1
|
Pan Z, Lu X, Hu X, Yu R, Che Y, Wang J, Xiao L, Chen J, Yi X, Tan Z, Li F, Ling D, Huang P, Ge M. Disrupting glycolysis and DNA repair in anaplastic thyroid cancer with nucleus-targeting platinum nanoclusters. J Control Release 2024; 369:517-530. [PMID: 38569942 DOI: 10.1016/j.jconrel.2024.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/02/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Cancer cells rely on aerobic glycolysis and DNA repair signals to drive tumor growth and develop drug resistance. Yet, fine-tuning aerobic glycolysis with the assist of nanotechnology, for example, dampening lactate dehydrogenase (LDH) for cancer cell metabolic reprograming remains to be investigated. Here we focus on anaplastic thyroid cancer (ATC) as an extremely malignant cancer with the high expression of LDH, and develop a pH-responsive and nucleus-targeting platinum nanocluster (Pt@TAT/sPEG) to simultaneously targets LDH and exacerbates DNA damage. Pt@TAT/sPEG effectively disrupts LDH activity, reducing lactate production and ATP levels, and meanwhile induces ROS production, DNA damage, and apoptosis in ATC tumor cells. We found Pt@TAT/sPEG also blocks nucleotide excision repair pathway and achieves effective tumor cell killing. In an orthotopic ATC xenograft model, Pt@TAT/sPEG demonstrates superior tumor growth suppression compared to Pt@sPEG and cisplatin. This nanostrategy offers a feasible approach to simultaneously inhibit glycolysis and DNA repair for metabolic reprogramming and enhanced tumor chemotherapy.
Collapse
Affiliation(s)
- Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Xixuan Lu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruixi Yu
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jie Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lin Xiao
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqiang Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaofen Yi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhuo Tan
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Fangyuan Li
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China; WLA Laboratories, Shanghai 201203, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| | - Minghua Ge
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Yao W, Peng X, Guan Y, Du X, Xia C, Liu F. Thyroid Nodules: Emerging Trends in Detection and Visualization based on Citespace. Endocr Metab Immune Disord Drug Targets 2024; 24:130-141. [PMID: 37608676 PMCID: PMC10909822 DOI: 10.2174/1871530323666230822143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Thyroid nodule (TN) is a highly prevalent clinical endocrine disease. Many countries have formed guidelines on the prevention and treatment of TN based on extensive research. However, there is a scarcity of TN-related literature based on bibliometrics. OBJECTIVES This study aimed to evaluate the scientific achievements and progress of TN research from a global perspective by investigating the literature for 20 years through bibliometrics. METHODS We searched the literature on TN in the core collection of the Web of Science database from 2002 to 2021 and used the Citespace software to analyze the co-authorship, co-citation, and co-occurrence of countries, institutions, authors, keywords, and co-cited literature. RESULTS We retrieved 12319 documents related to TN. The literature on TN has been growing since 2002. The United States has contributed the largest proportion of TN papers (20.64%), followed by China, Italy, and South Korea. The United States ranked first in terms of centrality (0.38). Haugen BR, Gharib H, and Cibas ES are the top three most cited authors. The papers published in Thyroid were cited most frequently (7952 times). The most prominent keywords were management, cancer, fine needle aspiration, diagnosis, malignant tumor, thyroid cancer, ultrasound, biopsy, benign, surgery, ablation, and cytology. All keywords could be divided into three categories: diagnosis stratification, treatment, and cancer. As far as potential hot spots are concerned, the keywords that have recently burst strongly and are still continuing are: "Association Guideline" (2018-2021), "Radiofrequency Ablation" (2017-2021), "Classification" (2019-2021), and "Data System" (2017-2021). CONCLUSION Based on the current trends, the number of publications on TN will continue to increase. The United States is the most active contributor to research in this field. Previous literature focused on stratification, cancer, surgery, and ablation, and there were different opinions on the stratification of diagnosis. There were relatively few studies on pathogenesis and treatment using medicine. More focus will be placed on association guidelines, radiofrequency ablation, classification, and data system, which may be the next popular topics in TN research.
