1
|
Kopyeva I, Goldner EC, Hoye JW, Yang S, Regier MC, Bradford JC, Vera KR, Bretherton RC, Robinson JL, DeForest CA. Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404880. [PMID: 39240007 PMCID: PMC11530321 DOI: 10.1002/adma.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Biomechanical contributions of the extracellular matrix underpin cell growth and proliferation, differentiation, signal transduction, and other fate decisions. As such, biomaterials whose mechanics can be spatiotemporally altered- particularly in a reversible manner- are extremely valuable for studying these mechanobiological phenomena. Herein, a poly(ethylene glycol) (PEG)-based hydrogel model consisting of two interpenetrating step-growth networks is introduced that are independently formed via largely orthogonal bioorthogonal chemistries and sequentially degraded with distinct recombinant sortases, affording reversibly tunable stiffness ranges that span healthy and diseased soft tissues (e.g., 500 Pa-6 kPa) alongside terminal cell recovery for pooled and/or single-cell analysis in a near "biologically invisible" manner. Spatiotemporal control of gelation within the primary supporting network is achieved via mask-based and two-photon lithography; these stiffened patterned regions can be subsequently returned to the original soft state following sortase-based secondary network degradation. Using this approach, the effects of 4D-triggered network mechanical changes on human mesenchymal stem cell morphology and Hippo signaling, as well as Caco-2 colorectal cancer cell mechanomemory using transcriptomics and metabolic assays are investigated. This platform is expected to be of broad utility for studying and directing mechanobiological phenomena, patterned cell fate, and disease resolution in softer matrices.
Collapse
Affiliation(s)
- Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
| | - Ethan C. Goldner
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Jack W. Hoye
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Shiyu Yang
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Mary C. Regier
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - John C. Bradford
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Kaitlyn R. Vera
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ross C. Bretherton
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
| | - Jennifer L. Robinson
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Department of Orthopedic Surgery and Sports Medicine, University of Washington, Seattle WA 98105, USA
- Department of Mechanical Engineering, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98105, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
2
|
Gao C, Yuan W, Wang D, Zhang X, Zhang T, Zhou Z. Adipose-derived mesenchymal stem cell-incorporated PLLA porous microspheres for cartilage regeneration. Animal Model Exp Med 2024; 7:685-695. [PMID: 38785141 PMCID: PMC11528392 DOI: 10.1002/ame2.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In facial plastic surgery, patients with nasal deformity are often treated by rib cartilage transplantation. In recent years, cartilage tissue engineering has developed as an alternative to complex surgery for patients with minor nasal defects via injection of nasal filler material. In this study, we prepared an injectable nasal filler material containing poly-L-lactic acid (PLLA) porous microspheres (PMs), hyaluronic acid (HA) and adipose-derived mesenchymal stem cells (ADMSCs). METHODS We seeded ADMSCs into as-prepared PLLA PMs using our newly invented centrifugation perfusion technique. Then, HA was mixed with ADMSC-incorporated PLLA PMs to form a hydrophilic and injectable cell delivery system (ADMSC-incorporated PMH). RESULTS We evaluated the biocompatibility of PMH in vitro and in vivo. PMH has good injectability and provides a favorable environment for the proliferation and chondrogenic differentiation of ADMSCs. In vivo experiments, we observed that PMH has good biocompatibility and cartilage regeneration ability. CONCLUSION In this study, a injectable cell delivery system was successfully constructed. We believe that PMH has potential application in cartilage tissue engineering, especially in nasal cartilage regeneration.
