1
|
Sabu A, Kandel M, Sarma RR, Ramesan L, Roy E, Sharmila R, Chiu HC. Heterojunction semiconductor nanocatalysts as cancer theranostics. APL Bioeng 2024; 8:041502. [PMID: 39381587 PMCID: PMC11459490 DOI: 10.1063/5.0223718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Cancer nanotechnology is a promising area of cross-disciplinary research aiming to develop facile, effective, and noninvasive strategies to improve cancer diagnosis and treatment. Catalytic therapy based on exogenous stimulus-responsive semiconductor nanomaterials has shown its potential to address the challenges under the most global medical needs. Semiconductor nanocatalytic therapy is usually triggered by the catalytic action of hot electrons and holes during local redox reactions within the tumor, which represent the response of nontoxic semiconductor nanocatalysts to pertinent internal or external stimuli. However, careful architecture design of semiconductor nanocatalysts has been the major focus since the catalytic efficiency is often limited by facile hot electron/hole recombination. Addressing these challenges is vital for the progress of cancer catalytic therapy. In recent years, diverse strategies have been developed, with heterojunctions emerging as a prominent and extensively explored method. The efficiency of charge separation under exogenous stimulation can be heightened by manipulating the semiconducting performance of materials through heterojunction structures, thereby enhancing catalytic capabilities. This review summarizes the recent applications of exogenous stimulus-responsive semiconducting nanoheterojunctions for cancer theranostics. The first part of the review outlines the construction of different heterojunction types. The next section summarizes recent designs, properties, and catalytic mechanisms of various semiconductor heterojunctions in tumor therapy. The review concludes by discussing the challenges and providing insights into their prospects within this dynamic and continuously evolving field of research.
Collapse
Affiliation(s)
- Arjun Sabu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Manoj Kandel
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ritwick Ranjan Sarma
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Lakshminarayan Ramesan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ekta Roy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ramalingam Sharmila
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Cheng Chiu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Yang Y, Wang H, Wang C, Liu J, Wu H, Liu N, Wang Q, Shang Y, Zheng J. Novel 2D Material of MBenes: Structures, Synthesis, Properties, and Applications in Energy Conversion and Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405870. [PMID: 39396387 DOI: 10.1002/smll.202405870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/18/2024] [Indexed: 10/15/2024]
Abstract
2D transition metal borides (MBenes) have garnered significant attention from researchers due to their exceptional electrical conductivity, strong mechanical rigidity, excellent dynamic and thermodynamic stability, which stimulates the enthusiasm of researchers for the study of MBenes. Over the past few years, extensive research efforts have been dedicated to the study of MBenes, resulting in a growing number of synthesis methods being developed. However, there remains a scarcity of comprehensive reviews on MBenes, particularly in relation to the synthesis techniques employed. To address this gap, this review aims to provide a comprehensive summary of the latest research findings on MBenes. An exhaustive exploration of the crystal structure types of MBenes is presented, highlighting the greater structural diversity compared to MXenes. Furthermore, a comprehensive review of the recent advancements in MBenes synthesis methodologies is provided. The review also delves into the physical and chemical properties of MBenes, while elucidating their applications in the realms of energy conversion and energy storage. Lastly, this review concludes by summarizing and offering insights on MBenes from three angles: synthesis, structure-property relationships, and application prospects.
Collapse
Affiliation(s)
- Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huichao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chenjing Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiajia Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongjing Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Naiyan Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qian Wang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Shang
- School of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, China
| |
Collapse
|
3
|
Xu M, Wu G, You Q, Chen X. The Landscape of Smart Biomaterial-Based Hydrogen Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401310. [PMID: 39166484 PMCID: PMC11497043 DOI: 10.1002/advs.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/19/2024] [Indexed: 08/23/2024]
Abstract
Hydrogen (H2) therapy is an emerging, novel, and safe therapeutic modality that uses molecular hydrogen for effective treatment. However, the impact of H2 therapy is limited because hydrogen molecules predominantly depend on the systemic administration of H2 gas, which cannot accumulate at the lesion site with high concentration, thus leading to limited targeting and utilization. Biomaterials are developed to specifically deliver H2 and control its release. In this review, the development process, stimuli-responsive release strategies, and potential therapeutic mechanisms of biomaterial-based H2 therapy are summarized. H2 therapy. Specifically, the produced H2 from biomaterials not only can scavenge free radicals, such as reactive oxygen species (ROS) and lipid peroxidation (LPO), but also can inhibit the danger factors of initiating diseases, including pro-inflammatory cytokines, adenosine triphosphate (ATP), and heat shock protein (HSP). In addition, the released H2 can further act as signal molecules to regulate key pathways for disease treatment. The current opportunities and challenges of H2-based therapy are discussed, and the future research directions of biomaterial-based H2 therapy for clinical applications are emphasized.
Collapse
Affiliation(s)
- Min Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Gege Wu
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Qing You
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Theranostics Center of Excellence (TCE)Yong Loo Lin School of MedicineNational University of Singapore11 Biopolis Way, HeliosSingapore138667Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
4
|
Palem RR, Devendrachari MC, Rabani I, Nulu V, Kumar NS, Asif M, Seo YS, Lee SH. Synthesis of hierarchical magnesium diboride-guar gum interfacial Ru nanocomposite electrode for enhanced supercapacitor performance. Int J Biol Macromol 2024; 278:134707. [PMID: 39147339 DOI: 10.1016/j.ijbiomac.2024.134707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Herein, we report for the first time a simple strategy to design a hierarchical chemically exfoliated magnesium diboride and guar gum network structure decorated with Ru nanoparticles (eMgB2-GG@Ru) as an electrode to evaluate its electrochemical performance for the application of supercapacitor. The eMgB2 and functionalized eMgB2-GG@Ru materials were thoroughly examined using XRD, TGA, DLS, FE-SEM, STEM, AFM, XPS, and BET techniques. The combined eMgB2-GG@Ru electrode exhibits a network structure morphology with an increased interlayer distance of eMgB2 nanolayers along with a uniform distribution of spherical Ru nanoparticles. The electrochemical performance of eMgB2-GG@Ru and its pristine materials was studied through CV, GCD, and EIS to determine their supercapacitor performance. The eMgB2-GG@Ru electrode demonstrates higher specific capacitance (352 F/g) than its eMgB2@Ru (258.9 F/g), and MgB2 (214.5 F/g) counterparts at a current density of 0.5 A/g in a three-electrode setup using 3 M KOH electrolyte. The hierarchical eMgB2-GG@Ru solid-state symmetric devices maintained higher capacity retention of 89 % even after 7000 cycles, achieving a maximum energy density of 26.12 kW/kg at the power density of 450 W/kg at 0.5 A/g. Therefore, the innovative eMgB2-GG@Ru electrode offers superior electrochemical performance with efficient electrolyte ion mobility for energy storage applications.
Collapse
Affiliation(s)
- Ramasubba Reddy Palem
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea
| | - Mruthyunjayachari Chattanahalli Devendrachari
- Interaction Lab, Future Convergence Engineering, Advanced Technology Research Centre, Korea University of Technology and Education, Cheonan-si 31253, Chungcheongnam-do, Republic of Korea
| | - Iqra Rabani
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Venugopal Nulu
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, 197 Inje-ro, Gimhae, Gyeongnam-do 50834, Republic of Korea
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammad Asif
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Young-Soo Seo
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
5
|
Fang Y, Xiu L, Xiao D, Zhang D, Wang M, Dong Y, Ye J. Sandwich-Structured Nanofiber Dressings Containing MgB 2 and Metformin Hydrochloride With ROS Scavenging and Antibacterial Properties for Wound Healing in Diabetic Infections. Adv Healthc Mater 2024:e2402452. [PMID: 39235573 DOI: 10.1002/adhm.202402452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Indexed: 09/06/2024]
Abstract
The treatment of chronic diabetic wounds is a major challenge due to oxidative stress, persistent hyperglycemia, and susceptibility to bacterial infection. In this study, multifunctional sandwich-structured nanofiber dressings (SNDs) are prepared via electrospinning. The SNDs consisted of an outer layer of hydrophobic polylactic acid (PLA) fibers encapsulating MgB2 nanosheets (MgB2 NSs), a middle layer of PLA and polyvinylpyrrolidone (PVP) fibers encapsulating the MgB2 NSs and metformin hydrochloride complex (MgB2-Met), and an inner layer of water-soluble PVP fibers encapsulating MgB2-Met. Because of their special sandwich structure, SNDs have high photothermal conversion efficiency (24.13%) and photothermal cycle performance. SNDs also exhibit a photothermal effect, bacteria-targeting effect of MgB2, electrostatic attraction ability of metformin hydrochloride (Met), and strong antibacterial activity against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA). SNDs can eliminate intracellular reactive oxygen species (ROS) by regulating the hydrogen release from MgB2. In addition, SNDs have good biocompatibility, can effectively inhibit the inflammatory factor Interleukin-6 (IL-6), and promote granulation tissue formation, collagen deposition, and diabetic wound healing. These findings offer a promising approach for clinical treatment of diabetic wounds.
