1
|
Hemalatha T, Aarthy M, Sundarapandiyan A, Ayyadurai N. Bioengineered Silk Fibroin Hydrogel Reinforced with Collagen-Like Protein Chimeras for Improved Wound Healing. Macromol Biosci 2024:e2400346. [PMID: 39422581 DOI: 10.1002/mabi.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/22/2024] [Indexed: 10/19/2024]
Abstract
The study investigates the potentials of the rapid crosslinking hydrogel concoction comprising of natural silk fibroin (SF) and recombinant tailorable collagen-like protein with binding domains for wound repair. The formation of dityrosine crosslinks between the tyrosine moieties augments the formation of stable hydrogels, in the presence of the cytocompatible photo-initiator riboflavin and visible light. This uniquely engineered PASCH (Photo-activated silk fibroin and tailor-made collagen-like protein hydrogel) confers the key advantage of improved biological properties over the control hydrogels comprising only of SF. The physico-chemical characterization of the hydrogels with respect to crosslinking, modulus, and thermal stability delineates the ascendancy of PASCH 7:3 over other combinations. Furthermore, the hybrid protein hydrogel proves to be a favorable cellular matrix as it enhances cell adhesion, elongation, growth, and proliferation in vitro. Time-lapse microscopy studies reveal an enhanced wound closure in human endothelial cell monolayer (EA.hy926), while the gene expression studies portray the dynamic interplay of cytokines and growth factors in the wound milieu facilitating the repair and regeneration of cells, sculpted by the proteins. The results demonstrate the improved physical and biological properties of fabricated PASCH, depicting their synergism, and implying their competency for use in tissue engineering applications.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Ashokraj Sundarapandiyan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| |
Collapse
|
2
|
Fu B, Zhang Q, Nie L, Li S, Wang S. Two-dimensional black phosphorus/platinum catalase-like nanozyme-based Fenton reaction-mediated dual-mode immunoassays for the detection of enrofloxacin. Mikrochim Acta 2024; 191:647. [PMID: 39367939 DOI: 10.1007/s00604-024-06739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
Hydrogen peroxide-based Fenton reaction can effectively degrade many small-molecule fluorescent dyes, leading to notable alterations in fluorescence signals. Additionally, the two-dimensional black phosphorus/platinum nanocomposite (BP/Pt) demonstrates exceptional catalase (CAT) characteristics. Based on these, a colorimetric-fluorescence dual-mode signal output pattern based on BP/Pt-Fenton reaction-rhodamine B tandem reaction system is reported. The physical adsorption property of the BP/Pt nanozymes was utilized to couple with antibodies, thus constructing a novel dual-mode nanozyme-based immuno-sensing assay (NISA). By using the migratory antibiotic enrofloxacin (ENR) as the target, the NISA provided highly sensitive detection with the detection limits of 0.058 ng/mL for colorimetric-mode and 0.025 ng/mL for fluorescence-mode and achieved accurate quantitative detection in environmental water and crucian carp samples. This work provides an innovative design for monitoring antibiotics in the environment and broadens the idea for the application of nanozymes and Fenton systems in immunosensing assays.
Collapse
Affiliation(s)
- Binying Fu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Linqing Nie
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China.
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Akilandeswari G, Varshashankari V, Muthusamy S, Aarthy M, Thamizhvani K, Mercyjayapriya J, Ashokraj S, Mohandass P, Prem S, Ayyadurai N. Photocrosslinkable triple helical protein with enhanced higher-order formation for biomaterial applications. J Biomed Mater Res A 2024; 112:1632-1645. [PMID: 38553971 DOI: 10.1002/jbm.a.37716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 08/02/2024]
Abstract
Bacterial collagen, produced via recombinant DNA methods, offers advantages including consistent purity, customizable properties, and reduced allergy potential compared to animal-derived collagen. Its controlled production environment enables tailored features, making it more sustainable, non-pathogenic, and compatible with diverse applications in medicine, cosmetics, and other industries. Research has focused on the engineering of collagen-like proteins to improve their structure and function. The study explores the impact of introducing tyrosine, an amino acid known for its role in fibril formation across diverse proteins, into a newly designed bacterial collagen-like protein (Scl2), specifically examining its effect on self-assembly and fibril formation. Biophysical analyses reveal that the introduction of tyrosine residues didn't compromise the protein's structural stability but rather promoted self-assembly, resulting in the creation of nanofibrils-a phenomenon absent in the native Scl2 protein. Additionally, stable hydrogels are formed when the engineered protein undergoes di-tyrosine crosslinking under light exposure. The hydrogels, shown to support cell viability, also facilitate accelerated wound healing in mouse fibroblast (NIH/3T3) cells. These outcomes demonstrate that the targeted inclusion of functional residues in collagen-like proteins enhances fibril formation and facilitates the generation of robust hydrogels using riboflavin chemistry, presenting promising paths for research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Gopalan Akilandeswari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Vijayakumar Varshashankari
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Shalini Muthusamy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
| | - Karthigeyan Thamizhvani
- Department of Biotechnology, National Institute of Technology Warangal, Hanamkonda, Telangana, India
| | - Jebakumar Mercyjayapriya
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sundarapandian Ashokraj
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pachaiyappan Mohandass
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suresh Prem
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute, Chennai, Tamil nadu, India
- Department of Leather Technology (Housed at CSIR-Central Leather Research Institute), Alagappa College of Technology, Anna University, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Schmuck B, Greco G, Pessatti TB, Sonavane S, Langwallner V, Arndt T, Rising A. Strategies for Making High-Performance Artificial Spider Silk Fibers. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2305040. [PMID: 39355086 PMCID: PMC11440630 DOI: 10.1002/adfm.202305040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/08/2023] [Indexed: 10/03/2024]
Abstract
Artificial spider silk is an attractive material for many technical applications since it is a biobased fiber that can be produced under ambient conditions but still outcompetes synthetic fibers (e.g., Kevlar) in terms of toughness. Industrial use of this material requires bulk-scale production of recombinant spider silk proteins in heterologous host and replication of the pristine fiber's mechanical properties. High molecular weight spider silk proteins can be spun into fibers with impressive mechanical properties, but the production levels are too low to allow commercialization of the material. Small spider silk proteins, on the other hand, can be produced at yields that are compatible with industrial use, but the mechanical properties of such fibers need to be improved. Here, the literature on wet-spinning of artificial spider silk fibers is summarized and analyzed with a focus on mechanical performance. Furthermore, several strategies for how to improve the properties of such fibers, including optimized protein composition, smarter spinning setups, innovative protein engineering, chemical and physical crosslinking as well as the incorporation of nanomaterials in composite fibers, are outlined and discussed.