Collapse
Affiliation(s)
- Chang Gao
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Wenlong Yuan
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Dongcheng Wang
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Xin Zhang
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| | - Tong Zhang
- Clinical LaboratoryTianjin HospitalTianjinChina
| | - Zhimin Zhou
- Biomedical Barriers Research CenterInstitute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical MaterialsTianjinChina
| |
Collapse
|
3
|
Matheson AB, Mendonca T, Smith MG, Sutcliffe B, Fernandez AJ, Paterson L, Dalgarno PA, Wright AJ, Tassieri M. Fully angularly resolved 3D microrheology with optical tweezers. RHEOLOGICA ACTA 2024; 63:205-217. [PMID: 38440195 PMCID: PMC10908627 DOI: 10.1007/s00397-024-01435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 03/06/2024]
Abstract
Microrheology with optical tweezers (MOT) is an all-optical technique that allows the user to investigate a materials' viscoelastic properties at microscopic scales, and is particularly useful for those materials that feature complex microstructures, such as biological samples. MOT is increasingly being employed alongside 3D imaging systems and particle tracking methods to generate maps showing not only how properties may vary between different points in a sample but also how at a single point the viscoelastic properties may vary with direction. However, due to the diffraction limited shape of focussed beams, optical traps are inherently anisotropic in 3D. This can result in a significant overestimation of the fluids' viscosity in certain directions. As such, the rheological properties can only be accurately probed along directions parallel or perpendicular to the axis of trap beam propagation. In this work, a new analytical method is demonstrated to overcome this potential artefact. This is achieved by performing principal component analysis on 3D MOT data to characterise the trap, and then identify the frequency range over which trap anisotropy influences the data. This approach is initially applied to simulated data for a Newtonian fluid where the trap anisotropy induced maximum error in viscosity is reduced from ~ 150% to less than 6%. The effectiveness of the method is corroborated by experimental MOT measurements performed with water and gelatine solutions, thus confirming that the microrheology of a fluid can be extracted reliably across a wide frequency range and in any arbitrary direction. This work opens the door to fully spatially and angularly resolved 3D mapping of the rheological properties of soft materials over a broad frequency range.
Collapse
Affiliation(s)
- Andrew B. Matheson
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK
| | - Tania Mendonca
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Matthew G. Smith
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Ben Sutcliffe
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Andrea Jannina Fernandez
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Lynn Paterson
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK
| | - Paul A. Dalgarno
- School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, UK
| | - Amanda J. Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Kohar R, Ghosh M, Sawale JA, Singh A, Rangra NK, Bhatia R. Insights into Translational and Biomedical Applications of Hydrogels as Versatile Drug Delivery Systems. AAPS PharmSciTech 2024; 25:17. [PMID: 38253917 DOI: 10.1208/s12249-024-02731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Hydrogels are a network of crosslinked polymers which can hold a huge amount of water in their matrix. These might be soft, flexible, and porous resembling living tissues. The incorporation of different biocompatible materials and nanostructures into the hydrogels has led to emergence of multifunctional hydrogels with advanced properties. There are broad applications of hydrogels such as tissue culture, drug delivery, tissue engineering, implantation, water purification, and dressings. Besides these, it can be utilized in the field of medical surgery, in biosensors, targeted drug delivery, and drug release. Similarly, hyaluronic acid hydrogels have vast applications in biomedicines such as cell delivery, drug delivery, molecule delivery, micropatterning in cellular biology for tissue engineering, diagnosis and screening of diseases, tissue repair and stem cell microencapsulation in case of inflammation, angiogenesis, and other biological developmental processes. The properties like swellability, de-swellability, biodegradability, biocompatibility, and inert nature of the hydrogels in contact with body fluids, blood, and tissues make its tremendous application in the field of modern biomedicines nowadays. Various modifications in hydrogel formulations have widened their therapeutic applicability. These include 3D printing, conjugation, thiolation, multiple anchoring, and reduction. Various hydrogel formulations are also capable of dual drug delivery, dental surgery, medicinal implants, bone diseases, and gene and stem cells delivery. The presented review summarizes the unique properties of hydrogels along with their methods of preparation and significant biomedical applications as well as different types of commercial products available in the market and the regulatory guidance.
Collapse
Affiliation(s)
- Ramesh Kohar
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Maitrayee Ghosh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Jyotiram A Sawale
- Department of Pharmacognosy, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to Be University), Karad, 415539, Maharashtra, India
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Analysis & Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
5
|
Castro-Abril H, Heras J, Del Barrio J, Paz L, Alcaine C, Aliácar MP, Garzón-Alvarado D, Doblaré M, Ochoa I. The Role of Mechanical Properties and Structure of Type I Collagen Hydrogels on Colorectal Cancer Cell Migration. Macromol Biosci 2023; 23:e2300108. [PMID: 37269065 DOI: 10.1002/mabi.202300108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Indexed: 06/04/2023]
Abstract
Mechanical interactions between cells and their microenvironment play an important role in determining cell fate, which is particularly relevant in metastasis, a process where cells invade tissue matrices with different mechanical properties. In vitro, type I collagen hydrogels have been commonly used for modeling the microenvironment due to its ubiquity in the human body. In this work, the combined influence of the stiffness of these hydrogels and their ultrastructure on the migration patterns of HCT-116 and HT-29 spheroids are analyzed. For this, six different types of pure type I collagen hydrogels by changing the collagen concentration and the gelation temperature are prepared. The stiffness of each sample is measured and its ultrastructure is characterized. Cell migration studies are then performed by seeding the spheroids in three different spatial conditions. It is shown that changes in the aforementioned parameters lead to differences in the mechanical stiffness of the matrices as well as the ultrastructure. These differences, in turn, lead to distinct cell migration patterns of HCT-116 and HT-29 spheroids in either of the spatial conditions tested. Based on these results, it is concluded that the stiffness and the ultrastructural organization of the matrix can actively modulate cell migration behavior in colorectal cancer spheroids.