Collapse
Affiliation(s)
- Yueguang Fang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Lanling Xiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Dingwen Xiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Danyang Zhang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Miao Wang
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
- Engineering Laboratory of Boric and Magnesic, Functional Material Preparative and Applied Technology, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
6
|
Tao J, Arshad N, Maqsood G, Asghar MS, Zhu F, Lin L, Irshad MS, Wang X. The Quest for Two-Dimensional MBenes: From Structural Evolution to Solar-Driven Hybrid Systems for Water-Fuel-Energy Generation and Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401603. [PMID: 38751070 DOI: 10.1002/smll.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/24/2024] [Indexed: 10/01/2024]
Abstract
The field of 2D materials has advanced significantly with the emergence of MBenes, a new material derived from the MAX phases family, a novel class of materials that originates from the MAX phases family. Herein, this article explores the unique characteristics and morphological variations of MBenes, offering a comprehensive overview of their structural evolution. First, the discussion explores the evolutionary period of 2D MBenes associated with the several techniques for synthesizing, modifying, and characterizing MBenes to tailor their structure and enhance their functionality. The focus then shifts to the defect chemistry of MBenes, electronic, catalytic, and photothermal properties which play a crucial role in designing multifunctional solar-driven hybrid systems. Second, the recent advancements and potentials of 2D MBenes in solar-driven hybrid systems e.g. photo-electro catalysis, hybrid solar evaporators for freshwater and thermoelectric generators, and phototherapy, emphasizing their crucial significance in tackling energy and environmental issues, are explored. The study further explores the fundamental principles that regulate the improved photocatalytic and photothermal characteristics of MBenes, highlighting their promise for effective utilization of solar energy and remediation of the environment. The study also thoroughly assesses MBenes' scalability, stability, and cost effectiveness in solar-driven systems. Current insights and future directions allow researchers to utilize MBenes for sustainable and varied applications. This review regarding MBenes will be valuable to early researchers intrigued with synthesizing and utilizing 2D materials for solar-powered water-energy-fuel and phototherapy systems.
Collapse
Affiliation(s)
- Junyang Tao
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Naila Arshad
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ghazala Maqsood
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Muhammad Sohail Asghar
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Fengshuai Zhu
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Liangyou Lin
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| | - Muhammad Sultan Irshad
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
- Collaborative Innovation Centre for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
7
|
Li J, Gao M, Wang Y, Wang W, Meng S, Zhang X, Zhang C, Liu P, Zhang X, Zheng Z, Zhang R. NIR-II Absorption/Emission Dual Function Based 2D Targeted Nanotheranostics for Tunable Hydrogenothermal Therapy. Adv Healthc Mater 2024; 13:e2401060. [PMID: 38815213 DOI: 10.1002/adhm.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Photothermal therapy (PTT) is a promising approach for treating tumors that offers multiple advantages. Nevertheless, its practical use in clinical settings faces several limitations, such as suboptimal delivery efficiency, uneven heat distribution, and challenges in predicting optimal treatment duration. In addition, the localized hyperthermia generated by the PTT method to induce cell apoptosis can result in the production of excessive reactive oxygen species (ROS) and the release of inflammatory cytokines, which can pose a threat to the healthy tissues surrounding the tumor. To address the above challenges, this work designs an integrated H2 delivery nanoplatform for multimodal imaging H2 thermal therapy. The combination of the second near-infrared window (NIR-II) fluorescence imaging (FL) agent (CQ4T) and the photothermal and photoacoustic (PA) properties of Ti3C2 (TC) enables real-time monitoring of the tumor area and guides photothermal treatment. Simultaneously, due to the acid-responsive H2 release characteristics of the nanoplatform, H2 can be utilized for synergistic photothermal therapy to eradicate tumor cells effectively. Significantly, acting as an antioxidant and anti-inflammatory agent, Ti3C2-BSA-CQ4T-H2 (TCBCH) protects peritumoral normal cells from damage. The proposed technique utilizing H2 gas for combination therapies and multimodal imaging integration exhibits prospects for effective and secure treatment of tumors in future clinical applications.
Collapse
Affiliation(s)
- Jinxuan Li
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Mengting Gao
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yuhang Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenxuan Wang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shichao Meng
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xin Zhang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chongqing Zhang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, China
| | - Pengmin Liu
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ziliang Zheng
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ruiping Zhang
- Laboratory of Molecular Imaging, Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital), Taiyuan, 030032, China
| |
Collapse
|
8
|
Jiang Z, Ainiwaer M, Liu J, Ying B, Luo F, Sun X. Hydrogen therapy: recent advances and emerging materials. Biomater Sci 2024; 12:4136-4154. [PMID: 39021349 DOI: 10.1039/d4bm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydrogen therapy, leveraging its selective attenuation of hydroxyl radicals (˙OH) and ONOO-, has emerged as a pivotal pathophysiological modulator with antioxidant, anti-inflammatory, and antiapoptotic attributes. Hydrogen therapy has been extensively studied both preclinically and clinically, especially in diseases with an inflammatory nature. Despite the substantial progress, challenges persist in achieving high hydrogen concentrations in target lesions, especially in cancer treatment. A notable breakthrough lies in water/acid reactive materials, offering enhanced hydrogen generation and sustained release potential. However, limitations include hydrogen termination upon material depletion and reduced bioavailability at targeted lesions. To overcome these challenges, catalytic materials like photocatalytic and sonocatalytic materials have surfaced as promising solutions. With enhanced permeability and retention effects, these materials exhibit targeted delivery and sustained stimuli-reactive hydrogen release. The future of hydrogen therapy hinges on continuous exploration and modification of catalytic materials. Researchers are urged to prioritize improved catalytic efficiency, enhanced lesion targeting effects, and heightened biosafety and biocompatibility in future development.
Collapse
Affiliation(s)
- Zheng Jiang
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Mailudan Ainiwaer
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jun Liu
- Department of Otolaryngology, Head and Neck surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| |
Collapse
|
9
|
Shan J, Wu X, Che J, Gan J, Zhao Y. Reactive Microneedle Patches with Antibacterial and Dead Bacteria-Trapping Abilities for Skin Infection Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309622. [PMID: 38582511 PMCID: PMC11186059 DOI: 10.1002/advs.202309622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Bacterial skin infections are highly prevalent and pose a significant public health threat. Current strategies are primarily focused on the inhibition of bacterial activation while disregarding the excessive inflammation induced by dead bacteria remaining in the body and the effect of the acidic microenvironment during therapy. In this study, a novel dual-functional MgB2 microparticles integrated microneedle (MgB2 MN) patch is presented to kill bacteria and eliminate dead bacteria for skin infection management. The MgB2 microparticles not only can produce a local alkaline microenvironment to promote the proliferation and migration of fibroblasts and keratinocytes, but also achieve >5 log bacterial inactivation. Besides, the MgB2 microparticles effectively mitigate dead bacteria-induced inflammation through interaction with lipopolysaccharide (LPS). With the incorporation of these MgB2 microparticles, the resultant MgB2 MN patches effectively kill bacteria and capture dead bacteria, thereby mitigating these bacteria-induced inflammation. Therefore, the MgB2 MN patches show good therapeutic efficacy in managing animal bacterial skin infections, including abscesses and wounds. These results indicate that reactive metal borides-integrated microneedle patches hold great promise for the treatment of clinical skin infections.
Collapse
Affiliation(s)
- Jingyang Shan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Xiangyi Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Junyi Che
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
10
|
Dash P, Panda PK, Su C, Lin YC, Sakthivel R, Chen SL, Chung RJ. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment. J Mater Chem B 2024; 12:3881-3907. [PMID: 38572601 DOI: 10.1039/d3tb01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Water splitting is promising, especially for energy and environmental applications; however, there are limited studies on the link between water splitting and cancer treatment. Upconversion nanoparticles (UCNPs) can be used to convert near-infrared (NIR) light to ultraviolet (UV) or visible (Vis) light and have great potential for biomedical applications because of their profound penetration ability, theranostic approaches, low self-fluorescence background, reduced damage to biological tissue, and low toxicity. UCNPs with photocatalytic materials can enhance the photocatalytic activities that generate a shorter wavelength to increase the tissue penetration depth in the biological microenvironment under NIR light irradiation. Moreover, UCNPs with a photosensitizer can absorb NIR light and convert it into UV/vis light and emit upconverted photons, which excite the photoinitiator to create H2, O2, and/or OH˙ via water splitting processes when exposed to NIR irradiation. Therefore, combining UCNPs with intensified photocatalytic and photoinitiator materials may be a promising therapeutic approach for cancer treatment. This review provides a novel strategy for explaining the principles and mechanisms of UCNPs and NIR-driven UCNPs with photocatalytic materials through water splitting to achieve therapeutic outcomes for clinical applications. Moreover, the challenges and future perspectives of UCNP-based photocatalytic materials for water splitting for cancer treatment are discussed in this review.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Sung-Lung Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
11
|
Waheed I, Ali A, Tabassum H, Khatoon N, Lai WF, Zhou X. Lipid-based nanoparticles as drug delivery carriers for cancer therapy. Front Oncol 2024; 14:1296091. [PMID: 38660132 PMCID: PMC11040677 DOI: 10.3389/fonc.2024.1296091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer is a severe disease that results in death in all countries of the world. A nano-based drug delivery approach is the best alternative, directly targeting cancer tumor cells with improved drug cellular uptake. Different types of nanoparticle-based drug carriers are advanced for the treatment of cancer, and to increase the therapeutic effectiveness and safety of cancer therapy, many substances have been looked into as drug carriers. Lipid-based nanoparticles (LBNPs) have significantly attracted interest recently. These natural biomolecules that alternate to other polymers are frequently recycled in medicine due to their amphipathic properties. Lipid nanoparticles typically provide a variety of benefits, including biocompatibility and biodegradability. This review covers different classes of LBNPs, including their characterization and different synthesis technologies. This review discusses the most significant advancements in lipid nanoparticle technology and their use in medicine administration. Moreover, the review also emphasized the applications of lipid nanoparticles that are used in different cancer treatment types.
