1
|
Sasikumar SC, Goswami U, Raichur AM. Mucin-Based Dual Cross-Linkable IPN Hydrogel Bioink for 3D Bioprinting and Cartilage Tissue Engineering. ACS APPLIED BIO MATERIALS 2025. [PMID: 39818697 DOI: 10.1021/acsabm.4c01505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties. HA has been demonstrated to improve cartilage lubrication, regulate inflammation, promote cell proliferation, and support extracellular matrix (ECM) deposition and regeneration, making it valuable for cartilage TE. Comprehensive experiments were conducted to assess morphology, swelling, degradation, mechanical and rheological properties, printability, and biocompatibility. Results indicated that the double cross-linked scaffolds comprising MuMA, alginate, and HA exhibited compressive moduli comparable to native cartilage, unlike single cross-linked variants. The double cross-linking also influenced degradation, water uptake, and porosity, contributing to the scaffold durability and stability for chondrocyte support. Biocompatibility tests with C28/I2 cells demonstrated the cell-supportive and chondrogenic potential of the bioink. This study establishes mucin as a versatile material for specialized cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Sruthi C Sasikumar
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Upashi Goswami
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
- Institute for Nanoscience and Water Sustainability, University of South Africa, The Science Campus, Florida Park, 1710 Roodepoort,Johannesburg,South Africa
| |
Collapse
|
2
|
Sasikumar SC, Goswami U, Raichur AM. 3D Bioprinting with Visible Light Cross-Linkable Mucin-Hyaluronic Acid Composite Bioink for Lung Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:5411-5422. [PMID: 38996006 DOI: 10.1021/acsabm.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
3D printing can revolutionize personalized medicine by allowing cost-effective, customized tissue-engineering constructs. However, the limited availability and diversity of biopolymeric hydrogels restrict the variety and applications of bioinks. In this study, we introduce a composite bioink for 3D bioprinting, combining a photo-cross-linkable derivative of Mucin (Mu) called Methacrylated Mucin (MuMA) and Hyaluronic acid (HA). The less explored Mucin is responsible for the hydrogel nature of mucus and holds the potential to be used as a bioink material because of its plethora of features. HA, a crucial extracellular matrix component, is mucoadhesive and enhances ink viscosity and printability. Photo-cross-linking with 405 nm light stabilizes the printed scaffolds without damaging cells. Rheological tests reveal shear-thinning behavior, aiding cell protection during printing and improved MuMA bioink viscosity by adding HA. The printed structures exhibited porous behavior conducive to nutrient transport and cell migration. After 4 weeks in phosphate-buffered saline, the scaffolds retain 70% of their mass, highlighting stability. Biocompatibility tests with lung epithelial cells (L-132) confirm cell attachment and growth, suggesting suitability for lung tissue engineering. It is envisioned that the versatility of bioink could lead to significant advancements in lung tissue engineering and various other biomedical applications.
Collapse
Affiliation(s)
- Sruthi C Sasikumar
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Upashi Goswami
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India
- Institute for Nanoscience and Water Sustainability, University of South Africa, the Science Campus, Florida Park, 1710 Roodepoort, Johannesburg 1735, South Africa
| |
Collapse
|
3
|
Su Y, He J. Rational Design of Highly Comprehensive Liquid-Like Coatings with Enhanced Transparency, Concerted Multi-Function, and Excellent Durability: A Ternary Cooperative Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405767. [PMID: 39003607 DOI: 10.1002/adma.202405767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Durable repellent surfaces of high transparency find key applications in daily life and industry. Nevertheless, developing anti-reflective coatings with omni-repellency, concerted multi-function, and desirable durability remains a daunting challenge. Here, a highly comprehensive coating is designed based on the combination of structural design and molecular design. The resulting silica hybrid coating not only manifests enhanced transparency and exceptional omniphobicity, but also achieves integration of multi-function (e.g., anti-smudge, anti-icing, and anti-corrosion). The unprecedented durability of the coating is evidenced by maintaining slipperiness after rigorous treatments, such as 2.5 × 105-cycle mechanical abrasion with a high loading pressure of 100 kPa, 1000-cycle adhesion/peeling and soaking in extreme pH solutions, etc. This work provides a design blueprint for manufacturing versatile and durable coatings for wide-ranging applications.