Collapse
Affiliation(s)
- Hector Castro-Abril
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Biomimetics Lab, National University of Colombia, Bogotá, 111321, Colombia
| | - Jónathan Heras
- Grupo de Informática, University of La Rioja, La Rioja, 26006, Spain
| | - Jesús Del Barrio
- Instituto de Nanociencia y Materiales de Aragón (INMA), Department of Organic Chemistry, CSIC-University of Zaragoza, Zaragoza, 50018, Spain
| | - Laura Paz
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
| | - Clara Alcaine
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
| | - Marina Pérez Aliácar
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
| | | | - Manuel Doblaré
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
- Nanjing Tech University, Nanjing, 50018, China
| | - Ignacio Ochoa
- Tissue Microenvironment lab (TME lab), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza, 50018, Spain
- Centro Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, 50018, Spain
- Nanjing Tech University, Nanjing, 50018, China
| |
Collapse
|
6
|
Stampoultzis T, Guo Y, Nasrollahzadeh N, Rana VK, Karami P, Pioletti DP. Low-oxygen tension augments chondrocyte sensitivity to biomimetic thermomechanical cues in cartilage-engineered constructs. iScience 2023; 26:107491. [PMID: 37599834 PMCID: PMC10432199 DOI: 10.1016/j.isci.2023.107491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 07/23/2023] [Indexed: 08/22/2023] Open
Abstract
Chondrocytes respond to various biophysical cues, including oxygen tension, transient thermal signals, and mechanical stimuli. However, understanding how these factors interact to establish a unique regulatory microenvironment for chondrocyte function remains unclear. Herein, we explore these interactions using a joint-simulating bioreactor that independently controls the culture's oxygen concentration, evolution of temperature, and mechanical loading. Our analysis revealed significant coupling between these signals, resulting in a remarkable ∼14-fold increase in collagen type II (COL2a) and aggrecan (ACAN) mRNA expression. Furthermore, dynamic thermomechanical stimulation enhanced glycosaminoglycan and COL2a protein synthesis, with the magnitude of the biosynthetic changes being oxygen dependent. Additionally, our mechanistic study highlighted the crucial role of SRY-box transcription factor 9 (SOX9) as a major regulator of chondrogenic response, specifically expressed in response to combined biophysical signals. These findings illuminate the integration of various mechanobiological cues by chondrocytes and provide valuable insights for improving the extracellular matrix content in cartilage-engineered constructs.
Collapse
Affiliation(s)
- Theofanis Stampoultzis
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Yanheng Guo
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Naser Nasrollahzadeh
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Vijay Kumar Rana
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Dominique P. Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
7
|
Mendonca T, Lis-Slimak K, Matheson AB, Smith MG, Anane-Adjei AB, Ashworth JC, Cavanagh R, Paterson L, Dalgarno PA, Alexander C, Tassieri M, Merry CLR, Wright AJ. OptoRheo: Simultaneous in situ micro-mechanical sensing and imaging of live 3D biological systems. Commun Biol 2023; 6:463. [PMID: 37117487 PMCID: PMC10147656 DOI: 10.1038/s42003-023-04780-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/30/2023] [Indexed: 04/30/2023] Open
Abstract
Biomechanical cues from the extracellular matrix (ECM) are essential for directing many cellular processes, from normal development and repair, to disease progression. To better understand cell-matrix interactions, we have developed a new instrument named 'OptoRheo' that combines light sheet fluorescence microscopy with particle tracking microrheology. OptoRheo lets us image cells in 3D as they proliferate over several days while simultaneously sensing the mechanical properties of the surrounding extracellular and pericellular matrix at a sub-cellular length scale. OptoRheo can be used in two operational modalities (with and without an optical trap) to extend the dynamic range of microrheology measurements. We corroborated this by characterising the ECM surrounding live breast cancer cells in two distinct culture systems, cell clusters in 3D hydrogels and spheroids in suspension culture. This cutting-edge instrument will transform the exploration of drug transport through complex cell culture matrices and optimise the design of the next-generation of disease models.