Collapse
Affiliation(s)
- Ibtesam Waheed
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Anwar Ali
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Biochemical and Biotechnological Sciences, School of Precision Medicine, University of Campania, Naples, Italy
| | - Huma Tabassum
- Institute of Social and Cultural Studies, Department of Public Health, University of the Punjab, Lahore, Pakistan
| | - Narjis Khatoon
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Xin Zhou
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
13
|
Wang Y, Jin S, Liu Z, Chen G, Cheng P, Li L, Xu S, Shen W. H2 supplied via ammonia borane stimulates lateral root branching via phytomelatonin signaling. PLANT PHYSIOLOGY 2024; 194:884-901. [PMID: 37944026 DOI: 10.1093/plphys/kiad595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A reliable and stable hydrogen gas (H2) supply will benefit agricultural laboratory and field trials. Here, we assessed ammonia borane (AB), an efficient hydrogen storage material used in the energy industry, and determined its effect on plant physiology and the corresponding mechanism. Through hydroponics and pot experiments, we discovered that AB increases tomato (Solanum lycopersicum) lateral root (LR) branching and this function depended on the increased endogenous H2 level caused by the sustainable H2 supply. In particular, AB might trigger LR primordia initiation. Transgenic tomato and Arabidopsis (Arabidopsis thaliana) expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only accumulated higher endogenous H2 and phytomelatonin levels but also displayed pronounced LR branching. These endogenous H2 responses achieved by AB or genetic manipulation were sensitive to the pharmacological removal of phytomelatonin, indicating the downstream role of phytomelatonin in endogenous H2 control of LR formation. Consistently, extra H2 supply failed to influence the LR defective phenotypes in phytomelatonin synthetic mutants. Molecular evidence showed that the phytomelatonin-regulated auxin signaling network and cell-cycle regulation were associated with the AB/H2 control of LR branching. Also, AB and melatonin had little effect on LR branching in the presence of auxin synthetic inhibitors. Collectively, our integrated approaches show that supplying H2 via AB increases LR branching via phytomelatonin signaling. This finding might open the way for applying hydrogen storage materials to horticultural production.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shanshan Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Genmei Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
14
|
Zhang T, Cheng X, Xiu J, Liu M, Liu S, Zhang B, Miao Q, Cun D, Yang C, Li K, Zhang J, Zhao X. pH-Responsive Injectable Multifunctional Pluronic F127/Gelatin-Based Hydrogels with Hydrogen Production for Treating Diabetic Wounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55392-55408. [PMID: 37989251 DOI: 10.1021/acsami.3c12672] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Diabetic chronic wounds remain a major clinical challenge with long-term inflammatory responses and extreme oxidative damage. Hence, a pH-responsive injectable multifunctional hydrogel [Gel/CUR-FCHO/Mg (GCM) micromotors] via a Schiff base reaction between gelatin and benzaldehyde-grafted Pluronic F127 drug-loaded micelles (FCHO) was fabricated for the first time. Dynamic Schiff base linkage endowed the GCM hydrogel with the ability to be self-healing, injectable, and pH-responsive for on-demand drug delivery at the wound site. Curcumin (CUR), a hydrophobic drug with antioxidative, anti-inflammatory, and antibacterial activities, was encapsulated into the hydrogel matrix by micellization (CUR-FCHO micelles). Simultaneously, magnesium-based micromotors (Mg micromotors) were physically entrapped into the system for providing active hydrogen (H2) to scavenge reactive oxygen species and alleviate inflammatory responses. As a result, the GCM micromotor hydrogel displayed an inherent antibacterial property, extraordinary antioxidative performance, and remarkable biocompatibility. In the diabetic mouse with a full-thickness cutaneous defect wound, the GCM hydrogel could remodel the inflammatory microenvironment and stimulate vascularization and collagen deposition, thereby facilitating wound closure and enhancing tissue regeneration, which offered a promising therapeutic option for diabetic chronic wound management.
Collapse
Affiliation(s)
- Tian Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Cheng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingya Xiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siyi Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bowen Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qi Miao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyun Cun
- Department of Hepatobiliary Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515000, China
| | - Kexin Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiulong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiuli Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
15
|
Dutta S, Noh S, Gual RS, Chen X, Pané S, Nelson BJ, Choi H. Recent Developments in Metallic Degradable Micromotors for Biomedical and Environmental Remediation Applications. NANO-MICRO LETTERS 2023; 16:41. [PMID: 38032424 PMCID: PMC10689718 DOI: 10.1007/s40820-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation. Metal-based degradable micromotor composed of magnesium (Mg), zinc (Zn), and iron (Fe) have promise due to their nontoxic fuel-free propulsion, favorable biocompatibility, and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media, efficient cargo delivery and favorable biocompatibility. A noteworthy number of degradable metal-based micromotors employ bubble propulsion, utilizing water as fuel to generate hydrogen bubbles. This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications. In addition, understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance. Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor. Here we review the design and recent advancements of metallic degradable micromotors. Furthermore, we describe the controlled degradation, efficient in vivo drug delivery, and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications. Moreover, we discuss micromotors' efficacy in detecting and destroying environmental pollutants. Finally, we address the limitations and future research directions of degradable metallic micromotors.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Seungmin Noh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| | - Roger Sanchis Gual
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Xiangzhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, People's Republic of China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, 8092, Zurich, Switzerland
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- DGIST-ETH Microrobotics Research Center, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
16
|
Johnsen HM, Hiorth M, Klaveness J. Molecular Hydrogen Therapy-A Review on Clinical Studies and Outcomes. Molecules 2023; 28:7785. [PMID: 38067515 PMCID: PMC10707987 DOI: 10.3390/molecules28237785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
With its antioxidant properties, hydrogen gas (H2) has been evaluated in vitro, in animal studies and in human studies for a broad range of therapeutic indications. A simple search of "hydrogen gas" in various medical databases resulted in more than 2000 publications related to hydrogen gas as a potential new drug substance. A parallel search in clinical trial registers also generated many hits, reflecting the diversity in ongoing clinical trials involving hydrogen therapy. This review aims to assess and discuss the current findings about hydrogen therapy in the 81 identified clinical trials and 64 scientific publications on human studies. Positive indications have been found in major disease areas including cardiovascular diseases, cancer, respiratory diseases, central nervous system disorders, infections and many more. The available administration methods, which can pose challenges due to hydrogens' explosive hazards and low solubility, as well as possible future innovative technologies to mitigate these challenges, have been reviewed. Finally, an elaboration to discuss the findings is included with the aim of addressing the following questions: will hydrogen gas be a new drug substance in future clinical practice? If so, what might be the administration form and the clinical indications?