Collapse
Affiliation(s)
- Wenyan Yao
- Shaanxi Institute of International Trade & Commerce, Xianyang, 712046, China
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Xiujuan Peng
- Shaanxi Institute of International Trade & Commerce, Xianyang, 712046, China
| | - Yunhui Guan
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Conglong Xia
- College of Pharmacy, Dali University, Dali, 671000, China
| | - Feng Liu
- Shaanxi Institute of International Trade & Commerce, Xianyang, 712046, China
- Shaanxi Buchang Pharmaceutical Co., Ltd., Xi'an, 710075, China
| |
Collapse
|
3
|
Borjihan Q, Liang X, Chen T, Xiao D, Zhang Y, Wu H, Zhang Q, Dong A. Biological regulation on iodine using nano-starch for preventing thyroid dysfunction. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132200. [PMID: 37651936 DOI: 10.1016/j.jhazmat.2023.132200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023]
Abstract
The growing incidence of thyroid disease triggered by excess iodine uptake poses a severe health threat throughout the world. Extracellular interference therapies impede iodine transport across the sodium-iodide symporter (NIS) membrane protein and thus prevent excessive iodine uptake by thyroid cells, which may lessen the occurrence of disease. Herein, we for the first time utilized nano-starch particles (St NPs) to regulate iodine transport across the NIS protein of thyroid cells by using extracellular interference therapy. By precisely encapsulating iodine within the cavity of a glucan α-helix via hydrogen bonding, extracellular St NPs prevented excess iodine uptake by thyroid cells in vitro and in vivo; this down-regulated the expression of NIS protein (0.06-fold) and autophagy protein LC3B-II (0.35-fold). We also found that St NPs regulated the metabolic pathway of iodine in zebrafish. We believe this proposed strategy offers a novel insight into controlling iodine uptake by the thyroid and indicates a new direction for preventing iodine-induced thyroid disease.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Xuefang Liang
- College of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Ting Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Douxin Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China
| | - Haixia Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| | - Qing Zhang
- College of Chemistry, Tangshan Normal University, Tangshan 063000, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
4
|
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid cancer. J Mater Chem B 2023; 11:7544-7566. [PMID: 37439780 DOI: 10.1039/d3tb01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Thyroid cancer is the most prevalent malignant neoplasm of the cervical region and endocrine system, characterized by a discernible upward trend in incidence over recent years. Ultrasound-guided fine needle aspiration is the current standard for preoperative diagnosis of thyroid cancer, albeit with limitations and a certain degree of false-negative outcomes. Although differentiated thyroid carcinoma generally exhibits a favorable prognosis, dedifferentiation is associated with an unfavorable clinical course. Anaplastic thyroid cancer, characterized by high malignancy and aggressiveness, remains an unmet clinical need with no effective treatments available. The emergence of nanomedicine has opened new avenues for cancer theranostics. The unique features of nanomaterials, including multifunctionality, modifiability, and various detection modes, enable non-invasive and convenient thyroid cancer diagnosis through multimodal imaging. For thyroid cancer treatment, nanomaterial-based photothermal therapy or photodynamic therapy, combined with chemotherapy, radiotherapy, or gene therapy, holds promise in reducing invasiveness and prolonging patient survival or alleviating pain in individuals with anaplastic thyroid carcinoma. Furthermore, nanomaterials enable simultaneous diagnosis and treatment of thyroid cancer. This review aims to provide a comprehensive survey of the latest developments in nanomaterials for thyroid cancer diagnosis and treatment and encourage further research in developing innovative and effective theranostic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
5
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 184] [Impact Index Per Article: 184.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
6
|
Ma J, Wang Y, Xi X, Tang J, Wang L, Wang L, Wang D, Liang X, Zhang B. Contrast-enhanced ultrasound combined targeted microbubbles for diagnosis of highly aggressive papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2023; 14:1052862. [PMID: 36936158 PMCID: PMC10020640 DOI: 10.3389/fendo.2023.1052862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Background Accurate diagnosis of highly aggressive papillary thyroid cancer (PTC) may greatly help avoid overdiagnosis and overtreatment of PTC. However, there is still a lack of a convenient and accurate method. Targeted microbubbles, an emerging ultrasound contrast agent, have the potential to accurately diagnose highly aggressive PTC. Purpose To design and prepare a targeted microbubble for specific contrast-enhanced ultrasound (CEUS) imaging of highly invasive PTC. Methods Using β-galactoside-binding protein galectin-3 (Gal-3) overexpressed on the surface of highly invasive PTC cells as a target, C12 polypeptide (ANTPCGPYTHDCPVKR) with high affinity and specificity for Gal-3 was coupled to the surface of lipid microbubbles to prepare targeted microbubbles (Gal-3-C12@lipo MBs). The targeted microbubbles were prepared by thin-film hydration method and mechanical shaking method. The morphology, diameter, concentration and stability of microbubbles were investigated by fluorescence microscopy and an AccuSizer. The biosafety of microbubbles was studied using BCPAP cells through CCK8 assay. Confocal laser scanning microscope and flow cytometry were applied to research the cellular uptake of microbubbles to investigate the targeting ability to highly aggressive PTC. Finally, the specific contrast-enhanced ultrasound imaging of microbubbles in highly invasive PTC was validated on the mice bearing subcutaneous BCPAP tumor model via a clinically ultrasound imaging system. Results Gal-3-C12@lipo MBs were successfully prepared which showed a well-defined spherical morphology with an average diameter of 1.598 ± 0.848 μm. Gal-3-C12@lipo MBs showed good stability without rupture within 4 hours after preparation. At the cellular level, Gal-3-C12@lipo MBs exhibited favorable biosafety and superior targeting ability to BCPAP cells, with 2.8-fold higher cellular uptake than non-targeted lipid microbubbles (Lipo MBs). At the animal level, Gal-3-C12@lipo MBs significantly improved the quality of contrast-enhanced ultrasound imaging in highly invasive PTC, with an echo intensity of tumor significantly higher than that of Lipo MBs. Conclusion We designed and fabricated a novel targeted microbubble for the specific ultrasound imaging diagnosis of highly aggressive PTC. The targeted microbubbles have good stability, superior biosafety and high targeting specificity, which can significantly improve the tumor signal-to-noise ratio of highly invasive PTC, and have the potential to facilitate and accurately diagnose highly invasive PTC.