Collapse
Affiliation(s)
- Tania Mendonca
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK.
| | - Katarzyna Lis-Slimak
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew B Matheson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Matthew G Smith
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Jennifer C Ashworth
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | - Robert Cavanagh
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Lynn Paterson
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Paul A Dalgarno
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | | | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Catherine L R Merry
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Amanda J Wright
- Optics and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| |
Collapse
|
8
|
Ferraro R, Guido S, Caserta S, Tassieri M. Compressional stress stiffening & softening of soft hydrogels - how to avoid artefacts in their rheological characterisation. SOFT MATTER 2023; 19:2053-2057. [PMID: 36866743 DOI: 10.1039/d3sm00077j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels have been successfully employed as analogues of the extracellular matrix to study biological processes such as cells' migration, growth, adhesion and differentiation. These are governed by many factors, including the mechanical properties of hydrogels; yet, a one-to-one correlation between the viscoelastic properties of gels and cell fate is still missing from literature. In this work we provide experimental evidence supporting a possible explanation for the persistence of this knowledge gap. In particular, we have employed common tissues' surrogates such as polyacrylamide and agarose gels to elucidate a potential pitfall occurring when performing rheological characterisations of soft-materials. The issue is related to (i) the normal force applied to the samples prior to performing the rheological measurements, which may easily drive the outcomes of the investigation outside the materials' linear viscoelastic regime, especially when tests are performed with (ii) geometrical tools having unbefitting dimensions (i.e., too small). We corroborate that biomimetic hydrogels can show either compressional stress softening or stiffening, and we provide a simple solution to quench these undesired phenomena, which would likely lead to potentially misleading conclusions if they were not mitigated by a good practice in performing rheological measurements, as elucidated in this work.
Collapse
Affiliation(s)
- Rosalia Ferraro
- DICMaPI, The University of Naples Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via Gaetano Salvatore, 486, 80131 Naples, Italy
| | - Stefano Guido
- DICMaPI, The University of Naples Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via Gaetano Salvatore, 486, 80131 Naples, Italy
| | - Sergio Caserta
- DICMaPI, The University of Naples Federico II, P.le V. Tecchio 80, 80125 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore, Via Gaetano Salvatore, 486, 80131 Naples, Italy
| | - Manlio Tassieri
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| |
Collapse
|
9
|
Lee S, Bashir KMI, Jung DH, Basu SK, Seo G, Cho MG, Wierschem A. Measuring the linear viscoelastic regime of MCF-7 cells with a monolayer rheometer in the presence of microtubule-active anti-cancer drugs at high concentrations. Interface Focus 2022; 12:20220036. [PMID: 36330318 PMCID: PMC9560786 DOI: 10.1098/rsfs.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/06/2022] [Indexed: 10/16/2023] Open
Abstract
The rheological properties of cells have vital functional implications. Depending, for instance, on the life cycle, cells show large cell-to-cell variations making it cumbersome to quantify average viscoelastic properties of cells by single-cell techniques. Microfluidic devices, typically working in the nonlinear viscoelastic range, allow fast analysis of single-cell deformation. Averaging over a large number of cells can also be achieved by studying them in a monolayer between rheometer discs. This technique allows applying well-established rheological standard procedures to cell rheology. It offers further advantages like studying cells in the linear viscoelastic range while quantifying cell vitality. Here, we study the applicability of the technique to rather adverse conditions, like for microtubule-active anti-cancer drugs and for a cell line with large size variation. We found a strong impact of the gap width and of normal forces on the moduli and obtained high vitality levels during the rheological study. To enable studying the impact of microtubule-active drugs on vital cells at concentrations several orders of magnitude beyond the half maximal effective concentration for cytotoxicity, we arrested the cell cycle with hydroxyurea. Irrespective of the high concentrations, we observed no clear impact of the microtubule-active drugs.