Collapse
Affiliation(s)
- Hennie Marie Johnsen
- Department of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
- Nacamed AS, Oslo Science Park, Guastadalléen 21, 0349 Oslo, Norway
| | - Marianne Hiorth
- Department of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
| | - Jo Klaveness
- Department of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371 Oslo, Norway
| |
Collapse
|
17
|
Nie C, A R, Wang J, Pan S, Zou R, Wang B, Xi S, Hong X, Zhou M, Wang H, Yu M, Wu L, Sun X, Yang W. Controlled Release of Hydrogen-Carrying Perfluorocarbons for Ischemia Myocardium-Targeting 19 F MRI-Guided Reperfusion Injury Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304178. [PMID: 37596718 PMCID: PMC10582447 DOI: 10.1002/advs.202304178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Indexed: 08/20/2023]
Abstract
Hydrogen gas is recently proven to have anti-oxidative and anti-inflammation effects on ischemia-reperfusion injury. However, the efficacy of hydrogen therapy is limited by the efficiency of hydrogen storage, targeted delivery, and controlled release. In this study, H2 -PFOB nanoemulsions (NEs) is developed with high hydrogen loading capacity for targeted ischemic myocardium precision therapy. The hydrogen-carrying capacity of H2 -PFOB NEs is determined by gas chromatography and microelectrode methods. Positive uptake of H2 -PFOB NEs in ischemia-reperfusion myocardium and the influence of hydrogen on 19 F-MR signal are quantitatively visualized using a 9.4T MR imaging system. The biological therapeutic effects of H2 -PFOB NEs are examined on a myocardial ischemia-reperfusion injury mouse model. The results illustrated that the developed H2 -PFOB NEs can efficaciously achieve specific infiltration into ischemic myocardium and exhibit excellent antioxidant and anti-inflammatory properties on myocardial ischemia-reperfusion injury, which can be dynamically visualized by 19 F-MR imaging system. Moreover, hydrogen burst release induced by low-intensity focused ultrasound (LIFU) irradiation further promotes the therapeutic effect of H2 -PFOB NEs with a favorable biosafety profile. In this study, the potential therapeutic effects of H2 -PFOB NEs is fully unfolded, which may hold great potential for future hydrogen-based precision therapeutic applications tailored to ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Chaoqun Nie
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| | - Rong A
- Department of Nuclear MedicineThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
- NHC Key Laboratory of Molecular Probe and Targeted TheranosticsMolecular Imaging Research Center (MIRC) of Harbin Medical University150000HarbinP. R. China
| | - Jing Wang
- Department of Nuclear MedicineThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
- NHC Key Laboratory of Molecular Probe and Targeted TheranosticsMolecular Imaging Research Center (MIRC) of Harbin Medical University150000HarbinP. R. China
| | - Shuang Pan
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| | - Rentong Zou
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| | - Bin Wang
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| | - Shuiqing Xi
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| | - Xiaojian Hong
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| | - Meifang Zhou
- Department of Nuclear MedicineThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
- NHC Key Laboratory of Molecular Probe and Targeted TheranosticsMolecular Imaging Research Center (MIRC) of Harbin Medical University150000HarbinP. R. China
| | - Haoyu Wang
- Department of Nuclear MedicineThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
- NHC Key Laboratory of Molecular Probe and Targeted TheranosticsMolecular Imaging Research Center (MIRC) of Harbin Medical University150000HarbinP. R. China
| | - Mengshu Yu
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| | - Lina Wu
- Department of Nuclear MedicineThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
- NHC Key Laboratory of Molecular Probe and Targeted TheranosticsMolecular Imaging Research Center (MIRC) of Harbin Medical University150000HarbinP. R. China
| | - Xilin Sun
- Department of Nuclear MedicineThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
- NHC Key Laboratory of Molecular Probe and Targeted TheranosticsMolecular Imaging Research Center (MIRC) of Harbin Medical University150000HarbinP. R. China
| | - Wei Yang
- Department of CardiologyThe Fourth Hospital of Harbin Medical University150000HarbinP. R. China
| |
Collapse
|
18
|
Jiang Y, Ka D, Huynh AH, Baek J, Ning R, Yu SJ, Zheng X. Exfoliated Magnesium Diboride (MgB 2) Nanosheets as Solid Fuels. NANO LETTERS 2023; 23:7968-7974. [PMID: 37656036 DOI: 10.1021/acs.nanolett.3c01910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Magnesium diboride (MgB2) has been explored as an alternative fuel to boron (B) due to its high energy density and the additive effect of magnesium (Mg) to promote B combustion. However, the primary oxidation of MgB2 does not occur unless it decomposes at a high temperature (830 °C), which makes ignition difficult and the reaction slow. Recently, two-dimensional (2D) exfoliated MgB2 nanosheets have attracted increasing attention due to their unique properties and potential applications in various fields. In this study, we investigate the potential of 2D exfoliated MgB2 nanosheets as solid fuels for overcoming the challenges of MgB2 combustion. We analyzed their oxidation behavior and energetic performance through material characterization and combustion tests under slow- and fast-heating conditions and compared their performance with those of bulk MgB2, B nanoparticles, and a B/Mg nanoparticle mixture. This study highlights the potential of MgB2 nanosheets as promising solid fuels with superior energetic properties.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Dongwon Ka
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Andy Huu Huynh
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jihyun Baek
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rui Ning
- Department of Materials Science Engineering, Stanford University, Stanford, California 94305, United States
| | - Shang-Jie Yu
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Tian Y, Qi Y, Fang Y, Xu Z, Sun L, Dong Y, Ning G, Ye J. Near-Infrared Light-Responsive Multifunctional Photothermal/Photodynamic Titanium Diboride Nanocomposites for the Treatment of Antibiotic-Resistant Bacterial Infections. ACS APPLIED BIO MATERIALS 2023. [PMID: 37319103 DOI: 10.1021/acsabm.3c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Diseases caused by bacterial infection have resulted in serious harm to human health. It is crucial to develop a multifunctional antibiotic-independent antibacterial platform for combating drug-resistant bacteria. Herein, titanium diboride (TiB2) nanosheets integrated with quaternized chitosan (QCS) and indocyanine green (ICG) were successfully prepared as a synergetic photothermal/photodynamic antibacterial nanoplatform (TiB2-QCS-ICG). The TiB2-QCS-ICG nanocomposites exhibit effective photothermal conversion efficiency (24.92%) and excellent singlet oxygen (1O2) production capacity simultaneously under 808 nm near-infrared irradiation. QCS improved TiB2 stability and dispersion, while also enhancing adhesion to bacteria and further accelerating the destruction of bacteria by heat and 1O2. In vitro experiments indicated that TiB2-QCS-ICG had excellent antibacterial properties with an inhibition rate of 99.99% against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), respectively. More importantly, in vivo studies revealed that the nanoplatform can effectively inhibit bacterial infection and accelerate wound healing. The effective wound healing rate in the TiB2-QCS-ICG treatment group was 99.6% which was much higher than control groups. Taken together, the as-developed TiB2-QCS-ICG nanocomposite provides more possibilities to develop metal borides for antibacterial infection applications.
Collapse
Affiliation(s)
- Yiming Tian
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, P. R. China
| | - Ye Qi
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, P. R. China
| | - Yueguang Fang
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, P. R. China
| | - Zhitong Xu
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, P. R. China
| | - Lin Sun
- Department of Gastrointestinal Surgery, Dalian Municipal Central Hospital, 826 Southwest Road, Dalian 116033, P. R. China
| | - Yuesheng Dong
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116012, P. R. China
- Engineering Laboratory of Boric and Magnesic Functional Material Preparative and Applied Technology, 2 Linggong Road, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
20
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
21
|
Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev 2023; 52:2031-2081. [PMID: 36633202 DOI: 10.1039/d2cs00352j] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bioactive materials are a special class of biomaterials that can react in vivo to induce a biological response or regulate biological functions, thus achieving a better curative effect than traditional inert biomaterials. For cancer theranostics, compared with organic or polymer nanomaterials, inorganic nanomaterials possess unique physical and chemical properties, have stronger mechanical stability on the basis of maintaining certain bioactivity, and are easy to be compounded with various carriers (polymer carriers, biological carriers, etc.), so as to achieve specific antitumor efficacy. After entering the nanoscale, due to the nano-size effect, high specific surface area and special nanostructures, inorganic nanomaterials exhibit unique biological effects, which significantly influence the interaction with biological organisms. Therefore, the research and applications of bioactive inorganic nanomaterials in cancer theranostics have attracted wide attention. In this review, we mainly summarize the recent progress of bioactive inorganic nanomaterials in cancer theranostics, and also introduce the definition, synthesis and modification strategies of bioactive inorganic nanomaterials. Thereafter, the applications of bioactive inorganic nanomaterials in tumor imaging and antitumor therapy, including tumor microenvironment (TME) regulation, catalytic therapy, gas therapy, regulatory cell death and immunotherapy, are discussed. Finally, the biosafety and challenges of bioactive inorganic nanomaterials are also mentioned, and their future development opportunities are prospected. This review highlights the bioapplication of bioactive inorganic nanomaterials.
Collapse
Affiliation(s)
- Zifan Pei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| |
Collapse
|
22
|
Xiao J, Sun Q, Ran L, Wang Y, Qin X, Xu X, Tang C, Liu L, Zhang G. pH-Responsive Selenium Nanoplatform for Highly Efficient Cancer Starvation Therapy by Atorvastatin Delivery. ACS Biomater Sci Eng 2023; 9:809-820. [PMID: 36622161 DOI: 10.1021/acsbiomaterials.2c01500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, starvation-inducing nutrient deprivation has been regarded as a promising strategy for tumor suppression. As a first-line lipid-lowering drug, atorvastatin (ATV) significantly reduces caloric intake, suggesting its potential in starvation therapy for suppressing tumors. Accordingly, we developed a novel starvation therapy agent (HA-Se-ATV) in this study to suppress tumor growth by using hyaluronic acid (HA)-conjugated chitosan polymer-coated nano-selenium (Se) for loading ATV. HA-Se-ATV targets cancer cells, following which it effectively accumulates in the tumor tissue. The HA-Se-ATV nanoplatform was then activated by inducing a weakly acidic tumor microenvironment and subsequently releasing ATV. ATV and Se synergistically downregulate the levels of cellular adenosine triphosphate while inhibiting the expression of thioredoxin reductase 1. Consequently, the starvation-stress reaction of cancer cells is significantly elevated, leading to cancer cell death. Furthermore, the in vivo results indicate that HA-Se-ATV effectively suppresses tumor growth with a low level of toxicity, demonstrating its great potential for clinical translation.
Collapse
Affiliation(s)
- Jianmin Xiao
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai264003, P. R. China
| | - Qiong Sun
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing100101, China
| | - Lang Ran
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai264003, P. R. China
| | - Yinfeng Wang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai264003, P. R. China
| | - Xia Qin
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai264003, P. R. China
| | - Xiaotong Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai264003, P. R. China
| | - Chuhua Tang
- Department of Stomatology, PLA Strategic Support Force Medical Center, Beijing100101, China
| | - Lu Liu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai264003, P. R. China
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai264003, P. R. China
| |
Collapse
|
23
|
Xu T, Wang Y, Xiong Z, Wang Y, Zhou Y, Li X. A Rising 2D Star: Novel MBenes with Excellent Performance in Energy Conversion and Storage. NANO-MICRO LETTERS 2022; 15:6. [PMID: 36472760 PMCID: PMC9727130 DOI: 10.1007/s40820-022-00976-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
As a flourishing member of the two-dimensional (2D) nanomaterial family, MXenes have shown great potential in various research areas. In recent years, the continued growth of interest in MXene derivatives, 2D transition metal borides (MBenes), has contributed to the emergence of this 2D material as a latecomer. Due to the excellent electrical conductivity, mechanical properties and electrical properties, thus MBenes attract more researchers' interest. Extensive experimental and theoretical studies have shown that they have exciting energy conversion and electrochemical storage potential. However, a comprehensive and systematic review of MBenes applications has not been available so far. For this reason, we present a comprehensive summary of recent advances in MBenes research. We started by summarizing the latest fabrication routes and excellent properties of MBenes. The focus will then turn to their exciting potential for energy storage and conversion. Finally, a brief summary of the challenges and opportunities for MBenes in future practical applications is presented.