Collapse
Affiliation(s)
- Jiaojiao Ma
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine of Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Xuehua Xi
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Jiajia Tang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linping Wang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- Department of Ultrasound, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liangkai Wang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Wang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Bo Zhang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine of Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Remmers RCPA, Neumann K. Reaching new lights: a review on photo-controlled nanomedicines and their in vivo evaluation. Biomater Sci 2023; 11:1607-1624. [PMID: 36727448 DOI: 10.1039/d2bm01621d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The selective and efficient delivery of bioactive molecules to sites of interest remains a formidable challenge in medicine. In recent years, it has been shown that stimuli-responsive drug delivery systems display several advantages over traditional drug administration such as an improved pharmacokinetic profile and the desirable ability to gain control over release. Light emerged as one of the most powerful stimuli due to its high biocompatibility, spatio-temporal control, and non-invasiveness. On the road to clinical translation, various chemical systems of high complexity have been reported with the aim to improve efficacy, safety, and versatility of drug delivery under complex biological conditions. For future research on the chemical design of such photo-controlled nanomedicines, it is essential to gain an understanding of their in vivo translation and efficiency. Here, we discuss photo-controlled nanomedicines that have been evaluated in vivo and provide an overview of the state-of-the-art that should guide future research design.
Collapse
Affiliation(s)
- Rik C P A Remmers
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Borges MHR, Nagay BE, Costa RC, Souza JGS, Mathew MT, Barão VAR. Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. Adv Colloid Interface Sci 2023; 314:102860. [PMID: 36931199 DOI: 10.1016/j.cis.2023.102860] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.
Collapse
Affiliation(s)
- Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, Sāo Paulo 07023-070, Brazil; Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Mathew T Mathew
- Department of Biomedical Sciences, University of Illinois, College of Medicine, Rockford, IL 61107, USA
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
9
|
Endogenous stimuli-responsive nanoparticles for cancer therapy: From bench to bedside. Pharmacol Res 2022; 186:106522. [DOI: 10.1016/j.phrs.2022.106522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
|
10
|
Miguel F, Barbosa F, Ferreira FC, Silva JC. Electrically Conductive Hydrogels for Articular Cartilage Tissue Engineering. Gels 2022; 8:710. [PMID: 36354618 PMCID: PMC9689960 DOI: 10.3390/gels8110710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Articular cartilage is a highly specialized tissue found in diarthrodial joints, which is crucial for healthy articular motion. Despite its importance, articular cartilage has limited regenerative capacities, and the degeneration of this tissue is a leading cause of disability worldwide, with hundreds of millions of people affected. As current treatment options for cartilage degeneration remain ineffective, tissue engineering has emerged as an exciting approach to create cartilage substitutes. In particular, hydrogels seem to be suitable candidates for this purpose due to their biocompatibility and high customizability, being able to be tailored to fit the biophysical properties of native cartilage. Furthermore, these hydrogel matrices can be combined with conductive materials in order to simulate the natural electrochemical properties of articular cartilage. In this review, we highlight the most common conductive materials combined with hydrogels and their diverse applications, and then present the current state of research on the development of electrically conductive hydrogels for cartilage tissue engineering. Finally, the main challenges and future perspectives for the application of electrically conductive hydrogels on articular cartilage repair strategies are also discussed.
Collapse
Affiliation(s)
- Filipe Miguel
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Barbosa
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Carlos Silva
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Liu N, Mishra K, Stiel AC, Gujrati V, Ntziachristos V. The sound of drug delivery: Optoacoustic imaging in pharmacology. Adv Drug Deliv Rev 2022; 189:114506. [PMID: 35998826 DOI: 10.1016/j.addr.2022.114506] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Optoacoustic (photoacoustic) imaging offers unique opportunities for visualizing biological function in vivo by achieving high-resolution images of optical contrast much deeper than any other optical technique. The method detects ultrasound waves that are generated inside tissue by thermo-elastic expansion, i.e., the conversion of light absorption by tissue structures to ultrasound when the tissue is illuminated by the light of varying intensity. Listening instead of looking to light offers the major advantage of image formation with a resolution that obeys ultrasonic diffraction and not photon diffusion laws. While the technique has been widely used to explore contrast from endogenous photo-absorbing molecules, such as hemoglobin or melanin, the use of exogenous agents can extend applications to a larger range of biological and possible clinical applications, such as image-guided surgery, disease monitoring, and the evaluation of drug delivery, biodistribution, and kinetics. This review summarizes recent developments in optoacoustic agents, and highlights new functions visualized and potent pharmacology applications enabled with the use of external contrast agents.