Collapse
Affiliation(s)
- Suhyang Lee
- German Engineering Research and Development Center, LSTME-Busan Branch, Gangseo-Gu, Busan 46742, Republic of Korea
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, Erlangen 91058, Germany
| | | | - Dong Hee Jung
- German Engineering Research and Development Center, LSTME-Busan Branch, Gangseo-Gu, Busan 46742, Republic of Korea
- Division of Energy and Bioengineering, Dongseo University, Sasang-gu, Busan 47011, Republic of Korea
| | - Santanu Kumar Basu
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, Erlangen 91058, Germany
| | - Gayeon Seo
- Division of Energy and Bioengineering, Dongseo University, Sasang-gu, Busan 47011, Republic of Korea
| | - Man-Gi Cho
- German Engineering Research and Development Center, LSTME-Busan Branch, Gangseo-Gu, Busan 46742, Republic of Korea
- Division of Energy and Bioengineering, Dongseo University, Sasang-gu, Busan 47011, Republic of Korea
| | - Andreas Wierschem
- German Engineering Research and Development Center, LSTME-Busan Branch, Gangseo-Gu, Busan 46742, Republic of Korea
- Institute of Fluid Mechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 4, Erlangen 91058, Germany
| |
Collapse
|
10
|
Hydrogels and biohydrogels: investigation of origin of production, production methods, and application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Michieletto D, Marenda M. Rheology and Viscoelasticity of Proteins and Nucleic Acids Condensates. JACS AU 2022; 2:1506-1521. [PMID: 35911447 PMCID: PMC9326828 DOI: 10.1021/jacsau.2c00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase separation is as familiar as watching vinegar separating from oil in vinaigrette. The observation that phase separation of proteins and nucleic acids is widespread in living cells has opened an entire field of research into the biological significance and the biophysical mechanisms of phase separation and protein condensation in biology. Recent evidence indicates that certain proteins and nucleic acids condensates are not simple liquids and instead display both viscous and elastic behaviors, which in turn may have biological significance. The aim of this Perspective is to review the state-of-the-art of this quickly emerging field focusing on the material and rheological properties of protein condensates. Finally, we discuss the different techniques that can be employed to quantify the viscoelasticity of condensates and highlight potential future directions and opportunities for interdisciplinary cross-talk between chemists, physicists, and biologists.
Collapse
Affiliation(s)
- Davide Michieletto
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| | - Mattia Marenda
- School
of Physics and Astronomy, University of
Edinburgh, Peter Guthrie
Tait Road, Edinburgh EH9
3FD, U.K.
- MRC
Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, U.K.
| |
Collapse
|
12
|
Chang AC, Uto K, Abdellatef SA, Nakanishi J. Precise Tuning and Characterization of Viscoelastic Interfaces for the Study of Early Epithelial-Mesenchymal Transition Behaviors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5307-5314. [PMID: 35143208 DOI: 10.1021/acs.langmuir.1c03048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is growing evidence that cellular functions are regulated by the viscoelastic nature of surrounding matrices. This study aimed to investigate the impact of interfacial viscoelasticity on adhesion and epithelial-mesenchymal transition (EMT) behaviors of epithelial cells. The interfacial viscoelasticity was manipulated using spin-coated thin films composed of copolymers of ε-caprolactone and d,l-lactide photo-cross-linked with benzophenone, whose mechanical properties were characterized using atomic force microscopy and a rheometer. The critical range for the morphological transition of epithelial Madin-Darby canine kidney (MDCK) cells was of the order of 102 ms relaxation time, which was 1-2 orders of magnitude smaller than the relaxation times reported (10-102 s). An analysis of strain rate-dependent viscoelastic properties revealed that the difference was caused by the different strain rate/frequency used for the mechanical characterization of the interface and bulk. Furthermore, decoupling of the interfacial viscous and elastic terms demonstrated that E/N-cadherin expression levels were regulated differently by interfacial relaxation and elasticity. These results confirm the significance of precise manipulation and characterization of interfacial viscoelasticity in mechanobiology studies on EMT progression.