Collapse
Affiliation(s)
- Tianjie Xu
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yitong Wang
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Yujin Zhou
- Hubei Province Key Laboratory of Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy and School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, People's Republic of China.
- Center for International Cooperation On Designer Low-Carbon and Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
24
|
Yan H, Fan M, Liu H, Xiao T, Han D, Che R, Zhang W, Zhou X, Wang J, Zhang C, Yang X, Zhang J, Li Z. Microbial hydrogen "manufactory" for enhanced gas therapy and self-activated immunotherapy via reduced immune escape. J Nanobiotechnology 2022; 20:280. [PMID: 35705974 PMCID: PMC9199139 DOI: 10.1186/s12951-022-01440-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As an antioxidant, hydrogen (H2) can selectively react with the highly toxic hydroxyl radical (·OH) in tumor cells to break the balance of reactive oxygen species (ROS) and cause oxidative stress. However, due to the high diffusibility and storage difficulty of hydrogen, it is impossible to achieve long-term release at the tumor site, which highly limited their therapeutic effect. RESULTS Photosynthetic bacteria (PSB) release a large amount of hydrogen to break the balance of oxidative stress. In addition, as a nontoxic bacterium, PSB could stimulate the immune response and increase the infiltration of CD4+ and CD8+ T cells. More interestingly, we found that hydrogen therapy induced by our live PSB did not lead to the up-regulation of PD-L1 after stimulating the immune response, which could avoid the tumor immune escape. CONCLUSION Hydrogen-immunotherapy significantly kills tumor cells. We believe that our live microbial hydrogen production system provides a new strategy for cancer hydrogen treatment combining with enhanced immunotherapy without up-regulating PD-L1.
Collapse
Affiliation(s)
- Hongyu Yan
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Miao Fan
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Dandan Han
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Ruijun Che
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Wei Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xiaohan Zhou
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - June Wang
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China
| | - Chi Zhang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth Peoples' Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Xinjian Yang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, People's Republic of China.
| | - Zhenhua Li
- Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, 523059, China.
| |
Collapse
|
25
|
Nair VG, Birowska M, Bury D, Jakubczak M, Rosenkranz A, Jastrzębska AM. 2D MBenes: A Novel Member in the Flatland. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108840. [PMID: 35506196 DOI: 10.1002/adma.202108840] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/11/2022] [Indexed: 06/14/2023]
Abstract
2D MBenes, early transition metal borides, are a very recent derivative of ternary or quaternary transition metal boride (MAB) phases and represent a new member in the flatland. Although holding great potential toward various applications, mainly theoretical knowledge about their potential properties is available. Theoretical calculations and preliminary experimental attempts demonstrate their rich chemistry, excellent reactivity, mechanical strength/stability, electrical conductivity, transition properties, and energy harvesting possibility. Compared to MXenes, MBenes' structure appears to be more complex due to multiple crystallographic arrangements, polymorphism, and structural transformations. This makes their synthesis and subsequent delamination into single flakes challenging. Overcoming this bottleneck will enable a rational control over MBenes' material-structure-property relationship. Innovations in MBenes' postprocessing approaches will allow for the design of new functional systems and devices with multipurpose functionalities thus opening a promising paradigm for the conscious design of high-performance 2D materials.
Collapse
Affiliation(s)
- Varun G Nair
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Magdalena Birowska
- Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw, 02-093, Poland
| | - Dominika Bury
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| | - Michał Jakubczak
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Avenida Beauchef 851, Santiago, 8370459, Chile
| | - Agnieszka M Jastrzębska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, Warsaw, 02-507, Poland
| |
Collapse
|
26
|
Wang P, Jin JM, Liang XH, Yu MZ, Yang C, Huang F, Wu H, Zhang BB, Fei XY, Wang ZT, Xu R, Shi HL, Wu XJ. Helichrysetin inhibits gastric cancer growth by targeting c-Myc/PDHK1 axis-mediated energy metabolism reprogramming. Acta Pharmacol Sin 2022; 43:1581-1593. [PMID: 34462561 PMCID: PMC9160019 DOI: 10.1038/s41401-021-00750-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
Helichrysetin (HEL), a chalcone isolated from Alpinia katsumadai Hayata, has an antitumor activity in human lung and cervical cancers. However, the inhibitory effect and underlying mechanism of HEL in gastric cancer have not been elucidated. Here, HEL significantly inhibited the growth of gastric cancer MGC803 cells in vitro and in vivo. HEL decreased expression and transcriptional regulatory activity of c-Myc and mRNA expression of c-Myc target genes. HEL enhanced mitochondrial oxidative phosphorylation (OXPHOS) and reduced glycolysis as evidenced by increased mitochondrial adenosine triphosphate (ATP) production and excessive reactive oxygen species (ROS) accumulation, and decreased the pPDHA1/PDHA1 ratio and Glyco-ATP production. Pyruvate enhanced OXPHOS after HEL treatment. c-Myc overexpression abolished HEL-induced inhibition of cell viability, glycolysis, and protein expression of PDHK1 and LDHA. PDHK1 overexpression also counteracted inhibitory effect of HEL on cell viability. Conversely, c-Myc siRNA decreased cell viability, glycolysis, and PDHK1 expression. NAC rescued the decrease in viability of HEL-treated cells. Additionally, HEL inhibited the overactivated mTOR/p70S6K pathway in vitro and in vivo. HEL-induced cell viability inhibition was counteracted by an mTOR agonist. mTOR inhibitor also decreased cell viability. Similar results were obtained in SGC7901 cells. HEL repressed lactate production and efflux in MGC803 cells. These results revealed that HEL inhibits gastric cancer growth by targeting mTOR/p70S6K/c-Myc/PDHK1-mediated energy metabolism reprogramming in cancer cells. Therefore, HEL may be a potential agent for gastric cancer treatment by modulating cancer energy metabolism reprogramming.
Collapse
Affiliation(s)
- Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Hui Liang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming-Zhu Yu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Yan Fei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zheng-Tao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
27
|
Two-Dimensional Nanomaterial-based catalytic Medicine: Theories, advanced catalyst and system design. Adv Drug Deliv Rev 2022; 184:114241. [PMID: 35367308 DOI: 10.1016/j.addr.2022.114241] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/17/2022] [Accepted: 03/26/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional nanomaterial-based catalytic medicines that associate the superiorities of novel catalytic mechanisms with nanotechnology have emerged as absorbing therapeutic strategies for cancer therapy. Catalytic medicines featuring high efficiency and selectivity have been widely used as effective anticancer strategies without applying traditional nonselective and highly toxic chemodrugs. Moreover, two-dimensional nanomaterials are characterized by distinctive physicochemical properties, such as a sizeable bandgap, good conductivity, fast electron transfer and photoelectrochemical activity. The introduction of two-dimensional nanomaterials into catalytic medicine provides a more effective, controllable, and precise antitumor strategy. In this review, different types of two-dimensional nanomaterial-based catalytic nanomedicines are generalized, and their catalytic theories, advanced catalytic pathways and catalytic nanosystem design are also discussed in detail. Notably, future challenges and obstacles in the design and further clinical transformation of two-dimensional nanomaterial-based catalytic nanomedicine are prospected.
Collapse
|
28
|
Abstract
The present review aims at highlighting recent advances in the development of photocatalysts devoted to cancer therapy applications. We pay especial attention to the engineering aspects of different nanomaterials including inorganic semiconductors, organic-based nanostructures, noble metal-based systems or synergistic hybrid heterostructures. Furthermore, we also explore and correlate structural and optical properties with their photocatalytic capability to successfully performing in cancer-related therapies. We have made an especial emphasis to introduce current alternatives to organic photosensitizers (PSs) in photodynamic therapy (PDT), where the effective generation of reactive oxidative species (ROS) is pivotal to boost the efficacy of the treatment. We also overview current efforts in other photocatalytic strategies to tackle cancer based on photothermal treatment, starvation therapy, oxidative stress unbalance via glutathione (GSH) depletion, biorthogonal catalysis or local relief of hypoxic conditions in tumor microenvironments (TME).
