1
|
Gui Q, Ding N, Wu H, Liu J, Geng Y, Zhu J, Gao M, Du A, Yue B, Zhu L. Development of a pH-Responsive Antimicrobial and Potent Antioxidant Hydrogel for Accelerated Wound Healing: A Game Changer in Drug Delivery. Adv Biol (Weinh) 2024:e2400358. [PMID: 39673457 DOI: 10.1002/adbi.202400358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Stimuli-responsive hydrogels have the capability to alter their state in response to changes in physiological signals within their application environment, providing distinct benefits in drug delivery applications. Here, the acidic pH typically found in acutely infected wounds can be effectively managed by incorporating a pH-responsive Ag+ loaded system within the hydrogel, thereby ensuring efficient drug use and preventing potential toxicity from the sudden release of silver ions. The antimicrobial composite hydrogel HAMA/GelMA-CA/Ag+ provides some tissue adhesion and accelerates wound healing. GelMA-CA is synthesized by modifying gelatin methacryloyl (GelMA) with caffeic acid (CA), while hyaluronic acid methacryloyl (HAMA) is introduced to prepare a double network hydrogel. Silver nitrate is then introduced to make it pH-responsive through the formation of coordination between the polyphenolic structure of caffeic acid and the silver ions. The composite hydrogel exhibited excellent antioxidant properties and strong antimicrobial activity against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the composite hydrogel accelerated the promotion of wound healing in a rat model of S. aureus-infected wounds. In conclusion, the HAMA/GelMA-CA/Ag+ hydrogel is a promising bioactive material that can be used as a wound dressing to promote the healing of acutely infected wounds.
Collapse
Affiliation(s)
- Qixiang Gui
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Neng Ding
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- Department of Burns and Plastic Surgery, the PLA 74th Group Army Hospital, Guangzhou, 510300, China
| | - Haimei Wu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
- Faculty of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyue Liu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Yingnan Geng
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Jie Zhu
- Department of Plastic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingyue Gao
- YanCheng NO.1 People's Hospital, Yancheng, 224006, China
| | - Antong Du
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| | - Bingbing Yue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lie Zhu
- Department of Plastic and Reconstructive Surgery, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, 200003, China
| |
Collapse
|
2
|
Ma K, Cheng B, Xu X, Zhang L, Ruan R, Deng H, Zhu X, Zhu H. Bioactive glass suspension hydrogel promotes wound healing by modulating fibroblasts. NANOTECHNOLOGY 2024; 36:075101. [PMID: 39577013 DOI: 10.1088/1361-6528/ad9610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
The irritation and adhesion of wound healing biomaterials to wet wounds should be addressed for achieving effective wound healing. In this study, a stable multifunctional hydrogels (BGs/HA suspension gels) were prepared using superfine powder of bioactive glasses (BGs), the biocompatible materials hyaluronic acid (HA) and carbomer940, which had good adhesion and low irritation properties for use in moist complex wounds. The average particle size of BGs/HA suspension gels was 13.11 ± 0.29μm, and the BG content was 15.8 ± 0.2% (m m-1). The results of cell proliferation, cell migration, and immunofluorescence staining experiments showed that in the initial stage of wound healing, the ionic extract of BGs formulations promoted the proliferation and migration of L929 cells and induced the secretion ofα-SMA and collagen I. In the final stage of repair, the ionic extract of the BGs formulation regulated the differentiation of fibroblast, which contributed to the reduction of pathological scar formation.In vivoexperiments showed that the wound healing rate of BGs/HA suspension gels group exceeded higher than that of the conventional BGs superfine powder group. Although BGs/HA suspension gels were comparable to its commercially available counterpart (Dermlin paste) in promoting wound healing, it addressed the problem of localized irritation caused by the high pH and low adhesion of BGs products. This study confirmed the specific regulatory effect of BGs/HA suspension gels on L929 cells, which provided a reference for the clinical application of BGs in wound dressing.
Collapse
Affiliation(s)
- Kai Ma
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National '111' Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, People's Republic of China
| | - Baichuan Cheng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National '111' Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, People's Republic of China
| | - Xiaodi Xu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National '111' Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, People's Republic of China
| | - Lei Zhang
- Hubei Zhongchuang Medical Supplies Co., Ltd, Tianzishan Avenue, Miaoshan Hi-Tech Industrial Park, Jiangxia District, Wuhan 430205, People's Republic of China
| | - Rui Ruan
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National '111' Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, People's Republic of China
| | - Hongbin Deng
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National '111' Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, People's Republic of China
| | - Xiaolei Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National '111' Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, People's Republic of China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National '111' Center for Cellular Regulation and Molecular Pharmaceutics, School of Life Sciences and Health, Hubei University of Technology, No.28, Nanli Road, Hong-shan District, Wuhan 430068, People's Republic of China
| |
Collapse
|
3
|
Zhou R, Huang J, Zhang W, Wang W, Peng W, Chen J, Yu C, Bo R, Liu M, Li J. Multifunctional hydrogel based on polyvinyl alcohol/chitosan/metal polyphenols for facilitating acute and infected wound healing. Mater Today Bio 2024; 29:101315. [PMID: 39554841 PMCID: PMC11566719 DOI: 10.1016/j.mtbio.2024.101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Bacterial-infected wounds could cause delayed wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria remain a major clinical problem. However, traditional treatment strategies were gradually losing efficacy, such as the abuse of antibiotics leading to enhanced bacterial resistance. Therefore, there was an urgent need to develop an antibiotic-free multifunctional dressing for bacterially infected wound healing. This study demonstrated the preparation of a multifunctional injectable hydrogel and evaluated its efficacy in treating acute and infected wounds. The hydrogel was prepared by a one-step mixing method, and cross-linked by natural deep eutectic solvent (DES), polyvinyl alcohol (PVA), chitosan (CS), tannic acid (TA), and Cu2+ through non-covalent interactions (hydrogen bonds and metal coordination bonds). PVA/CS/DES/CuTA500 hydrogel has multiple functional properties, including injectability, tissue adhesion, biocompatibility, hemostasis, broad-spectrum antibacterial, anti-inflammatory, and angiogenesis. Most importantly, in the MRSA-infected skin wound model, PVA/CS/DES/CuTA500 hydrogel could ultimately accelerate infected wound healing by killing bacteria, activating M2 polarization, inhibiting inflammation, and promoting angiogenesis. In summary, the PVA/CS/DES/CuTA500 hydrogel showed great potential as a wound dressing for bacterial infected wounds treatment in the clinic.
Collapse
Affiliation(s)
- Ruigang Zhou
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Junjie Huang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Wenhai Zhang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Weimei Wang
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Weilong Peng
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Jun Chen
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Chenglong Yu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
| | - Ruonan Bo
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Mingjiang Liu
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
4
|
Li J, Chen Y, Wei M, Tang Y, Zhou L, Quan X, Ma R, Hou N. 3D printed sodium alginate/gelatin/tannic acid/calcium chloride scaffolds laden bone marrow mesenchymal stem cells to repair defective thyroid cartilage plate. J Biomater Appl 2024:8853282241300587. [PMID: 39529401 DOI: 10.1177/08853282241300587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Due to the absence of blood vessels, cartilage exhibits extremely limited self-repair capacity. Currently, repairing laryngeal cartilage defects, resulting from conditions such as laryngeal tumors, injury, and congenital structural abnormalities, remains a significant challenge in the Department of Otolaryngology, Head and Neck Surgery. Previous research has often focused on enhancing the mechanical properties of synthetic materials. However, their low biological activity and weak cell adhesion necessitate compensatory measures. This study aims to capitalize on the advantages of natural materials in cartilage tissue engineering. Sodium alginate, gelatin, tannic acid, and calcium chloride were utilized to prepare bioinks through cross-linking for application in 3D printing cartilage scaffolds. Bone marrow mesenchymal stem cells with multidirectional differentiation potential were chosen as seed cells, with appropriate growth factors incorporated to promote their differentiation into cartilage during in vitro culture. The scaffold laden cells was subsequently implanted into rabbit thyroid cartilage plate defects at the appropriate time. HE staining, toluidine blue staining, Masson staining, and collagen type II staining were employed to assess cartilage defect repair at 4, 8, and 12 weeks, respectively. Results demonstrated that scaffolds made from natural materials could emulate the mechanical properties of fresh cartilage with commendable biocompatibility. Stained sections further confirmed the efficacy of the composite hydrogel scaffolds identified in this study in promoting rabbit thyroid cartilage plate restoration. In summary, this study successfully fabricated a natural material scaffold for rabbit laryngeal cartilage tissue engineering, thereby furnishing a new idea and experience for the clinical application of laryngeal cartilage defect reconstruction.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Taikang Hospital, Chengdu, China
| | - Yuelin Chen
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Mengru Wei
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Ying Tang
- Department of Pathology, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Li Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital, Chengdu Medical, College, Chengdu, China
| | - Xiaoxuan Quan
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Taikang Hospital, Chengdu, China
| | - Ruina Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Tangdu Hospital, Chinese People's Liberation Army Air Force Military Medical University, Xi'an, China
| | - Nan Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Taikang Hospital, Chengdu, China
| |
Collapse
|
5
|
Yuan Z, Zhang L, Shafiq M, Wang X, Cai P, Hafeez A, Ding Y, Wang Z, El-Newehy M, Meera Moydeen Abdulhameed, Jiang L, Mo X, Xu Y. Composite superplastic aerogel scaffolds containing dopamine and bioactive glass-based fibers for skin and bone tissue regeneration. J Colloid Interface Sci 2024; 673:411-425. [PMID: 38878375 DOI: 10.1016/j.jcis.2024.06.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024]
Abstract
Multifunctional bioactive biomaterials with integrated bone and soft tissue regenerability hold great promise for the regeneration of trauma-affected skin and bone defects. The aim of this research was to fabricate aerogel scaffolds (GD-BF) by blending the appropriate proportions of short bioactive glass fiber (BGF), gelatin (Gel), and dopamine (DA). Electrospun polyvinyl pyrrolidone (PVP)-BGF fibers were converted into short BGF through calcination and homogenization. Microporous GD-BF scaffolds displayed good elastic deformation recovery and promoted neo-tissue formation. The DA could enable thermal crosslinking and enhance the mechanical properties and structural stability of the GD-BF scaffolds. The BGF-mediated release of therapeutic ions shorten hemostatic time (<30 s) in a rat tail amputation model and a rabbit artery injury model alongside inducing the regeneration of skin appendages (e.g., blood vessels, glands, etc.) in a full-thickness excisional defect model in rats (percentage wound closure: GD-BF2, 98 % vs. control group, 83 %) at day 14 in vitro. Taken together, these aerogel scaffolds may have significant promise for soft and hard tissue repair, which may also be worthy for the other related disciplines.