Collapse
Affiliation(s)
- Yang Su
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
4
|
Ferreira AM, Vikulina AS, Bowker L, Hunt JA, Loughlin M, Puddu V, Volodkin D. Nanoarchitectonics of Bactericidal Coatings Based on CaCO 3-Nanosilver Hybrids. ACS APPLIED BIO MATERIALS 2024; 7:2872-2886. [PMID: 38721671 PMCID: PMC11110054 DOI: 10.1021/acsabm.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 05/21/2024]
Abstract
Antimicrobial coatings provide protection against microbes colonization on surfaces. This can prevent the stabilization and proliferation of microorganisms. The ever-increasing levels of microbial resistance to antimicrobials are urging the development of alternative types of compounds that are potent across broad spectra of microorganisms and target different pathways. This will help to slow down the development of resistance and ideally halt it. The development of composite antimicrobial coatings (CACs) that can host and protect various antimicrobial agents and release them on demand is an approach to address this urgent need. In this work, new CACs based on microsized hybrids of calcium carbonate (CaCO3) and silver nanoparticles (AgNPs) were designed using a drop-casting technique. Polyvinylpyrrolidone and mucin were used as additives. The CaCO3/AgNPs hybrids contributed to endowing colloidal stability to the AgNPs and controlling their release, thereby ensuring the antibacterial activity of the coatings. Moreover, the additives PVP and mucin served as a matrix to (i) control the distribution of the hybrids, (ii) ensure mechanical integrity, and (iii) prevent the undesired release of AgNPs. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques were used to characterize the 15 μm thick CAC. The antibacterial activity was determined against Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa, three bacteria responsible for many healthcare infections. Antibacterial performance of the hybrids was demonstrated at concentrations between 15 and 30 μg/cm2. Unloaded CaCO3 also presented bactericidal properties against MRSA. In vitro cytotoxicity tests demonstrated that the hybrids at bactericidal concentrations did not affect human dermal fibroblasts and human mesenchymal stem cell viability. In conclusion, this work presents a simple approach for the design and testing of advanced multicomponent and functional antimicrobial coatings that can protect active agents and release them on demand.
Collapse
Affiliation(s)
- Ana M. Ferreira
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Anna S. Vikulina
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
- Bavarian
Polymer Institute, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Laura Bowker
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - John A. Hunt
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Michael Loughlin
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Valeria Puddu
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| | - Dmitry Volodkin
- School
of Science and Technology, Department of Chemistry and Forensics, School of Science
and Technology, Department of Biosciences, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K.
| |
Collapse
|
5
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
6
|
Kimna C, Lutz TM, Lieleg O. Fabrication and Characterization of Mucin Nanoparticles for Drug Delivery Applications. Methods Mol Biol 2024; 2763:383-394. [PMID: 38347428 DOI: 10.1007/978-1-0716-3670-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Mucin glycoproteins are ideal biomacromolecules for drug delivery applications since they naturally offer a plethora of different functional groups that can engage in specific and unspecific binding interactions with cargo molecules. However, to fabricate drug carrier objects from mucins, suitable stabilization mechanisms have to be implemented into the nanoparticle preparation procedure that allow for drug release profiles that match the requirements of the selected cargo molecule and its particular mode of action. Here, we describe two different methods to prepare crosslinked mucin nanoparticles that can release their cargo either on-demand or in a sustained manner. This method chapter includes a description of the preparation and characterization of mucin nanoparticles (stabilized either with synthetic DNA strands or with covalent crosslinks generated by free radical polymerization), as well as protocols to quantify the release of a model drug from those nanoparticles.
Collapse
Affiliation(s)
- Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Garching, Germany
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Theresa M Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Garching, Germany
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Garching, Germany.