Collapse
|
29
|
Affiliation(s)
- Xianxian Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Binru Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Jian Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan University Shanghai China
| |
Collapse
|
30
|
Liu Q, Wu B, Li M, Huang Y, Li L. Heterostructures Made of Upconversion Nanoparticles and Metal-Organic Frameworks for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103911. [PMID: 34791801 PMCID: PMC8787403 DOI: 10.1002/advs.202103911] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/08/2021] [Indexed: 05/02/2023]
Abstract
Heterostructure nanoparticles (NPs), constructed by two single-component NPs with distinct nature and multifunctional properties, have attracted intensive interest in the past few years. Among them, heterostructures made of upconversion NPs (UCNPs) and metal-organic frameworks (MOFs) can not only integrate the advantageous characteristics (e.g., porosity, structural regularity) of MOFs with unique upconverted optical features of UCNPs, but also induce cooperative properties not observed either for single component due to their special optical or electronic communications. Recently, diverse UCNP-MOF heterostructures are designed and synthesized via different strategies and have demonstrated appealing potential for applications in biosensing and imaging, drug delivery, and photodynamic therapy (PDT). In this review, the synthesis strategies of UCNP-MOF heterostructures are first summarized, then the authors focus mainly on discussion of their biomedical applications, particularly as PDT agents for cancer treatment. Finally, the authors briefly outlook the current challenges and future perspectives of UCNP-MOF hybrid nanocomposites. The authors believe that this review will provide comprehensive understanding and inspirations toward recent advances of UCNP-MOF heterostructures.
Collapse
Affiliation(s)
- Qing Liu
- School of Life ScienceInstitute of Engineering MedicineKey Laboratory of Molecular Medicine and BiotherapyBeijing Institute of TechnologyBeijing100081China
| | - Bo Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| | - Mengyuan Li
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Yuanyu Huang
- School of Life ScienceInstitute of Engineering MedicineKey Laboratory of Molecular Medicine and BiotherapyBeijing Institute of TechnologyBeijing100081China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and TechnologyBeijing100190China
| |
Collapse
|
31
|
Zan R, Wang H, Cai W, Ni J, Luthringer-Feyerabend BJC, Wang W, Peng H, Ji W, Yan J, Xia J, Song Y, Zhang X. Controlled release of hydrogen by implantation of magnesium induces P53-mediated tumor cells apoptosis. Bioact Mater 2021; 9:385-396. [PMID: 34820578 PMCID: PMC8586587 DOI: 10.1016/j.bioactmat.2021.07.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/03/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Hydrogen has been used to suppress tumor growth with considerable efficacy. Inhalation of hydrogen gas and oral ingestion of hydrogen-rich saline are two common systemic routes of hydrogen administration. We have developed a topical delivery method of hydrogen at targeted sites through the degradation of magnesium-based biomaterials. However, the underlying mechanism of hydrogen's role in cancer treatment remains ambiguous. Here, we investigate the mechanism of tumor cell apoptosis triggered by the hydrogen released from magnesium-based biomaterials. We find that the localized release of hydrogen increases the expression level of P53 tumor suppressor proteins, as demonstrated by the in vitro RNA sequencing and protein expression analysis. Then, the P53 proteins disrupt the membrane potential of mitochondria, activate autophagy, suppress the reactive oxygen species in cancer cells, and finally result in tumor suppression. The anti-tumor efficacy of magnesium-based biomaterials is further validated in vivo by inserting magnesium wire into the subcutaneous tumor in a mouse. We also discovered that the minimal hydrogen concentration from magnesium wires to trigger substantial tumor apoptosis is 91.2 μL/mm3 per day, which is much lower than that required for hydrogen inhalation. Taken together, these findings reveal the release of H2 from magnesium-based biomaterial exerts its anti-tumoral activity by activating the P53-mediated lysosome-mitochondria apoptosis signaling pathway, which strengthens the therapeutic potential of this biomaterial as localized anti-tumor treatment. The feasibility of using Mg implants is explored for localized delivery of hydrogen against colorectal tumors. This approach is advantageous over conventional chemotherapy/H2 inhalation due to the portability, high H2-loading capacity and efficient delivery of H2 gas to tumors. We provide a molecularly detailed and mechanistic understanding of how H2 could activate the antitumor pathway above certain threshold concentrations of H2, which inspires more effective therapy against tumors.
Collapse
Affiliation(s)
- Rui Zan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Institute of Metallic Biomaterials, Department of Biological Characterisation, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, 21502, Germany
| | - Hao Wang
- Department of General Surgery and Translational Medicine Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Jiangsu, 214002, China
| | - Weijie Cai
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiahua Ni
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bérengère J C Luthringer-Feyerabend
- Institute of Metallic Biomaterials, Department of Biological Characterisation, Helmholtz-Zentrum Geesthacht (HZG), Geesthacht, 21502, Germany
| | - Wenhui Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhou Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiping Ji
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Jiangsu, 214002, China
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,Suzhou Origin Medical Technology Co. Ltd., Suzhou, 215513, China
| |
Collapse
|
32
|
Jing YZ, Li SJ, Sun ZJ. Gas and gas-generating nanoplatforms in cancer therapy. J Mater Chem B 2021; 9:8541-8557. [PMID: 34608920 DOI: 10.1039/d1tb01661j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gas therapy is the usage of certain gases with special therapeutic effects for the treatment of diseases. Hydrogen (H2), nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) acting as gas signalling molecules are representative gases in cancer therapy. They act directly on mitochondria or nuclei to lead to cell apoptosis. They can also alleviate immuno-suppression in the tumour microenvironment and promote phenotype conversion of tumour-associated macrophages. Moreover, the combination of gas therapy and other traditional therapy methods can reduce side effects and improve therapeutic efficacy. Here, we discuss the roles of NO, CO, H2S and H2 in cancer biology. Considering the rapidly developing nanotechnology, gas-generating nanoplatforms which can achieve targeted delivery and controlled release were also discussed. Finally, we highlight the current challenges and future opportunities of gas-based cancer therapy.
Collapse
Affiliation(s)
- Yuan-Zhe Jing
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Shu-Jin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China. .,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
33
|
Padhi SK, Baglieri N, Bonino V, Agostino A, Operti L, Batalu ND, Chifiriuc MC, Popa M, Burdusel M, Grigoroscuta MA, Aldica GV, Radu D, Badica P, Truccato M. Antimicrobial Activity of MgB 2 Powders Produced via Reactive Liquid Infiltration Method. Molecules 2021; 26:4966. [PMID: 34443553 PMCID: PMC8399391 DOI: 10.3390/molecules26164966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/05/2022] Open
Abstract
We report for the first time on the antimicrobial activity of MgB2 powders produced via the Reactive Liquid Infiltration (RLI) process. Samples with MgB2 wt.% ranging from 2% to 99% were obtained and characterized, observing different levels of grain aggregation and of impurity phases. Their antimicrobial activity was tested against Staphylococcus aureus ATCC BAA 1026, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. A general correlation is observed between the antibacterial activity and the MgB2 wt.%, but the sample microstructure also appears to be very important. RLI-MgB2 powders show better performances compared to commercial powders against microbial strains in the planktonic form, and their activity against biofilms is also very similar.
Collapse
Affiliation(s)
- Santanu Kumar Padhi
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Nicoletta Baglieri
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Valentina Bonino
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Angelo Agostino
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Lorenza Operti
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| | - Nicolae Dan Batalu
- Metallic Materials Science, Physical Metallurgy Department, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania; (M.C.C.); (M.P.)
- Academy of Romanian Scientists, 050094 Bucharest, Romania
| | - Marcela Popa
- Faculty of Biology, Research Institute of the University of Bucharest (ICUB), University of Bucharest, Spl. Independentei 91-95, 050095 Bucharest, Romania; (M.C.C.); (M.P.)
| | - Mihail Burdusel
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Mihai Alexandru Grigoroscuta
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Gheorghe Virgil Aldica
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Dana Radu
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Petre Badica
- National Institute of Materials Physics, Street Atomistilor 405A, 077125 Magurele, Romania; (M.B.); (M.A.G.); (G.V.A.); (D.R.)
| | - Marco Truccato
- Physics and Chemistry Departments, University of Turin, Via P. Giuria 1-7, 10125 Turin, Italy; (S.K.P.); (N.B.); (V.B.); (A.A.); (L.O.)
| |
Collapse
|
34
|
Gong W, Xia C, He Q. Therapeutic gas delivery strategies. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1744. [PMID: 34355863 DOI: 10.1002/wnan.1744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
Gas molecules with pharmaceutical effects offer emerging solutions to diseases. In addition to traditional medical gases including O2 and NO, more gases such as H2 , H2 S, SO2 , and CO have recently been discovered to play important roles in various diseases. Though some issues need to be addressed before clinical application, the increasing attention to gas therapy clearly indicates the potentials of these gases for disease treatment. The most important and difficult part of developing gas therapy systems is to transport gas molecules of high diffusibility and penetrability to interesting targets. Given the particular importance of gas molecule delivery for gas therapy, distinguished strategies have been explored to improve gas delivery efficiency and controllable gas release. Here, we summarize the strategies of therapeutic gas delivery for gas therapy, including direct gas molecule delivery by chemical and physical absorption, inorganic/organic/hybrid gas prodrugs, and natural/artificial/hybrid catalyst delivery for gas generation. The advantages and shortcomings of these gas delivery strategies are analyzed. On this basis, intelligent gas delivery strategies and catalysts use in future gas therapy are discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Wanjun Gong
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Chao Xia
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Ou M, Wang X, Yu L, Liu C, Tao W, Ji X, Mei L. The Emergence and Evolution of Borophene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001801. [PMID: 34194924 PMCID: PMC8224432 DOI: 10.1002/advs.202001801] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/19/2020] [Indexed: 05/14/2023]
Abstract
Neighboring carbon and sandwiched between non-metals and metals in the periodic table of the elements, boron is one of the most chemically and physically versatile elements, and can be manipulated to form dimensionally low planar structures (borophene) with intriguing properties. Herein, the theoretical research and experimental developments in the synthesis of borophene, as well as its excellent properties and application in many fields, are reviewed. The decade-long effort toward understanding the size-dependent structures of boron clusters and the theory-directed synthesis of borophene, including bottom-up approaches based on different foundations, as well as up-down approaches with different exfoliation modes, and the key factors influencing the synthetic effects, are comprehensively summarized. Owing to its excellent chemical, electronic, mechanical, and thermal properties, borophene has shown great promise in supercapacitor, battery, hydrogen-storage, and biomedical applications. Furthermore, borophene nanoplatforms used in various biomedical applications, such as bioimaging, drug delivery, and photonic therapy, are highlighted. Finally, research progress, challenges, and perspectives for the future development of borophene in large-scale production and other prospective applications are discussed.