Collapse
Affiliation(s)
- Nian Liu
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich 80992, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
12
|
Kong X, Chen Q, Wan G, Yang Y, Yu H, Li B, Wu L. Hyaluronic Acid-Enwrapped Polyoxometalate Complex for Synergistic Near Infrared-II Photothermal/Chemo-Therapy and Chemodynamic Therapy. Biomacromolecules 2022; 23:3752-3765. [PMID: 36001455 DOI: 10.1021/acs.biomac.2c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To enhance the efficacy of tumor therapy, the collection of functional components into a targeting system shows advantages over most homogeneous materials in inducing apoptosis of cancer cells. The security and targeting of therapeutic agents also require the effect combination of additional components. However, the construction of multifunctional composites in a simple system with intelligent cooperative responsiveness remains a challenge. Herein, a reduced polyanionic cluster (rP2W18) bearing the absorption at the near infrared (NIR) II region is used as a core carrier to bind the positively charged doxorubicin hydrochloride (DOX) through ionic interaction. To reduce the physiological toxicity, hyaluronic acid grafting β-cyclodextrin side chains is used to cover the ionic complex through host-guest inclusion to DOX. When the nanocomposite is activated by local laser exposure, the final three-component therapeutic agent is demonstrated to present targeted photothermal conversion capability and chemodynamic activity together with chemotherapy. With the controlled release of DOX under the stimulation of mild acidity in the tumor region and photothermal effect, the exposed rP2W18 is aroused by hydrogen peroxide overexpressed in a tumor microenvironment to produce toxic reactive oxygen species, 1O2. This work presents an opportunity for the development of a nanocomposite in NIR-II photothermal/chemo-therapy and chemodynamic synergistic therapy.
Collapse
Affiliation(s)
- Xueping Kong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qiuyan Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, P. R. China
| | - Guofeng Wan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yimeng Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, P. R. China
| | - Huimei Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
13
|
Cyclodextrin-Based Nanoplatforms for Tumor Phototherapy: An Update. Pharmaceutics 2022; 14:pharmaceutics14071375. [PMID: 35890271 PMCID: PMC9323899 DOI: 10.3390/pharmaceutics14071375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor phototherapies are light-mediated tumor treatment modalities, which usually refer to tumor photothermal therapy (PTT) and photodynamic therapy (PDT). Due to the outstanding spatial-temporal control over treatment through light irradiation, tumor phototherapies display extremely low side effects during treatment and are believed to be a tumor treatment method with a clinical translation potential. However, current tumor phototherapy nanoplatforms face obstacles, including light irradiation-induced skin burning, tumor hypoxia microenvironments, limited light penetration depth, et al. Therefore, one important research direction is developing a tumor phototherapy nanoplatform with multifunctionality and enhanced pharmacological effects to overcome the complexity of tumor treatment. On the other hand, cyclodextrins (CDs) are starch-originated circular oligosaccharides with negligible toxicity and have been used to form supermolecular nanostructures through a host–guest interaction between the inner cavity of CDs and functional biomolecules. In the past few years, numerous studies have focused on CD-based multifunctional tumor phototherapy nanoplatforms with an enhanced photoeffect, responsive morphological transformation, and elevated drug bioavailability. This review focuses on the preparation methods of CD-based tumor phototherapy nanoplatforms and their unique physiochemical properties for improving anti-tumor pharmacological efficacy.
Collapse
|
14
|
Chen S, Wang Y, Zhang X, Ma J, Wang M. Double-crosslinked bifunctional hydrogels with encapsulated anti-cancer drug for bone tumor cell ablation and bone tissue regeneration. Colloids Surf B Biointerfaces 2022; 213:112364. [PMID: 35219965 DOI: 10.1016/j.colsurfb.2022.112364] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/11/2021] [Accepted: 01/23/2022] [Indexed: 12/14/2022]
Abstract
Many biomaterials are made and studied to provide anticancer therapy, and many other biomaterials have been developed to assist body tissue regeneration. It has been a challenge to design and produce effective multifunctional, or bifunctional, biomaterials for clinical applications to prevent cancer recurrence and, at the same time, to promote new tissue formation after surgical removal of the tumor for millions of cancer patients. In this study, bifunctional UV and Sr2+ double-crosslinked alginate (ALG)/allylated gelatin (GelAGE) hydrogels incorporated with polydopamine (PDA) particles were designed and made. Furthermore, doxorubicin hydrochloride (DOX), an anticancer drug, was incorporated in PDA particles. It was aimed for the new ALG/GelAGE-PDA@DOX hydrogels to exhibit anticancer synergy and hence provide combined chemotherapy and phototherapy (PTT) for bone tumor cell ablation. In vitro experiments using MG63 osteosarcoma cells showed that ALG/GelAGE-PDA@DOX hydrogels could effectively kill tumor cells through the synergy of controlled DOX release and hyperthermia ablation. It was also aimed for the new hydrogels to facilitate bone tissue regeneration at the original bone tumor site. The results of in vitro experiments demonstrated that owing to the release of Sr2+, the new hydrogels could promote the proliferation of rat bone mesenchymal stem cells (rBMSCs) and also the alkaline phosphatase (ALP) activity of cells, indicating their osteogenic promotion ability. The ALG/GelAGE-PDA@DOX hydrogels have therefore exhibited great potential for the treatment of bone tumor-related defects.