Collapse
Affiliation(s)
- Zhengchao Yuan
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, PR China
| | - Lixiang Zhang
- Department of Health Management, Characteristic Medical Center of Chinese People's Armed Police Force, 220 Chenglin Road, Hedong District, Tianjin, China
| | - Muhammad Shafiq
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Xinyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, PR China
| | - Pengfei Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, PR China
| | - Abdul Hafeez
- Department of Mechanical Engineering, Faculty of Engineering, University of Engineering & Technology (UET), Lahore 54000, Pakistan
| | - Yangfan Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, PR China
| | - Zewen Wang
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Songjiang, Shanghai 201600, PR China.
| | - Yuan Xu
- Department of Orthopaedics, Xinqiao Hospital, Army Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, China.
| |
Collapse
|
6
|
Xu S, Wang Y, Han P, Yan S, You J, Guo C, Wu X. Etamsylate-loaded hydrogel composed of carboxymethyl chitosan and oxidized tannic acid for improved wound healing. Int J Biol Macromol 2024; 279:135270. [PMID: 39233162 DOI: 10.1016/j.ijbiomac.2024.135270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Proper wound dressing is essential to facilitate skin wound healing, stop bleeding, and prevent infections. Herein, carboxymethyl chitosan (CMC) was crosslinked with oxidized tannic acid (OTA) to form an adhesive and self-healing OTA/CMC hydrogel, and etamsylate was loaded to enhance the hemostatic effect of the hydrogel dressing. The resultant OTA/CMC/E hydrogel exhibited a spectrum of noteworthy attributes including excellent cell compatibility, high antioxidant activity, effective anti-bacterium, and excellent hemorrhage control. Functionally, it mitigated intracellular ROS levels, hindered the proliferation of Staphylococcus aureus, while also significantly reducing hemostasis duration and total blood loss. In vivo full-thickness skin incision results showed that the OTA/CMC/E hydrogel could efficiently accelerate in vivo wound closure and healing, promising as an advanced wound healing material.
Collapse
Affiliation(s)
- Shuo Xu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yu Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ping Han
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaorong Yan
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun You
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Youyi Road 368, Wuhan 430062, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
7
|
Wang XX, Wang CY, Yin M, Chen KZ, Qiao SL. Tannic Acid-Enabled Antioxidant and Stretchable MXene/Silk Strain Sensors for Diving Training Healthcare. ACS Sens 2024; 9:5156-5166. [PMID: 39316657 DOI: 10.1021/acssensors.4c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
MXene-based conductive hydrogels hold significant promise as epidermal sensors, yet their susceptibility to oxidation represents a formidable limitation. This study addresses this challenge by incorporating MXene into a tannic acid (TA) cross-linked silk fibroin matrix. The resulting conductive hydrogel (denoted as e-dive) exhibits favorable characteristics such as adjustable mechanical properties, self-healing capabilities (both mechanically and electrically), and strong underwater adhesion. The existence of a percolation network of MXene within the nanocomposites guarantees good electrical conductivity. Importantly, the surface interaction of MXene nanosheets with the hydrophobic moiety from TA substantially reduced moisture and oxygen interactions with MXene, thereby effectively mitigating MXene oxidation within hydrogel matrices. This preservation of the electrical characteristics ensures prolonged functional stability. Furthermore, the e-dive demonstrates inherent antibacterial properties, making it suitable for use in underwater environments where bacterial contamination is a concern. The utilization of this advanced e-dive system extends to the correction of diving postures and the facilitation of underwater healthcare and security alerts. Our study presents a robust methodology for enhancing the stability of MXene-based conductive hydrogel electronics, thereby expanding their scope of potential applications.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Chen-Yu Wang
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Meng Yin
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao 266042, P. R. China
| |
Collapse
|
8
|
Deng J, Li J, Yan L, Guo W, Ding X, Ding P, Liu S, Sun Y, Jiang G, Okoro OV, Shavandi A, Xie Z, Fan L, Nie L. Accelerated, injectable, self-healing, scarless wound dressings using rGO reinforced dextran/chitosan hydrogels incorporated with PDA-loaded asiaticoside. Int J Biol Macromol 2024; 278:134424. [PMID: 39111509 DOI: 10.1016/j.ijbiomac.2024.134424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The process of wound healing is intricate and complex, necessitating the intricate coordination of various cell types and bioactive molecules. Despite significant advances, challenges persist in achieving accelerated healing and minimizing scar formation. Herein, a multifunctional hydrogel engineered via dynamic Schiff base crosslinking between oxidized dextran and quaternized chitosan, reinforced with reduced graphene oxide (rGO) is reported. The resulting OQG hydrogels demonstrated injectability to aid in conforming to irregular wound geometries, rapid self-healing to maintain structural integrity and adhesion for intimate integration with wound beds. Moreover, the developed hydrogels possessed antioxidant and antibacterial activities, mitigating inflammation and preventing infection. The incorporation of conductive rGO further facilitated the transmission of endogenous electrical signals, stimulating cell migration and tissue regeneration. In addition, the polydopamine-encapsulated asiaticoside (AC@PDA) nanoparticles were encapsulated in OQG hydrogels to reduce scar formation during in vivo evaluations. In vitro results confirmed the histocompatibility of the hydrogels to promote cell migration. The recovery of the full-thickness rat wounds revealed that these designed OQG hydrogels with the incorporation of AC@PDA nanoparticles could accelerate wound healing, reduce inflammation, facilitate angiogenesis, and minimize scarring when implemented. This multifunctional hydrogel system offers a promising strategy for enhanced wound management and scarless tissue regeneration, addressing the multifaceted challenges in wound care.
Collapse
Affiliation(s)
- Jun Deng
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shuang Liu
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou 310018, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| | - Zhizhong Xie
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Lihong Fan
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| |
Collapse
|
9
|
Kaczmarek-Szczepańska B, Zasada L, D'Amora U, Pałubicka A, Michno A, Ronowska A, Wekwejt M. Bioactivation of Konjac Glucomannan Films by Tannic Acid and Gluconolactone Addition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46102-46112. [PMID: 39163280 PMCID: PMC11378156 DOI: 10.1021/acsami.4c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Wound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing and address several problems plaguing partially healed injuries, including severe inflammation, scarring, and wound infection. Naturally derived compounds offer unique advantages such as minimal toxicity, cost-effectiveness, and outstanding biocompatibility along with potential anti-inflammatory and antimicrobial activity. Herein, the main driving idea of the work was the design and development of konjac glucomannan d-glucono-1,5-lactone (KG) films bioactivated by tannic acid and d-glucono-1,5-lactone (GL) addition. Our analysis, using attenuated total reflectance-Fourier transform infrared, atomic force microscopy, and surface energy measurements demonstrated that tannic acid (TA) clearly interacted with the KG matrix, acting as its cross-linker, whereas GL was embedded within the polymer structure. All developed films maintained a moist environment, which represents a pivotal property for wound dressing. Hemocompatibility experiments showed that all tested films exhibited no hemolytic impact on human erythrocytes. Moreover, the presence of TA and GL enhanced the metabolic and energetic activity in human dermal fibroblasts, as indicated by the MTT assay, showing results exceeding 150%. Finally, all films demonstrated high antibacterial properties as they significantly reduced the multiplication rate of both Staphylococcus aureus and Escherichia coli in bacterial broth and created the inhibition zones for S. aureus in agar plates. These remarkable outcomes make the KG/TA/GL film promising candidates for wound healing applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d'OLtremare Pad. 20, 80125 Naples, Italy
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
- Laboratory for Biomaterials and Bioengineering (CRC-Tier I), Dept Min-Met-Materials Eng & Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, Quebec G1 V 0A6, Canada
| |
Collapse
|
10
|
Wang M, Hong Y, Fu X, Sun X. Advances and applications of biomimetic biomaterials for endogenous skin regeneration. Bioact Mater 2024; 39:492-520. [PMID: 38883311 PMCID: PMC11179177 DOI: 10.1016/j.bioactmat.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 06/18/2024] Open
Abstract
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin's own regenerative potential for self-healing, thereby avoiding the risks of immune rejection and exogenous infection. However, currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function, lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment. Novel biomimetic biomaterials with precise structure, chemical composition, and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration. Here, we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry, physiological process regulation, and biophysical property design. Furthermore, novel techniques including in situ reprograming, flexible electronic skin, artificial intelligence, single-cell sequencing, and spatial transcriptomics, which have potential to contribute to the development of biomimetic biomaterials are highlighted. Finally, the prospects and challenges of further research and application of biomimetic biomaterials are discussed. This review provides reference to address the clinical problems of rapid and high-quality skin regeneration.
Collapse
Affiliation(s)
- Mengyang Wang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100089, PR China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
11
|
Liu S, Wang W, Chen Z, Wu P, Pu W, Li G, Song J, Zhang J. An Osteoimmunomodulatory Biopatch Potentiates Stem Cell Therapies for Bone Regeneration by Simultaneously Regulating IL-17/Ferroptosis Signaling Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401882. [PMID: 39024121 PMCID: PMC11425236 DOI: 10.1002/advs.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Currently, there are still great challenges in promoting bone defect healing, a common health problem affecting millions of people. Herein an osteoimmunity-regulating biopatch capable of promoting stem cell-based therapies for bone regeneration is developed. A totally biodegradable conjugate is first synthesized, which can self-assemble into bioactive nano micelles (PPT NMs). This nanotherapy effectively improves the osteogenesis of periodontal ligament stem cells (PDLSCs) under pathological conditions, by simultaneously regulating IL-17 signaling and ferroptosis pathways. Incorporation of PPT NMs into biodegradable electrospun nanofibers affords a bioactive patch, which notably improves bone formation in two rat bone defect models. A Janus bio patch is then engineered by integrating the bioactive patch with a stem cell sheet of PDLSCs. The obtained biopatch shows additionally potentiated bone regeneration capacity, by synergistically regulating osteoimmune microenvironment and facilitating stem cell differentiation. Further surface functionalization of the biopatch with tannic acid considerably increases its adhesion to the bone defect, prolongs local retention, and sustains bioactivities, thereby offering much better repair effects in rats with mandibular or cranial bone defects. Moreover, the engineered bioactive patches display good safety. Besides bone defects, this osteoimmunity-regulating biopatch strategy can be applied to promote stem cell therapies for spinal cord injury, wound healing, and skin burns.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Wenle Wang
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of Orthodontics IIAffiliated Stomatological Hospital of Zunyi Medical UniversityZunyi563000P. R. China
| | - Zhiyu Chen
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of OrthopedicsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Peng Wu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- College of Pharmacy and Medical TechnologyVocational and Technical CollegeHanzhongShaanxi723000P. R. China
| | - Wendan Pu
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Gang Li
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Department of StomatologySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038P. R. China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing Medical UniversityChongqing401147P. R. China
| | - Jianxiang Zhang
- Department of PharmaceuticsCollege of PharmacyThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- State Key Laboratory of Trauma and Chemical PoisoningThird Military Medical University (Army Medical University)Chongqing400038P. R. China
- Yu‐Yue Pathology Scientific Research Center313 Gaoteng Avenue, JiulongpoChongqing400039P. R. China
| |
Collapse
|
12
|
Ma S, Chen K, Ding Q, Zhang S, Lu Y, Yu T, Ding C, Liu W, Liu S. Quaternized oxidized sodium alginate injectable hydrogel with high antimicrobial and hemostatic efficacy promotes diabetic wound healing. Int J Pharm 2024; 661:124421. [PMID: 38972524 DOI: 10.1016/j.ijpharm.2024.124421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
In this paper, a hydrogel material with efficient antibacterial, hemostatic, self-healing, and injectable properties was designed for the treatment of diabetic wounds. Firstly, quaternary ammonium salts were grafted with oxidized sodium alginate, and quaternized oxidized sodium alginate (QOSA) was synthesized. Due to the introduction of quaternary ammonium group it has antibacterial and hemostatic effects, at the same time, due to the presence of aldehyde group it can be reacted with carboxymethyl chitosan (CMCS) to form a hydrogel through the Schiff base reaction. Furthermore, deer antler blood polypeptide (DABP) was loaded into the hydrogel (QOSA&CMCS&DABP), showing good swelling ratio and bacteriostatic effect. In vitro and in vivo experiments demonstrated that the hydrogel not only quickly inhibited hepatic hemorrhage in mice and reduced coagulation index and clotting time in vitro, but also significantly enhanced collagen deposition at the wound site, accelerating wound healing. This demonstrates that the multifunctional hydrogel materials (QOSA&CMCS&DABP) have promising applications in the acceleration of skin wound healing and antibacterial promotion.