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
7
|
Mao S, Liu W, Xie Z, Zhang D, Zhou J, Xu Y, Fu B, Zheng SY, Zhang L, Yang J. In Situ Growth of Functional Hydrogel Coatings by a Reactive Polyurethane for Biomedical Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38036509 DOI: 10.1021/acsami.3c10683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Surface modification of thermoplastic polyurethane (TPU) could significantly enhance its suitability for biomedical devices and public health products. Nevertheless, customized modification of polyurethane surfaces with robust interfacial bonding and diverse functions via a simple method remains an enormous challenge. Herein, a novel thermoplastic polyurethane with a photoinitiated benzophenone unit (BPTPU) is designed and synthesized, which can directly grow functional hydrogel coating on polyurethane (PU) in situ by initiating polymerization of diverse monomers under ultraviolet irradiation, without the involvement of organic solvent. The resulting coating not only exhibits tissue-like softness, controllable thickness, lubrication, and robust adhesion strength but also provides customized functions (i.e., antifouling, stimuli-responsive, antibacterial, and fluorescence emission) to the original passive polymer substrates. Importantly, BPTPU can be blended with commercial TPU to produce the BPTPU-based tube by an extruder. Only a trace amount of BPTPU can endow the tube with good photoinitiated capacity. As a proof of concept, the hydrophilic hydrogel-coated BPTPU is shown to mitigate foreign body response in vivo and prevent thrombus formation in rat blood circulation without anticoagulants in vitro. This work offers a new strategy to guide the design of functional polyurethane, an elastomer-hydrogel composite, and holds great prospects for clinical translation.
Collapse
Affiliation(s)
- Shihua Mao
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wei Liu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiahui Zhou
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Baiping Fu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ling Zhang
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
8
|
Rickert CA, Mansi S, Fan D, Mela P, Lieleg O. A Mucin-Based Bio-Ink for 3D Printing of Objects with Anti-Biofouling Properties. Macromol Biosci 2023; 23:e2300198. [PMID: 37466113 DOI: 10.1002/mabi.202300198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/20/2023]
Abstract
With its potential to revolutionize the field of personalized medicine by producing customized medical devices and constructs for tissue engineering at low costs, 3D printing has emerged as a highly promising technology. Recent advancements have sparked increasing interest in the printing of biopolymeric hydrogels. However, owing to the limited printability of those soft materials, the lack of variability in available bio-inks remains a major challenge. In this study, a novel bio-ink is developed based on functionalized mucin-a glycoprotein that exhibits a multitude of biomedically interesting properties such as immunomodulating activity and strong anti-biofouling behavior. To achieve sufficient printability of the mucin-based ink, its rheological properties are tuned by incorporating Laponite XLG as a stabilizing agent. It is shown that cured objects generated from this novel bio-ink exhibit mechanical properties partially similar to that of soft tissue, show strong anti-biofouling properties, good biocompatibility, tunable cell adhesion, and immunomodulating behavior. The presented findings suggest that this 3D printable bio-ink has a great potential for a wide range of biomedical applications, including tissue engineering, wound healing, and soft robotics.
Collapse
Affiliation(s)
- Carolin A Rickert
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching b. München, Germany
| | - Salma Mansi
- TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Di Fan
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching b. München, Germany
| | - Petra Mela
- TUM School of Engineering and Design, Department of Mechanical Engineering, Chair of Medical Materials and Implants, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching, Germany
| | - Oliver Lieleg
- TUM School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. München, Germany
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching b. München, Germany
| |
Collapse
|
9
|
Fan D, Miller Naranjo B, Mansi S, Mela P, Lieleg O. Dopamine-Mediated Biopolymer Multilayer Coatings for Modulating Cell Behavior, Lubrication, and Drug Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37986-37996. [PMID: 37491732 DOI: 10.1021/acsami.3c05298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Biopolymer coatings on implants mediate the interactions between the synthetic material and its biological environment. Owing to its ease of preparation and the possibility to incorporate other bioactive molecules, layer-by-layer deposition is a method commonly used in the construction of biopolymer multilayers. However, this method typically requires at least two types of oppositely charged biopolymers, thus limiting the range of macromolecular options by excluding uncharged biopolymers. Here, we present a layer-by-layer approach that employs mussel-inspired polydopamine as the adhesive intermediate layer to build biopolymer multilayer coatings without requiring any additional chemical modifications. We select three biopolymers with different charge states─anionic alginate, neutral dextran, and cationic polylysine─and successfully assemble them into mono-, double-, or triple-layers. Our results demonstrate that both the layer number and the polymer type modulate the coating properties. Overall, increasing the number of layers in the coatings leads to reduced cell attachment, lower friction, and higher drug loading capacity but does not alter the surface potential. Moreover, varying the biopolymer type affects the surface potential, macrophage differentiation, lubrication performance, and drug release behavior. This proof-of-concept study offers a straightforward and universal coating method, which may broaden the use of multilayer coatings in biomedical applications.
