed a low-cost, simple, green technique to fabricate molybdenum trioxide nanostructures (MNs) using Opuntia ficus-indica mucilage as a template. Moreover, the MNs were functionalized with folic acid (FA) for cancer PTT. The X-ray diffractometer results revealed that the prepared MNs have an orthorhombic crystal phase. The transmission electron microscope image of MNs shows a flake shape with 20-150 nm diameter. The cytotoxicity of MNs and FA-conjugated MNs was studied in vitro. These cell viability assay results suggested that fabricated MoO3 nanostructures reduced 25% of cell viability in MCF-7 cells, even at high doses. However, even with high-dose treatment, FA/MNs do not cause significant cell death. Acridine orange/ethidium bromide (AO/EB) staining revealed DNA and chromatin condensation in MCF-7 cells exposed to MNs. Overall, the in vitro study results suggested that FA/MNs have excellent biocompatibility, which applies to biomedical applications. MNs dispersion temperature gradually increases from 26 to 58°C under 808 nm laser irradiation. We found significant mortality rates after NIR irradiation in MNs- or FA/MNs-treated MCF-7 cells. These findings suggest that FA/MNs can be used as an effective photothermal agent to treat breast cancer.
Collapse
Affiliation(s)
- Reem A Alomari
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Liu Y, Wang L, Zhang T, Wang C, Fan Y, Wang C, Song N, Zhou P, Yan CH, Tang Y. Tumor Microenvironment-Regulating Two-Photon Probe Based on Bimetallic Post-Coordinated MOF Facilitating the Dual-Modal and Deep Imaging-Guided Synergistic Therapies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12289-12301. [PMID: 38418381 DOI: 10.1021/acsami.3c18990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The intricate tumor microenvironment (TME) always brings about unsatisfactory therapeutic effects for treatments, although nanomedicines have been demonstrated to be highly beneficial for synergistic therapies to avoid the side effects caused by the complexity and heterogeneity of cancer. Developing nanotheranostics with the functionalities of both synergistic therapies and TME regulation is a good strategy but is still in its infancy. Herein, an "all-in-one" nanoplatform for integrated diagnosis and treatment, namely, Carrier@ICG@DOX@FA (CIDF), is constructed. Benefiting from the bimetallic coordination of Eu3+-HTHA (4,4,4-trifluoro-1-(9-hexylcarbazol-3-yl)-1,3-butanedione) and Fe3+ with the ligands in UiO-67, CIDF can simultaneously achieve two-photon fluorescence imaging, fluorescent lifetime imaging in deep tumors, and regulation of TME. Owing to its porosity, CIDF can encapsulate indocyanine green as photosensitizers and doxorubicin as chemotherapeutic agent, further realizing light-controlled drug release. Moreover, CIDF exhibited good biocompatibility and tumor targeting by coating with folic-acid-modified polymers. Both in vitro and in vivo experiments demonstrate the excellent therapeutic efficacy of CIDF through dual-modal-imaging-guided synergistic photothermal-, photodynamic-, and chemotherapy. CIDF provides a new paradigm for the construction of TME-regulated synergistic nanotheranostics and realizes the complete elimination of tumors without recurrence.
Collapse
Affiliation(s)
- Yanjun Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lu Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tong Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chunya Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yifan Fan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Congcong Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Nan Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Zhou
- School/Hospital of Stomatology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chun-Hua Yan
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yu Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, P. R. China
| |
Collapse
|
14
|
Özcan Z, Hazar Yoruç AB. Vinorelbine-loaded multifunctional magnetic nanoparticles as anticancer drug delivery systems: synthesis, characterization, and in vitro release study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:256-269. [PMID: 38440320 PMCID: PMC10910576 DOI: 10.3762/bjnano.15.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024]
Abstract
In this study, a multifunctional therapeutic agent combining chemotherapy and photothermal therapy on a single platform has been developed in the form of vinorelbine-loaded polydopamine-coated iron oxide nanoparticles. Vinorelbine (VNB) is loaded on the surface of iron oxide nanoparticles produced by a solvothermal technique after coating with polydopamine (PDA) with varying weight ratios as a result of dopamine polymerisation and covalent bonding of thiol-polyethylene glycol (SH-PEG). The VNB/PDA/Fe3O4 nanoparticles have a saturation magnetisation value of 60.40 emu/g in vibrating sample magnetometry, which proves their magnetisation. Vinorelbine, which is used as an effective cancer therapy agent, is included in the nanocomposite structure, and in vitro drug release studies under different pH conditions (pH 5.5 and 7.4) and photothermal activity at 808 nm NIR laser irradiation are investigated. The comprehensive integration of precise multifunctional nanoparticles design, magnetic response, and controlled drug release with photothermal effect brings a different perspective to advanced cancer treatment research.
Collapse
Affiliation(s)
- Zeynep Özcan
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Metallurgical and Materials Engineering, 34210, Istanbul, Turkey
| | - Afife Binnaz Hazar Yoruç
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Metallurgical and Materials Engineering, 34210, Istanbul, Turkey
| |
Collapse
|
15
|
Zhou W, Yao Y, Qin H, Xing X, Li Z, Ouyang M, Fan H. Size Dependence of Gold Nanorods for Efficient and Rapid Photothermal Therapy. Int J Mol Sci 2024; 25:2018. [PMID: 38396695 PMCID: PMC10888739 DOI: 10.3390/ijms25042018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3-3.5 by cells is higher than that of GNRs with aspect ratios 4-5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources.
Collapse
Affiliation(s)
- Wei Zhou
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
- Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics and National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China;
| | - Yanhua Yao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| | - Hailing Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| | - Xiaobo Xing
- Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics and National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China;
| | - Zongbao Li
- Ministry of Education Key Laboratory of Textile Fiber Products, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China;
| | - Min Ouyang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| | - Haihua Fan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| |
Collapse
|
16
|
Thirumurugan S, Dash P, Lin YC, Sakthivel R, Sun YS, Lin CP, Wang AN, Liu X, Dhawan U, Tung CW, Chung RJ. Synergistic effect of photothermal and magnetic hyperthermia for in situ activation of Fenton reaction in tumor microenvironment for chemodynamic therapy. BIOMATERIALS ADVANCES 2024; 157:213724. [PMID: 38134729 DOI: 10.1016/j.bioadv.2023.213724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Traditional cancer treatments are ineffective and cause severe adverse effects. Thus, the development of chemodynamic therapy (CDT) has the potential for in situ catalysis of endogenous molecules into highly toxic species, which would then effectively destroy cancer cells. However, the shortage of high-performance nanomaterials hinders the broad clinical application of this approach. In present study, an effective therapeutic platform was developed using a simple hydrothermal method for the in-situ activation of the Fenton reaction within the tumor microenvironment (TME) to generate substantial quantities of •OH and ultimately destroy cancer cells, which could be further synergistically increased by photothermal therapy (PHT) and magnetic hyperthermia (MHT) aided by FeMoO4 nanorods (NRs). The produced FeMoO4 NRs were used as MHT/PHT and Fenton catalysts. The photothermal conversion efficiency of the FeMoO4 NRs was 31.75 %. In vitro and \ experiments demonstrated that the synergistic combination of MHT/PHT/CDT notably improved anticancer efficacy. This work reveals the significant efficacy of CDT aided by both photothermal and magnetic hyperthermia and offers a feasible strategy for the use of iron-based nanoparticles in the field of biomedical applications.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | | | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Ching-Wei Tung
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 243303, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan; High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 106344, Taiwan.