Collapse
Affiliation(s)
- Shuang Ma
- School of Food and Pharmaceutical Engineering, Liupao Tea Modern Industry College, Wuzhou University, Wuzhou 543002, China
| | - Kecheng Chen
- Looking Up Starry Sky Medical Research Center, Siping 136001, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Taojing Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Liupao Tea Modern Industry College, Wuzhou University, Wuzhou 543002, China.
| | - Shuang Liu
- Jilin Jin Ziyuan Biotech Inc. Shuangliao 136400, Chian.
| |
Collapse
|
13
|
Hakimi F, Balegh H, Sarmadi fard P, Kazeminava F, Moradi S, Eskandari M, Ahmadian Z. Silver/tannic acid nanoparticles/ poly-L-lysine decorated polyvinyl alcohol-hydrogel as a hybrid wound dressing. Heliyon 2024; 10:e35264. [PMID: 39161815 PMCID: PMC11332810 DOI: 10.1016/j.heliyon.2024.e35264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Hydrogels containing antimicrobial materials have emerged as attractive platforms for wound treatment in the past decade due to their favorable bio-mimicking properties, excellent modulation of bacterial infection, and ability to minimize bacterial resistance. Herein, a hybrid combination of polyvinyl alcohol (PVA), hyperbranched poly L-lysine (L), tannic acid decorated AgNPs (AgTA NPs), loaded with Allantoin (Alla) is used to fabricate PLAg-Alla hydrogel dressing via the freeze-thaw method without use of any chemical cross-linker. The PLAg-Alla hydrogel possesses a great structure, is biodegradable, and safe, and exhibits high antibacterial potential, all required for efficient wound healing. The incorporation of AgTA and poly L-lysine (L) within the hydrogel contributes to the enhancement of antibacterial ability, as well as effectively promoting the wound healing. This hybrid hydrogel possessed favorable physicochemical features, robust antibacterial properties, and accelerated wound healing in vivo as promising dressing for the clinical application.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Balegh
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parham Sarmadi fard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheyda Moradi
- Department of Chemistry, Faculty of Science, University of Mohagheg Ardabili, Ardabil, Iran
| | - Mehdi Eskandari
- Department of Physiology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Korramabad, Iran
| |
Collapse
|
14
|
Lu R, Luo Z, Zhang Y, Chen J, Zhang Y, Zhang C. A Multifunctional Tissue-Engineering Hydrogel Aimed to Regulate Bacterial Ferroptosis-Like Death and Overcoming Infection Toward Bone Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309820. [PMID: 38896799 PMCID: PMC11321691 DOI: 10.1002/advs.202309820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Infection is the most common complication after orthopedic surgery and can result in prolonged ailments such as chronic wounds, enlarged bone defects, and osteomyelitis. Iron, which is essential for bacterial metabolism and immune cell functions, is extremely important. Bacteria harness iron from nearby cells to promote biofilm formation, ensuring their survival. Iron deficiency within the infection microenvironment (IME) consequently hampers macrophage function, enabling further dissemination of the infection and hindering macrophage polarization to the M2 phenotype. Therefore, a novel approach is proposed to regulate macrophage polarization, aiming to restore the inflammatory immune environment. A composite hydrogel derived from natural polymers is developed to address infections and manage iron metabolism in macrophages. This IME-responsive hydrogel, named FCL-ECMH, is synthesized by encapsulating vermiculite functional core layers within a decellularized extracellular matrix hydrogel. It is noteworthy that FCL-ECMH can produce reactive oxygen species within the IME. Supplementary photothermal treatment enhances bacterial iron uptake, leading to ferroptosis-like death. This process also rejuvenates the iron-enriched macrophages around the IME, thereby enhancing their antibacterial and tissue repair functions. In vivo experiments confirmed the antibacterial and repair-promoting capabilities of FCL-ECMH, indicating its potential for clinical applications.
Collapse
Affiliation(s)
- Renjie Lu
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Jiahao Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
- Precision Medicine CenterTaizhou Central Hospital999 Donghai RoadTaizhouZhejiang318000China
| | - Chi Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| |
Collapse
|
15
|
Si L, Zhang S, Guo H, Luo W, Feng Y, Du X, Mou F, Ma H, Guan J. Swarming Magnetic Fe 3O 4@Polydopamine-Tannic Acid Nanorobots: Integrating Antibiotic-Free Superficial Photothermal and Deep Chemical Strategies for Targeted Bacterial Elimination. RESEARCH (WASHINGTON, D.C.) 2024; 7:0438. [PMID: 39086398 PMCID: PMC11289052 DOI: 10.34133/research.0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
Micro/nanorobots (MNRs) are envisioned to provide revolutionary changes to therapies for infectious diseases as they can deliver various antibacterial agents or energies to many hard-to-reach infection sites. However, existing MNRs face substantial challenges in addressing complex infections that progress from superficial to deep tissues. Here, we develop swarming magnetic Fe3O4@polydopamine-tannic acid nanorobots (Fe3O4@PDA-TA NRs) capable of performing targeted bacteria elimination in complicated bacterial infections by integrating superficial photothermal and deep chemical strategies. The Fe3O4@PDA-TA nanoparticles (NPs), serving as building blocks of the nanorobots, are fabricated by in situ polymerization of dopamine followed by TA adhesion. When driven by alternating magnetic fields, Fe3O4@PDA-TA NPs can assemble into large energetic microswarms continuously flowing forward with tunable velocity. Thus, the swarming Fe3O4@PDA-TA NRs can be navigated to achieve rapid broad coverage of a targeted superficial area from a distance and rapidly eradicate bacteria residing there upon exposure to near-infrared (NIR) light due to their efficient photothermal conversion. Additionally, they can concentrate at deep infection sites by traversing through confined, narrow, and tortuous passages, exerting sustained antibacterial action through their surface TA-induced easy cell adhesion and subsequent membrane destruction. Therefore, the swarming Fe3O4@PDA-TA NRs show great potential for addressing complex superficial-to-deep infections. This study may inspire the development of future therapeutic microsystems for various diseases with multifunction synergies, task flexibility, and high efficiency.
Collapse
Affiliation(s)
- Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Shuming Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| | - Yuqin Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Xinkang Du
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
| | - Huiru Ma
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
- School of Chemistry, Chemical Engineering and Life Science,
Wuhan University of Technology, Wuhan, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering,
Wuhan University of Technology, Wuhan, China
- Wuhan Institute of Photochemistry and Technology, Wuhan, China
| |
Collapse
|
16
|
Si H, Du D, Jiao C, Sun Y, Li L, Tang B. Biomimetic synergistic effect of redox site and Lewis acid for construction of efficient artificial enzyme. Nat Commun 2024; 15:6315. [PMID: 39060279 PMCID: PMC11282276 DOI: 10.1038/s41467-024-50687-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In enzymatic catalysis, the redox site and Lewis acid are the two main roles played by metal to assist amino acids. However, the reported enzyme mimics only focus on the redox-active metal as redox site, while the redox-inert metal as Lewis acid has, to the best of our knowledge, not been studied, presenting a bottleneck of enzyme mimics construction. Based on this, a series of highly efficient MxV2O5·nH2O peroxidase mimics with vanadium as redox site and alkaline-earth metal ion (M2+) as Lewis acid are reported. Experimental results and theoretical calculations indicate the peroxidase-mimicking activity of MxV2O5·nH2O show a periodic change with the Lewis acidity (ion potential) of M2+, revealing the mechanism of redox-inert M2+ regulating electron transfer of V-O through non-covalent polarization and thus promoting H2O2 adsorbate dissociation. The biomimetic synergetic effect of redox site and Lewis acid is expected to provide an inspiration for design of enzyme mimics.
Collapse
Affiliation(s)
- Haibin Si
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Dexin Du
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Chengcheng Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yan Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Lu Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.
- Jinan Institute of Quantum Technology, Jinan, 250101, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China.
- Laoshan Laboratory, Qingdao, 266237, P. R. China.
| |
Collapse
|
17
|
Umesh, Chandran VC, Saha P, Nath D, Bera S, Bhattacharya S, Pal A. A hydrogel based on Fe(II)-GMP demonstrates tunable emission, self-healing mechanical strength and Fenton chemistry-mediated notable antibacterial properties. NANOSCALE 2024; 16:13050-13060. [PMID: 38899974 DOI: 10.1039/d4nr01011f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Supramolecular hydrogels serve as an excellent platform to enable in situ reactive oxygen species (ROS) generation while maintaining controlled localized conditions, thereby mitigating cytotoxicity. Herein, we demonstrate hydrogel formation using guanosine-5'-monophosphate (GMP) with tetra(4-carboxylphenyl) ethylene (1) to exhibit aggregation-induced emission (AIE) and tunable mechanical strength in the presence of divalent metal ions such as Ca2+, Mg2+, and Fe2+. The addition of divalent metal ions leads to structural transformation in the metallogels (M-1GMP). Furthermore, the incorporation of Fe2+ ions into the hydrogel (Fe-1GMP) promotes the Fenton reaction that could be upregulated upon adding ascorbic acid (AA), demonstrating antibacterial efficacy via ROS generation. In vitro studies on AA-loaded Fe-1GMP demonstrate excellent bacterial killing efficacy against E. coli, S. aureus and vancomycin-resistant enterococci (VRE) strains. Finally, in vivo studies involving topical administration of Fe-1GMP to Balb/c mice with skin infections further suggest the potential antibacterial efficacy of the hydrogel. Taken together, the hydrogel with its unique combination of mechanical tunability, ROS generation capability and antibacterial efficacy can be used for biomedical applications, particularly in wound healing and infection control.