Collapse
Affiliation(s)
- Di Fan
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Bernardo Miller Naranjo
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Salma Mansi
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Munich Institute of Biomedical Engineering and Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
| | - Oliver Lieleg
- Department of Materials Engineering, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany
- Center for Protein Assemblies and Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| |
Collapse
|
10
|
Park K, An S, Kim J, Yoon S, Song J, Jung D, Park J, Lee Y, Son D, Seo J. Resealable Antithrombotic Artificial Vascular Graft Integrated with a Self-Healing Blood Flow Sensor. ACS NANO 2023; 17:7296-7310. [PMID: 37026563 DOI: 10.1021/acsnano.2c10657] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Coronary artery bypass grafting is commonly used to treat cardiovascular diseases by replacing blocked blood vessels with autologous or artificial blood vessels. Nevertheless, the availability of autologous vessels in infants and the elderly and low long-term patency rate of grafts hinder extensive application of autologous vessels in clinical practice. The biological and mechanical properties of the resealable antithrombotic artificial vascular graft (RAAVG) fabricated herein, comprising a bioelectronic conduit based on a tough self-healing polymer (T-SHP) and a lubricious inner coating, match with the functions of autologous blood vessels. The self-healing and elastic properties of the T-SHP confer resistance against mechanical stimuli and promote conformal sealing of suturing regions, thereby preventing leakage (stable fixation under a strain of 50%). The inner layer of the RAAVG presents antibiofouling properties against blood cells and proteins, and antithrombotic properties, owing to its lubricious coating. Moreover, the blood-flow sensor fabricated using the T-SHP and carbon nanotubes is seamlessly integrated into the RAAVG via self-healing and allows highly sensitive monitoring of blood flow at low and high flow rates (10- and 100 mL min-1, respectively). Biocompatibility and feasibility of RAAVG as an artificial graft were demonstrated via ex vivo, and in vivo experiment using a rodent model. The use of RAAVGs to replace blocked blood vessels can improve the long-term patency rate of coronary artery bypass grafts.
Collapse
Affiliation(s)
- Kijun Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Soojung An
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Jihyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungjun Yoon
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihyang Song
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daekwang Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Jae Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Lynk Solutec Inc., Seoul 03722, Republic of Korea
| | - Yeontaek Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Lynk Solutec Inc., Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Yu H, Wang L, Zhang Z, Zhang X, Luan S, Shi H. Regulable Polyelectrolyte-Surfactant Complex for Antibacterial Biomedical Catheter Coating via a Readily Scalable Route. Adv Healthc Mater 2023; 12:e2202096. [PMID: 36285359 DOI: 10.1002/adhm.202202096] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Constructing multifunctional surfaces is one of the practical approaches to address catheter-related multiple complications but is generally time-consuming and substrate-dependent. Herein, a novel anti-adhesion, antibacterial, low friction, and robustness coating on medical catheters are developed via a universal and readily scalable method based on a regulable polyelectrolyte surfactant complex. The complex is rapidly assembled in one step by electrostatic and hydrophobic interactions between organosilicon quaternary ammonium surfactant (N+ Si ) and adjustable polyelectrolyte with cross-linkable, anti-adhesive, and anionic groups. The alcohol-soluble feature of the complex is conducive to the rapid formation of coatings on any medical device with arbitrary shapes via dip coating. Different from the conventional polyelectrolyte-surfactant complex coating, the regulated complex coating with nonleaching mode could be stable in harsh conditions (high concentration salt solution, organic reagents, etc.) because of the cross-linked structure while improving the biocompatibility and reducing the adhesion of various bacteria, proteins, and blood cells. The coated catheter exhibits good antibacterial infection in vitro and in vivo, owing to the synergistic effect of N+ Si and zwitterionic groups. Therefore, the rationally designed complex supplies a facile coating approach for the potential development in combating multiple complications of the medical catheter.