Collapse
Affiliation(s)
- Benjamin Schmuck
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Gabriele Greco
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tomas Bohn Pessatti
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Sumalata Sonavane
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Viktoria Langwallner
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
| | - Tina Arndt
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| | - Anna Rising
- Department of Anatomy, Physiology, and BiochemistrySwedish University of Agricultural SciencesBox 7011Uppsala75007Sweden
- Department of Biosciences and NutritionKarolinska Institutet, NeoHuddinge14186Sweden
| |
Collapse
|
5
|
Khodaei A, Johari N, Jahanmard F, Cecotto L, Khosravimelal S, Madaah Hosseini HR, Bagheri R, Samadikuchaksaraei A, Amin Yavari S. Particulate 3D Hydrogels of Silk Fibroin-Pluronic to Deliver Curcumin for Infection-Free Wound Healing. Biomimetics (Basel) 2024; 9:483. [PMID: 39194462 DOI: 10.3390/biomimetics9080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Skin is the largest protective tissue of the body and is at risk of damage. Hence, the design and development of wound dressing materials is key for tissue repair and regeneration. Although silk fibroin is a known biopolymer in tissue engineering, its degradation rate is not correlated with wound closure rate. To address this disadvantage, we mimicked the hierarchical structure of skin and also provided antibacterial properties; a hydrogel with globular structure consisting of silk fibroin, pluronic F127, and curcumin was developed. In this regard, the effect of pluronic and curcumin on the structural and mechanical properties of the hydrogel was studied. The results showed that curcumin affected the particle size, crystallinity, and ultimate elongation of the hydrogels. In vitro assays confirmed that the hydrogel containing curcumin is not cytotoxic while the diffused curcumin and pluronic provided a considerable bactericidal property against Methicillin-resistant Staphylococcus aureus. Interestingly, presence of pluronic caused more than a 99% reduction in planktonic and adherent bacteria in the curcumin-free hydrogel groups. Moreover, curcumin improved this number further and inhibited bacteria adhesion to prevent biofilm formation. Overall, the developed hydrogel showed the potential to be used for skin tissue regeneration.
Collapse
Affiliation(s)
- Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Narges Johari
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan 87717-67498, Iran
| | - Fatemeh Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutics, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Leonardo Cecotto
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Hamid Reza Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Reza Bagheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Utrecht, Utrecht University, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
6
|
He H, Wei N, Xie Y, Wang L, Yao L, Xiao J. Self-Assembling Triple-Helix Recombinant Collagen Hydrogel Enriched with Tyrosine. ACS Biomater Sci Eng 2024; 10:3268-3279. [PMID: 38659167 DOI: 10.1021/acsbiomaterials.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The self-assembly of collagen within the human body creates a complex 3D fibrous network, providing structural integrity and mechanical strength to connective tissues. Recombinant collagen plays a pivotal role in the realm of biomimetic natural collagen. However, almost all of the reported recombinant collagens lack the capability of self-assembly, severely hindering their application in tissue engineering and regenerative medicine. Herein, we have for the first time constructed a series of self-assembling tyrosine-rich triple helix recombinant collagens, mimicking the structure and functionality of natural collagen. The recombinant collagen consists of a central triple-helical domain characterized by the (Gly-Xaa-Yaa)n sequence, along with N-terminal and C-terminal domains featuring the GYY sequence. The introduction of GYY has a negligible impact on the stability of the triple-helical structure of recombinant collagen while simultaneously promoting its self-assembly into fibers. In the presence of [Ru(bpy)3]Cl2 and APS as catalysts, tyrosine residues in the recombinant collagen undergo covalent cross-linking, resulting in a hydrogel with exceptional mechanical properties. The recombinant collagen hydrogel exhibits outstanding biocompatibility and bioactivity, significantly enhancing the proliferation, adhesion, migration, and differentiation of HFF-1 cells. This innovative self-assembled triple-helix recombinant collagen demonstrates significant potential in the fields of tissue engineering and medical materials.
Collapse
Affiliation(s)
- Huixia He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Nannan Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Yi Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Lili Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
- Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Major G, Ahn M, Cho WW, Santos M, Wise J, Phillips E, Wise SG, Jang J, Rnjak-Kovacina J, Woodfield T, Lim KS. Programming temporal stiffness cues within extracellular matrix hydrogels for modelling cancer niches. Mater Today Bio 2024; 25:101004. [PMID: 38420142 PMCID: PMC10900776 DOI: 10.1016/j.mtbio.2024.101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Extracellular matrix (ECM) stiffening is a common occurrence during the progression of many diseases, such as breast cancer. To accurately mimic the pathophysiological context of disease within 3D in vitro models, there is high demand for smart biomaterials which replicate the dynamic and temporal mechanical cues of diseased states. This study describes a preclinical disease model, using breast cancer as an example, which replicates the dynamic plasticity of the tumour microenvironment by incorporating temporal (3-week progression) biomechanical cues within a tissue-specific hydrogel microenvironment. The composite hydrogel formulation, integrating adipose-derived decellularised ECM (AdECM) and silk fibroin, was initially crosslinked using a visible light-mediated system, and then progressively stiffened through spontaneous secondary structure interactions inherent between the polymer chains (∼10-15 kPa increase, with a final stiffness of 25 kPa). When encapsulated and cultured in vitro, MCF-7 breast cancer cells initially formed numerous, large spheroids (>1000 μm2 in area), however, with progressive temporal stiffening, cells demonstrated growth arrest and underwent phenotypic changes resulting in intratumoral heterogeneity. Unlike widely-investigated static mechanical models, this stiffening hydrogel allowed for progressive phenotypic changes to be observed, and fostered the development of mature organoid-like spheroids, which mimicked both the organisation and acinar-structures of mature breast epithelium. The spheroids contained a central population of cells which expressed aggressive cellular programs, evidenced by increased fibronectin expression and reduction of E-cadherin. The phenotypic heterogeneity observed using this model is more reflective of physiological tumours, demonstrating the importance of establishing temporal cues within preclinical models in future work. Overall, the developed model demonstrated a novel strategy to uncouple ECM biomechanical properties from the cellular complexities of the disease microenvironment and offers the potential for wide applicability in other 3D in vitro disease models through addition of tissue-specific dECM materials.