Collapse
Affiliation(s)
- Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yue Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong; Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun Ma
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
15
|
Xu M, Zhao D, Chen Y, Chen C, Zhang L, Sun L, Chen J, Tang Q, Sun S, Ma C, Liang X, Wang S. Charge Reversal Polypyrrole Nanocomplex-Mediated Gene Delivery and Photothermal Therapy for Effectively Treating Papillary Thyroid Cancer and Inhibiting Lymphatic Metastasis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14072-14086. [PMID: 35289594 DOI: 10.1021/acsami.1c25179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a traditional treatment for papillary thyroid cancer (PTC), surgical resection of diseased tissues often brings lots of inconveniences to patients, and the tumor recurrence and metastasis are difficult to avoid. Herein, we developed a gene and photothermal combined therapy nanosystem based on a polypyrrole (Ppy)-poly(ethylene imine)-siILK nanocomplex (PPRILK) to achieve minimally invasive ablation and lymphatic metastasis inhibition in PTC simultaneously. In this system, gelatin-stabilized Ppy mainly acted as a photothermal- and photoacoustic (PA)-responsive nanomaterial and contributed to its well-behaved photosensitivity in the near-infrared region. Moreover, gelatin-stabilized Ppy possessed a charge reversal function, facilitating the tight conjunction of siILK gene at physiological pH (7.35-7.45) and its automatic release into acidic lysosomes (pH 4.0-5.5); the proton sponge effect generated during this process further facilitated the escape of siILK from lysosomes to the cytoplasm and played its role in inhibiting PTC proliferation and lymphatic metastasis. With the guidance of fluorescence and PA bimodal imaging, gene delivery and Ppy location in tumor regions could be clearly observed. As a result, tumors were completely eradicated by photothermal therapy, and the recurrences and metastases were obviously restrained by siILK.
Collapse
Affiliation(s)
- Menghong Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Duo Zhao
- Department of Ultrasound, Ordos City Central Hospital, Ordos City, Inner Mongolia 017000, P. R. China
| | - Yuwen Chen
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Chaoyi Chen
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Lihong Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Jing Chen
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Cheng Ma
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| | - Shumin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, P. R. China
| |
Collapse
|
16
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
17
|
Advances in Biomarker-Driven Targeted Therapies in Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13246194. [PMID: 34944814 PMCID: PMC8699087 DOI: 10.3390/cancers13246194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This article reviews current treatment practices for thyroid cancer with a focus on novel targeted molecular therapy. Rapidly expanding knowledge of the molecular biology of these cancers coupled with the increased availability of genetic testing has led to exciting paradigm shifts in treatment strategies for these tumor types. We aim to provide up-to-date information on these state-of-the-art therapies as a guide for clinicians who specialize in the treatments of thyroid cancer. Abstract Thyroid cancer is the most common type of endocrine malignancy comprising 2–3% of all cancers, with a constant rise in the incidence rate. The standard first-line treatments for thyroid cancer include surgery and radioactive iodine ablation, and a majority of patients show a good response to these therapies. Despite a better response and outcome, approximately twenty percent of patients develop disease recurrence and distant metastasis. With improved knowledge of molecular dysregulation and biological characteristics of thyroid cancer, the development of new treatment strategies comprising novel targets has accelerated. Biomarker-driven targeted therapies have now emerged as a trend for personalized treatments in patients with advanced cancers, and several multiple receptor kinase inhibitors have entered clinical trials (phase I/II/III) to evaluate their safety and efficacy. Most extensively investigated and clinically approved targeted therapies in thyroid cancer include the tyrosine receptor kinase inhibitors that target antiangiogenic markers, BRAF mutation, PI3K/AKT, and MAPK pathway components. In this review, we focus on the current advances in targeted mono- and combination therapies for various types of thyroid cancer.