| |
Collapse
|
17
|
Kim K, Park MH. Advancing Cancer Treatment: Enhanced Combination Therapy through Functionalized Porous Nanoparticles. Biomedicines 2024; 12:326. [PMID: 38397928 PMCID: PMC10887220 DOI: 10.3390/biomedicines12020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Cancer remains a major global health challenge, necessitating the development of innovative treatment strategies. This review focuses on the functionalization of porous nanoparticles for combination therapy, a promising approach to enhance cancer treatment efficacy while mitigating the limitations associated with conventional methods. Combination therapy, integrating multiple treatment modalities such as chemotherapy, phototherapy, immunotherapy, and others, has emerged as an effective strategy to address the shortcomings of individual treatments. The unique properties of mesoporous silica nanoparticles (MSN) and other porous materials, like nanoparticles coated with mesoporous silica (NP@MS), metal-organic frameworks (MOF), mesoporous platinum nanoparticles (mesoPt), and carbon dots (CDs), are being explored for drug solubility, bioavailability, targeted delivery, and controlled drug release. Recent advancements in the functionalization of mesoporous nanoparticles with ligands, biomaterials, and polymers are reviewed here, highlighting their role in enhancing the efficacy of combination therapy. Various research has demonstrated the effectiveness of these nanoparticles in co-delivering drugs and photosensitizers, achieving targeted delivery, and responding to multiple stimuli for controlled drug release. This review introduces the synthesis and functionalization methods of these porous nanoparticles, along with their applications in combination therapy.
Collapse
Affiliation(s)
- Kibeom Kim
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
| | - Myoung-Hwan Park
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea;
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
18
|
Figueiredo AQ, Rodrigues CF, Fernandes N, Correia IJ, Moreira AF. In situ formation of alginic acid-gold nanohybrids for application in cancer photothermal therapy. Biotechnol J 2024; 19:e2300019. [PMID: 37706621 DOI: 10.1002/biot.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Gold-based nanoparticles present excellent optical properties that propelled their widespread application in biomedicine, from bioimaging to photothermal applications. Nevertheless, commonly employed manufacturing methods for gold-based nanoparticles require long periods and laborious protocols that reduce cost-effectiveness and scalability. Herein, a novel methodology was used for producing gold-alginic acid nanohybrids (Au-Alg-NH) with photothermal capabilities. This was accomplished by promoting the in situ reduction and nucleation of gold ions throughout a matrix of alginic acid by using ascorbic acid. The results obtained reveal that the Au-Alg-NHs present a uniform size distribution and a spike-like shape. Moreover, the nanomaterials were capable to mediate a temperature increase of ≈11°C in response to the irradiation with a near-infrared region (NIR) laser (808 nm, 1.7 W cm-2 ). The in vitro assays showed that Au-Alg-NHs were able to perform a NIR light-triggered ablation of cancer cells (MCF-7), being observed a reduction in the cell viability to ≈27%. Therefore, the results demonstrate that this novel methodology holds the potential for producing Au-Alg-NH with photothermal capacity and higher translatability to the clinical practice, namely for cancer therapy.
Collapse
Affiliation(s)
- André Q Figueiredo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Natanael Fernandes
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Coimbra, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
- CPIRN-UDI/IPG - Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Guarda, Portugal
| |
Collapse
|
19
|
Melo BL, Lima-Sousa R, Alves CG, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-coated reduced graphene oxide-IR780 hybrid nanosystems for effective cancer photothermal-photodynamic therapy. Int J Pharm 2023; 647:123552. [PMID: 37884216 DOI: 10.1016/j.ijpharm.2023.123552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Nanomaterials with near infrared light absorption can mediate an antitumoral photothermal-photodynamic response that is weakly affected by cancer cells' resistance mechanisms. Such nanosystems are commonly prepared by loading photosensitizers into nanomaterials displaying photothermal capacity, followed by functionalization to achieve biological compatibility. However, the translation of these multifunctional nanomaterials has been limited by the fact that many of the photosensitizers are not responsive to near infrared light. Furthermore, the reliance on poly(ethylene glycol) for functionalizing the nanomaterials is also not ideal due to some immunogenicity reports. Herein, a novel photoeffective near infrared light-responsive nanosystem for cancer photothermal-photodynamic therapy was assembled. For such, dopamine-reduced graphene oxide was, for the first time, functionalized with sulfobetaine methacrylate-brushes, and then loaded with IR780 (IR780/SB/DOPA-rGO). This hybrid system revealed a nanometric size distribution, optimal surface charge and colloidal stability. The interaction of IR780/SB/DOPA-rGO with near infrared light prompted a temperature increase (photothermal effect) and production of singlet oxygen (photodynamic effect). In in vitro studies, the IR780/SB/DOPA-rGO per se did not elicit cytotoxicity (viability > 78 %). In contrast, the combination of IR780/SB/DOPA-rGO with near infrared light decreased breast cancer cells' viability to just 21 %, at a very low nanomaterial dose, highlighting its potential for cancer photothermal-photodynamic therapy.
Collapse
Affiliation(s)
- Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
20
|
Silva FALS, Chang HP, Incorvia JAC, Oliveira MJ, Sarmento B, Santos SG, Magalhães FD, Pinto AM. 2D Nanomaterials and Their Drug Conjugates for Phototherapy and Magnetic Hyperthermia Therapy of Cancer and Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306137. [PMID: 37963826 DOI: 10.1002/smll.202306137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Indexed: 11/16/2023]
Abstract
Photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) using 2D nanomaterials (2DnMat) have recently emerged as promising alternative treatments for cancer and bacterial infections, both important global health challenges. The present review intends to provide not only a comprehensive overview, but also an integrative approach of the state-of-the-art knowledge on 2DnMat for PTT and MHT of cancer and infections. High surface area, high extinction coefficient in near-infra-red (NIR) region, responsiveness to external stimuli like magnetic fields, and the endless possibilities of surface functionalization, make 2DnMat ideal platforms for PTT and MHT. Most of these materials are biocompatible with mammalian cells, presenting some cytotoxicity against bacteria. However, each material must be comprehensively characterized physiochemically and biologically, since small variations can have significant biological impact. Highly efficient and selective in vitro and in vivo PTTs for the treatment of cancer and infections are reported, using a wide range of 2DnMat concentrations and incubation times. MHT is described to be more effective against bacterial infections than against cancer therapy. Despite the promising results attained, some challenges remain, such as improving 2DnMat conjugation with drugs, understanding their in vivo biodegradation, and refining the evaluation criteria to measure PTT or MHT effects.
Collapse
Affiliation(s)
- Filipa A L S Silva
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Hui-Ping Chang
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jean Anne C Incorvia
- Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- IUCS - CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
| | - Artur M Pinto
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, Porto, 4200-180, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, Porto, 4200-180, Portugal
| |
Collapse
|
21
|
Savchenko IV, Zlotnikov ID, Kudryashova EV. Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery. Biomimetics (Basel) 2023; 8:543. [PMID: 37999184 PMCID: PMC10669405 DOI: 10.3390/biomimetics8070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The concept of targeted drug delivery can be described in terms of the drug systems' ability to mimic the biological objects' property to localize to target cells or tissues. For example, drug delivery systems based on red blood cells or mimicking some of their useful features, such as long circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies based on macrophages have gained very limited attention until recently. Here, we review two biomimetic strategies associated with macrophages that can be used to develop new therapeutic modalities: first, the mimicry of certain types of macrophages (i.e., the use of macrophages, including tumor-associated or macrophage-derived particles as a carrier for the targeted delivery of therapeutic agents); second, the mimicry of ligands, naturally absorbed by macrophages (i.e., the use of therapeutic agents specifically targeted at macrophages). We discuss the potential applications of biomimetic systems involving macrophages for new advancements in the treatment of infections, inflammatory diseases, and cancer.