Collapse
Affiliation(s)
- Gretel Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Minjun Ahn
- Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Won-Woo Cho
- Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Miguel Santos
- Applied Materials Group, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jessika Wise
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Steven G Wise
- Applied Materials Group, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Jinah Jang
- Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
- Tyree Institute of Health Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tim Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
| | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago, Christchurch, New Zealand
- Light-Activated Materials Group, School of Medical Sciences, University of Sydney, Australia
| |
Collapse
|
8
|
Liu Z, Miao Y, Shi Y, Yang Q, Zhao J, Feng Q. Natural down fiber-reinforced and polypyrrole-modified silk fibroin composite aerogel for efficient solar steam generation toward seawater desalination and wastewater treatment. Int J Biol Macromol 2024; 257:128678. [PMID: 38072342 DOI: 10.1016/j.ijbiomac.2023.128678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Poor mechanical properties and low photothermal efficiency of silk fibroin (SF)-based aerogels are current challenges that need to be addressed. Herein, SF composite aerogel was developed to enhance the mechanical properties through physical interpenetration of natural down fiber (Df) and hydrogen bonds formed among SF, Df, and polypyrrole (PPy) and to improve the evaporation performance via in-situ polymerization of PPy. The resultant Df/PPy@SF aerogel showed significant improvement of compressive stress (194.29 kPa), which was 6.96 times than that of SF aerogel (27.91 kPa), and also good compression resiliency. Furthermore, due to uniform distribution of PPy and high porosity of 95.27 %, Df/PPy@SF aerogel possessed high light absorbance of 99.87 % and low thermal conductivity (0.043 W·m-1·K-1). Thus, the Df/PPy@SF aerogel evaporator demonstrated high evaporation rates of 2.12 kg·m-2·h-1 for 3.5 wt% saline water, 2.04-2.15 kg·m-2·h-1 for various dye water, and 2.10 kg·m-2·h-1 for actual dye wastewater. Moreover, the developed aerogel exhibited evaporation stability and outstanding salt-resistance when treating seawater due to continuous water supply by superhydrophilic porous aerogel. Therefore, these findings demonstrate the excellent performance of Df/PPy@SF aerogel and will inspire further research on developing natural fiber-reinforced aerogels for use in the fields of solar water evaporation, energy, and other related applications.
Collapse
Affiliation(s)
- Zhi Liu
- School of Textile and Garment, Anhui Polytechnic University, Beijing Mid-Road, Wuhu 241000, China
| | - Yi Miao
- School of Textile and Garment, Anhui Polytechnic University, Beijing Mid-Road, Wuhu 241000, China
| | - Yiling Shi
- School of Textile and Garment, Anhui Polytechnic University, Beijing Mid-Road, Wuhu 241000, China
| | - Qinqin Yang
- School of Textile and Garment, Anhui Polytechnic University, Beijing Mid-Road, Wuhu 241000, China
| | - Jianghui Zhao
- School of Textile and Garment, Anhui Polytechnic University, Beijing Mid-Road, Wuhu 241000, China.
| | - Quan Feng
- School of Textile and Garment, Anhui Polytechnic University, Beijing Mid-Road, Wuhu 241000, China
| |
Collapse
|
9
|
Wang HY, Zhang Y, Zhang M, Zhang YQ. Functional modification of silk fibroin from silkworms and its application to medical biomaterials: A review. Int J Biol Macromol 2024; 259:129099. [PMID: 38176506 DOI: 10.1016/j.ijbiomac.2023.129099] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024]
Abstract
Silk fibroin (SF) from the silkworm Bombyx mori is a fibrous protein identified as a widely suitable biomaterial due to its biocompatibility, tunable degradation, and mechanical strength. Various modifications of SF protein can give SF fibers new properties and functions, broadening their applications in textile and biomedical industries. A diverse array of functional modifications on various forms of SF has been reported. In order to provide researchers with a more systematic understanding of the types of functional modifications of SF protein, as well as the corresponding applications, we comprehensively review the different types of functional modifications, including transgenic modification, modifications with chemical groups or biologically active substance, cross-linking and copolymerization without chemical reactions, their specific modification methods and applications. Furthermore, recent applications of SF in various medical biomaterials are briefly discussed.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Yun Zhang
- Obstetrical department, The People's Hospital of Suzhou New District, Suzhou, China
| | - Meng Zhang
- Zhejiang Provincial Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yu-Qing Zhang
- Silk Biotechnology Laboratory, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
10
|
Falcucci T, Radke M, Sahoo JK, Hasturk O, Kaplan DL. Multifunctional silk vinyl sulfone-based hydrogel scaffolds for dynamic material-cell interactions. Biomaterials 2023; 300:122201. [PMID: 37348323 PMCID: PMC10366540 DOI: 10.1016/j.biomaterials.2023.122201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023]
Abstract
Biochemical and mechanical interactions between cells and the surrounding extracellular matrix influence cell behavior and fate. Mimicking these features in vitro has prompted the design and development of biomaterials, with continuing efforts to improve tailorable systems that also incorporate dynamic chemical functionalities. The majority of these chemistries have been incorporated into synthetic biomaterials, here we focus on modifications of silk protein with dynamic features achieved via enzymatic, "click", and photo-chemistries. The one-pot synthesis of vinyl sulfone modified silk (SilkVS) can be tuned to manipulate the degree of functionalization. The resultant modified protein-based material undergoes three different gelation mechanisms, enzymatic, "click", and light-induced, to generate hydrogels for in vitro cell culture. Further, the versatility of this chemical functionality is exploited to mimic cell-ECM interactions via the incorporation of bioactive peptides and proteins or by altering the mechanical properties of the material to guide cell behavior. SilkVS is well-suited for use in in vitro culture, providing a natural protein with both tunable biochemistry and mechanics.
Collapse
Affiliation(s)
- Thomas Falcucci
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | - Margaret Radke
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | | | - Onur Hasturk
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA
| | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford, MA, USA.
| |
Collapse
|
11
|
Byun J, Wu Y, Lee J, Kim JS, Shim G, Oh YK. External cold atmospheric plasma-responsive on-site hydrogel for remodeling tumor immune microenvironment. Biomaterials 2023; 299:122162. [PMID: 37257401 DOI: 10.1016/j.biomaterials.2023.122162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/05/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Although immunotherapy has recently emerged as a promising anti-tumor approach, it remains limited by the immunosuppressive tumor microenvironment. Cold atmospheric plasma irradiation can generate reactive oxygen species and trigger the presentation of tumor-associated antigens. Here, we exploited cold atmospheric plasma for on-site hydrogel application in the tumor environment, aiming to facilitate the sustainable uptake of tumor-associated antigens and nanoadjuvants by dendritic cells. Hyaluronic acid-tyramine conjugate was intratumorally injected as a liquid and formed an on-site hydrogel under irradiation with cold atmospheric plasma. Intratumoral delivery of hyaluronic acid-tyramine conjugate with transforming growth factor β-blocking nanoadjuvant (TLN) followed by cold atmospheric plasma irradiation yielded a micro-network of TLN-loaded hydrogel (TLN@CHG). In vivo intratumoral injection of TLN@CHG promoted the activation of dendritic cells and more effectively increased the proportion of CD4 T cells and CD8 T cells in the tumor microenvironment, compared to the groups receiving TLN or hydrogel alone. Moreover, in CT26 tumor model mice, cold atmospheric plasma-induced TLN@CHG therapy ablated the primary tumor and provided 100% survival among mice rechallenged with CT26 cells. Taken together, our findings suggest that an on-site hydrogel-based micro-network of TLN has the potential to remodel the tumor immune microenvironment. Although we used TLN in this study, the concept could be extended to support the sustained action of other nanoadjuvants in a hydrogel micro-network.