Collapse
Affiliation(s)
- Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Liu Yu
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Chuang Liu
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
- Academy of Medical Engineering and Translational MedicineTianjin UniversityTianjin300072China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275P. R. China
- Institute of Biomedical EngineeringChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin300192China
| |
Collapse
|
36
|
Chen D, Jin Z, Zhao B, Wang Y, He Q. MBene as a Theranostic Nanoplatform for Photocontrolled Intratumoral Retention and Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008089. [PMID: 33734515 DOI: 10.1002/adma.202008089] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Tumor-targeted drug delivery by nanomaterials is important to improve tumor therapy efficacy and reduce toxic side effects, but its efficiency is quite limited. In this work, a new type of MBene, zirconium boride nanosheet (ZBN), as a versatile nanoplatform to realize near-infrared (NIR)-controlled intratumoral retention and drug release is developed. ZBN exhibits high NIR-photothermal conversion efficiency (76.8%), surface modification with hyaluronic acid (HA) by polyol-borate esterfication endows ZBN-HA with good dispersion, and the photopyrolysis of borate ester causes HA detachment and ZBN aggregation, enabling NIR-controlled intratumoral retention to achieve high intratumoral accumulation. By virtue of surface borate esterfication, polyol chemotherapeutic drug (doxorubicin, DOX), and NO prodrug (β-galactosyl-diazeniumdiolate, Gal-NO) can be efficiently and stably conjugated on the surface of ZBN-HA (1.21 g DOX or 0.57 g Gal-NO per gram ZBN) without visible drug leakage, and the photopyrolysis of borate ester enables NIR-controlled drug release with high responsiveness and controllability. Combined chemothermal/gasothermal therapies based on ZBN-HA/DOX and ZBN-HA/NO nanomedicines eradicate primary tumors and interdict tumor metastasis by changing the tumor microenvironment and killing cancer cells in primary tumors. The developed NIR-photothermal MBene is confirmed as a versatile nanoplatform capable of high-efficacy tumor-targeted drug delivery and controlled drug release.
Collapse
Affiliation(s)
- Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
| | - Bin Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
| | - Yingshuai Wang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Shenzhen, Guangdong, 518060, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
37
|
Zhang L, Yu H, Tu Q, He Q, Huang N. New Approaches for Hydrogen Therapy of Various Diseases. Curr Pharm Des 2021; 27:636-649. [PMID: 33308113 DOI: 10.2174/1381612826666201211114141] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
Hydrogen therapy has recently received increasing attention as an emerging and promising therapeutic technology due to its selective antioxidant property and cell energy regulatory capability in vivo. To solve the low solubility issue of hydrogen, a variety of nanomaterials and devices for hydrogen supply have recently been developed, aiming to increase the concentration of hydrogen in the specific disease site and realize controlled hydrogen release and combined treatment. In this review, we mainly focus on the latest advances in using hydrogen-generating devices and nanomaterials for hydrogen therapy. These developments include sustained release of H2, controlled release of H2, versatile modalities of synergistic therapy, etc. Also, bio-safety issues and challenges are discussed to further promote the clinical applications of hydrogen therapy and the development of hydrogen medicine.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Han Yu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qiufen Tu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qianjun He
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Nan Huang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
38
|
Zhao B, Wang Y, Yao X, Chen D, Fan M, Jin Z, He Q. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst. Nat Commun 2021; 12:1345. [PMID: 33649319 PMCID: PMC7921091 DOI: 10.1038/s41467-021-21618-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
Drug therapy unavoidably brings toxic side effects and drug content-limited therapeutic efficacy although many nanocarriers have been developed to improve them to a certain extent. In this work, a concept of drug-free therapeutics is proposed and defined as a therapeutic methodology without the use of traditional toxic drugs, without the consumption of therapeutic agents during treatment but with the inexhaustible therapeutic capability to maximize the benefit of treatment, and a Z-scheme SnS1.68-WO2.41 nanocatalyst is developed to achieve near infrared (NIR)-photocatalytic generation of oxidative holes and hydrogen molecules for realizing combined hole/hydrogen therapy by the drug-free therapeutic strategy. Without the need of any drug and other therapeutic agent assistance, the nanocatalyst oxidizes/consumes intratumoral over-expressed glutathione (GSH) by holes and simultaneously generates hydrogen molecules in a lasting and controllable way under NIR irradiation. Mechanistically, generated hydrogen molecules and GSH consumption inhibit cancer cell energy and destroy intratumoral redox balance, respectively, to synergistically damage DNA and induce tumor cell apoptosis. High efficacy and biosafety of combined hole/hydrogen therapy of tumors are achieved by the nanocatalyst. The proposed catalysis-based drug-free therapeutic strategy breaks a pathway to realize high efficacy and low toxicity of cancer treatment.
Collapse
Affiliation(s)
- Bin Zhao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Yingshuai Wang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Xianxian Yao
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Danyang Chen
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjian Fan
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhaokui Jin
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China.
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Jin D, Zhang J, Huang Y, Qin X, Zhuang J, Yin W, Chen S, Wang Y, Hua P, Yao Y. Recent advances in the development of metal-organic framework-based gas-releasing nanoplatforms for synergistic cancer therapy. Dalton Trans 2021; 50:1189-1196. [PMID: 33438684 DOI: 10.1039/d0dt03767b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gas therapy as a burgeoning and promising research field has attracted considerable attention in biomedicine due to its high therapeutic efficacy, biocompatibility, and biosafety. However, the lack of tumor site accumulation and controlled release of therapeutic gas molecules limited the therapeutic efficacy. Therefore, the development of gas-releasing nanoplatforms to realize tumor targeting and controllable release is highly desired. The structural diversity and tailorability and ultrahigh surface area make metal-organic frameworks (MOFs) find potential applications in the delivery and release of gas or gas releasing molecules (GRMs). In this Frontier article, we provide an overview of the recent developments achieved in gas-involving cancer therapy using MOFs or MOF-based materials. The main emphasis is focused on the design of multifunctional MOF-based nanoplatforms for the delivery and release of therapeutic gas molecules, and emphasizing their synergistic mechanism against tumor. Moreover, the challenges, future trends, and prospects of gas-related cancer therapy are also discussed.
Collapse
Affiliation(s)
- Danni Jin
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jianan Zhang
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Youyou Huang
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Xiru Qin
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jiayi Zhuang
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Wujie Yin
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Sijie Chen
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yang Wang
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Ping Hua
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yong Yao
- School of chemistry and chemical engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
40
|
Hydrogen molecules can modulate enzymatic activity and structural properties of pepsin in vitro. Colloids Surf B Biointerfaces 2020; 189:110856. [DOI: 10.1016/j.colsurfb.2020.110856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023]
|
41
|
Wang Y, Yang T, He Q. Strategies for engineering advanced nanomedicines for gas therapy of cancer. Natl Sci Rev 2020; 7:1485-1512. [PMID: 34691545 PMCID: PMC8291122 DOI: 10.1093/nsr/nwaa034] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
As an emerging and promising treatment method, gas therapy has attracted more and more attention for treatment of inflammation-related diseases, especially cancer. However, therapeutic/therapy-assisted gases (NO, CO, H2S, H2, O2, SO2 and CO2) and most of their prodrugs lack the abilities of active intratumoral accumulation and controlled gas release, resulting in limited cancer therapy efficacy and potential side effects. Therefore, development of nanomedicines to realize tumor-targeted and controlled release of therapeutic/therapy-assisted gases is greatly desired, and also the combination of other therapeutic modes with gas therapy by multifunctional nanocarrier platforms can augment cancer therapy efficacy and also reduce their side effects. The design of nanomedicines with these functions is vitally important, but challenging. In this review, we summarize a series of engineering strategies for construction of advanced gas-releasing nanomedicines from four aspects: (1) stimuli-responsive strategies for controlled gas release; (2) catalytic strategies for controlled gas release; (3) tumor-targeted gas delivery strategies; (4) multi-model combination strategies based on gas therapy. Moreover, we highlight current issues and gaps in knowledge, and envisage current trends and future prospects of advanced nanomedicines for gas therapy of cancer. This review aims to inspire and guide the engineering of advanced gas-releasing nanomedicines.