Collapse
Affiliation(s)
| | | | - Elena V. Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia (I.D.Z.)
| |
Collapse
|
22
|
Araújo-Silva H, Teixeira PV, Gomes AC, Lúcio M, Lopes CM. Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems. Biochim Biophys Acta Rev Cancer 2023; 1878:189011. [PMID: 37923232 DOI: 10.1016/j.bbcan.2023.189011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cancer remains a leading cause of mortality. Despite significant breakthroughs in conventional therapies, treatment is still far from ideal due to high toxicity in normal tissues and therapeutic inefficiency caused by short drug lifetime in the body and resistance mechanisms. Current research moves towards the development of multifunctional nanosystems for delivery of chemotherapeutic drugs, bioactives and/or radionuclides that can be combined with other therapeutic modalities, like gene therapy, or imaging to use in therapeutic screening and diagnosis. The preparation and characterization of Lyotropic Liquid Crystalline (LLC) mesophases self-assembled as 2D and 3D structures are addressed, with an emphasis on the unique properties of these nanoassemblies. A comprehensive review of LLC nanoassemblies is also presented, highlighting the most recent advances and their outstanding advantages as drug delivery systems, including tailoring strategies that can be used to overcome cancer challenges. Therapeutic agents loaded in LLC nanoassemblies offer qualitative and quantitative enhancements that are superior to conventional chemotherapy, particularly in terms of preferential accumulation at tumor sites and promoting enhanced cancer cell uptake, lowering tumor volume and weight, improving survival rates, and increasing the cytotoxicity of their loaded therapeutic agents. In terms of quantitative anticancer efficacy, loaded LLC nanoassemblies reduced the IC50 values from 1.4-fold against lung cancer cells to 125-fold against ovarian cancer cells.
Collapse
Affiliation(s)
- Henrique Araújo-Silva
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Patricia V Teixeira
- Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Marlene Lúcio
- Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Centro de Física das Universidades do Minho e Porto (CF-UM-UP), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- Instituto de Investigação, Inovação e Desenvolvimento (FP-I3ID), Biomedical and Health Sciences Research Unit (FP-BHS), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200-150 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
23
|
Malekzadeh R, Mortezazadeh T, Abdulsahib WK, Babaye Abdollahi B, Hamblin MR, Mansoori B, Alsaikhan F, Zeng B. Nanoarchitecture-based photothermal ablation of cancer: A systematic review. ENVIRONMENTAL RESEARCH 2023; 236:116526. [PMID: 37487920 DOI: 10.1016/j.envres.2023.116526] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
Photothermal therapy (PTT) is an emerging non-invasive method used in cancer treatment. In PTT, near-infrared laser light is absorbed by a chromophore and converted into heat within the tumor tissue. PTT for cancer usually combines a variety of interactive plasmonic nanomaterials with laser irradiation. PTT enjoys PT agents with high conversion efficiency to convert light into heat to destroy malignant tissue. In this review, published studies concerned with the use of nanoparticles (NPs) in PTT were collected by a systematic and comprehensive search of PubMed, Cochrane, Embase, and Scopus databases. Gold, silver and iron NPs were the most frequent choice in PTT. The use of surface modified NPs allowed selective delivery and led to a precise controlled increase in the local temperature. The presence of NPs during PTT can increase the reactive generation of oxygen species, damage the DNA and mitochondria, leading to cancer cell death mainly via apoptosis. Many studies recently used core-shell metal NPs, and the effects of the polymer coating or ligands targeted to specific cellular receptors in order to increase PTT efficiency were often reported. The effective parameters (NP type, size, concentration, coated polymers or attached ligands, exposure conditions, cell line or type, and cell death mechanisms) were investigated individually. With the advances in chemical synthesis technology, NPs with different shapes, sizes, and coatings can be prepared with desirable properties, to achieve multimodal cancer treatment with precision and specificity.
Collapse
Affiliation(s)
- Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Medical Radiation Science Research Team, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Mortezazadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Behnaz Babaye Abdollahi
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Behzad Mansoori
- The Wistar Institute, Cellular and Molecular Oncogenesis Program, Philadelphia, PA, USA.
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China.
| |
Collapse
|
24
|
Villuendas H, Vilches C, Quidant R. Standardization of In Vitro Studies for Plasmonic Photothermal therapy. ACS NANOSCIENCE AU 2023; 3:347-352. [PMID: 37868227 PMCID: PMC10588432 DOI: 10.1021/acsnanoscienceau.3c00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/24/2023]
Abstract
Lack of standardization is a systematic problem that impacts nanomedicine by challenging data comparison from different studies. Translation from preclinical to clinical stages indeed requires reproducible data that can be easily accessed and compared. In this work, we propose a series of experimental standards for in vitro plasmonic photothermal therapy (PPTT). This best practice guide covers the five main aspects of PPTT studies in vitro: nanomaterials, biological samples, pre-, during, and postirradiation characterization. We are confident that such standardization of experimental protocols and reported data will benefit the development of PPTT as a transversal therapy.