Collapse
Affiliation(s)
- Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Hasturk O, Sahoo JK, Kaplan DL. Synthesis and characterization of silk-poly(guluronate) hybrid polymers for the fabrication of dual crosslinked, mechanically dynamic hydrogels. POLYMER 2023; 281:126129. [PMID: 37483847 PMCID: PMC10357961 DOI: 10.1016/j.polymer.2023.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The rapid ionic crosslinking of alginate has been actively studied for biomedical applications including hydrogel scaffolds for tissue engineering, injectable gels, and 3D bioprinting. However, the poor structural stability of ionic crosslinks under physiological conditions limits the widespread applications of these hydrogels. Moreover, the lack of cell adhesion to the material combined with the inability of proteases to degrade alginate further restrict utility as hydrogel scaffolds. Blends of alginate with silk fibroin have been proposed for improved structural and mechanical properties, but potential phase separation between the hydrophobic protein and the hydrophilic polysaccharide remains an issue. In this study, we demonstrated the synthesis of a hybrid biopolymer composed of a silk backbone with side chains of poly(guluronate) isolated from alginate to introduce rapid ionic crosslinking on enzymatically crosslinked silk-based hydrogels for on-demand and reversible stiffening and softening properties. Dual crosslinked macro- and microgels of silk fibroin-poly(guluronate) (SF-PG) hybrid polymers displayed dynamic morphology with reversible shrinking and swelling behavior. SF-PG hydrogel discs demonstrated dynamic mechanics with compressive moduli ranging from less than 5 kPa to over 80 kPa and underwent proteolytic degradation unlike covalently crosslinked alginate controls. SF-PG gels supplemented with gelatin substituted with tyramine or both tyramine and PG also supported the attachment and survival of murine fibroblasts, suggesting potential uses of these new hydrogels in mammalian cell culture to investigate cellular responses to dynamic mechanics or modeling of diseases defined by matrix mechanics, such as fibrosis and cancer.
Collapse
Affiliation(s)
- Onur Hasturk
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| | | | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| |
Collapse
|
13
|
Zhou J, Lin X, Zhao L, Huang K, Yang Q, Yu H, Xiong X. Headspace single drop microextraction based visual colorimetry for highly sensitive, selective and matrix interference-resistant determination of sulfur dioxide in food samples. Food Chem 2023; 426:136659. [PMID: 37356248 DOI: 10.1016/j.foodchem.2023.136659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
Excessive intake of SO2, a widely-used food additive, is able to cause respiratory, cardiovascular and neurological disease. For effectively monitoring SO2 level, we have developed a headspace single drop microextraction based visual colorimetry for highly sensitive and selective sensing of SO2 with TMB (3,3',5,5'-tetramethylbenzidine) as a classic chromogenic reagent. A combination of single drop and headspace microextraction integrated merits of high extraction efficiency, low consumption of reagents and excellent matrix interference-resistant ability. The colorimetric principle was based on oxidation of TMB, and SO2 could compete with TMB to preferentially react with ·OH, resulting in the fading of color blue that could be easily read out by naked eye. LOD was calculated to be 0.53 μM and 5 μM by UV-vis and naked eye, respectively. The method was successfully utilized to analysis of food samples, and the experimental device was miniaturized and easy to construct, thus showing a promising potential in field analysis.
Collapse
Affiliation(s)
- Jie Zhou
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Xiaojie Lin
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Li Zhao
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Ke Huang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Qing Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Huimin Yu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Xiaoli Xiong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| |
Collapse
|
14
|
Newson W, Capezza AJ, Kuktaite R, Hedenqvist MS, Johansson E. Green Chemistry to Modify Functional Properties of Crambe Protein Isolate-Based Thermally Formed Films. ACS OMEGA 2023; 8:20342-20351. [PMID: 37323394 PMCID: PMC10268266 DOI: 10.1021/acsomega.3c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Proteins are promising precursors to be used in production of sustainable materials with properties resembling plastics, although protein modification or functionalization is often required to obtain suitable product characteristics. Here, effects of protein modification were evaluated by crosslinking behavior using high-performance liquid chromatography (HPLC), secondary structure using infrared spectroscopy (IR), liquid imbibition and uptake, and tensile properties of six crambe protein isolates modified in solution before thermal pressing. The results showed that a basic pH (10), especially when combined with the commonly used, although moderately toxic, crosslinking agent glutaraldehyde (GA), resulted in a decrease in crosslinking in unpressed samples, as compared to acidic pH (4) samples. After pressing, a more crosslinked protein matrix with an increase in β-sheets was obtained in basic samples compared to acidic samples, mainly due to the formation of disulfide bonds, which led to an increase in tensile strength, and liquid uptake with less material resolved. A treatment of pH 10 + GA, combined either with a heat or citric acid treatment, did not increase crosslinking or improve the properties in pressed samples, as compared to pH 4 samples. Fenton treatment at pH 7.5 resulted in a similar amount of crosslinking as the pH 10 + GA treatment, although with a higher degree of peptide/irreversible bonds. The strong bond formation resulted in lack of opportunities to disintegrate the protein network by all extraction solutions tested (even for 6 M urea + 1% sodium dodecyl sulfate + 1% dithiothreitol). Thus, the highest crosslinking and best properties of the material produced from crambe protein isolates were obtained by pH 10 + GA and pH 7.5 + Fenton, where Fenton is a greener and more sustainable solution than GA. Therefore, chemical modification of crambe protein isolates is effecting both sustainability and crosslinking behavior, which might have an effect on product suitability.
Collapse
Affiliation(s)
- William
R. Newson
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Antonio J. Capezza
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
- Department
of Fibre and Polymer Technology, Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Ramune Kuktaite
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Mikael S. Hedenqvist
- Department
of Fibre and Polymer Technology, Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Eva Johansson
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| |
Collapse
|
15
|
Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem 2023; 7:302-318. [PMID: 37165164 DOI: 10.1038/s41570-023-00486-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 05/12/2023]
Abstract
Silk fibroin has applications in different medical fields such as tissue engineering, regenerative medicine, drug delivery and medical devices. Advances in silk chemistry and biomaterial designs have yielded exciting tools for generating new silk-based materials and technologies. Selective chemistries can enhance or tune the features of silk, such as mechanics, biodegradability, processability and biological interactions, to address challenges in medically relevant materials (hydrogels, films, sponges and fibres). This Review details the design and utility of silk biomaterials for different applications, with particular focus on chemistry. This Review consists of three segments: silk protein fundamentals, silk chemistries and functionalization mechanisms. This is followed by a description of different crosslinking chemistries facilitating network formation, including the formation of composite biomaterials. Utility in the fields of tissue engineering, drug delivery, 3D printing, cell coatings, microfluidics and biosensors are highlighted. Looking to the future, we discuss silk biomaterial design strategies to continue to improve medical outcomes.