Collapse
Affiliation(s)
- Umesh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Vysakh C Chandran
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Pranay Saha
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| | - Debasish Nath
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Sayan Bera
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Yerpedu Mandal, Tirupati District, Andhra Pradesh, 517619, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
18
|
Teng L, Song Y, Hu Y, Lu J, Dong CM. Biomimetic and Wound Microenvironment-Modulating PEGylated Glycopolypeptide Hydrogels for Arterial Massive Hemorrhage and Wound Prohealing. Biomacromolecules 2024; 25:4317-4328. [PMID: 38829675 DOI: 10.1021/acs.biomac.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Despite great progress in the hydrogel hemostats and dressings, they generally lack resistant vascular bursting pressure and intrinsic bioactivity to meet arterial massive hemorrhage and proheal wounds. To address the problems, we design a kind of biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels that can be easily injected and gelled in ∼10 s. Those glycopolypeptide hydrogels have suitable tissue adhesion of ∼20 kPa, high resistant bursting pressure of ∼150 mmHg, large microporosity of ∼15 μm, and excellent biocompatibility with ∼1% hemolysis ratio and negligible inflammation. They performed better hemostasis in rat liver and rat and rabbit femoral artery bleeding models than Fibrin glue, Gauze, and other hydrogels, achieving fast arterial hemostasis of <20 s and lower blood loss of 5-13%. As confirmed by in vivo wound healing, immunofluorescent imaging, and immunohistochemical and histological analyses, the mannose-modified hydrogels could highly boost the polarization of anti-inflammatory M2 phenotype and downregulate pro-inflammatory tumor necrosis factor-α to relieve inflammation, achieving complete full-thickness healing with thick dermis, dense hair follicles, and 90% collagen deposition. Importantly, this study provides a versatile strategy to construct biomimetic glycopolypeptide hydrogels that can not only resist vascular bursting pressure for arterial massive hemorrhage but also modulate inflammatory microenvironment for wound prohealing.
Collapse
Affiliation(s)
- Lin Teng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
19
|
Wang H, Wang M, Wu J, Zhu S, Ye Y, Liu Y, Li K, Li R, Zhang Y, Wei M, Yang X, Meng L. Nature-Inspired Gelatin-Based Adhesive Hydrogel: A Rapid and User-Friendly Solution for Hemostatic Applications. Adv Healthc Mater 2024; 13:e2304444. [PMID: 38538084 DOI: 10.1002/adhm.202304444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/18/2024] [Indexed: 07/27/2024]
Abstract
Conventional hemostatic agents face challenges in achieving rapid hemostasis and effective tissue repair due to limited hemostatic scenarios, suboptimal efficacy, and inadequate adhesion to wet tissues. Drawing inspiration from nature-sourced materials, a gelatin-based adhesive hydrogel (AOT) is designed, easily prepared and quick to form, driven by Schiff base and multiple hydrogen bonds for applications in arterial and liver bleeding models. AOT exhibits exceptional adhesion to wet tissues (48.67 ± 0.16 kPa) and displays superior hemostatic properties with reduced blood loss and hemostatic time compared to other hydrogels and conventional hemostatic materials. Moreover, AOT exhibits good biocompatibility and biodegradability. In summary, this easily prepared adhesive hydrogel has the potential to supplant traditional hemostatic agents, offering a novel approach to achieve swift sealing of hemostasis and facilitate wound healing and repair in broader application scenarios, owing to its unique advantages.
Collapse
Affiliation(s)
- Haihua Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Mengxi Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Jingheng Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
- Department of Hand Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China
| | - Shilei Zhu
- College of Physics, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanan Ye
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030024, China
| | - Yushan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Ruyue Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yuhang Zhang
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Meng Wei
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Xin Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| | - Leixin Meng
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi'an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi University of Science and Technology, Xuefu Road, Weiyang District, Xi'an, 710021, China
| |
Collapse
|
20
|
Chen Y, Li H, Xu R, Fang Y, Chen Q, Wang Z, Liu H, Weng Y. Ferried Albumin-Inspired Bioadhesive With Dynamic Interfacial Bonds for Emergency Rescue. Adv Healthc Mater 2024; 13:e2400033. [PMID: 38483196 DOI: 10.1002/adhm.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Emergency prehospital wound closure and hemorrhage control are the first priorities for life-saving. Majority of bioadhesives form bonds with tissues through irreversible cross-linking, and the remobilization of misalignment may cause severe secondary damage to tissues. Therefore, developing an adhesive that can quickly and tolerably adhere to traumatized dynamic tissue or organ surfaces in emergency situations is a major challenge. Inspired by the structure of human serum albumin (HSA), a branched polymer with multitentacled sulfhydryl is synthesized, then, an instant and fault-tolerant tough wet-tissue adhesion (IFA) hydrogel is prepared. Adhesive application time is just 5 s (interfacial toughness of ≈580 J m-2), and favorable tissue-adhesion is maintained after ten cycles. IFA hydrogel shows unchangeable adhesive performance after 1 month of storage based on the internal oxidation-reduction mechanism. It not only can efficiently seal various organs but also achieves effective hemostasis in models of the rat femoral artery and rabbit-ear artery. This work also proposes an effective strategy for controllable adhesion, enabling the production of asymmetric adhesives with on-demand detachment. Importantly, IFA hydrogel has sound antioxidation, antibacterial property, hemocompatibility, and cytocompatibility. Hence, the HSA-inspired bioadhesive emerges as a promising first-aid supply for human-machine interface-based health management and non-invasive wound closure.
Collapse
Affiliation(s)
- Yiming Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Huiying Li
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Renfeng Xu
- College of Life Science, Fujian Normal University, Fujian, 350117, China
| | - Yan Fang
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Qinhui Chen
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian, 350117, China
| | - Haiqing Liu
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| | - Yunxiang Weng
- College of Chemistry and Materials Science, Fujian Normal University, Fujian, 350117, China
| |
Collapse
|
21
|
Wang Y, Wang J, Du H, Zhao Q, Wang S, Liu T, Bi S, Zhang Q, An M, Wen S. A dynamically cross-linked catechol-grafted chitosan/gelatin hydrogel dressing synergised with photothermal therapy and baicalin reduces wound infection and accelerates wound healing. Int J Biol Macromol 2024; 273:132802. [PMID: 38852721 DOI: 10.1016/j.ijbiomac.2024.132802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Superior multifunctional hydrogel dressings are of considerable interest in wound healing. In clinical practice, it is useful to investigate hydrogel dressings that offer multifunctional benefits to expedite the process of wound healing. In this study, Catechol-grafted Chitosan, Gelatin, and Fe3+ as substrates to construct a hydrogel network. The network was dynamically cross-linked to form Ccg@Fe hydrogel substrate. Fe3O4 nanoparticles and baicalin, which possess antimicrobial and anti-inflammatory properties, were loaded onto the substrate to form a photothermal antibacterial composite hydrogel dressing (Ccg@Fe/Bai@Fe3O4 NPs). The Ccg@Fe hydrogel was characterised using Fourier transform infrared spectroscopy (FTIR) and Ultraviolet-visible spectrophotometry (UV-Vis). The morphological, mechanical, and adhesion properties of the hydrogel were determined using scanning electron microscopy (SEM) and a universal testing machine. The hydrogel's swelling, hemostasis, and self-healing properties were also evaluated. Additionally, the study determined the release rate of hydrogel-loaded antimicrobial and anti-inflammatory Baicalin (Ccg@Fe/Bai) and evaluated the photothermal antimicrobial properties of hydrogel-loaded Fe3O4 nanoparticles (Ccg@Fe/Bai@Fe3O4 NPs) through synergistic photothermal therapy (PTT). Histological staining of mice skin wound tissues using Masson and H&E revealed that the Ccg@Fe/Bai@Fe3O4 NPs hydrogel dressing demonstrated potential healing ability with the aid of PTT. The study suggests that this multifunctional hydrogel dressing has great potential for wound healing.
Collapse
Affiliation(s)
- Ying Wang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jiang Wang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Huiying Du
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qianye Zhao
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shilei Wang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tianyu Liu
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shizhao Bi
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qingtao Zhang
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Meiwen An
- College of Biomedical Engineer, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Shuxin Wen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
22
|
Zhang Y, Chen S, Qin X, Guo A, Li K, Chen L, Yi W, Deng Z, Tay FR, Geng W, Miao L, Jiao Y, Tao B. A Versatile Chitosan-Based Hydrogel Accelerates Infected Wound Healing via Bacterial Elimination, Antioxidation, Immunoregulation, and Angiogenesis. Adv Healthc Mater 2024; 13:e2400318. [PMID: 38408212 DOI: 10.1002/adhm.202400318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Drug-resistant bacterial infection of cutaneous wounds causes great harm to the human body. These infections are characterized by a microenvironment with recalcitrant bacterial infections, persistent oxidative stress, imbalance of immune regulation, and suboptimal angiogenesis. Treatment strategies available to date are incapable of handling the healing dynamics of infected wounds. A Schiff base and borate ester cross-linked hydrogel, based on phenylboronic acid-grafted chitosan (CS-PBA), dibenzaldehyde-grafted poly(ethylene glycol), and tannic acid (TA), is fabricated in the present study. Customized phenylboronic acid-modified zinc oxide nanoparticles (ZnO) are embedded in the hydrogel prior to gelation. The CPP@ZnO-P-TA hydrogel effectively eliminates methicillin-resistant Staphylococcus aureus (MRSA) due to the pH-responsive release of Zn2+ and TA. Killing is achieved via membrane damage, adenosine triphosphate reduction, leakage of intracellular components, and hydrolysis of bacterial o-nitrophenyl-β-d-galactopyranoside. The CPP@ZnO-P-TA hydrogel is capable of scavenging reactive oxygen and nitrogen species, alleviating oxidative stress, and stimulating M2 polarization of macrophages. The released Zn2+ and TA also induce neovascularization via the PI3K/Akt pathway. The CPP@ZnO-P-TA hydrogel improves tissue regeneration in vivo by alleviating inflammatory responses, stimulating angiogenesis, and facilitating collagen deposition. These findings suggest that this versatile hydrogel possesses therapeutic potential for the treatment of MRSA-infected cutaneous wounds.