Collapse
Affiliation(s)
- Huan Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhenyan Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Shifang Luan
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
12
|
Li C, Gong P, Chao M, Li J, Yang L, Huang Y, Wang D, Liu J, Liu Z. A Biomimetic Lubricating Nanosystem with Responsive Drug Release for Osteoarthritis Synergistic Therapy. Adv Healthc Mater 2023; 12:e2203245. [PMID: 36708271 DOI: 10.1002/adhm.202203245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Osteoarthritis (OA) is associated with lubrication failure of articular cartilage and severe inflammatory response of joint capsule. Synergistic therapy combining joint lubrication and anti-inflammation emerges as a novel treatment of OA. In this study, bioinspired by ultralow friction of natural articular synovial fluid and mussel adhesion chemistry, a biomimetic nanosystem with dual functions of enhanced lubrication and stimuli-responsive drug release is developed. A dopamine mediated strategy realizes one step biomimetic grafting of hyaluronic acid (HA) on fluorinated graphene. The polymer modified sheets exhibit highly efficient near-infrared absorption, and show steady lubrication with a long time under various working conditions, in which the coefficient of friction is reduced by 75% compared to H2 O. Diclofenac sodium (DS) with a high loading capacity of 29.2% is controllably loaded, and responsive and sustained drug release is adjusted by near-infrared light. Cell experiments reveal that the lubricating nanosystem is taken up by endocytosis, and anti-inflammation results confirm that the nanosystem inhibits osteoarthritis deterioration by upregulating cartilage anabolic gene and downregulating catabolic proteases and pain-related gene. This work proposes a promising biomimetic approach to integrate polymer modified fluorinated graphene as a dual-functional nanosystem for effective synergistic therapy of OA.
Collapse
Affiliation(s)
- Cheng Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Peiwei Gong
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China.,State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Mianran Chao
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Juan Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Liyan Yang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Yan Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Dandan Wang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| |
Collapse
|
13
|
Dardouri M, Bettencourt A, Martin V, Carvalho FA, Colaço B, Gama A, Ramstedt M, Santos NC, Fernandes MH, Gomes PS, Ribeiro IAC. Assuring the Biofunctionalization of Silicone Covalently Bonded to Rhamnolipids: Antibiofilm Activity and Biocompatibility. Pharmaceutics 2022; 14:pharmaceutics14091836. [PMID: 36145584 PMCID: PMC9501004 DOI: 10.3390/pharmaceutics14091836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Silicone-based medical devices composed of polydimethylsiloxane (PDMS) are widely used all over the human body (e.g., urinary stents and catheters, central venous catheters stents) with extreme clinical success. Nevertheless, their abiotic surfaces, being prone to microorganism colonization, are often involved in infection occurrence. Improving PDMS antimicrobial properties by surface functionalization with biosurfactants to prevent related infections has been the goal of different works, but studies that mimic the clinical use of these novel surfaces are missing. This work aims at the biofunctional assessment of PDMS functionalized with rhamnolipids (RLs), using translational tests that more closely mimic the clinical microenvironment. Rhamnolipids were covalently bonded to PDMS, and the obtained surfaces were characterized by contact angle modification assessment, ATR-FTIR analysis and atomic force microscopy imaging. Moreover, a parallel flow chamber was used to assess the Staphylococcus aureus antibiofilm activity of the obtained surfaces under dynamic conditions, and an in vitro characterization with human dermal fibroblast cells in both direct and indirect characterization assays, along with an in vivo subcutaneous implantation assay in the translational rabbit model, was performed. A 1.2 log reduction in S. aureus biofilm was observed after 24 h under flow dynamic conditions. Additionally, functionalized PDMS lessened cell adhesion upon direct contact, while supporting a cytocompatible profile, within an indirect assay. The adequacy of the biological response was further validated upon in vivo subcutaneous tissue implantation. An important step was taken towards biofunctional assessment of RLs-functionalized PDMS, reinforcing their suitability for medical device usage and infection prevention.