Collapse
|
18
|
Zhou B, Yin C, Feng Q, Wu Y, Pan X, Liu C, Tian J, Geng S, Wang K, Xing J, Cao Y, Shou P, Yu Z, Wu A. Polypyrrole-based nanotheranostic agent for MRI guided photothermal-chemodynamic synergistic cancer therapy. NANOSCALE 2021; 13:19085-19097. [PMID: 34761764 DOI: 10.1039/d1nr05508a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polypyrrole (PPy) nanoparticles have been widely studied in tumor photothermal therapy (PTT) for their significant photostability, good biocompatibility, and excellent photothermal performance. Herein, we report bovine serum albumin (BSA) stabilized PPy that were mineralized by MnO2 nanozyme on the surface (PPy@BSA-MnO2) to achieve synergistic photothermal and chemodynamic therapy (CDT) for breast cancer. In this multifunctional nanoplatform, the surface-loaded MnO2 undergoes a redox reaction with glutathione (GSH) to generate glutathione disulfide (GSSG) and Mn2+. Then, Mn2+ can convert H2O2 into a highly cytotoxic ˙OH to achieve chemodynamic therapy (CDT) and possess good magnetic resonance (MR) T1-weighted imaging capabilities to realize contrast imaging of the 4T1 tumor-bearing mouse models. In addition, PPy nanoparticles can efficiently convert near-infrared light energy into heat and achieve PTT. Most importantly, PPy@BSA-MnO2 nanoprobes have excellent in vitro 4T1 cell-killing effect and in vivo tumor-suppressive properties. The acute toxicity assessment results indicate that PPy@BSA-MnO2 nanoprobes have good biological safety. Therefore, the as-prepared multifunctional PPy@BSA-MnO2 nanoprobes possess excellent performance to promote MRI-guided PTT/CDT synergistic therapy for breast cancer treatment and have extensive clinical transformation and application prospects.
Collapse
Affiliation(s)
- Bangyi Zhou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Chenhui Yin
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Qiang Feng
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Yiting Wu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Xiaoyu Pan
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315201, P. R. China.
| | - Jinjin Tian
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Siqi Geng
- College of Life Science, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China
| | - Kexin Wang
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315201, P. R. China.
| | - Yi Cao
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315201, P. R. China.
| | - Pingbo Shou
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Zhangsen Yu
- Laboratory of Nanomedicine, Medical Science Research Center, School of Medicine, Shaoxing University, Shaoxing City, Zhejiang Province, 312000, P. R. China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang Province, 315201, P. R. China.
| |
Collapse
|
19
|
Galectins in Cancer and the Microenvironment: Functional Roles, Therapeutic Developments, and Perspectives. Biomedicines 2021; 9:biomedicines9091159. [PMID: 34572346 PMCID: PMC8465754 DOI: 10.3390/biomedicines9091159] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Changes in cell growth and metabolism are affected by the surrounding environmental factors to adapt to the cell’s most appropriate growth model. However, abnormal cell metabolism is correlated with the occurrence of many diseases and is accompanied by changes in galectin (Gal) performance. Gals were found to be some of the master regulators of cell–cell interactions that reconstruct the microenvironment, and disordered expression of Gals is associated with multiple human metabolic-related diseases including cancer development. Cancer cells can interact with surrounding cells through Gals to create more suitable conditions that promote cancer cell aggressiveness. In this review, we organize the current understanding of Gals in a systematic way to dissect Gals’ effect on human disease, including how Gals’ dysregulated expression affects the tumor microenvironment’s metabolism and elucidating the mechanisms involved in Gal-mediated diseases. This information may shed light on a more precise understanding of how Gals regulate cell biology and facilitate the development of more effective therapeutic strategies for cancer treatment by targeting the Gal family.
Collapse
|
20
|
NIR light-responsive nanocarriers for controlled release. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100420] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Zhai L, Luo C, Gao H, Du S, Shi J, Wang F. A Dual pH-Responsive DOX-Encapsulated Liposome Combined with Glucose Administration Enhanced Therapeutic Efficacy of Chemotherapy for Cancer. Int J Nanomedicine 2021; 16:3185-3199. [PMID: 34007173 PMCID: PMC8121622 DOI: 10.2147/ijn.s303874] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/22/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The acidic microenvironment of cancer can promote tumor metastasis and drug resistance. Acidic tumor microenvironment-targeted therapy is currently an important means for treating tumors, inhibiting metastasis, and overcoming drug resistance. In this study, a dual pH-responsive DOX-encapsulated liposome (DOPE-DVar7-lip@DOX) was designed and fabricated for targeting the acidic tumor microenvironment. On the one hand, the response of acid-sensitive peptide (DVar7) to the acidic tumor microenvironment increased the uptake of liposomes in tumors and prolonged the retention time; on the other hand, the response of acid-sensitive phospholipid (DOPE) to the acidic tumor microenvironment improved the controlled release of DOX in tumors. METHODS The acid-sensitive peptide DVar7 modified liposomes can be obtained by simple incubation of DSPE-DVar7 with DOX-loaded DOPE liposomes (DOPE-lip@DOX). The tumor targeting of the dual pH-responsive liposome was investigated in vitro and in vivo by near-infrared fluorescence imaging. The tumor therapeutic efficacy of DOPE-DVar7-lip@DOX was evaluated in breast cancer mouse model using the traditional liposome as a control. Moreover, we regulated the tumor microenvironment acidity by injecting glucose to further enhance the therapeutic efficacy of cancer. RESULTS DVar7 can allosterically insert into the tumor cell membrane in the acidic tumor microenvironment to enhance the tumor uptake of liposomes and prolong the retention time of liposomes in tumor. In addition, the therapeutic efficacy of pH-responsive liposomes can be further enhanced by glucose injection regulating the acidity of tumor microenvironment. DISCUSSION DVar7 modified acid-sensitive nanocarriers combined with acidity regulation have great potential to improve drug resistance in clinical practice, thus improving the response rate and therapeutic effect of chemotherapy.