Collapse
Affiliation(s)
- Helena Villuendas
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Clara Vilches
- ICFO
− Institut de Ciències Fotòniques, the Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Romain Quidant
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
25
|
Zhang Y, Li Z, Huang Y, Zou B, Xu Y. Amplifying cancer treatment: advances in tumor immunotherapy and nanoparticle-based hyperthermia. Front Immunol 2023; 14:1258786. [PMID: 37869003 PMCID: PMC10587571 DOI: 10.3389/fimmu.2023.1258786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
In the quest for cancer treatment modalities with greater effectiveness, the combination of tumor immunotherapy and nanoparticle-based hyperthermia has emerged as a promising frontier. The present article provides a comprehensive review of recent advances and cutting-edge research in this burgeoning field and examines how these two treatment strategies can be effectively integrated. Tumor immunotherapy, which harnesses the immune system to recognize and attack cancer cells, has shown considerable promise. Concurrently, nanoparticle-based hyperthermia, which utilizes nanotechnology to promote selective cell death by raising the temperature of tumor cells, has emerged as an innovative therapeutic approach. While both strategies have individually shown potential, combination of the two modalities may amplify anti-tumor responses, with improved outcomes and reduced side effects. Key studies illustrating the synergistic effects of these two approaches are highlighted, and current challenges and future prospects in the field are discussed. As we stand on the precipice of a new era in cancer treatment, this review underscores the importance of continued research and collaboration in bringing these innovative treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Li
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu, China
| | - Bingwen Zou
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Radiation Oncology, Division of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zandieh MA, Farahani MH, Daryab M, Motahari A, Gholami S, Salmani F, Karimi F, Samaei SS, Rezaee A, Rahmanian P, Khorrami R, Salimimoghadam S, Nabavi N, Zou R, Sethi G, Rashidi M, Hushmandi K. Stimuli-responsive (nano)architectures for phytochemical delivery in cancer therapy. Biomed Pharmacother 2023; 166:115283. [PMID: 37567073 DOI: 10.1016/j.biopha.2023.115283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The use of phytochemicals for purpose of cancer therapy has been accelerated due to resistance of tumor cells to conventional chemotherapy drugs and therefore, monotherapy does not cause significant improvement in the prognosis and survival of patients. Therefore, administration of natural products alone or in combination with chemotherapy drugs due to various mechanisms of action has been suggested. However, cancer therapy using phytochemicals requires more attention because of poor bioavailability of compounds and lack of specific accumulation at tumor site. Hence, nanocarriers for specific delivery of phytochemicals in tumor therapy has been suggested. The pharmacokinetic profile of natural products and their therapeutic indices can be improved. The nanocarriers can improve potential of natural products in crossing over BBB and also, promote internalization in cancer cells through endocytosis. Moreover, (nano)platforms can deliver both natural and synthetic anti-cancer drugs in combination cancer therapy. The surface functionalization of nanostructures with ligands improves ability in internalization in tumor cells and improving cytotoxicity of natural compounds. Interestingly, stimuli-responsive nanostructures that respond to endogenous and exogenous stimuli have been employed for delivery of natural compounds in cancer therapy. The decrease in pH in tumor microenvironment causes degradation of bonds in nanostructures to release cargo and when changes in GSH levels occur, it also mediates drug release from nanocarriers. Moreover, enzymes in the tumor microenvironment such as MMP-2 can mediate drug release from nanocarriers and more progresses in targeted drug delivery obtained by application of nanoparticles that are responsive to exogenous stimulus including light.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Motahari
- Board-Certified in Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Sarah Gholami
- Young Researcher and Elite Club, Islamic Azad University, Babol Branch, Babol, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Seyedeh Setareh Samaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
27
|
Wang WX, Chao JJ, Wang ZQ, Liu T, Mao GJ, Yang B, Li CY. Dual Key-Activated Nir-I/II Fluorescence Probe for Monitoring Photodynamic and Photothermal Synergistic Therapy Efficacy. Adv Healthc Mater 2023; 12:e2301230. [PMID: 37632840 DOI: 10.1002/adhm.202301230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/19/2023] [Indexed: 08/28/2023]
Abstract
As cancer markers, hydrogen peroxide (H2 O2 ) and viscosity play an essential role in the development of tumors. Meanwhile, based on the performance of near-infrared (NIR) fluorescence imaging and the high efficiency of photodynamic therapy (PDT) and photothermal therapy (PTT) synergistic therapy, it is urgent to develop a dual-key (H2 O2 and viscosity) activated fluorescence probe for cancer phototherapy. Herein, a NIR-I/II fluorescence probe named BX-B is reported. In the presence of both H2 O2 and viscosity, the fluorescence signal of NIR-I (810 nm) and NIR-II (945 nm) can be released. In the presence of H2 O2 , the PDT and PTT effects are observed. BX-B is used to monitor its therapeutic effects in cancer cells and tumor-bearing mice due to the increased viscosity caused by PDT and PTT. In addition, the tumors of mice treated with BX-B are almost completely ablated after the laser irradiation based on its PDT and PTT synergistic therapy. This work provides a reliable platform for effective cancer treatment and immediate evaluation of therapeutic effects.
Collapse
Affiliation(s)
- Wen-Xin Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Jing-Jing Chao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Ting Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Bin Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
28
|
Lima-Sousa R, Alves CG, Melo BL, Costa FJP, Nave M, Moreira AF, Mendonça AG, Correia IJ, de Melo-Diogo D. Injectable hydrogels for the delivery of nanomaterials for cancer combinatorial photothermal therapy. Biomater Sci 2023; 11:6082-6108. [PMID: 37539702 DOI: 10.1039/d3bm00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential. This paradigm shift has propelled the development of new injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy. These hydrogels can be assembled at the tumor site after injection (in situ forming) or can undergo a gel-sol-gel transition during injection (shear-thinning/self-healing). Besides incorporating photothermal nanostructures, these injectable hydrogels can also incorporate or be combined with other agents, paving the way for an improved therapeutic outcome. This review analyses the application of injectable hydrogels for the local delivery of nanomaterials aimed at cancer photothermal therapy as well as their combination with photodynamic-, chemo-, immuno- and radio-therapies.
Collapse
Affiliation(s)
- Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - António G Mendonça
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
- Departamento de Química, Universidade da Beira Interior, 6201-001 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
29
|
Báez DF. Graphene-Based Nanomaterials for Photothermal Therapy in Cancer Treatment. Pharmaceutics 2023; 15:2286. [PMID: 37765255 PMCID: PMC10535159 DOI: 10.3390/pharmaceutics15092286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene-based nanomaterials (GBNMs), specifically graphene oxide (GO) and reduced graphene oxide (rGO), have shown great potential in cancer therapy owing to their physicochemical properties. As GO and rGO strongly absorb light in the near-infrared (NIR) region, they are useful in photothermal therapy (PTT) for cancer treatment. However, despite the structural similarities of GO and rGO, they exhibit different influences on anticancer treatment due to their different photothermal capacities. In this review, various characterization techniques used to compare the structural features of GO and rGO are first outlined. Then, a comprehensive summary and discussion of the applicability of GBNMs in the context of PTT for diverse cancer types are presented. This discussion includes the integration of PTT with secondary therapeutic strategies, with a particular focus on the photothermal capacity achieved through near-infrared irradiation parameters and the modifications implemented. Furthermore, a dedicated section is devoted to studies on hybrid magnetic-GBNMs. Finally, the challenges and prospects associated with the utilization of GBNM in PTT, with a primary emphasis on the potential for clinical translation, are addressed.
Collapse
Affiliation(s)
- Daniela F. Báez
- Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile;
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
30
|
Wang J, Liao H, Ban J, Li S, Xiong X, He Q, Shi X, Shen H, Yang S, Sun C, Liu L. Multifunctional Near-Infrared Dye IR-817 Encapsulated in Albumin Nanoparticles for Enhanced Imaging and Photothermal Therapy in Melanoma. Int J Nanomedicine 2023; 18:4949-4967. [PMID: 37693889 PMCID: PMC10488832 DOI: 10.2147/ijn.s425013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Background Near-infrared cyanine dyes have high sensitivity and spatial resolution imaging capabilities, but they also have unavoidable drawbacks such as photobleaching, low water solubility, fluorescence quenching, and toxic side effects. As an effective biologic drug carrier, albumin combines with cyanine dyes to form albumin@dye nanoparticles. These nanoparticles can alleviate the aforementioned issues and are widely used in tumor imaging and photothermal therapy. Methods Herein, a newly synthesized near-infrared dye IR-817 was combined with bovine serum albumin (BSA) to create BSA@IR-817 nanoparticles. Through the detection of fluorescence emission and absorption, the optimal concentration and ratio of BSA and IR-817 were determined. Subsequently, dynamic light scattering (DLS) measurements and scanning electron microscopy (SEM) were used for the physical characterization of the BSA@IR-817 nanoparticles. Finally, in vitro and in vivo experiments were conducted to assess the fluorescence imaging and photothermal therapeutic potential of BSA@IR-817 nanoparticles. Results IR-817 was adsorbed onto the BSA carrier by covalent conjugation and supramolecular encapsulation, resulting in the formation of dispersed, homogeneous, and stable nanoparticles with a particle size range of 120-220 nm. BSA@IR-817 not only improved the poor water solubility, fluorescence quenching, and toxic side effects of IR-817 but also enhanced the absorption and fluorescence emission peaks in the near-infrared region, as well as the fluorescence in the visible spectrum. In addition, BSA@IR-817 combined with laser 808 irradiation was able to convert light energy into heat energy with temperatures exceeding 50 °C. By creating a mouse model of subcutaneous melanoma, it was discovered that the tumor inhibition rate of BSA@IR-817 was greater than 99% after laser irradiation and that it achieved nearly complete tumor ablation without causing significant toxicity. Conclusion Our research, therefore, proposes the use of safe and effective photothermal nanoparticles for the imaging, diagnosis, and treatment of melanoma, and offers a promising strategy for future biomedical applications.