Collapse
Affiliation(s)
- Ye Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Sinan Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xian Qin
- Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ai Guo
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Kai Li
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Weiwei Yi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zhongliang Deng
- Department of OrthopediCP, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, 30912, USA
| | - Wenbo Geng
- Chongqing Key Laboratory of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Li Miao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, P. R. China
| | - Yang Jiao
- Department of Stomatology, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, P. R. China
| | - Bailong Tao
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
23
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
24
|
Wang L, Ding X, Li J, Li M, Ding P, Guo W, Wu Q, Sun Y, Jiang G, Okoro OV, Mirzaei M, Shavandi A, Fan L, Nie L. Genipin crosslinked quaternary ammonium chitosan hydrogels for wound dressings. Biomed Mater 2024; 19:045042. [PMID: 38815598 DOI: 10.1088/1748-605x/ad525f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Bacterial infection can lead to various complications, such as inflammations on surrounding tissues, which can prolong wound healing and thus represent a significant clinical and public healthcare problem. Herein, a report on the fabrication of a novel genipin/quaternized chitosan (CS) hydrogel for wound dressing is presented. The hydrogel was prepared by mixing quaternized CS and genipin under 35 °C bath. The hydrogels showed porous structure (250-500 μm) and mechanical properties (3000-6000 Pa). In addition, the hydrogels displayed self-healing ability and adhesion performance on different substrates. Genipin crosslinked quaternized CS hydrogels showed antibacterial activities againstE. coliandS. aureus. The CCK-8 and fluorescent images confirmed the cytocompatibility of hydrogels by seeding with NIH-3T3 cells. The present study showed that the prepared hydrogel has the potential to be used as wound dressing.
Collapse
Affiliation(s)
- Ling Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Jingyu Li
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Man Li
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Qiaoyun Wu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, Republic of Korea
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Amin Shavandi
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lihong Fan
- School of Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, People's Republic of China
| |
Collapse
|
25
|
Yang M, Du D, Hao Y, Meng Z, Zhang H, Liu Y. Preparation of an injectable zinc-containing hydrogel with double dynamic bond and its potential application in the treatment of periodontitis. RSC Adv 2024; 14:19312-19321. [PMID: 38887645 PMCID: PMC11181151 DOI: 10.1039/d4ra00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Periodontal tissue regeneration continues to face significant clinical challenges. Periodontitis leads to alveolar bone resorption and even tooth loss due to persistent microbial infection and persistent inflammatory response. As a promising topical drug delivery system, the application of hydrogels in the controlled release of periodontal bioactive drugs has aroused great interest. Therefore, the design and preparation of an injectable hydrogel with self-repairing properties for periodontitis treatment is still in great demand. In this study, polysaccharide-based self-healing hydrogels with antimicrobial osteogenic properties were developed. Zinc ions are introduced into a dynamic cross-linking network formed by dynamic Schiff bases between carboxymethyl chitosan and oxidized hyaluronic acid via coordination bonds. The OC-Zn hydrogels exhibited good tissue adhesion, good fatigue resistance, excellent self-healing ability, low cytotoxicity, good broad-spectrum antimicrobial activity, and osteogenic activity. Therefore, the designed hydrogels allow the development of drug delivery systems as a potential treatment for periodontitis.
Collapse
Affiliation(s)
- Mei Yang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Dejiang Du
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Zhaojian Meng
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Haiyu Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuhan Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| |
Collapse
|
26
|
Zhang W, Li X, Chen W, Huang X, Hua T, Hu J, Zhu J, Ye S, Li X. l-Carnosine loaded on carboxymethyl cellulose hydrogels for promoting wound healing. RSC Adv 2024; 14:18317-18329. [PMID: 38860244 PMCID: PMC11163232 DOI: 10.1039/d4ra00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/26/2024] [Indexed: 06/12/2024] Open
Abstract
Wound management remains a challenge in clinical practice. Nowadays, patients have an increasing demand for wound repair with enhanced speed and quality; therefore, there is a great need to seek therapeutic strategies that can promote rapid and effective wound healing. In this study, we developed a carboxymethyl cellulose hydrogel loaded with l-carnosine (CRN@hydrogel) for potential application as a wound dressing. In vitro experiments confirmed that CRN@hydrogel can release over 80% of the drug within 48 h and demonstrated its favorable cytocompatibility and blood compatibility, thus establishing its applicability for safe utilization in clinical practice. Using a rat model, we found that this hydrogel could promote and accelerate wound healing more effectively. These results indicate that the novel hydrogel can serve as an efficient therapeutic strategy for wound treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Xinyi Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children's Hospital Hefei Anhui 230022 China
| | - Xiaoyi Huang
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Tianfeng Hua
- Department of Emergency Surgery & the 2nd Department of Intensive Care Unit, The Second Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Jinpeng Hu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Jing Zhu
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Sheng Ye
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Xiaojing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| |
Collapse
|
27
|
Wang L, Liu K, Cui S, Qiu L, Yang D, Nie J, Ma G. Dehydration-Toughing Dual-Solvent Gels with Viscoelastic Transition for Infectious Wound Treatment. Adv Healthc Mater 2024; 13:e2303655. [PMID: 38265971 DOI: 10.1002/adhm.202303655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Indexed: 01/26/2024]
Abstract
The modulus of traditional biomedical hydrogels increases exponentially meditated by dehydration-stiffing mechanism, which leads to the failure of interface matching between hydrogels and soft tissue wounds. It is found in the study that the dual-solvent gels exhibit dehydration-toughening mechanism with the slowly increasing modulus that are always match the soft tissue wounds. Therefore, dual-solvent glycerol hydrogels (GCFen-gly DGHs) are prepared with hydrophobically modified catechol chitosan (hmCSC) and gelatin based on the supramolecular interactions. GCFen-gly DGHs exhibit excellent water retention capacity with a total solvent content exceeding 80%, permanent skin-like modulus within a range of 0.45 to 4.13 kPa, and stable photothermal antibacterial abilities against S, aureus, E. coli, as well as MRSA. Infectious full-thickness rat skin defect model and tissue section analysis indicate that GCFen-gly DGHs are able to accelerate infectious wound healing by alleviating the inflammatory response, promoting granulation tissue growth, re-epithelialization, collagen deposition, and vascular regeneration. As a result, GCFen-gly DGHs is expected to become the next-generation biological gel materials for infectious wound treatment.
Collapse
Affiliation(s)
- Liangyu Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kuilong Liu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shuai Cui
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, 213164, P. R. China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, P. R. China
| | - Jun Nie
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guiping Ma
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
28
|
Wu WS, Yan X, Chen S, Du Y, Hu J, Song Y, Zha Z, Xu YJ, Cao B, Xuan SH, Liu X, Chen B, Dong L, Lu Y, Yu SH. Minimally Invasive Delivery of Percutaneous Ablation Agent via Magnetic Colloidal Hydrogel Injection for Treatment of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309770. [PMID: 38447017 DOI: 10.1002/adma.202309770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Percutaneous thermotherapy, a minimally invasive operational procedure, is employed in the ablation of deep tumor lesions by means of target-delivering heat. Conventional thermal ablation methods, such as radiofrequency or microwave ablation, to a certain extent, are subjected to extended ablation time as well as biosafety risks of unwanted overheating. Given its effectiveness and safety, percutaneous thermotherapy gains a fresh perspective, thanks to magnetic hyperthermia. In this respect, an injectable- and magnetic-hydrogel-construct-based thermal ablation agent is likely to be a candidate for the aforementioned clinical translation. Adopting a simple and environment-friendly strategy, a magnetic colloidal hydrogel injection is introduced by a binary system comprising super-paramagnetic Fe3O4 nanoparticles and gelatin nanoparticles. The colloidal hydrogel constructs, unlike conventional bulk hydrogel, can be easily extruded through a percutaneous needle and then self-heal in a reversible manner owing to the unique electrostatic cross-linking. The introduction of magnetic building blocks is exhibited with a rapid magnetothermal response to an alternating magnetic field. Such hydrogel injection is capable of generating heat without limitation of deep penetration. The materials achieve outstanding therapeutic results in mouse and rabbit models. These findings constitute a new class of locoregional interventional thermal therapies with minimal collateral damages.
Collapse
Affiliation(s)
- Wen-Shu Wu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xu Yan
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng Chen
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaxin Du
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jinlong Hu
- Department of General Surgery, Department of Ultrasonics, Department of Interventional Radiology, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, 230041, P. R. China
| | - Yonghong Song
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengbao Zha
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yun-Jun Xu
- New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, 230026, China
| | - Baoqiang Cao
- Department of General Surgery, Department of Ultrasonics, Department of Interventional Radiology, Anhui No. 2 Provincial People's Hospital, Hefei, Anhui, 230041, P. R. China
| | - Shou-Hu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Xingyu Liu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Bing Chen
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Dong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yang Lu
- Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shu-Hong Yu
- New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
29
|
Zhang X, Mu Y, Zhao L, Hong Y, Shen L. Self-healing, antioxidant, and antibacterial Bletilla striata polysaccharide-tannic acid dual dynamic crosslinked hydrogels for tissue adhesion and rapid hemostasis. Int J Biol Macromol 2024; 270:132182. [PMID: 38723806 DOI: 10.1016/j.ijbiomac.2024.132182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Biomaterials capable of achieving effective sealing and hemostasis at moist wounds are in high demand in the clinical management of acute hemorrhage. Bletilla striata polysaccharide (BSP), a natural polysaccharide renowned for its hemostatic properties, holds promising applications in biomedical fields. In this study, a dual-dynamic-bonds crosslinked hydrogel was synthesized via a facile one-pot method utilizing poly(vinyl alcohol) (PVA)-borax as a matrix system, followed by the incorporation of BSP and tannic acid (TA). Chemical borate ester bonds formed around borax, coupled with multiple physical hydrogen bonds between BSP and other components, enhanced the mechanical properties and rapid self-healing capabilities. The catechol moieties in TA endowed the hydrogel with excellent adhesive strength of 30.2 kPa on the surface of wet tissues and facilitated easy removal without residue. Benefiting from the synergistic effect of TA and the preservation of the intrinsic properties of BSP, the hydrogel exhibited outstanding biocompatibility, antibacterial, and antioxidant properties. Moreover, it effectively halted acute bleeding within 31.3 s, resulting in blood loss of 15.6 % of that of the untreated group. As a superior hemostatic adhesive, the hydrogel in this study is poised to offer a novel solution for addressing future acute hemorrhage, wound healing, and other biomedical applications.