Collapse
Affiliation(s)
- Alice Chinghsuan Chang
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Center for Measurement Standards, Industrial Technology Research Institute, No. 321, Sec. 2, Kuangfu Road, Hsinchu 30011, Taiwan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shimaa A Abdellatef
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
13
|
Abrego CJG, Dedroog L, Deschaume O, Wellens J, Vananroye A, Lettinga MP, Patterson J, Bartic C. Multiscale Characterization of the Mechanical Properties of Fibrin and Polyethylene Glycol (PEG) Hydrogels for Tissue Engineering Applications. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christian Jose Garcia Abrego
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
- Department of Materials Engineering KU Leuven, Kasteelpark Arenberg 44 ‐ box 2430, 3001 Leuven Belgium
| | - Lens Dedroog
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Jolan Wellens
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Anja Vananroye
- Department of Chemical Engineering Soft Matter, Rheology and Technology Division KU Leuven, Celestijnenlaan 200J‐ box 2424, 3001 Leuven Belgium
| | - Minne Paul Lettinga
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| | - Jennifer Patterson
- Biomaterials and Regenerative Medicine Group, IMDEA Materials Institute C/Eric Kandel, 2 Getafe Madrid 28906 Spain
| | - Carmen Bartic
- Department of Physics and Astronomy Soft Matter and Biophysics Unit KU Leuven, Celestijnenlaan 200D‐ box 2416, 3001 Leuven Belgium
| |
Collapse
|
14
|
Non-contact elastography methods in mechanobiology: a point of view. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 51:99-104. [PMID: 34463775 PMCID: PMC8964566 DOI: 10.1007/s00249-021-01567-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
In recent decades, mechanobiology has emerged as a novel perspective in the context of basic biomedical research. It is now widely recognized that living cells respond not only to chemical stimuli (for example drugs), but they are also able to decipher mechanical cues, such as the rigidity of the underlying matrix or the presence of shear forces. Probing the viscoelastic properties of cells and their local microenvironment with sub-micrometer resolution is required to study this complex interplay and dig deeper into the mechanobiology of single cells. Current approaches to measure mechanical properties of adherent cells mainly rely on the exploitation of miniaturized indenters, to poke single cells while measuring the corresponding deformation. This method provides a neat implementation of the everyday approach to measure mechanical properties of a material, but it typically results in a very low throughput and invasive experimental protocol, poorly translatable towards three-dimensional living tissues and biological constructs. To overcome the main limitations of nanoindentation experiments, a radical paradigm change is foreseen, adopting next generation contact-less methods to measure mechanical properties of biological samples with sub-cell resolution. Here we briefly introduce the field of single cell mechanical characterization, and we concentrate on a promising high resolution optical elastography technique, Brillouin spectroscopy. This non-contact technique is rapidly emerging as a potential breakthrough innovation in biomechanics, but the application to single cells is still in its infancy.
Collapse
|
15
|
Narasimhan BN, Horrocks MS, Malmström J. Hydrogels with Tunable Physical Cues and Their Emerging Roles in Studies of Cellular Mechanotransduction. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| |
Collapse
|
16
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
17
|
Fuentes-Caparrós AM, Canales-Galarza Z, Barrow M, Dietrich B, Läuger J, Nemeth M, Draper ER, Adams DJ. Mechanical Characterization of Multilayered Hydrogels: A Rheological Study for 3D-Printed Systems. Biomacromolecules 2021; 22:1625-1638. [PMID: 33734666 PMCID: PMC8045019 DOI: 10.1021/acs.biomac.1c00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Indexed: 12/04/2022]
Abstract
We describe rheological protocols to study layered and three-dimensional (3D)-printed gels. Our methods allow us to measure the properties at different depths and determine the contribution of each layer to the resulting combined properties of the gels. We show that there are differences when using different measuring systems for rheological measurement, which directly affects the resulting properties being measured. These methods allow us to measure the gel properties after printing, rather than having to rely on the assumption that there is no change in properties from a preprinted gel. We show that the rheological properties of fluorenylmethoxycarbonyl-diphenylalanine (FmocFF) gels are heavily influenced by the printing process.
Collapse
Affiliation(s)
| | - Zaloa Canales-Galarza
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
- Department
of Chemical Engineering, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | | | - Bart Dietrich
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Jörg Läuger
- Anton
Paar Germany, 73760 Ostfildern, Germany
| | | | - Emily R. Draper
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Dave J. Adams
- School
of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
18
|
Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM): a new tool for 3D microrheology. Sci Rep 2021; 11:5614. [PMID: 33692443 PMCID: PMC7946888 DOI: 10.1038/s41598-021-85013-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
We introduce a novel 3D microrheology system that combines for the first time Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM). The system allows the 3D tracking of an optically trapped bead, with ~ 20 nm accuracy along the optical axis. This is achieved without the need for a high precision z-stage, separate calibration sample, nor a priori knowledge of either the bead size or the optical properties of the suspending medium. Instead, we have developed a simple yet effective in situ spatial calibration method using image sharpness and exploiting the fact we image at multiple planes simultaneously. These features make OpTIMuM an ideal system for microrheology measurements, and we corroborate the effectiveness of this novel microrheology tool by measuring the viscosity of water in three dimensions, simultaneously.