Collapse
Affiliation(s)
- Jianv Wang
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hongye Liao
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jieming Ban
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Sen Li
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xia Xiong
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Qingqing He
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xinyu Shi
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hongping Shen
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Sijin Yang
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, National Traditional Chinese Medicine Clinical Research Base, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Li Liu
- Department of Dermatology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
31
|
Jiang X, Wu L, Zhang M, Zhang T, Chen C, Wu Y, Yin C, Gao J. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery. J Control Release 2023; 361:510-533. [PMID: 37567505 DOI: 10.1016/j.jconrel.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
Chemotherapeutic drugs have been found to activate the immune response against tumors by inducing immunogenic cell death, in addition to their direct cytotoxic effects toward tumors, therefore broadening the application of chemotherapy in tumor immunotherapy. The combination of other therapeutic strategies, such as phototherapy or radiotherapy, could further strengthen the therapeutic effects of immunotherapy. Nanostructures can facilitate multimodal tumor therapy by integrating various active agents and combining multiple types of therapeutics in a single nanostructure. Biomembrane nanostructures (e.g., exosomes and cell membrane-derived nanostructures), characterized by superior biocompatibility, intrinsic targeting ability, intelligent responsiveness and immune-modulating properties, could realize superior chemoimmunotherapy and represent next-generation nanostructures for tumor immunotherapy. This review summarizes recent advances in biomembrane nanostructures in tumor chemoimmunotherapy and highlights different types of engineering approaches and therapeutic mechanisms. A series of engineering strategies for combining different biomembrane nanostructures, including liposomes, exosomes, cell membranes and bacterial membranes, are summarized. The combination strategy can greatly enhance the targeting, intelligence and functionality of biomembrane nanostructures for chemoimmunotherapy, thereby serving as a stronger tumor therapeutic method. The challenges associated with the clinical translation of biomembrane nanostructures for chemoimmunotherapy and their future perspectives are also discussed.
Collapse
Affiliation(s)
- Xianghe Jiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Cuimin Chen
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang 157011, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
32
|
Filipe HAL, Moreira AF, Miguel SP, Ribeiro MP, Coutinho P. Interaction of Near-Infrared (NIR)-Light Responsive Probes with Lipid Membranes: A Combined Simulation and Experimental Study. Pharmaceutics 2023; 15:1853. [PMID: 37514039 PMCID: PMC10383845 DOI: 10.3390/pharmaceutics15071853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is considered a major societal challenge for the next decade worldwide. Developing strategies for simultaneous diagnosis and treatment has been considered a promising tool for fighting cancer. For this, the development of nanomaterials incorporating prototypic near-infrared (NIR)-light responsive probes, such as heptamethine cyanines, has been showing very promising results. The heptamethine cyanine-incorporating nanomaterials can be used for a tumor's visualization and, upon interaction with NIR light, can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. In this work, we studied the interaction of 12 NIR-light responsive probes with lipid membrane models by molecular dynamics simulations. We performed a detailed characterization of the location, orientation, and local perturbation effects of these molecules on the lipid bilayer. Based on this information, the probes were divided into two groups, predicting a lower and higher perturbation of the lipid bilayer. From each group, one molecule was selected for testing in a membrane leakage assay. The experimental data validate the hypothesis that molecules with charged substituents, which function as two polar anchors for the aqueous phase while spanning the membrane thickness, are more likely to disturb the membrane by the formation of defects and pores, increasing the membrane leakage. The obtained results are expected to contribute to the selection of the most suitable molecules for the desired application or eventually guiding the design of probe modifications for achieving an optimal interaction with tumor cell membranes.
Collapse
Affiliation(s)
- Hugo A L Filipe
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal
| | - André F Moreira
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Sónia P Miguel
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P Ribeiro
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG-Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
33
|
Di X, Pei Z, Pei Y, James TD. Tumor microenvironment-oriented MOFs for chemodynamic therapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
34
|
Fu W, Lu Q, Xing S, Yan L, Zhang X. Iron-Doped Metal-Zinc-Centered Organic Framework Mesoporous Carbon Derivatives for Single-Wavelength NIR-Activated Photothermal/Photodynamic Synergistic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6505-6513. [PMID: 37098018 DOI: 10.1021/acs.langmuir.3c00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recently, single-wavelength synergetic photothermal/photodynamic (PTT/PDT) therapy is beginning to make its mark in cancer treatment, and the key to it is a photosensitizer. In this work, an iron-doped metal-zinc-centered organic framework mesoporous carbon derivative (denoted as Fex-Zn-NCT) with a similar porphyrin property was successfully synthesized by a mild, simple, and green aqueous reaction. The effects of different Fe contents and pyrolysis temperatures on the morphology, structure, and PTT/PDT of Fex-Zn-NCT were investigated. Most importantly, we found that Fe50-Zn-NC900 exhibited excellent PTT/PDT performance under single-wavelength near-infrared (808 nm) light irradiation in a hydrophilic environment. The photothermal conversion efficiency (η) was counted as ∼81.3%, and the singlet oxygen (1O2) quantum yield (Φ) was compared with indocyanine green (ICG) as ∼0.0041. Furthermore, Fe50-Zn-NC900 is provided with a clear ability for generating 1O2 in living tumor cells and inducted massive necrosis/apoptosis of tumor cells with single-wavelength near-infrared laser irradiation. All of these are clear to consider that Fe50-Zn-NC900 displays great potential as an excellent photosensitizer for single-wavelength dual-mode PTT/PDT therapy.