Collapse
Affiliation(s)
- Luoping Zhai
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Academy of Sciences, Beijing, 100101, People’s Republic of China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, People’s Republic of China
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Academy of Sciences, Beijing, 100101, People’s Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, People’s Republic of China
| |
Collapse
|
22
|
Sun J, Liu Y, Zhu X, Liao X, Wang L, Yuan J, Zhou J. Endogenous H 2S-Activable Liposomal Nanoplatform for Synergistic Colorectal Tumor Ablation at Mild Apparent Temperature. ACS APPLIED BIO MATERIALS 2020; 3:6680-6687. [PMID: 35019333 DOI: 10.1021/acsabm.0c00535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photoinduced hyperthermia possesses great potential in photothermal therapy and thermal-responsive chemotherapy of tumors. However, traditional thermal-triggered drug release requires high temperature, which results in unpleasant activation of thermal-induced cellular self-protection. In this work, a Cu-complex modified and drug-loaded liposomal nanoplatform was constructed for endogenous H2S-activated synergistic ablation of colorectal tumors. In response to H2S, the incorporated Cu-complex contributed to the formation of semiconductor CuS on the surface of the as-designed liposomal nanoplatform, which led to local heating under near-infrared (NIR) laser irradiation to achieve simultaneous photothermal therapy and drug release. It is noteworthy that although the drug release occurred at a mild apparent temperature, it was actually triggered by the high eigen temperature on the surface of the liposomal nanoplatform. Therefore, efficient and synergistic photothermal and chemotherapy was achieved under mild apparent temperatures. This work provides insights into achieving selective and bioactivated photothermal therapy and therefore thermal-controlled drug release without using excessive hyperthermia.
Collapse
Affiliation(s)
- Jingyan Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science and CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xianquan Liao
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Lu Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Yuan
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
23
|
Bae J, Hwang Y, Park SH, Park SJ, Lee J, Kim HJ, Jang A, Park S, Kwon OS. An elaborate sensor system based on conducting polymer-oligosaccharides in hydrogel and the formation of inclusion complexes. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Liu C, Liu Q, Chen L, Li M, Yin J, Zhu X, Chen D. A pH-Sensitive Self-Assembled and Carrier-Free Nanoparticle Based on Charge Reversal for Enhanced Synergetic Chemo-Phototherapy. Adv Healthc Mater 2020; 9:e2000899. [PMID: 33448702 DOI: 10.1002/adhm.202000899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 12/21/2022]
Abstract
To overcome biological barriers for nanoparticles (NPs) efficaciously accumulated at tumor sites, as well as enhancing the performance of drug delivery systems, a carrier-free nanoparticle based on charge reversal is designed for improved synergetic chemo-phototherapy for cancer treatment. In this system, doxorubicin (Dox) and zinc phthalocyanine (ZnPc) are self-assembled through noncovalent interactions (π-π stacking, hydrophobic forces) to avoid the possible toxicity of excipient, complex chemical conjugations and batch-to-batch variation. A trace amount of poly(2-(di-methylamino) ethylmethacrylate)- poly[(R)-3-hydroxybutyrate]- poly(2-(dimethylamino) ethylmethacrylate (PDMAEMA-PHB-PDMAEMA) is modified on the surface of Dox-ZnPc to construct the novel nanoparticles, namely DZP, with long-term stability, and with a dual-drug load content of up to ≈90%. The drug delivery system (DDS) can effectively decrease its toxicity among physical circulation and increase the accumulation at the tumor site. Moreover, the developed DZP nanoparticles show excellent photo-chemotherapy, photoacoustic (PA) and fluorescence (FL) imaging characteristics for multimodal imaging-guided synergetic therapy.