Collapse
Affiliation(s)
- Maïssa Dardouri
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Victor Martin
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| | - Filomena A. Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Bruno Colaço
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science–AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Science–AL4AnimalS, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | | | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Maria H. Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| | - Pedro S. Gomes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
- Correspondence: (P.S.G.); (I.A.C.R.); Tel.: +351-220-910-100 (P.S.G.); +351-217-946-400 (I.A.C.R.); Fax: +351-220-910-101 (P.S.G.); +351-217-946-470 (I.A.C.R.)
| | - Isabel A. C. Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (P.S.G.); (I.A.C.R.); Tel.: +351-220-910-100 (P.S.G.); +351-217-946-400 (I.A.C.R.); Fax: +351-220-910-101 (P.S.G.); +351-217-946-470 (I.A.C.R.)
| |
Collapse
|
14
|
Marczynski M, Rickert CA, Fuhrmann T, Lieleg O. An improved, filtration-based process to purify functional mucins from mucosal tissues with high yields. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Lin C, Huang Z, Wu T, Zhou X, Zhao R, Xu Z. A chitosan and hyaluronic acid-modified layer-by-layer lubrication coating for cardiovascular catheter. Colloids Surf B Biointerfaces 2022; 217:112687. [DOI: 10.1016/j.colsurfb.2022.112687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 12/12/2022]
|
16
|
Lutz TM, Kimna C, Lieleg O. A pH-stable, mucin based nanoparticle system for the co-delivery of hydrophobic and hydrophilic drugs. Int J Biol Macromol 2022; 215:102-112. [PMID: 35724899 DOI: 10.1016/j.ijbiomac.2022.06.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Biopolymer-based drug carriers are commonly used for the development of safe delivery systems. However, biopolymer-based systems are often highly sensitive to the acidic pH levels in the stomach and release most of their cargo before they have reached their point of destination. Such premature drug release combined with the resulting high dose requirements is not cost-efficient and comes with the risk of unwanted side effects on non-target tissues/organs. This problem can be mitigated by the mucin-based drug carriers developed here, which exhibit good stability at acidic pH levels as proven by dynamic light scattering and enzymatic degradation tests with pepsin. In addition, the mucin-based particles can deliver hydrophobic and hydrophilic drugs simultaneously, which is demonstrated both with experiments performed under in vitro sink conditions and with drug transport tests involving eukaryotic cells as targets. As photo-induced cross-links covalently stabilize those particles, they can release their payload over time in a sustained manner. The drug carrier system introduced here combines good stability with high drug encapsulation efficiency and very good biocompatibility and thus may be valuable for a broad spectrum of applications in biological settings.
Collapse
Affiliation(s)
- Theresa M Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; Center for Protein Assemblies, Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; Center for Protein Assemblies, Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, 85748 Garching, Germany; Center for Protein Assemblies, Munich Institute of Biomedical Engineering, Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748 Garching, Germany.
| |
Collapse
|
17
|
Gonzalez-Martinez JF, Boyd H, Gutfreund P, Welbourn RJ, Robertsson C, Wickström C, Arnebrant T, Richardson RM, Prescott SW, Barker R, Sotres J. MUC5B mucin films under mechanical confinement: A combined neutron reflectometry and atomic force microscopy study. J Colloid Interface Sci 2022; 614:120-129. [DOI: 10.1016/j.jcis.2022.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/05/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
18
|
Bai M, Zhao B, Liu Z, Zheng Z, Wei X, Li L, Li K, Song X, Xu J, Li Z. Mucosa-Like Conformal Hydrogel Coating for Aqueous Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108848. [PMID: 35075678 DOI: 10.1002/adma.202108848] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/09/2022] [Indexed: 02/05/2023]
Abstract
Mucosa is a protective and lubricating barrier in biological tissue, which has a great clinical inspiration because of its slippery, soft, and hydrophilic surface. However, mimicking mucosal traits on complex surface remains an enormous challenge. Herein, a novel approach to create mucosa-like conformal hydrogel coating is developed. A thin conformal hydrogel layer mimicking the epithelial layer is obtained by first absorbing micelles, followed by forming covalent interlinks with the polymer substrate via interface-initiated hydrogel polymerization. The resulting coating exhibits uniform thickness (≈15 µm), mucosa-matched compliance (Young's modulus = 1.1 ± 0.1 kPa) and lubrication (coefficients of friction = 0.018 ± 0.003), robust interfacial bonding against peeling (peeling strength = 1218.0 ± 187.9 J m-2 ), as well as high water absorption capacity. It effectively resists adhesion of proteins and bacteria without compromising biocompatibility. As demonstrated by an in vivo cynomolgus monkey model and clinical trial, applications of the mucosa-like conformal hydrogel coating on the endotracheal tube significantly reduce intubation-related complications, such as invasive stimuli, mucosal lesions, laryngeal edema, inflammation, and postoperative pain. This work offers a promising prototype for surface decoration of biomedical devices and holds great prospects for clinical translation to enable interventional operations with minimally invasive impacts.