Collapse
Affiliation(s)
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Thomas Falcucci
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
16
|
Photopolymerized silk fibroin gel for advanced burn wound care. Int J Biol Macromol 2023; 233:123569. [PMID: 36758758 DOI: 10.1016/j.ijbiomac.2023.123569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
The future of burn wound treatment lies in developing bioactive dressings for faster and more effective healing and regeneration. Silk fibroin (SF) hydrogels have proven regenerative abilities and are being explored as a burn wound dressing. However, unfavorable gelation conditions limit the processability and clinical application. Herein a white light-responsive photopolymerization technique was adapted for gelation via photooxidation of tyrosine. To render the gel suitable for application to irregular and non-planar burn surfaces, SF gel-incorporated dressing (SFD) was fabricated. The mild gelation conditions using white light afforded the loading of drugs for local delivery. The moisture balance ability of the dressing was confirmed by the favorable measures of swelling capacity (106 ± 1 %) and moisture retention (≈10 h). The in vitro cytocompatibility of the gel was confirmed using HaCaT cells. Finally, in vivo performance of the SFD was tested on a second-degree burn in a rodent model. The gross analysis and histological assessment revealed scarless healing in SFD-treated groups. Overall, the SFD developed in this work is shown to be a promising candidate for advanced burn wound care.
Collapse
|
17
|
Sahoo JK, Xu D, Falcucci T, Choi J, Hasturk O, Clark DS, Kaplan DL. Horseradish Peroxidase Catalyzed Silk-Prefoldin Composite Hydrogel Networks. ACS APPLIED BIO MATERIALS 2023; 6:203-208. [PMID: 36580433 DOI: 10.1021/acsabm.2c00836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-based hydrogel biomaterials provide a platform for different biological applications, including the encapsulation and stabilization of different biomolecules. These hydrogel properties can be modulated by controlling the design parameters to match specific needs; thus, multicomponent hydrogels have distinct advantages over single-component hydrogels due to their enhanced versatility. Here, silk fibroin and γ-prefoldin chaperone protein based composite hydrogels were prepared and studied. Different ratios of the proteins were chosen, and the hydrogels were prepared by enzyme-assisted cross-linking. The secondary structure of the two proteins, dityrosine bond formation, and mechanical properties were assessed. The results obtained can be used as a platform for the rational design of composite thermostable hydrogel biomaterials to facilitate protection (due to hydrogel mechanics) and retention of bioactivity (e.g., of enzymes and other biomolecules) due to chaperone-like properties of γ-prefoldin.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Dawei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.,CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, China
| | - Thomas Falcucci
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States.,Department of Polymer Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
18
|
Gonzalez-Obeso C, Jane Hartzell E, Albert Scheel R, Kaplan DL. Delivering on the promise of recombinant silk-inspired proteins for drug delivery. Adv Drug Deliv Rev 2023; 192:114622. [PMID: 36414094 PMCID: PMC9812964 DOI: 10.1016/j.addr.2022.114622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Effective drug delivery is essential for the success of a medical treatment. Polymeric drug delivery systems (DDSs) are preferred over systemic administration of drugs due to their protection capacity, directed release, and reduced side effects. Among the numerous polymer sources, silks and recombinant silks have drawn significant attention over the past decade as DDSs. Native silk is produced from a variety of organisms, which are then used as sources or guides of genetic material for heterologous expression or engineered designs. Recombinant silks bear the outstanding properties of natural silk, such as processability in aqueous solution, self-assembly, drug loading capacity, drug stabilization/protection, and degradability, while incorporating specific properties beneficial for their success as DDS, such as monodispersity and tailored physicochemical properties. Moreover, the on-demand inclusion of sequences that customize the DDS for the specific application enhances efficiency. Often, inclusion of a drug into a DDS is achieved by simple mixing or diffusion and stabilized by non-specific molecular interactions; however, these interactions can be improved by the incorporation of drug-binding peptide sequences. In this review we provide an overview of native sources for silks and silk sequences, as well as the design and formulation of recombinant silk biomaterials as drug delivery systems in a variety of formats, such as films, hydrogels, porous sponges, or particles.
Collapse
Affiliation(s)
- Constancio Gonzalez-Obeso
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Emily Jane Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - Ryan Albert Scheel
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA.