Collapse
Affiliation(s)
- Chen Liu
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Qiuhong Liu
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Luping Chen
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Mao Li
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Jieli Yin
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Xuan Zhu
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| | - Dengyue Chen
- School of Pharmaceutical Sciences Xiamen University Xiamen Fujian 361102 China
| |
Collapse
|
25
|
Ji P, Wang L, Wang S, Zhang Y, Qi X, Tao J, Wu Z. Hyaluronic acid-coated metal-organic frameworks benefit the ROS-mediated apoptosis and amplified anticancer activity of artesunate. J Drug Target 2020; 28:1096-1109. [PMID: 32552125 DOI: 10.1080/1061186x.2020.1781136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Artesunate (AS), as an effective new tumour treatment drug, induces cancer cell death based on high intracellular reactive oxygen species (ROS) produced by interacting with ferrous ions. However, the relatively low intracellular ferrous iron ion concentrations and the low efficiency of ROS generation limit its clinical application. Herein, we developed a metal-organic framework-Fe2+ (MOF), and AS was loaded in the MOF and then coated with hyaluronic acid (HA) on the surface of the MOF (HA@MOF-AS) for targeted and enhanced cancer treatment. HA@MOF-AS has high loading efficiency, good monodispersity, biocompatibility, strong cell uptake capacity and high intracellular ROS production, and it can target tumour tissues. In addition, in vivo anticancer studies have shown that HA@MOF-AS not only has high accumulation in tumours but also significantly inhibits tumour growth without significant damage to major organs. Therefore, HA@MOF-AS has excellent potential and may open a new approach for targeted cancer treatment.
Collapse
Affiliation(s)
- Peng Ji
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Le Wang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Siqi Wang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Yongxin Zhang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Juan Tao
- Department of Pharmacy and Traditional Chinese Pharmacy, Jiangsu College of Nursing, Huaian, PR China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
26
|
Dou J, Wu Q, Li Y, Du J, Wan X, Han X, Yuan J, Meng X, Shen J. Keratin-Poly(2-methacryloxyethyl phosphatidylcholine) Conjugate-Based Micelles as a Tumor Micro-Environment-Responsive Drug-Delivery System with Long Blood Circulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3540-3549. [PMID: 32192339 DOI: 10.1021/acs.langmuir.0c00044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug-loaded micelles with long circulation time in blood and stimuli-responsiveness under the tumor micro-environment can significantly enhance therapeutic efficacy. In this report, human hair keratin was extracted with a reduction method and then conjugated with zwitterionic poly(2-methacryloxyethyl phosphatidylcholine, MPC) via thiol chain transfer polymerization (thiol CTP). Subsequently, keratin-polyMPC conjugates (KPC) were prepared into micelles and loaded with doxorubicin (DOX) by self-assembly. These micelles exhibited pH, glutathione (GSH), and enzyme triple-responsiveness as well as charge reversibility under the tumor micro-environment. In addition, these micelles showed high toxicity against A549 cells while low toxicity to normal cells. In vivo anticancer efficacy results revealed that these micelles showed better therapeutic efficiency than free DOX. Furthermore, these carriers exhibited prolonged circulation time, good stability, and no hemolysis in blood. Based on the results, these drug delivery systems of micelles were proper candidates as drug carriers.
Collapse
Affiliation(s)
- Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiong Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yanmei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinsong Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiuzhen Wan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
27
|
Gadade DD, Pekamwar SS. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv Pharm Bull 2020; 10:166-183. [PMID: 32373486 PMCID: PMC7191229 DOI: 10.34172/apb.2020.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colloidal nanoparticulate technology has been described in the literature as a versatile drug delivery system. But it possesses some inherent lacunae in their formulation. Cyclodextrins (CDs) have been extensively reported for the solubility enhancement of poorly water-soluble drugs. The CDs can cause intervention in aspects related to nanoparticles (NPs) that include improving drug loading in nano-system, improving stability, site-specific/targeted drug delivery, improving solubility profile and absorption of the drug in nanosystem with consequent improvement in bioavailability, with the possibility of controlled release, safety and efficacy. They find application in for simultaneous diagnosis and therapeutics for better treatment procedures. The current communication is focused on the application of CDs to overcome troubles in nanoparticulate formulation and enhancement of their performance. It also envisages the theranostic aspects of CDs.
Collapse
Affiliation(s)
- Dipak Dilip Gadade
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, CIDCO, N-6, Dr. Y.S. Khedkar Marg, Aurangabad-431001, India.,School of Pharmacy, SRTM University,Vishnupuri, Nanded- 431606, India
| | | |
Collapse
|
28
|
Chen Z, Tu Y, Zhang D, Liu C, Zhou Y, Li X, Wu X, Liu R. A thermosensitive nanoplatform for photoacoustic imaging and NIR light triggered chemo-photothermal therapy. Biomater Sci 2020; 8:4299-4307. [DOI: 10.1039/d0bm00810a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A thermosensitive nanoplatform CDTSL achieves NIR light controlled drug release and can be applied for photoacoustic imaging and chemo-photothermal therapy.
Collapse
Affiliation(s)
- Zikang Chen
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Yinuo Tu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Chuang Liu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Xiang Li
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Xu Wu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| |
Collapse
|