Collapse
Affiliation(s)
- Xiaojia Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China
| | - Yingying Mu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| | - Yanlong Hong
- Shanghai Collaborative Innovation Center for Chinese Medicine Health Services, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China; Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No.1200, Cai-lun Road, Pudong District, Shanghai 201203, China.
| |
Collapse
|
30
|
Li Z, Xing X, Zhao C, Wu Q, Liu J, Qiu X, Wang L. A rapid interactive chitosan-based medium with antioxidant and pro-vascularization properties for infected burn wound healing. Carbohydr Polym 2024; 333:121991. [PMID: 38494240 DOI: 10.1016/j.carbpol.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
Large-pore hydrogels are better suited to meet the management needs of nutrient transportation and gas exchange between infected burn wounds and normal tissues. However, better construction strategies are required to balance the pore size and mechanical strength of hydrogels to construct a faster substance/gas interaction medium between tissues. Herein, we developed spongy large pore size hydrogel (CS-TA@Lys) with good mechanical properties using a simple ice crystal-assisted method based on chitosan (CS), incorporating tannic acid (TA) and ε-polylysine (Lys). A large-pore and mechanically robust hydrogel medium was constructed based on hydrogen bonding between CS molecules. On this basis, a pro-restorative functional platform with antioxidation and pro-vascularization was constructed using TA and Lys. In vitro experiments displayed that the CS-TA@Lys hydrogel possessed favorable mechanical properties and fast interaction performances. In addition, the CS-TA@Lys hydrogel possessed the capacity to remove intra/extracellular reactive oxygen species (ROS) and possessed antimicrobial and pro-angiogenic properties. In vivo experiments displayed that the CS-TA@Lys hydrogel inhibited wound inflammation and promoted wound vascularization. In addition, the CS-TA@Lys hydrogel showed the potential for rapid hemostasis. This study provides a potential functional wound dressing with rapid interaction properties for skin wound repair.
Collapse
Affiliation(s)
- Zhentao Li
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xianglong Xing
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Chaoran Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Qi Wu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Junjie Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China
| | - Xiaozhong Qiu
- School of Basic Medical Science, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China.
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China.
| |
Collapse
|
31
|
Wang X, Yuan Z, Shafiq M, Cai G, Lei Z, Lu Y, Guan X, Hashim R, El-Newehy M, Abdulhameed MM, Lu X, Xu Y, Mo X. Composite Aerogel Scaffolds Containing Flexible Silica Nanofiber and Tricalcium Phosphate Enable Skin Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25843-25855. [PMID: 38717308 DOI: 10.1021/acsami.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Poor hemostatic ability and less vascularization at the injury site could hinder wound healing as well as adversely affect the quality of life (QOL). An ideal wound dressing should exhibit certain characteristics: (a) good hemostatic ability, (b) rapid wound healing, and (c) skin appendage formation. This necessitates the advent of innovative dressings to facilitate skin regeneration. Therapeutic ions, such as silicon ions (Si4+) and calcium ions (Ca2+), have been shown to assist in wound repair. The Si4+ released from silica (SiO2) can upregulate the expression of proteins, including the vascular endothelial growth factor (VEGF) and alpha smooth muscle actin (α-SMA), which is conducive to vascularization; Ca2+ released from tricalcium phosphate (TCP) can promote the coagulation alongside upregulating the expression of cell migration and cell differentiation related proteins, thereby facilitating the wound repair. The overarching objective of this study was to exploit short SiO2 nanofibers along with the TCP to prepare TCPx@SSF aerogels and assess their wound healing ability. Short SiO2 nanofibers were prepared by electrospinning and blended with varying proportions of TCP to afford TCPx@SSF aerogel scaffolds. The TCPx@SSF aerogels exhibited good cytocompatibility in a subcutaneous implantation model and manifested a rapid hemostatic effect (hemostatic time 75 s) in a liver trauma model in the rabbit. These aerogel scaffolds also promoted skin regeneration and exhibited rapid wound closure, epithelial tissue regeneration, and collagen deposition. Taken together, TCPx@SSF aerogels may be valuable for wound healing.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhengchao Yuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Guangfang Cai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zheng Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yifan Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangheng Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Rashida Hashim
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Xiao Lu
- Shanghai Orthopedic Biomaterial Technology Innovation Center, Shanghai Bio-lu Biomaterials Co., Ltd., Shanghai 201114, P. R. China
| | - Yuan Xu
- Department of Orthopaedics, Xinqiao Hospital, Army Military Medical University, No. 183, Xinqiao Street, Shapingba District, Chongqing 400037, P. R. China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
32
|
Zhao C, Wang H, Sun X, Liu Y, Chen J, Li J, Qiu F, Han Q. Non-Covalent Cross-Linking Hydrogel: A New Method for Visceral Hemostasis. Gels 2024; 10:326. [PMID: 38786243 PMCID: PMC11121205 DOI: 10.3390/gels10050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Excessive blood loss could lead to pathological conditions such as tissue necrosis, organ failure, and death. The limitations of recently developed hemostatic approaches, such as their low mechanical strength, inadequate wet tissue adhesion, and weak hemostatic activity, pose challenges for their application in controlling visceral bleeding. In this study, a novel hydrogel (CT) made of collagen and tannic acid (TA) was proposed. By altering the proportions between the two materials, the mechanical properties, adhesion, and coagulation ability were evaluated. Compared to commercial hydrogels, this hydrogel has shown reduced blood loss and shorter hemostatic time in rat hepatic and cardiac bleeding models. This was explained by the hydrogel's natural hemostatic properties and the significant benefits of wound closure in a moist environment. Better biodegradability was achieved through the non-covalent connection between tannic acid and collagen, allowing for hemostasis without hindering subsequent tissue repair. Therefore, this hydrogel is a new method for visceral hemostasis that offers significant advantages in treating acute wounds and controlling major bleeding. And the production method is simple and efficient, which facilitates its translation to clinical applications.
Collapse
Affiliation(s)
- Chenyu Zhao
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Han Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Xue Sun
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Ying Liu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Jingjing Chen
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Jiaqi Li
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Fanshan Qiu
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| |
Collapse
|
33
|
Li L, Li H, Diao Z, Zhou H, Bai Y, Yang L. Development of a tannic acid- and silicate ion-functionalized PVA-starch composite hydrogel for in situ skeletal muscle repairing. J Mater Chem B 2024; 12:3917-3926. [PMID: 38536012 DOI: 10.1039/d3tb03006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The repair capacity of skeletal muscle is severely diminished in massive skeletal muscle injuries accompanied by inflammation, resulting in muscle function loss and scar tissue formation. In the current work, we developed a tannic acid (TA)- and silicate ion-functionalized tissue adhesive poly(vinyl alcohol) (PVA)-starch composite hydrogel, referred to as PSTS (PVA-starch-TA-SiO32-). It was formed based on the hydrogen bonding of TA to organic polymers, as well as silicate-TA ligand interaction. PSTS could be gelatinized in minutes at room temperature with crosslinked network formation, making it applicable for injection. Further investigations revealed that PSTS had skeletal muscle-comparable conductivity and modulus to act as a temporary platform for muscle repairing. Moreover, PSTS could release TA and silicate ions in situ to inhibit bacterial growth, induce vascularization, and reduce oxidation, paving the way to the possibility of creating a favorable microenvironment for skeletal muscle regeneration and tissue fibrosis control. The in vivo model confirmed that PSTS could enhance muscle fiber regeneration and myotube formation, as well as reduce infection and inflammation risk. These findings thereby implied the great potential of PSTS in the treatment of formidable skeletal muscle injuries.
Collapse
Affiliation(s)
- Longkang Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huipeng Li
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Zhentian Diao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Yanjie Bai
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
- Department of Chemical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Lei Yang
- Center for Health Science and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China.
| |
Collapse
|
34
|
Xu J, Liu X, Liang P, Yuan H, Yang T. In Situ Preparation of Tannic Acid-Modified Poly( N-isopropylacrylamide) Hydrogel Coatings for Boosting Cell Response. Pharmaceutics 2024; 16:538. [PMID: 38675199 PMCID: PMC11054217 DOI: 10.3390/pharmaceutics16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The improvement of the capability of poly(N-isopropylacrylamide) (PNIPAAm) hydrogel coating in cell adhesion and detachment is critical to efficiently prepare cell sheets applied in cellular therapies and tissue engineering. To enhance cell response on the surface, the amine group-modified PNIPAAm (PNIPAAm-APTES) nanohydrogels were synthesized and deposited spontaneously on tannic acid (TA)-modified polyethylene (PE) plates. Subsequently, TA was introduced onto PNIPAAm-APTES nanohydrogels to fabricate coatings composed of TA-modified PNIPAAm-APTES (PNIPAAm-APTES-TA). Characterization techniques, including TEM, SEM, XPS, and UV-Vis spectroscopy, confirmed the effective deposition of hydrogels of PNIPAAm as well as the morphologies, content of chemical bonding-TA, and stability of various coatings. Importantly, the porous hydrogel coatings exhibited superhydrophilicity at 20 °C and thermo-responsive behavior. The fluorescence measurement demonstrated that the coating's stability effectively regulated protein behavior, influencing cell response. Notably, cell response tests revealed that even without precise control over the chain length/thickness of PNIPAAm during synthesis, the coatings enhanced cell adhesion and detachment, facilitating efficient cell culture. This work represented a novel and facile approach to preparing bioactive PNIPAAm for cell culture.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China;
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Xiangzhe Liu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengpeng Liang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China;
| | - Tianyou Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
| |
Collapse
|
35
|
Halder M, Singh A, Negi D, Singh Y. Investigating the Role of Amino Acids in Short Peptides for Hydroxyapatite Binding and Osteogenic Differentiation of Mesenchymal Stem Cells to Aid Bone Regeneration. Biomacromolecules 2024; 25:2286-2301. [PMID: 38502906 DOI: 10.1021/acs.biomac.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Moumita Halder
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Ananya Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Deepa Negi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Yashveer Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
36
|
Yang J, Yu H, Wang L, Liu X, Huang Y, Hong Y, Ren S. Mussel-inspired near-infrared light-responsive gelatin-based hydrogels for enhancing MRSA-infected wound healing. Int J Biol Macromol 2024; 263:129887. [PMID: 38383251 DOI: 10.1016/j.ijbiomac.2024.129887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/16/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Infected wound management is a great challenge to healthcare, especially in emergencies such as accidents or battlefields. Hydrogels as wound dressings can replace or supplement traditional wound treatment strategies, such as bandages or sutures. It is significant to develop novel hydrogel-based wound dressings with simple operation, inexpensive, easy debridement, effective antibacterial, biocompatibility, etc. Here, we designed a novel gelatin-based hydrogel wound dressing Gel-TA-Fe3+. The hydrogels used tannic-modified gelatin as the main body and Fe3+ as the crosslinking agent to achieve a controllable rapid sol-gel transition. The hydrogels exhibited tough mechanical properties, excellent antibacterial ability, biocompatibility and an acceptable temperature response to near-infrared light (NIR). Moreover, the hydrogels could promote the healing process of MRSA-infected skin wound in rats. This multifunctional hydrogel was thought to have potential for emergency treatment of bacterial infected wound.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaowei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
37
|
Bai Y, Lang S, Du Y, Hu Q, Li X, Liu G. Metallic-Polyphenolic Nanoparticles Reinforced Cationic Guar Gum Hydrogel for Effectively Treating Burn Wound. Macromol Biosci 2024; 24:e2300396. [PMID: 37831011 DOI: 10.1002/mabi.202300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/08/2023] [Indexed: 10/14/2023]
Abstract
The development of injectable hydrogel dressings which are long-term moisturizing, easy-to-apply, and effectively inhibiting infection and inflammatory is essential to promote burn wound repairing. Herein, an injectable hydrogel with moisturizing, antibacterial, and anti-inflammation abilities via multiple reversible interactions between cation guar gum (CG) and metallic-polyphenolic nanoparticles (PA-ZnII NPs) is developed. Specifically, PA-ZnII NPs is formed by synergistic complexation of protocatechualdehyde (PA) and zinc ion (Zn2+ ), provides CGPZ hydrogel with plentiful reversible interactions to inhibit the loss of moist. By interacting with PA-ZnII NPs, the CGPZ hydrogel can provide enhanced moisturization for more than 3 days. Moreover, the CGPZ hydrogel can maintain good adhesion for a period of time with injection and self-healing capabilities due to reversible interactions between CG and PA-ZnII NPs. In addition, CGPZ hydrogel exhibits outstanding broad spectrum antibacterial performance, as its killing efficiency against Escherichia coli and Staphylococcus aureus is all greater than 99.99%. Importantly, compared with commercial dressing, the CGPZ hydrogel can promote wound healing faster by inhibiting tissue damage from dysregulated inflammation and accelerating neovascularization. It is believed that the moisturizing CGPZ hydrogel with antibacterial and anti-inflammation performance can serve as a promising dressing for the effective treatment of burn wound.