Collapse
Affiliation(s)
- Meng‐Han Bai
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Baisong Zhao
- Department of Anesthesiology Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou 510623 China
| | - Zhou‐Yun‐Tong Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zi‐Li Zheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xin Wei
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Lingli Li
- West China School of Nursing Sichuan University/West China Hospital Sichuan University Chengdu 610041 China
| | - Ka Li
- West China School of Nursing Sichuan University/West China Hospital Sichuan University Chengdu 610041 China
| | - Xingrong Song
- Department of Anesthesiology Guangzhou Women and Children's Medical Center Guangzhou Medical University Guangzhou 510623 China
| | - Jia‐Zhuang Xu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- West China School of Nursing Sichuan University/West China Hospital Sichuan University Chengdu 610041 China
| | - Zhong‐Ming Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
19
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
20
|
Marczynski M, Kimna C, Lieleg O. Purified mucins in drug delivery research. Adv Drug Deliv Rev 2021; 178:113845. [PMID: 34166760 DOI: 10.1016/j.addr.2021.113845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
One of the main challenges in the field of drug delivery remains the development of strategies to efficiently transport pharmaceuticals across mucus barriers, which regulate the passage and retention of molecules and particles in all luminal spaces of the body. A thorough understanding of the molecular mechanisms, which govern such selective permeability, is key for achieving efficient translocation of drugs and drug carriers. For this purpose, model systems based on purified mucins can contribute valuable information. In this review, we summarize advances that were made in the field of drug delivery research with such mucin-based model systems: First, we give an overview of mucin purification procedures and discuss the suitability of model systems reconstituted from purified mucins to mimic native mucus. Then, we summarize techniques to study mucin binding. Finally, we highlight approaches that made use of mucins as building blocks for drug delivery platforms or employ mucins as active compounds.
Collapse
|
21
|
Kim S, Chen JB, Clifford A. Tuning the Biointerface: Low-Temperature Surface Modification Strategies for Orthopedic Implants to Enhance Osteogenic and Antimicrobial Activity. ACS APPLIED BIO MATERIALS 2021; 4:6619-6629. [PMID: 35006965 DOI: 10.1021/acsabm.1c00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As both the average life expectancy and incidence of bone tissue reconstruction increases, development of load-bearing implantable materials that simultaneously enhance osseointegration while preventing postoperative infection is crucial. To address this need, significant research efforts have been dedicated to developing surface modification strategies for metallic load-bearing implants and scaffolds. Despite the abundance of strategies reported, many address only one factor, for example, surface chemistry or topography. Furthermore, the incorporation of surface features to increase osteocompatibility can increase the probability of infection, by encouraging the formation of bacterial biofilms. To truly advance this field, research efforts must focus on developing multifunctional coatings that concurrently address these complex and competing requirements. In addition, particular emphasis should be placed on utilizing surface modification processes that are versatile, low cost, and scalable, for ease of translation to mass manufacturing and clinical use. The aim of this short Review is to highlight recent advances in scalable and multifunctional surface modification techniques that obtain a programmed response at the bone tissue/implant interface. Low-temperature approaches based on macromolecule immobilization, electrochemical techniques, and solution processes are discussed. Although the strategies discussed in this Review have not yet been approved for clinical use, they show great promise toward developing the next generation of ultra-long-lasting biomaterials for joint and bone tissue repair.
Collapse
Affiliation(s)
- Saeromi Kim
- Department of Materials Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jenise B Chen
- Department of Chemistry, Faculty of Arts & Science, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Amanda Clifford
- Department of Materials Engineering, Faculty of Applied Science, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|