| |
Collapse
|
19
|
Laomeephol C, Ferreira H, Kanokpanont S, Luckanagul JA, Neves NM, Damrongsakkul S. Osteogenic differentiation of encapsulated cells in dexamethasone-loaded phospholipid-induced silk fibroin hydrogels. BIOMATERIALS TRANSLATIONAL 2022; 3:213-220. [PMID: 36654777 PMCID: PMC9840088 DOI: 10.12336/biomatertransl.2022.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 01/20/2023]
Abstract
The tissue engineering triad comprises the combination of cells, scaffolds and biological factors. Therefore, we prepared cell- and drug-loaded hydrogels using in situ silk fibroin (SF) hydrogels induced by dimyristoyl glycerophosphoglycerol (DMPG). DMPG is reported to induce rapid hydrogel formation by SF, facilitating cell encapsulation in the hydrogel matrix while maintaining high cell viability and proliferative capacity. In addition, DMPG can be used for liposome formulations in entrapping drug molecules. Dexamethasone (Dex) was loaded into the DMPG-induced SF hydrogels together with human osteoblast-like SaOS-2 cells, then the osteogenic differentiation of the entrapped cells was evaluated in vitro and compared to cells cultured under standard conditions. Calcium production by cells cultured in DMPG/Dex-SF hydrogels with Dex-depleted osteogenic medium was equivalent to that of cells cultured in conventional osteogenic medium containing Dex. The extended-release of the entrapped Dex by the hydrogels was able to provide a sufficient drug amount for osteogenic induction. The controlled release of Dex was also advantageous for cell viability even though its dose in the hydrogels was far higher than that in osteogenic medium. The results confirmed the possibility of using DMPG-induced SF hydrogels to enable dual cell and drug encapsulation to fulfil the practical applications of tissue-engineered constructs.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand,Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Helena Ferreira
- 3B’s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal,ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sorada Kanokpanont
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Bangkok, Thailand,Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand,Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Nuno M. Neves
- 3B’s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal,ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Siriporn Damrongsakkul
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Bangkok, Thailand,Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand,Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand,Corresponding author: Siriporn Damrongsakkul,
| |
Collapse
|
20
|
Shi M, Li N, Xing R, Jiao T. Peroxidase-triggered formation of fluorescent peptide-based nanoarchitectonics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Ultrafast gelation of silk fibroin-assisted conductive hydrogel with long-term environmental stability using self-catalytic dopamine/metal/H2O2 system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Intraarticularly injectable silk hydrogel microspheres with enhanced mechanical and structural stability to attenuate osteoarthritis. Biomaterials 2022; 286:121611. [PMID: 35660867 DOI: 10.1016/j.biomaterials.2022.121611] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/22/2022] [Accepted: 05/29/2022] [Indexed: 12/18/2022]
Abstract
A silk fibroin (silk) hydrogel was prepared by using diglycidyl ether (BDDE), a chemical crosslinker commonly used to generate Food and Drug Administration (FDA)-approved hyaluronic acid (HA) medical products. The silk/BDDE hydrogels exhibited high elasticity (compressive modulus of 166 ± 15.0 kPa), anti-fatigue properties, and stable structure and mechanical strength in aqueous solution. Chemical crosslinking was conducted in a high concentration (9.3 M) of lithium bromide (LiBr) solution, a salt that is commonly used to dissolve degummed silk fibers during silk solubilization. The unfolded and extended structure of silk molecules with these reaction conditions, as well as the unique ionic environment provided by LiBr facilitated a high degree of crosslinking in the hydrogel. Similar hydrogels were not obtained when the silk was dissolved in other silk fiber-dissolving reagents (e.g., Ajisawa's, formic acid (FA)/LiBr, FA/CaCl2 solutions), likely because partially folded silk structures and the ionic conditions with these reagents were less favorable for the crosslinking reaction. Based on these findings, silk/BDDE hydrogel spheres were prepared using an oil/water (o/w) emulsification method and biocompatibility and biodegradation were evaluated in vivo, along with other silk gel control systems (e.g., enzyme-catalyzed di-tyrosine and pulverized silk/BDDE gel particles with irregular shapes). Histological and immunohistochemical analyses demonstrated that the silk/BDDE hydrogel spheres were biocompatible and served as a bio-lubricant to treat osteoarthritis (OA). The intra-articular injection of the gel spheres reduced pain as measured with OA rats, reduced cartilage damage and resisted the digestive environment in the articular cavity for extended time frames (>4 weeks), suggesting utility for pain relief and sustained drug release for future OA treatments.
Collapse
|
23
|
Wu J, Sahoo JK, Li Y, Xu Q, Kaplan DL. Challenges in delivering therapeutic peptides and proteins: A silk-based solution. J Control Release 2022; 345:176-189. [PMID: 35157939 PMCID: PMC9133086 DOI: 10.1016/j.jconrel.2022.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Peptide- and protein-based therapeutics have drawn significant attention over the past few decades for the treatment of infectious diseases, genetic disorders, oncology, and many other clinical needs. Yet, protecting peptide- and protein-based drugs from degradation and denaturation during processing, storage and delivery remain significant challenges. In this review, we introduce the properties of peptide- and protein-based drugs and the challenges associated with their stability and delivery. Then, we discuss delivery strategies using synthetic polymers and their advantages and limitations. This is followed by a focus on silk protein-based materials for peptide/protein drug processing, storage, and delivery, as a path to overcome stability and delivery challenges with current systems.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Yamin Li
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
24
|
Han Y, Sun L, Wen C, Wang Z, Dai J, Shi L. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Biomed Mater 2022; 17. [PMID: 35147523 DOI: 10.1088/1748-605x/ac5416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
Abstract
Conductive hydrogels have been studied as promising materials for the flexible and wearable bioelectronics, because of their unique electrical and mechanical properties. Addition of conducting polymers in biomaterial-based hydrogel matrix is a simple yet effective way to construct hydrogels with good conductivity and flexibility. In this work, a conductive hydrogel composed by a silk hydrogel and a conducting polymer, polypyrrole (PPy), is developed via in-situ polymerization of pyrrole into the silk fibroin network. The silk-PPy hydrogel shows high conductivity (26 S/m), as well as sensitive and fast responses to corresponding conformation changes. Taking advantages of these properties, flexible and wearable strain sensors are proposed for the monitoring of various body movements, which can detect both the large and subtle human motions with good sensitivity, reproducibility and stability. The hybridization of biomaterials and conducting polymers endows the multifunctions of the conductive hydrogels, thus showing considerable potentials in the advancement of the wearable electronics.
Collapse
Affiliation(s)
- Yuanyuan Han
- Biomedical Engineering, College of Biology , Hunan University, 27 Tianma Road, Changsha, 410082, CHINA
| | - Lu Sun
- Biomedical Engineering, College of Biology , Hunan University, 27 Tianma Road, Changsha, 410082, CHINA
| | - Chenyu Wen
- Department of Engineering Sciences, Uppsala Universitet, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 751 03, SWEDEN
| | - Zhaohui Wang
- Hunan University College of Materials Science and Engineering, 27 Tianma Road, Changsha, Hunan, 410082, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Liyang Shi
- Biomedical Engineering, College of Biology , Hunan University, 27 Tianma Road, Changsha, 410082, CHINA
| |
Collapse
|
25
|
Sahoo JK, Hasturk O, Choi J, Montero MM, Descoteaux ML, Laubach IA, Kaplan DL. Sugar Functionalization of Silks with Pathway-Controlled Substitution and Properties. Adv Biol (Weinh) 2021; 5:e2100388. [PMID: 33929098 PMCID: PMC8266746 DOI: 10.1002/adbi.202100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Silk biomaterials are important for applications in biomedical fields due to their outstanding mechanical properties, biocompatibility, and tunable biodegradation. Chemical functionalization of silk by various chemistries can be leveraged to enhance and tune these features and enable the expansion of silk-based biomaterials into additional fields. Sugars are particularly relevant for intracellular communication, signal transduction events, as well as in hydrated extracellular matrices such as in cartilage, vitreous, and brain tissues. Multiple reaction pathways are demonstrated (carboxylation of serines followed by carbodiimide coupling with glucosamine, carboxylation of tyrosines followed by carbodiimide coupling with glucosamine; direct carbodiimide coupling of the inherent carboxylic acids of silk (aspartic and glutamic acid) with glucosamine) for the covalent conjugation of glucosamine onto silk with characterization by proton nuclear magnetic resonance (1 H-NMR), liquid chromatography tandem mass spectroscopy (LC-MS), water contact angle (WCA), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that different pathways substitute different amounts of glucosamine onto silk chains, with control over resulting material properties, including hydrophobicity/hydrophilicity and biological responses. The aqueous processability of these conjugates into functional material formats (films, sponges) is assessed. These new classes of bio-inspired materials can lead to multifunctional biomaterials for potential applications in different fields of biomedical engineering.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Maria M Montero
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Marc L Descoteaux
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Isabel A Laubach
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| |
Collapse
|
26
|
Ding Z, Cheng W, Mia MS, Lu Q. Silk Biomaterials for Bone Tissue Engineering. Macromol Biosci 2021; 21:e2100153. [PMID: 34117836 DOI: 10.1002/mabi.202100153] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Silk is a natural fibrous polymer with application potential in regenerative medicine. Increasing interest remains for silk materials in bone tissue engineering due to their characteristics in biocompatibility, biodegradability and mechanical properties. Plenty of the in vitro and in vivo studies confirmed the advantages of silk in accelerating bone regeneration. Silk is processed into scaffolds, hydrogels, and films to facilitate different bone regenerative applications. Bioactive factors such as growth factors and drugs, and stem cells are introduced to silk-based matrices to create friendly and osteogenic microenvironments, directing cell behaviors and bone regeneration. The recent progress in silk-based bone biomaterials is discussed and focused on different fabrication and functionalization methods related to osteogenesis. The challenges and potential targets of silk bone materials are highlighted to evaluate the future development of silk-based bone materials.