Collapse
Affiliation(s)
- Wen Fu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Qian Lu
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Shu Xing
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xian Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| |
Collapse
|
35
|
Li J, Wang S, Fontana F, Tapeinos C, Shahbazi MA, Han H, Santos HA. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential. Bioact Mater 2023; 23:471-507. [PMID: 36514388 PMCID: PMC9727595 DOI: 10.1016/j.bioactmat.2022.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/11/2022] Open
Abstract
Remarkable progress in phototherapy has been made in recent decades, due to its non-invasiveness and instant therapeutic efficacy. In addition, with the rapid development of nanoscience and nanotechnology, phototherapy systems based on nanoparticles or nanocomposites also evolved as an emerging hotspot in nanomedicine research, especially in cancer. In this review, first we briefly introduce the history of phototherapy, and the mechanisms of phototherapy in cancer treatment. Then, we summarize the representative development over the past three to five years in nanoparticle-based phototherapy and highlight the design of the innovative nanoparticles thereof. Finally, we discuss the feasibility and the potential of the nanoparticle-based phototherapy systems in clinical anticancer therapeutic applications, aiming to predict future research directions in this field. Our review is a tutorial work, aiming at providing useful insights to researchers in the field of nanotechnology, nanoscience and cancer.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Shiqi Wang
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Christos Tapeinos
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Huijie Han
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
36
|
Liu X, Guan P, Mu J, Meng Z, Lian H. Metal-rich cascade nanosystem for dual-pathway ferroptosis resistance regulation and photothermal effect for efficient tumor combination therapy. Biomater Sci 2023; 11:3906-3920. [PMID: 37092601 DOI: 10.1039/d3bm00189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Despite the therapeutic response of ferroptosis in various tumors, ferroptosis resistance has been found in numerous studies, significantly hindering the progress of ferroptosis anti-tumor therapy. Herein, we propose a metal-rich cascade nanosystem (Simvastatin-HMPB-Mn@GOx) combined with the dual-pathway regulation of ferroptosis resistance and photothermal therapy for efficient tumor combination therapy. The manganese-bonded hollow mesoporous Prussian blue (HMPB-Mn) serves as the photothermal agent and metal donor, and dissociates multivalent metal ions Mn2+, Fe3+ and Fe2+ to consume glutathione and amplify the Fenton reaction. Glucose oxidase (GOx) absorbed serves as the converter to provide hydrogen peroxide (H2O2) for the cascade Fenton reaction, causing a high burst of hydroxyl radicals (˙OH) and lipid peroxidation. Simvastatin innovatively acts as a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) inhibitor to decrease the expression of coenzyme Q10 (CoQ10) and glutathione peroxidase 4 (GPX4), eventually defeating ferroptosis resistance. The nanosystem acted in both classical and non-classical ferroptosis pathways and showed significant ferroptosis- and hyperthermia-induced anti-tumor efficacy both in vitro and in vivo. Thus, this study offers a promising way for ferroptosis and phototherapy to achieve complete tumor regression.
Collapse
Affiliation(s)
- Xinran Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ping Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiaxiang Mu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - He Lian
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
37
|
Nave M, Costa FJP, Alves CG, Lima-Sousa R, Melo BL, Correia IJ, de Melo-Diogo D. Simple preparation of POxylated nanomaterials for cancer chemo-PDT/PTT. Eur J Pharm Biopharm 2023; 184:7-15. [PMID: 36682512 DOI: 10.1016/j.ejpb.2023.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Near infrared (NIR) light-responsive nanomaterials hold potential to mediate combinatorial therapies targeting several cancer hallmarks. When irradiated, these nanomaterials produce reactive oxygen species (photodynamic therapy) and/or a temperature increase (photothermal therapy). These events can damage cancer cells and trigger the release of drugs from the nanomaterials' core. However, engineering nanomaterials for cancer chemo-photodynamic/photothermal therapy is a complex process. First, nanomaterials with photothermal capacity are synthesized, being then loaded with photosensitizers plus chemotherapeutics, and, finally functionalized with polymers for achieving suitable biological properties. To overcome this limitation, in this work, a novel straightforward approach to attain NIR light-responsive nanosystems for cancer chemo-photodynamic/photothermal therapy was established. Such was accomplished by synthesizing poly(2-ethyl-2-oxazoline)-IR780 amphiphilic conjugates, which can be assembled into nanoparticles with photodynamic/photothermal capabilities that simultaneously encapsulate Doxorubicin (DOX/PEtOx-IR NPs). The DOX/PEtOx-IR NPs presented a suitable size and surface charge for cancer-related applications. When irradiated with NIR light, the DOX/PEtOx-IR NPs produced singlet oxygen as well as a smaller thermic effect that boosted the release of DOX by 1.7-times. In the in vitro studies, the combination of DOX/PEtOx-IR NPs and NIR light could completely ablate breast cancer cells (viability ≈ 4 %), demonstrating the enhanced outcome arising from the nanomaterials' chemo-photodynamic/photothermal therapy.
Collapse
Affiliation(s)
- Micaela Nave
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Francisco J P Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| |
Collapse
|
38
|
Zhu J, Wang J, Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomed Pharmacother 2023; 159:114227. [PMID: 36638597 DOI: 10.1016/j.biopha.2023.114227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Magnetic nanocarriers are nano-platforms that integrate multiple moieties based on magnetic nanoparticles for diagnostic and therapeutic purposes. In recent years, they have become an advanced platform for tumor treatment due to their wide application in magnetic resonance imaging (MRI), biocatalysis, magneto-thermal therapy (MHT), and photoresponsive therapy. Drugs loaded into magnetic nanocarriers can efficiently be directed to targeted areas by precisely reshaping their structural properties. Magnetic nanocarriers allow us to track the location of the therapeutic agent, continuously control the therapeutic process and eventually assess the efficacy of the treatment. They are typically used in synergistic therapeutic applications to achieve precise and effective tumor treatment. Here we review their latest applications in tumor treatment, including stimuli-responsive drug delivery, MHT, photoresponsive therapy, immunotherapy, gene therapy, and synergistic therapy. We consider reducing toxicity, improving antitumor efficacy, and the targeting accuracy of magnetic nanocarriers. The challenges of their clinical translation and prospects in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China.
| | - Jian Wang
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| | - Yiping Li
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
39
|
Zhou S, Tian H, Yan J, Zhang Z, Wang G, Yu X, Sang W, Li B, Mok GS, Song J, Dai Y. IR780/Gemcitabine-conjugated metal-phenolic network enhanced photodynamic cancer therapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
40
|
Peng Z, Chang Q, Xing M, Lu F. Active Hydrophilic Graphene Oxide Nanocomposites Delivery Mediated by Adipose-Derived Stem Cell for Elevated Photothermal Therapy of Breast Cancer. Int J Nanomedicine 2023; 18:971-986. [PMID: 36855539 PMCID: PMC9968430 DOI: 10.2147/ijn.s380029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/23/2022] [Indexed: 02/24/2023] Open
Abstract
Purpose Graphene oxide (GO) and its derivatives have recently been identified as promising candidates for early disease diagnosis and therapy. However, the physiological stability and precise launch requirements present limitations on further clinical practices. Adipose-derived stem cells (ADSCs) were employed as an unobstructed biological vehicle to address the validate this ADSC-based tumor-targeting system for highly efficient GO delivery combined with two-stage NIR radiation for superior tumor ablation. Methods GO was modified with poly-ethylene glycol (PEG) and folic acid (FA). Afterward, the GO nanocomposite was internalized into ADSCs. The GO-PEG-FA-laden ADSCs were injected into the tail veins of the tumor-bearing mice. Subsequently, first-stage NIR radiation was utilized to disrupt the ADSCs for GO-PEG-FA release. After this, the heat generated by secondary-stage NIR radiation destroy the malignant cells and shrink the tumor, and the cascade process could be recycled until complete tumor ablation if necessary. Results The GO-PEG-FA nanocomposite exhibited negligible cytotoxicity and could be internalized into ADSCs to target specific tumor sites after 32 days of intravenous injection. The nanocomposite was released from the ADSCs and taken up into cancer cells again with the assistance of FA after the first dose of near-infrared radiation. Then, the second radiation dose could directly strike the cancer cell for cancer ablation. Conclusion In summary, we reported a stem cell-based anticancer system that used GO-PEG-FA-laden ADSCs for breast cancer therapy through NIR treatment in mice potentially opens a new avenue not only to address precise drug targeting in tumor therapy, but also future clinical practice in diverse areas.