Collapse
Affiliation(s)
- Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinsheng Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedic Surgery, Yaan People's Hospital, Yaan, 625000, China
| | - Xinyun Li
- Dazhou Hospital of Integrated Traditional Chinese and Western medicine, Dazhou, Sichuan, 635000, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
38
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
39
|
Zheng C, Wu X, Liu M, Lan Y, Liu Q, Cai E, Liao Z, Shen J. Photothermal-enhanced in situ supramolecular hydrogel promotes bacteria-infected wound healing in diabetes. SMART MEDICINE 2024; 3:e20230047. [PMID: 39188513 PMCID: PMC11236056 DOI: 10.1002/smmd.20230047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 08/28/2024]
Abstract
Bacterial infection can impede the healing of chronic wounds, particularly diabetic wounds. The high-sugar environment of diabetic wounds creates a favorable condition for bacterial growth, posing a challenge to wound healing. In clinical treatment, the irregular shape of the wound and the poor mechanical properties of traditional gel adjuvants make them susceptible to mechanical shear and compression, leading to morphological changes and fractures, and difficult to adapt to irregular wounds. Traditional gel adjuvants are prepared in advance, while in situ gel is formed at the site of administration after drug delivery in a liquid state, which can better fit the shape of the wound. Therefore, this study developed an in situ HA/GCA/Fe2+-GOx gel using a photothermal-enhanced Fenton reaction to promote the generation of hydroxyl radicals (·OH). The generation of ·OH has an antibacterial effect while promoting the formation of the gel, achieving a dual effect. The addition of double-bonded adamantane (Ada) interacts with the host-guest effect of graphene oxide and the double-bond polymerization of HAMA gel, making the entire gel system more complete. At the same time, the storage modulus (G') of the gel increased from 130 to 330 Pa, enhancing the mechanical properties of the gel. This enables the gel to have better injectability and self-healing effects. The addition of GOx can consume glucose at the wound site, providing a good microenvironment for the repair of diabetic wounds. The gel has good biocompatibility and in a diabetic rat wound model infected with S. aureus, it can effectively kill bacteria at the wound site and promote wound repair. Meanwhile, the inflammation of wounds treated with HA/GCA/Fe2+-GOx + NIR was lighter compared to untreated wounds. Therefore, this study provides a promising strategy for treating bacterial-infected diabetic wounds.
Collapse
Affiliation(s)
- Chen Zheng
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Xuan Wu
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Ming Liu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yulong Lan
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Qian Liu
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Erya Cai
- School & Hospital of StomatologyWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhiyong Liao
- College of Life and Environmental ScienceWenzhou UniversityWenzhouZhejiangChina
| | - Jianliang Shen
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
40
|
Chen S, Kong C, Yu N, Xu X, Li B, Zhang J. Management of non-compressible hemorrhage and re-bleeding by a liquid hemostatic polysaccharide floccuronic acid. Int J Biol Macromol 2024; 257:128695. [PMID: 38072343 DOI: 10.1016/j.ijbiomac.2023.128695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Effective management of excessive bleeding requires liquid hemostatic agents, especially in scenarios involving uncompressible and postoperative hemorrhage. This study introduces the microbial exopolysaccharide floccuronic acid (FA) as a liquid hemostatic agent, characterized by a high weight average molecular weight of 2.38 × 108 Da. The investigation focuses on the flocculation effect, hemostatic efficiency in both in vitro and in vivo settings, elucidating its hemostatic mechanism, and assessing its safety profile. Results reveal that FA solution significantly accelerates the coagulation process, leading to the formation of compact clots while specifically interfering with fibrin. Notably, FA demonstrates excellent hemostatic effects in animal liver models and a rat arterial rebleeding model. The biocompatible and biodegradable characteristics further underscore FA's potential as a valuable liquid hemostatic material, particularly suited for non-compressible and re-bleeding scenarios.
Collapse
Affiliation(s)
- Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Bing Li
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing 211899, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China.
| |
Collapse
|
41
|
Gültekin HE, Yaşayan G, Bal-Öztürk A, Bigham A, Simchi AA, Zarepour A, Iravani S, Zarrabi A. Advancements and applications of upconversion nanoparticles in wound dressings. MATERIALS HORIZONS 2024; 11:363-387. [PMID: 37955196 DOI: 10.1039/d3mh01330h] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, Istinye University, 34010 Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Abdolreza Arash Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
42
|
Michalicha A, Belcarz A, Giannakoudakis DA, Staniszewska M, Barczak M. Designing Composite Stimuli-Responsive Hydrogels for Wound Healing Applications: The State-of-the-Art and Recent Discoveries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:278. [PMID: 38255446 PMCID: PMC10817689 DOI: 10.3390/ma17020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Effective wound treatment has become one of the most important challenges for healthcare as it continues to be one of the leading causes of death worldwide. Therefore, wound care technologies significantly evolved in order to provide a holistic approach based on various designs of functional wound dressings. Among them, hydrogels have been widely used for wound treatment due to their biocompatibility and similarity to the extracellular matrix. The hydrogel formula offers the control of an optimal wound moisture level due to its ability to absorb excess fluid from the wound or release moisture as needed. Additionally, hydrogels can be successfully integrated with a plethora of biologically active components (e.g., nanoparticles, pharmaceuticals, natural extracts, peptides), thus enhancing the performance of resulting composite hydrogels in wound healing applications. In this review, the-state-of-the-art discoveries related to stimuli-responsive hydrogel-based dressings have been summarized, taking into account their antimicrobial, anti-inflammatory, antioxidant, and hemostatic properties, as well as other effects (e.g., re-epithelialization, vascularization, and restoration of the tissue) resulting from their use.
Collapse
Affiliation(s)
- Anna Michalicha
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | | | - Magdalena Staniszewska
- Institute of Health Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland
| | - Mariusz Barczak
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20031 Lublin, Poland
| |
Collapse
|
43
|
Ma X, Ning W, Geng Y, Shao H, Liu Y, Liu F, Zhang D, Chi B, Hou Y, Fu X. An ECM-mimicking assembled gelatin/hyaluronic acid hydrogel with antibacterial and radical scavenging functions for accelerating open wound healing. Biomed Mater 2023; 19:015008. [PMID: 37972551 DOI: 10.1088/1748-605x/ad0d85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
A multifunctional hydrogel dressing with hemostatic, antibacterial, and reactive oxygen species (ROS)-removing properties is highly desirable for the clinical treatment of open wounds. Although many wound dressings have been prepared, the modification of polymers is often involved in the preparation process, and the uncertainty of biological safety and stability of modified polymers hinders the clinical application of products. In this study, inspired by the composition and crosslinking pattern of extracellular matrix (ECM), a deeply ECM-mimicking multifunctional hydrogel dressing is created. Tannic acid (TA) and poly-ϵ-lysine (EPL) are added into a gelatin/hyaluronic acid (Gel/HA) matrix, and a stable hydrogel is formed due to the formation of the triple helix bundles of gelatin and hydrogen bonds between polymers. The introduction of TA and EPL endows the ECM-mimicking hydrogel with stable rheological properties, as well as antibacterial and hemostatic functions. The as-produced hydrogels have suitable swelling ratio, enzyme degradability, and good biocompatibility. In addition, it also shows a significant ability to eliminate ROS, which is confirmed by the elimination of 2,2-diphenyl-1-picrylhydrazyl free radical. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed ECM-mimicking Gel/HA hydrogels have a prominent effect on ECM formation and promotion of wound closure. Taken together, these findings suggest that the multifunctional hydrogels deeply mimicking the ECM are promising candidates for the clinical treatment of open wounds.