Collapse
Affiliation(s)
- Zhaozhao Ding
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Weinan Cheng
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, Xiamen, 361000, P. R. China
| | - Md Shipan Mia
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
27
|
Piluso S, Flores Gomez D, Dokter I, Moreira Texeira L, Li Y, Leijten J, van Weeren R, Vermonden T, Karperien M, Malda J. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking. J Mater Chem B 2021; 8:9566-9575. [PMID: 33001117 DOI: 10.1039/d0tb01731k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioactive hydrogels based on naturally-derived polymers are of great interest for regenerative medicine applications. Among naturally-derived polymers, silk fibroin has been extensively explored as a biomaterial for tissue engineering due to its unique mechanical properties. Here, we demonstrate the rapid gelation of cell-laden silk fibroin hydrogels by visible light-induced crosslinking using riboflavin as a photo-initiator, in presence of an electron acceptor. The gelation kinetics were monitored by in situ photo-rheometry. Gelation was achieved in minutes and could be tuned owing to its direct proportionality to the electron acceptor concentration. The concentration of the electron acceptor did not affect the elastic modulus of the hydrogels, which could be altered by varying the polymer content. Further, the biocompatible riboflavin photo-initiator combined with sodium persulfate allowed for the encapsulation of cells within silk fibroin hydrogels. To confirm the cytocompatibility of the silk fibroin formulations, three cell types (articular cartilage-derived progenitor cells, mesenchymal stem cells and dental-pulp-derived stem cells) were encapsulated within the hydrogels, which associated with a viability >80% for all cell types. These results demonstrated that fast gelation of silk fibroin can be achieved by combining it with riboflavin and electron acceptors, which results in a hydrogel that can be used in tissue engineering and cell delivery applications.
Collapse
Affiliation(s)
- Susanna Piluso
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. and Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands and Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Daniela Flores Gomez
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. and Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Inge Dokter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. and Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Liliana Moreira Texeira
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands and Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Yang Li
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. and Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - René van Weeren
- Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands and Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB, Utrecht, The Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands. and Regenerative Medicine Utrecht, Utrecht University, Utrecht, The Netherlands and Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
29
|
Choi J, Hasturk O, Mu X, Sahoo JK, Kaplan DL. Silk Hydrogels with Controllable Formation of Dityrosine, 3,4-Dihydroxyphenylalanine, and 3,4-Dihydroxyphenylalanine-Fe 3+ Complexes through Chitosan Particle-Assisted Fenton Reactions. Biomacromolecules 2021; 22:773-787. [PMID: 33405916 DOI: 10.1021/acs.biomac.0c01539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidation of tyrosine residues of silk fibroin involves the generation of dityrosine and 3,4-dihydroxyphenylalanine (DOPA). However, it remains a challenge to selectively control the reaction pathway to produce dityrosine or DOPA in a selective fashion. Here, silk hydrogels with controllable formation of not only dityrosine and DOPA but also DOPA-Fe3+ complexes within the cross-linked networks were developed. The use of chitosan particles in the Fenton reaction allowed the interaction of Fe3+ ions with silk fibroin to be limited through the adsorption of Fe3+ ions onto chitosan particles by manipulating contact time between the reaction medium and chitosan particles. This led to significant suppression of the premature formation of β-sheet structures that cause steric hindrance to the collisions between tyrosyl radicals and thus enabled higher selectivity toward the formation of dityrosine than DOPA. Remarkably, the addition of ethylenediaminetetraacetic acid (EDTA) to the chitosan particle-assisted Fenton reactions resulted in hydrogels that significantly favored the formation of DOPA over dityrosine due to the increase in the hydroxylation of phenol in the presence of EDTA. Despite the existence of Fe3+-EDTA complexes, Raman spectra indicated the DOPA-Fe3+ complexation in the hydrogels. Mechanistically, the hydrogel networks with small-sized and uniformly distributed β-sheet structures as well as the abundance of DOPA appear to make non-EDTA-chelated Fe3+ ions more accessible to complexation with DOPA. These findings have important implications for understanding the oxidation of tyrosine residues of silk fibroin by metal-catalyzed oxidation systems with potential benefits for future studies on silk protein-based hydrogels capable of generating intrinsic adhesive features as well as for exploring dual-cross-linked silk hydrogels constructed by chemical cross-linking and metal-coordinate complexation.
Collapse
Affiliation(s)
- Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| |
Collapse
|
30
|
Mu X, Sahoo JK, Cebe P, Kaplan DL. Photo-Crosslinked Silk Fibroin for 3D Printing. Polymers (Basel) 2020; 12:E2936. [PMID: 33316890 PMCID: PMC7763742 DOI: 10.3390/polym12122936] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Silk fibroin in material formats provides robust mechanical properties, and thus is a promising protein for 3D printing inks for a range of applications, including tissue engineering, bioelectronics, and bio-optics. Among the various crosslinking mechanisms, photo-crosslinking is particularly useful for 3D printing with silk fibroin inks due to the rapid kinetics, tunable crosslinking dynamics, light-assisted shape control, and the option to use visible light as a biocompatible processing condition. Multiple photo-crosslinking approaches have been applied to native or chemically modified silk fibroin, including photo-oxidation and free radical methacrylate polymerization. The molecular characteristics of silk fibroin, i.e., conformational polymorphism, provide a unique method for crosslinking and microfabrication via light. The molecular design features of silk fibroin inks and the exploitation of photo-crosslinking mechanisms suggest the exciting potential for meeting many biomedical needs in the future.