Collapse
Affiliation(s)
- Zhangsong Peng
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Qiang Chang
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Department of Mechanical Engineering, University of Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada,Correspondence: Malcolm Xing, Department of Mechanical Engineering, University of Manitoba, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada, Email
| | - Feng Lu
- Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China,Feng Lu, Department of Plastic and Reconstruction Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People’s Republic of China, Email
| |
Collapse
|
41
|
Bhatt HN, Pena-Zacarias J, Beaven E, Zahid MI, Ahmad SS, Diwan R, Nurunnabi M. Potential and Progress of 2D Materials in Photomedicine for Cancer Treatment. ACS APPLIED BIO MATERIALS 2023; 6:365-383. [PMID: 36753355 PMCID: PMC9975046 DOI: 10.1021/acsabm.2c00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Over the last decades, photomedicine has made a significant impact and progress in treating superficial cancer. With tremendous efforts many of the technologies have entered clinical trials. Photothermal agents (PTAs) have been considered as emerging candidates for accelerating the outcome from photomedicine based cancer treatment. Besides various inorganic and organic candidates, 2D materials such as graphene, boron nitride, and molybdenum disulfide have shown significant potential for photothermal therapy (PTT). The properties such as high surface area to volume, biocompatibility, stability in physiological media, ease of synthesis and functionalization, and high photothermal conversion efficiency have made 2D nanomaterials wonderful candidates for PTT to treat cancer. The targeting or localized activation could be achieved when PTT is combined with chemotherapies, immunotherapies, or photodynamic therapy (PDT) to provide better outcomes with fewer side effects. Though significant development has been made in the field of phototherapeutic drugs, several challenges have restricted the use of PTT in clinical use and hence they have not yet been tested in large clinical trials. In this review, we attempted to discuss the progress, properties, applications, and challenges of 2D materials in the field of PTT and their application in photomedicine.
Collapse
Affiliation(s)
- Himanshu N. Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Jaqueline Pena-Zacarias
- Department of Biological Sciences, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Elfa Beaven
- Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Ikhtiar Zahid
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Sheikh Shafin Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Environmental Science & Engineering and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, The University of Texas El Paso, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, Texas 79902, United States; Department of Biomedical Engineering, Environmental Science & Engineering, and Aerospace Center (cSETR), The University of Texas El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
42
|
Photothermal and selective microbial inactivation behaviors of gluconamide-coated IR780 nanoparticles. Colloids Surf B Biointerfaces 2023; 222:113126. [PMID: 36608368 DOI: 10.1016/j.colsurfb.2023.113126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Photothermal therapy (PTT) is a promising alternative treatment for bacterial infection. In this study, a photothermal nanoparticle was prepared by encapsulating IR780 into N-octyl-D-gluconamide (GA). The photothermal nanoparticle (IR780-GA NP) was evenly suspended in water with an average particle size of 42.2 nm. After exposure to near-infrared light, the temperature of the IR780-GA NP suspension was increased by around 15 °C within 5 min. This leads to an obvious microbial inactivation effect when it is adsorbed to methicillin-resistant Staphylococcus aureus (MRSA, 2 orders of magnitude reduction of CFU concentration) and Escherichia coli (1.5 orders of magnitude reduction of CFU concentration). Interestingly, Salmonella typhimurium survived after the same treatment. Different strains also showed variations. The hemolysis test showed that IR780-GA NPs had good blood compatibility. In vivo experiments collaborated with the in vitro findings. The IR780-GA NP-triggered photothermal effects killed 63-100% of bacteria in the wound site of mice depending on the IR780-GA NP concentration. Overall, this study provided the fundamental basis of IR780-GA NPs in four aspects: fabrication, photothermal characterization, selective adsorption, and microbial inactivation (in vitro and in vivo). The findings of this study provide a practical approach for the development of mild photothermal therapy which targets specific bacterial strains and treats MRSA infection effectively.
Collapse
|
43
|
Mitry MMA, Greco F, Osborn HMI. In Vivo Applications of Bioorthogonal Reactions: Chemistry and Targeting Mechanisms. Chemistry 2023; 29:e202203942. [PMID: 36656616 DOI: 10.1002/chem.202203942] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Bioorthogonal chemistry involves selective biocompatible reactions between functional groups that are not normally present in biology. It has been used to probe biomolecules in living systems, and has advanced biomedical strategies such as diagnostics and therapeutics. In this review, the challenges and opportunities encountered when translating in vitro bioorthogonal approaches to in vivo settings are presented, with a focus on methods to deliver the bioorthogonal reaction components. These methods include metabolic bioengineering, active targeting, passive targeting, and simultaneously used strategies. The suitability of bioorthogonal ligation reactions and bond cleavage reactions for in vivo applications is critically appraised, and practical considerations such as the optimum scheduling regimen in pretargeting approaches are discussed. Finally, we present our own perspectives for this area and identify what, in our view, are the key challenges that must be overcome to maximise the impact of these approaches.
Collapse
Affiliation(s)
- Madonna M A Mitry
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Francesca Greco
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| | - Helen M I Osborn
- Reading School of Pharmacy, University of Reading Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
44
|
Parra B, Contreras A, Mina JH, Valencia ME, Grande-Tovar CD, Valencia CH, Ramírez C, Bolívar GA. The Entrapment and Concentration of SARS-CoV-2 Particles with Graphene Oxide: An In Vitro Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:343. [PMID: 36678096 PMCID: PMC9861810 DOI: 10.3390/nano13020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have suggested that graphene oxide (GO) has some antiviral capacity against some enveloped viruses, including SARS-CoV-2. Given this background, we wanted to test the in vitro antiviral ability to GO using the viral plaque assay technique. Two-dimensional graphene oxide (GO) nanoparticles were synthesized using the modified Hummers method, varying the oxidation conditions to achieve nanoparticles between 390 and 718 nm. The antiviral activity of GO was evaluated by experimental infection and plaque formation units assay of the SARS-CoV-2 virus in VERO cells using a titrated viral clinical isolate. It was found that GO at concentrations of 400 µg/mL, 100 µg/mL, 40 µg/mL, and 4 µg/mL was not toxic to cell culture and also did not inhibit the infection of VERO cells by SARS-CoV-2. However, it was evident that GO generated a novel virus entrapment phenomenon directly proportional to its concentration in the suspension. Similarly, this effect of GO was maintained in assays performed with the Zika virus. A new application for GO nanoparticles is proposed as part of a system to trap viruses in surgical mask filters, air conditioning equipment filters, and air purifier filters, complemented with the use of viricidal agents that can destroy the trapped viruses, an application of broad interest for human beings.