Collapse
|
19
|
De Santis MM, Alsafadi HN, Tas S, Bölükbas DA, Prithiviraj S, Da Silva IAN, Mittendorfer M, Ota C, Stegmayr J, Daoud F, Königshoff M, Swärd K, Wood JA, Tassieri M, Bourgine PE, Lindstedt S, Mohlin S, Wagner DE. Extracellular-Matrix-Reinforced Bioinks for 3D Bioprinting Human Tissue. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005476. [PMID: 33300242 PMCID: PMC11469085 DOI: 10.1002/adma.202005476] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in 3D bioprinting allow for generating intricate structures with dimensions relevant for human tissue, but suitable bioinks for producing translationally relevant tissue with complex geometries remain unidentified. Here, a tissue-specific hybrid bioink is described, composed of a natural polymer, alginate, reinforced with extracellular matrix derived from decellularized tissue (rECM). rECM has rheological and gelation properties beneficial for 3D bioprinting while retaining biologically inductive properties supporting tissue maturation ex vivo and in vivo. These bioinks are shear thinning, resist cell sedimentation, improve viability of multiple cell types, and enhance mechanical stability in hydrogels derived from them. 3D printed constructs generated from rECM bioinks suppress the foreign body response, are pro-angiogenic and support recipient-derived de novo blood vessel formation across the entire graft thickness in a murine model of transplant immunosuppression. Their proof-of-principle for generating human tissue is demonstrated by 3D bioprinting human airways composed of regionally specified primary human airway epithelial progenitor and smooth muscle cells. Airway lumens remained patent with viable cells for one month in vitro with evidence of differentiation into mature epithelial cell types found in native human airways. rECM bioinks are a promising new approach for generating functional human tissue using 3D bioprinting.
Collapse
Affiliation(s)
- Martina M. De Santis
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
| | - Hani N. Alsafadi
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Sinem Tas
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Deniz A. Bölükbas
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Sujeethkumar Prithiviraj
- Laboratory for CellTissue and Organ EngineeringDept of Clinical Sciences LundStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Iran A. N. Da Silva
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Margareta Mittendorfer
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Chiharu Ota
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
- Present address:
Department of PediatricsTohoku University Graduate School of MedicineSendaiJapan
| | - John Stegmayr
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Fatima Daoud
- Department of Experimental Medical ScienceLund UniversityLund22362Sweden
| | - Melanie Königshoff
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
- Present address:
Division of Pulmonary Sciences and Critical Care MedicineDepartment of MedicineUniversity of Colorado DenverAuroraCOUSA
| | - Karl Swärd
- Department of Experimental Medical ScienceLund UniversityLund22362Sweden
| | - Jeffery A. Wood
- Soft MatterFluidics and InterfacesMESA+ Institute for NanotechnologyUniversity of TwenteEnschede7522The Netherlands
| | - Manlio Tassieri
- Division of Biomedical EngineeringJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8LTUnited Kingdom
| | - Paul E. Bourgine
- Laboratory for CellTissue and Organ EngineeringDept of Clinical Sciences LundStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
| | - Sandra Lindstedt
- Dept of Cardiothoracic SurgeryHeart and Lung TransplantationWallenberg Center for Molecular MedicineLund University HospitalLund22242Sweden
| | - Sofie Mohlin
- Division of PediatricsClinical SciencesTranslational Cancer ResearchLund University Cancer Center at Medicon VillageLund22363Sweden
| | - Darcy E. Wagner
- Lung Bioengineering and RegenerationDept of Experimental Medical SciencesStem Cell CentreWallenberg Center for Molecular MedicineLund UniversityLund22362Sweden
- Research Unit Lung Repair and RegenerationHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthLudwig‐Maximilians‐UniversityUniversity Hospital GrosshadernMember of the German Center of Lung Research (DZL)Munich81377Germany
| |
Collapse
|