Collapse
Affiliation(s)
- Xuebin Ma
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Wenli Ning
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250021, People's Republic of China
| | - Yiming Geng
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Huarong Shao
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Yang Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Fei Liu
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biomedical Polymers, Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Yali Hou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| | - Xiao Fu
- School of Stomatology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250021, People's Republic of China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
44
|
Ahmadian Z, Jelodar MZ, Rashidipour M, Dadkhah M, Adhami V, Sefareshi S, Ebrahimi HA, Ghasemian M, Adeli M. A self-healable and bioadhesive acacia gum polysaccharide-based injectable hydrogel for wound healing acceleration. Daru 2023; 31:205-219. [PMID: 37610559 PMCID: PMC10624782 DOI: 10.1007/s40199-023-00475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023] Open
Abstract
The present study aimed at developing an injectable hydrogel based on acacia gum (AG) for wound healing acceleration. The hydrogels were synthetized through metal-ligand coordination mediated by Fe3+ and characterized in terms of gelation time, gel content, initial water content, swelling capacity, water retention ratio, and porosity. Moreover, FTIR, XRD and TGA analyses were performed for the hydrogels and allantoin (Alla) loaded ones. Furthermore, bioadhessiveness, and self-healing as well as antibacterial, toxicity and wound healing potentials of the hydrogels were evaluated. The hydrogels displayed fast gelation time, high swelling, porosity, and bioadhessiveness, as well as antioxidant, self-healing, antibacterial, blood clotting, and injectability properties. FTIR, XRD and TGA analyses confirmed hydrogel synthesis and drug loading. The Alla-loaded hydrogels accelerated wound healing by decreasing the inflammation and increasing the cell proliferation as well as collagen deposition. Hemocompatibility, cell cytotoxicity, and in vivo toxicity experiments were indicative of a high biocompatibility level for the hydrogels. Given the advantages of fast gelation, injectability and beneficial biological properties, the use of Alla-loaded hydrogels could be considered a new remedy for efficient wound healing.
Collapse
Affiliation(s)
- Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mahsa Zibanejad Jelodar
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoumeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Vahed Adhami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sajjad Sefareshi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Adeli
- Institut für Chemieund Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
45
|
Yang Y, Zhao X, Wang S, Zhang Y, Yang A, Cheng Y, Chen X. Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration. Nat Commun 2023; 14:7771. [PMID: 38012159 PMCID: PMC10682016 DOI: 10.1038/s41467-023-43334-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.
Collapse
Affiliation(s)
- Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuang Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Aiming Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yilong Cheng
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 13022, China
| |
Collapse
|
46
|
Su Z, Xue B, Xu C, Dong X. Mussel-Inspired Calcium Alginate/Polyacrylamide Dual Network Hydrogel: A Physical Barrier to Prevent Postoperative Re-Adhesion. Polymers (Basel) 2023; 15:4498. [PMID: 38231916 PMCID: PMC10708265 DOI: 10.3390/polym15234498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Intrauterine adhesions (IUA) has become one of the main causes of female infertility. How to effectively prevent postoperative re-adhesion has become a clinical challenge. In this study, a mussel-inspired dual-network hydrogel was proposed for the postoperative anti-adhesion of IUA. First, a calcium alginate/polyacrylamide (CA-PAM) hydrogel was prepared via covalent and Ca2+ cross-linking. Benefiting from abundant phenolic hydroxyl groups, polydopamine (PDA) was introduced to further enhance the adhesion ability and biocompatibility. This CA-PAM hydrogel immersed in 10 mg/mL dopamine solution possessed remarkable mechanical strength (elastic modulus > 5 kPa) and super stretchability (with a breaking elongation of 720%). At the same time, it showed excellent adhesion (more than 6 kPa). Surprisingly, the coagulation index of the hydrogel was 27.27 ± 4.91, demonstrating attractive coagulation performance in vitro and the potential for rapid hemostasis after surgery.
Collapse
Affiliation(s)
- Zekun Su
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (Z.S.); (B.X.)
| | - Beibei Xue
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (Z.S.); (B.X.)
| | - Chang Xu
- Institute of Cardio-Cerebrovascular Medicine, Central Hospital of Dalian University of Technology, Dalian 116089, China
| | - Xufeng Dong
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China; (Z.S.); (B.X.)
| |
Collapse
|
47
|
Li S, Niu D, Fang H, Chen Y, Li J, Zhang K, Yin J, Fu P. Tissue adhesive, ROS scavenging and injectable PRP-based 'plasticine' for promoting cartilage repair. Regen Biomater 2023; 11:rbad104. [PMID: 38235061 PMCID: PMC10793072 DOI: 10.1093/rb/rbad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/17/2023] [Accepted: 11/11/2023] [Indexed: 01/19/2024] Open
Abstract
Platelet-rich plasma (PRP) that has various growth factors has been used clinically in cartilage repair. However, the short residence time and release time at the injury site limit its therapeutic effect. The present study fabricated a granular hydrogel that was assembled from gelatin microspheres and tannic acid through their abundant hydrogen bonding. Gelatin microspheres with the gelatin concentration of 10 wt% and the diameter distribution of 1-10 μm were used to assemble by tannic acid to form the granular hydrogel, which exhibited elasticity under low shear strain, but flowability under higher shear strain. The viscosity decreased with the increase in shear rate. Meanwhile, the granular hydrogel exhibited self-healing feature during rheology test. Thus, granular hydrogel carrying PRP not only exhibited well-performed injectability but also performed like a 'plasticine' that possessed good plasticity. The granular hydrogel showed tissue adhesion ability and reactive oxygen species scavenging ability. Granular hydrogel carrying PRP transplanted to full-thickness articular cartilage defects could integrate well with native cartilage, resulting in newly formed cartilage articular fully filled in defects and well-integrated with the native cartilage and subchondral bone. The unique features of the present granular hydrogel, including injectability, plasticity, porous structure, tissue adhesion and reactive oxygen species scavenging provided an ideal PRP carrier toward cartilage tissue engineering.
Collapse
Affiliation(s)
- Shiao Li
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Yancheng Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Jinyan Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Peiliang Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
48
|
Ghara S, Bera S, Dastidar P. Antibacterial Hydrogel as a Self-Drug-Delivery System Derived from Zn(II)-bis-imidazole/NSAID-Based Organic-Inorganic Hybrids. ACS APPLIED BIO MATERIALS 2023; 6:4749-4763. [PMID: 37864581 DOI: 10.1021/acsabm.3c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A skin wound is prone to bacterial infection and growth. An antibacterial topical hydrogel that can act as a self-drug-delivery (SDD) system is reported here. Two bidentate ligands (L2/L1) derived from imidazole/benzimidazole derivatives when reacted with Zn(NO3)2 and a series of nonsteroidal-anti-inflammatory drugs (NSAIDs) produced crystalline products, which were characterized by single-crystal X-ray diffraction (SXRD). Simple mixing of the ingredients of the crystalline products (stoichiometry guided by the corresponding crystal structure) produced an aqueous gel (DMSO/water) when the bidentate ligand was water-insoluble L2, whereas water-soluble L1 readily produced hydrogels under similar conditions. Dynamic rheology and scanning electron microscopy (SEM) were employed to characterize the gels. Zone inhibition diameters, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and hemolysis data suggested that among the hydrogelators, L1MEC derived from L1, meclofenac and Zn(NO3)2, was found to be the best against the Gram-negative bacteria Escherichia coli. The corresponding hydrogel L1MEC_HG and a piece of a dried cloth bandage coated with the hydrogel also showed appreciable activity against E. coli. The antibacterial property of L1MEC_HG against E. coli, thus demonstrated, is relevant in developing an antibacterial SDD system because E. coli is reported to be present in infected wounds.
Collapse
Affiliation(s)
- Sucharita Ghara
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sourabh Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Parthasarathi Dastidar
- School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
49
|
Wu Y, Zhou Z, Zhang M, Li S, Sun M, Song Z. Hollow manganese dioxide-chitosan hydrogel for the treatment of atopic dermatitis through inflammation-suppression and ROS scavenging. J Nanobiotechnology 2023; 21:432. [PMID: 37978544 PMCID: PMC10655375 DOI: 10.1186/s12951-023-02174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/21/2023] [Indexed: 11/19/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease associated with immune dysfunction. High levels of reactive oxygen species (ROS) can lead to oxidative stress, release of pro-inflammatory cytokines, and T-cell differentiation, thereby promoting the onset and worsening of AD. In this study, we innovatively used quaternary ammonium chitosan (QCS) and tannic acid (TA) as raw materials to design and prepare a therapeutic hydrogel(H-MnO2-Gel) loaded with hollow manganese dioxide nanoparticles (H-MnO2 NPs). In this system, the hydrogel is mainly cross-linked by dynamic ion and hydrogen bonding between QCS and TA, resulting in excellent moisture retention properties. Moreover, due to the inherent antioxidant properties of QCS/TA, as well as the outstanding H2O2 scavenging ability of H-MnO2 NPs, the hydrogel exhibits significant ROS scavenging capability. In vitro experiments have shown that H-MnO2-Gel exhibits good cellular biocompatibility. Importantly, in an AD-induced mouse model, H-MnO2-Gel significantly enhanced therapeutic effects by reducing epidermal thickness, mast cell number, and IgE antibodies. These findings suggest that H-MnO2-Gel, by effectively clearing ROS and regulating the inflammatory microenvironment, provides a promising approach for the treatment of AD.
Collapse
Affiliation(s)
- Yaguang Wu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), St 30 Gaotanyan, Chongqing, 400038, China
| | - Zihao Zhou
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), St 30 Gaotanyan, Chongqing, 400038, China
| | - Min Zhang
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), St 30 Gaotanyan, Chongqing, 400038, China
| | - Song Li
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), St 30 Gaotanyan, Chongqing, 400038, China
| | - Mengyi Sun
- Department of Rehabilitation, The Second Affiliated Hospital of Xinjiang Medical University, North 2nd Lane, Urumqi, 830000, China.
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), St 30 Gaotanyan, Chongqing, 400038, China.
| |
Collapse
|
50
|
Guo B, Liang Y, Dong R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair. Nat Protoc 2023; 18:3322-3354. [PMID: 37758844 DOI: 10.1038/s41596-023-00878-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/22/2023] [Indexed: 09/29/2023]
Abstract
Double-network hydrogels can be tuned to have high mechanical strength, stability, elasticity and bioresponsive properties, which can be combined to create self-healing, adhesive and antibacterial wound dressings. Compared with single-network hydrogel, double-network hydrogel shows stronger mechanical properties and better stability. In comparison with chemical bonds, the cross-linking in double networks makes them more flexible than single-network hydrogels and capable of self-healing following mechanical damage. Here, we present the stepwise synthesis of physical double-network hydrogels where hydrogen bonds and coordination reactions provide self-healing, pH-responsive, tissue-adhesive, antioxidant, photothermal and antibacterial properties, and can be removed on demand. We then explain how to carry out physical, chemical and biological characterizations of the hydrogels for use as wound dressings, yet the double-network hydrogels could also be used in different applications such as tissue engineering scaffolds, cell/drug delivery systems, hemostatic agents or in flexible wearable devices for monitoring physiological and pathological parameters. We also outline how to use the double-network hydrogels in vivo as wound dressings or hemostatic agents. The synthesis of the ureido-pyrimidinone-modified gelatin, catechol-modified polymers and the hydrogels requires 84 h, 48 h and 1 h, respectively, whereas the in vivo assays require 3.5 weeks. The procedure is suitable for users with expertise in biomedical polymer materials.
Collapse
Affiliation(s)
- Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ruonan Dong
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|