Collapse
Affiliation(s)
- Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (J.K.S.)
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (J.K.S.)
| | - Peggy Cebe
- Department of Physics and Astronomy, Tufts University, Medford, MA 02155, USA;
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (X.M.); (J.K.S.)
| |
Collapse
|
31
|
Huang X, Zhang M, Ming J, Ning X, Bai S. High-Strength and High-Toughness Silk Fibroin Hydrogels: A Strategy Using Dynamic Host-Guest Interactions. ACS APPLIED BIO MATERIALS 2020; 3:7103-7112. [PMID: 35019370 DOI: 10.1021/acsabm.0c00933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural polymer-based hydrogels attract great attention because of their inherent biocompatibility and controllable biodegradability. However, the broad applications of these hydrogels require a combination of high mechanical strength, high toughness, fatigue resistance, as well as self-healing. The integration of this combination into one natural polymer-based hydrogel remains challenging. Here, a molecular design strategy was proposed to fabricate mechanically robust silk fibroin-based hydrogels using host-guest interactions. Silk fibroin molecules was chemically modified with cholesterol (Chol, guest) or β-cyclodextrin (β-CD, host), and host-guest interaction between Chol and β-CD moieties drove the supramolecular assemblies of hydrogels. The dissociation/reassociation behavior of host-guest complexation, serving as sacrificial bonds, endowed hydrogels with effective energy dissipation and rapid self-healing ability. The prepared silk fibroin-based hydrogels exhibited high mechanical strength, high toughness, and remarkable fatigue resistance, superior to conventional silk fibroin hydrogels. Moreover, due to reversible host-guest interactions, hydrogels achieved facile functional recovery after damage without any external stimuli. This design strategy provides an avenue to develop natural polymer-based materials with robust mechanical properties, thus broadening current hydrogel applications.
Collapse
Affiliation(s)
- Xiaowei Huang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Mengya Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xin Ning
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
32
|
Sahoo JK, Choi J, Hasturk O, Laubach I, Descoteaux ML, Mosurkal S, Wang B, Zhang N, Kaplan DL. Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomater Sci 2020; 8:4176-4185. [PMID: 32608410 PMCID: PMC7390697 DOI: 10.1039/d0bm00512f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogels provide promising applications in tissue engineering and regenerative medicine, with silk fibroin (SF) offering biocompatibility, biodegradability and tunable mechanical properties. The molecular weight (MW) distribution of SF chains varies from ∼80 to 400 kDa depending on the extraction and purification process utilized to prepare the protein polymer. Here, we report a fundamental study on the effect of different silk degumming (extraction) time (DT) on biomaterial properties of enzymatically crosslinked hydrogels, including secondary structure, mechanical stiffness, in vitro degradation, swelling/contraction, optical transparency and cell behaviour. The results indicate that DT plays a crucial role in determining material properties of the hydrogel; decrease in DT increases β-sheet (crystal) formation and mechanical stiffness while decreasing degradation rate and optical transparency. The findings on the relationships between properties of silk hydrogels and DT should facilitate the more rational design of silk-based hydrogel biomaterials to match properties needed for diverse purpose in biomedical engineering.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Isabel Laubach
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Marc L Descoteaux
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Shreyas Mosurkal
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Boyang Wang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - Nina Zhang
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
33
|
Hasturk O, Sahoo JK, Kaplan DL. Synthesis and Characterization of Silk Ionomers for Layer-by-Layer Electrostatic Deposition on Individual Mammalian Cells. Biomacromolecules 2020; 21:2829-2843. [PMID: 32530610 PMCID: PMC7658502 DOI: 10.1021/acs.biomac.0c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanocoating of individual mammalian cells with polymer layers has been of increasing interest in biotechnology and biomedical engineering applications. Electrostatic layer-by-layer (LbL) deposition of polyelectrolytes on negatively charged cell surfaces has been utilized for cell nanocoatings using synthetic or natural polymers with a net charge at physiological conditions. Here, our previous synthesis of silk-based ionomers through modification of silk fibroin (SF) with polyglutamate (PG) and polylysine (PL) was exploited for the nanocoating of mammalian cells. SF-PL constructs were cytotoxic to mammalian cells, thus an alternative approach for the synthesis of silk ionomers through carboxylation and amination of regenerated SF chains was utilized. Through the optimization of material properties and composition of incubation buffers, silk ionomers could be electrostatically assembled on the surface of murine fibroblasts and human mesenchymal stem cells (hMSCs) to form nanoscale multilayers without significantly impairing cell viability. The resulting silk-based protein nanoshells were transient and degraded over time, allowing for cell proliferation. The strategies presented here provide a basis for the cytocompatible nanoencapsulation of mammalian cells within silk-based artificial cell walls, with potential benefits for future studies on surface engineering of mammalian cells, as well as for utility in cell therapies, 3D printing, and preservation.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
34
|
Hasturk O, Jordan KE, Choi J, Kaplan DL. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials 2020; 232:119720. [PMID: 31896515 PMCID: PMC7667870 DOI: 10.1016/j.biomaterials.2019.119720] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/14/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Silk fibroin (SF) was enzymatically crosslinked with tyramine-substituted silk fibroin (SF-TA) or gelatin (G-TA) to fabricate hybrid hydrogels with tunable gelation kinetics, mechanical properties and bioactivity. Horseradish peroxidase (HRP)/hydrogen peroxide (H2O2) mediated crosslinking of SF in physiological buffers results in slow gelation and limited mechanical properties. Moreover, SF lacks cell attachment sequences, leading to poor cell-material interactions. These shortcomings can limit the uses of enzymatically crosslinked silk hydrogels in injectable tissue fillings, 3D bioprinting or cell microencapsulation, where rapid gelation and high bioactivity are desired. Here SF/SF-TA and SF/G-TA composite hydrogels were characterized for hydrogel properties and the influence of conjugated cyclic arginine-glycine-aspartic acid (RGD) peptide or G-TA content on bioactivity was explored. Both SF-TA and G-TA significantly increased gelation kinetics, improved mechanical properties and delayed enzymatic degradation in a concentration-dependent manner. β-Sheet formation and hydrogel stiffening were accelerated by SF-TA content but delayed by G-TA. Both cyclic RGD and G-TA significantly improved morphology and metabolic activity of human mesenchymal stem cells (hMSCs) cultured on or encapsulated in composite hydrogels. The hydrogel formulations introduced in this study provide improved control of gel formation and properties, along with biocompatible systems that can be utilized in tissue engineering and cell delivery applications.
Collapse
Affiliation(s)
- Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Kathryn E Jordan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA.
| |
Collapse
|