Collapse
Affiliation(s)
- Yingshuai Wang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Tian Yang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
42
|
Qi Y, Qi W, Liu S, Sun L, Ding A, Yu G, Li H, Wang Y, Qiu W, Lv J. TSPAN9 suppresses the chemosensitivity of gastric cancer to 5-fluorouracil by promoting autophagy. Cancer Cell Int 2020; 20:4. [PMID: 31911756 PMCID: PMC6942356 DOI: 10.1186/s12935-019-1089-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/23/2019] [Indexed: 02/11/2023] Open
Abstract
Background The issue of drug resistance in gastric cancer has attracted global attention. TSPAN9, a 4-transmembrane protein that plays an important role in tumor progression and signal transduction, has been found to be closely related to tumor invasion, metastasis, and autophagy. Methods Immunoblotting was used to evaluate TSPAN9 expression in parental and drug-resistant gastric cancer cells. Functional assays, such as the CCK-8 assay, were used to detect the proliferation of gastric cancer cells and the response of TSPAN9 to 5-fluorouracil (5-FU). Western blotting was used to analyze the expression of constituents of the PI3K/AKT/mTOR-mediated autophagy pathway induced by TSPAN9. Coimmunoprecipitation was performed to assess the specific mechanism by which TSPAN9 affects the PI3K pathway. Results We demonstrated that TSPAN9 is overexpressed in 5-FU-resistant cells compared to parental cells. 5-FU-mediated inhibition of cell proliferation can be significantly restored by increasing TSPAN9 expression, and inhibiting this expression in drug-resistant cells can restore the sensitivity of the cells to 5-FU. In addition, TSPAN9 also significantly promoted autophagy in gastric cancer cells in vitro. Further studies indicated that TSPAN9 downregulates the expression of PI3K and proteins associated with PI3K-mediated autophagy. In addition, TSPAN9 interacts with PI3K and inhibits its catalytic activity. Conclusion The current study reveals the important role of TSPAN9 in drug resistance to 5-FU in gastric cancer. It also provides a new target to clinically address drug-resistant gastric cancer and will contribute to the treatment strategy of this disease.
Collapse
Affiliation(s)
- Yaoyue Qi
- 1Qingdao University, Qingdao, Shandong China
| | - Weiwei Qi
- 2Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong China.,3Key Laboratory of Cancer Molecular and Translational Research, Qingdao University, Qingdao, Shandong China
| | - Shihai Liu
- 4Central Laboratory, Affiliated Hospital of Qingdao University, Qingdao, Shandong China
| | - Libin Sun
- 2Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong China.,3Key Laboratory of Cancer Molecular and Translational Research, Qingdao University, Qingdao, Shandong China
| | - Aiping Ding
- 2Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong China.,3Key Laboratory of Cancer Molecular and Translational Research, Qingdao University, Qingdao, Shandong China
| | - Guohong Yu
- 2Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong China.,3Key Laboratory of Cancer Molecular and Translational Research, Qingdao University, Qingdao, Shandong China
| | - Hui Li
- 1Qingdao University, Qingdao, Shandong China
| | - Yixuan Wang
- 1Qingdao University, Qingdao, Shandong China
| | - Wensheng Qiu
- 2Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong China.,3Key Laboratory of Cancer Molecular and Translational Research, Qingdao University, Qingdao, Shandong China
| | - Jing Lv
- 2Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong China.,3Key Laboratory of Cancer Molecular and Translational Research, Qingdao University, Qingdao, Shandong China
| |
Collapse
|
43
|
Jin Z, Chen D, Zhao P, Wen Y, Fan M, Zhou G, Wang Y, He Q. Coordination-induced exfoliation to monolayer Bi-anchored MnB 2 nanosheets for multimodal imaging-guided photothermal therapy of cancer. Theranostics 2020; 10:1861-1872. [PMID: 32042341 PMCID: PMC6993225 DOI: 10.7150/thno.39715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Rapid advance in biomedicine has recently vitalized the development of multifunctional two-dimensional (2D) nanomaterials for cancer theranostics. However, it is still challenging to develop new strategy to produce new types of 2D nanomaterials with flexible structure and function for enhanced disease theranostics. Method: We explore the monolayer Bi-anchored manganese boride nanosheets (MBBN) as a new type of MBene (metal boride), and discover their unique near infrared (NIR)-photothermal and photoacoustic effects, X-ray absorption and MRI imaging properties, and develop them as a new nanotheranostic agent for multimodal imaging-guided photothermal therapy of cancer. A microwave-assisted chemical etching route was utilized to exfoliate the manganese boride bulk into the nanosheets-constructed flower-like manganese boride nanoparticle (MBN), and a coordination-induced exfoliation strategy was further developed to separate the MBN into the dispersive monolayer MBBN by the coordination between Bi and B on the surface, and the B-OH group on the surface of MBBN enabled facile surface modification with hyaluronic acid (HA) by the borate esterification reaction in favor of enhanced monodispersion and active tumor targeting. Result: The constructed MBBN displays superior NIR-photothermal conversion efficiency (η=59.4%) as well as high photothermal stability, and possesses versatile imaging functionality including photoacoustic, photothermal, CT and T1 -wighted MRI imagings. In vitro and in vivo evaluations indicate that MBBN had high photothermal ablation and multimodal imaging performances, realizing high efficacy of imaging-guided cancer therapy. Conclusion: We have proposed new MBene concept and exfloliation strategy to impart the integration of structural modification and functional enhancement for cancer theranostics, which would open an avenue to facile fabrication and extended application of multifunctional 2D nanomaterials.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, No. 1066 Xueyuan Road, Nanshan District, Shenzhen 518060, Guangdong, China
| |
Collapse
|
44
|
Dong Y, Liao H, Yu J, Fu H, Zhao D, Gong K, Wang Q, Duan Y. Incorporation of drug efflux inhibitor and chemotherapeutic agent into an inorganic/organic platform for the effective treatment of multidrug resistant breast cancer. J Nanobiotechnology 2019; 17:125. [PMID: 31870362 PMCID: PMC6929438 DOI: 10.1186/s12951-019-0559-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Multidrug resistance (MDR) is a pressing obstacle in clinical chemotherapy for breast cancer. Based on the fact that the drug efflux is an important factor in MDR, we designed a codelivery system to guide the drug efflux inhibitor verapamil (VRP) and the chemotherapeutic agent novantrone (NVT) synergistically into breast cancer cells to reverse MDR. RESULTS This co-delivery system consists of following components: the active targeting peptide RGD, an inorganic calcium phosphate (CaP) shell and an organic inner core. VRP and NVT were loaded into CaP shell and phosphatidylserine polyethylene glycol (PS-PEG) core of nanoparticles (NPs) separately to obtain NVT- and VRP-loaded NPs (NV@CaP-RGD). These codelivered NPs allowed VRP to prevent the efflux of NVT from breast cancer cells by competitively combining with drug efflux pumps. Additionally, NV@CaP-RGD was effectively internalized into breast cancer cells by precise delivery through the effects of the active targeting peptides RGD and EPR. The pH-triggered profile of CaP was also able to assist the NPs to successfully escape from lysosomes, leading to a greatly increased effective intracellular drug concentration. CONCLUSION The concurrent administration of VRP and NVT by organic/inorganic NPs is a promising therapeutic approach to reverse MDR in breast cancer.
Collapse
Affiliation(s)
- Yang Dong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hongze Liao
- Marine Drugs Research Center, Department of Pharmacy, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Ke Gong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Qi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Ma Y, Wu F, Hu YH. Microfactories for Intracellular Locally Generated Hydrogen Therapy: Advanced Materials, Challenges, and Opportunities. Chempluschem 2019. [DOI: 10.1002/cplu.201900457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuli Ma
- School of Environmental Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fang Wu
- School of Environmental Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yun Hang Hu
- School of Environmental Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P. R. China
- Department of Materials Science and Engineering Michigan Technological University Houghton MI 49931-1295 USA
| |
Collapse
|
46
|
Kou Z, Zhao P, Wang Z, Jin Z, Chen L, Su BL, He Q. Acid-responsive H 2-releasing Fe nanoparticles for safe and effective cancer therapy. J Mater Chem B 2019; 7:2759-2765. [PMID: 32255077 DOI: 10.1039/c9tb00338j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogen therapy is an emerging and promising strategy for treatment of inflammation-related diseases owing to the excellent bio-safety of hydrogen molecules (H2), but is facing a challenge that the H2 concentration at the local disease site is hardly accumulated because of its high diffusibility and low solubility, limiting the efficacy of hydrogen therapy. Herein, we propose a nanomedicine strategy of imaging-guided tumour-targeted delivery and tumour microenvironment-triggered release of H2 to address this issue, and develop a kind of biocompatible carboxymethyl cellulose (CMC)-coated/stabilized Fe (Fe@CMC) nanoparticle with photoacoustic imaging (PAI), tumour targeting and acid responsive hydrogen release properties for cancer therapy. The Fe@CMC nanoparticles have demonstrated high intratumoural accumulation capability, high acid responsiveness, excellent PAI performance, selective cancer-killing effect and high bio-safety in vitro and in vivo. Effective inhibition of tumour growth is achieved by intravenous injection of the Fe@CMC nanoparticles, and the selective anti-cancer mechanism of Fe@CMC is discovered to be originated from the energy metabolism homeostasis regulatory function of the released H2. The proposed nanomedicine-mediated hydrogen therapy strategy will open a new window for precise, high-efficacy and safe cancer treatment.
Collapse
Affiliation(s)
- Zhu Kou
- Laboratory of Living Materials, The State Key Laboratory of Advanced Technology for Marterials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|