Collapse
Affiliation(s)
- Beatriz Parra
- Grupo de Virus Emergentes y Enfermedad (VIREM), Departamento de Microbiología, Facultad de Salud, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 760032, Colombia
| | - Adolfo Contreras
- Grupo Medicina Periodontal, Escuela de Odontología, Facultad de Salud, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 760043, Colombia
| | - José Herminsul Mina
- Grupo Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Mayra Eliana Valencia
- Grupo Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Facultad de Ciencias, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Carlos Humberto Valencia
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B No. 36-00, Santiago de Cali 76001, Colombia
| | - Cristina Ramírez
- Grupo de Investigación en Ingeniería de Procesos Agroalimentarios y Biotecnológicos (GIPAB), Escuela de Ingeniería de Alimentos, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
- Grupo de Investigación en Microbiología y Biotecnología Aplicada (MIBIA), Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| | - Germán Armando Bolívar
- Grupo de Investigación en Microbiología y Biotecnología Aplicada (MIBIA), Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| |
Collapse
|
45
|
Shen H, Wang L, Zhang Y, Huang G, Liu B. Knowledge mapping of image-guided tumor ablation and immunity: A bibliometric analysis. Front Immunol 2023; 14:1073681. [PMID: 36875115 PMCID: PMC9975509 DOI: 10.3389/fimmu.2023.1073681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Background Various ablation techniques have been successfully applied in tumor therapy by locally destroying tumor. In the process of tumor ablation, a large number of tumor cell debris is released, which can be used as a source of tumor antigens and trigger a series of immune responses. With the deepening of the research on the immune microenvironment and immunotherapy, researches exploring tumor ablation and immunity are continuously published. However, no research has systematically analyzed the intellectual landscape and emerging trends for tumor ablation and immunity using scientometric analysis. Therefore, this study aimed to conduct a bibliometric analysis to quantify and identify the status quo and trend of tumor ablation and immunity. Methods Data of publications were downloaded from the Web of Science Core Collection database. CiteSpace and VOSviewer were used to conduct bibliometric analysis to evaluate the contribution and co-occurrence relationship of different countries/regions, institutions and authors in the field, and to determine the research hotspots in this field. Results By searching in the database, a total of 3531 English articles published between 2012 and 2021 were obtained. We observed rapid growth in the number of publications since 2012. The two most active countries were China and the United States, with more than 1,000 articles. Chinese Academy of Sciences contributed the most publications (n = 153). Jibing Chen and Xianzheng Zhang might have a keen interest in tumor ablation and immunity, with more publications (n = 14; n = 13). Among the top 10 co-cited authors, Castano AP (284 citations) was ranked first, followed by Agostinis P (270 citations) and Chen Qian (246 citations). According to the co-occurrence and cluster analysis, the results indicated that the focus of research was "photothermal therapy" and "immune checkpoint blockade". Conclusions In the past decade, the neighborhood of tumor ablation domain immunity has been paid more and more attention. Nowadays, the research hotspots in this field are mainly focused on exploring the immunological mechanism in photothermal therapy to improve its efficacy, and the combination of ablation therapy and immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Hui Shen
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Wang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Zhang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangliang Huang
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baoxian Liu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Villuendas H, Vilches C, Quidant R. Influence of Cell Type on the Efficacy of Plasmonic Photothermal Therapy. ACS NANOSCIENCE AU 2022; 2:494-502. [PMID: 37101851 PMCID: PMC10125312 DOI: 10.1021/acsnanoscienceau.2c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 04/28/2023]
Abstract
In plasmonic photothermal therapy (PPTT), illuminated gold nanoparticles are locally heated to produce selective damage in cells. While PPTT is expected to strongly depend on the cell line, available data are sparse and critical parameters remain unclear. To elucidate this pivotal aspect, we present a systematic study of diseased and nondiseased cells from different tissues to evaluate cytotoxicity, uptake of gold nanorods (AuNRs), and viability after PPTT. We identified differences in uptake and toxicity between cell types, linking AuNR concentrations to toxicity. Furthermore, the cell death mechanism is shown to depend on the intensity of the irradiated light and hence the temperature increase. Importantly, the data also underline the need to monitor cell death at different time points. Our work contributes to the definition of systematic protocols with appropriate controls to fully comprehend the effects of PPTT and build meaningful and reproducible data sets, key to translate PPTT to clinical settings.
Collapse
Affiliation(s)
- Helena Villuendas
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
- ICFO
− Institut de Ciències Fotòniques, the Barcelona
Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Clara Vilches
- ICFO
− Institut de Ciències Fotòniques, the Barcelona
Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Romain Quidant
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
- ICFO
− Institut de Ciències Fotòniques, the Barcelona
Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA
− Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
48
|
Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7:386. [PMID: 36460660 PMCID: PMC9716178 DOI: 10.1038/s41392-022-01250-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery. On the one hand, bioorthogonal reactions improve therapeutic agent delivery to target sites, overcoming off-target distribution. On the other hand, nanoparticles and biomolecules can be linked to cell membranes by bioorthogonal reactions, providing approaches to developing multi-functional drug delivery systems (DDSs). In this review, we first describe the principle of labeling cells or pathogenic microorganisms with bioorthogonal groups. We then highlight recent breakthroughs in developing active targeting DDSs to tumors, immune systems, or bacteria by bioorthogonal chemistry, as well as applications of bioorthogonal chemistry in developing functional bio-inspired DDSs (biomimetic DDSs, cell-based DDSs, bacteria-based and phage-based DDSs) and hydrogels. Finally, we discuss the difficulties and prospective direction of bioorthogonal chemistry in drug delivery. We expect this review will help us understand the latest advances in the development of active targeting and multi-functional DDSs using bioorthogonal chemistry and inspire innovative applications of bioorthogonal chemistry in developing smart DDSs for disease treatment.
Collapse
Affiliation(s)
- Wenzhe Yi
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ping Xiao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaochen Liu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zitong Zhao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiangshi Sun
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jue Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Lei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Guanru Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiqiang Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dangge Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Yaping Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000 China
| |
Collapse
|
49
|
Mbituyimana B, Ma G, Shi Z, Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy. BIOMATERIALS ADVANCES 2022; 142:213151. [PMID: 36244246 DOI: 10.1016/j.bioadv.2022.213151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Microneedles (MNs) have attracted the interest of researchers. Polymeric MNs offer tremendous promise as drug delivery vehicles for bio-applications because of their high loading capacity, strong patient adherence, excellent biodegradability and biocompatibility, low toxicity, and extremely cheap cost. Incorporating enhanced-property nanomaterials into polymeric MNs matrix increases their features such as better mechanical strength, sustained drug delivery, lower toxicity, and higher therapeutic effects, therefore considerably increasing their biomedical application. This paper discusses polymeric MN fabrication techniques and the present status of polymeric MNs as a delivery method for enhanced drug delivery in cancer therapeutic applications. Furthermore, the opportunities and challenges of polymeric MNs for improved drug delivery in cancer therapy are highlighted.
Collapse
Affiliation(s)
- Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
50
|
Alves CG, Lima-Sousa R, Melo BL, Ferreira P, Moreira AF, Correia IJ, Melo-Diogo DD. Poly(2-ethyl-2-oxazoline)-IR780 conjugate nanoparticles for breast cancer phototherapy. Nanomedicine (Lond) 2022; 17:2057-2072. [PMID: 36803049 DOI: 10.2217/nnm-2022-0218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Aims: To address the limitations of IR780 by preparing hydrophilic polymer-IR780 conjugates and to employ these conjugates in the assembly of nanoparticles (NPs) intended for cancer photothermal therapy. Materials & methods: The cyclohexenyl ring of IR780 was conjugated for the first time with thiol-terminated poly(2-ethyl-2-oxazoline) (PEtOx). This novel poly(2-ethyl-2-oxazoline)-IR780 (PEtOx-IR) conjugate was combined with D-α-tocopheryl succinate (TOS), leading to the assembly of mixed NPs (PEtOx-IR/TOS NPs). Results: PEtOx-IR/TOS NPs displayed optimal colloidal stability as well as cytocompatibility in healthy cells at doses within the therapeutic range. In turn, the combination of PEtOx-IR/TOS NPs and near-infrared light reduced heterotypic breast cancer spheroid viability to just 15%. Conclusion: PEtOx-IR/TOS NPs are promising agents for breast cancer photothermal therapy.
Collapse
Affiliation(s)
- Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Coimbra, 3030-790, Portugal
- Department of Chemical & Biological Engineering, Coimbra Institute of Engineering (ISEC), Rua Pedro Nunes, Coimbra, 3030-199, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Coimbra, 3030-790, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D Henrique, Covilhã, 6200-506, Portugal
| |
Collapse
|