1
|
Xu H, Li K, Dai M, Fu Z. Towards core-shell engineering for efficient luminescence and temperature sensing. J Colloid Interface Sci 2024; 673:249-257. [PMID: 38875790 DOI: 10.1016/j.jcis.2024.06.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Research on the core-shell design of rare earth-doped nanoparticles has recently gained significant attention, particularly in exploring the synergistic effects of combining active and inert shell layers. In this study, we successfully synthesized 8 types of spherical core-shell Na-based nanoparticles to enhance the efficiency of core-shell design in upconversion luminescence and temperature sensing through the strategic arrangement of inert and active layers. The most effective upconversion luminescence was observed under 980 nm and 808 nm laser excitation using NaYF4 inert shell NaYF4:Yb3+, Er3+@ NaYF4 and NaYF4@ NaYF4:Yb3+, Nd3+ core-shell nanostructures. Moreover, the incorporation of the NaYbF4 active shell structure led to a significant increase in relative sensitivity in ratio luminescence thermometry. Notably, the NaYF4:Yb3+, Nd3+, Er3+@ NaYbF4 core-shell structure demonstrated the highest relative sensitivity of 1.12 %K-1. This research underscores the crucial role of inert shell layers in enhancing upconversion luminescence in core-shell structure design, while active layers play a key role in achieving high-sensitivity temperature detection capabilities.
Collapse
Affiliation(s)
- Hanyu Xu
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Kejie Li
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Mengmeng Dai
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China
| | - Zuoling Fu
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Dash P, Nataraj N, Panda PK, Tseng CL, Lin YC, Sakthivel R, Chung RJ. Construction of Methotrexate-Loaded Bi 2S 3 Coated with Fe/Mn-Bimetallic Doped ZIF-8 Nanocomposites for Cancer Treatment Through the Synergistic Effects of Photothermal/Chemodynamic/Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39418655 DOI: 10.1021/acsami.4c13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A combination of therapeutic modalities in a single nanostructure is crucial for a successful cancer treatment. Synergistic photothermal therapy (PTT) can enhance the effects of chemodynamic therapy (CDT) and chemotherapy, which could intensify the therapeutic efficacy to induce cancer cell apoptosis. In this study, Fe and Mn on a zeolitic imidazolate framework (ZIF-8) (Fe/Mn-ZIF-8; FMZ) were synthesized through ion deposition. Furthermore, bismuth sulfide nanorods (Bi2S3 NRs; BS NRs) were synthesized via a hydrothermal process and coated onto FMZ to generate the core-shell structure of the Bi2S3@FMZ nanoparticles (B@FMZ). Next, methotrexate (MTX) was loaded effectively onto the porous surface of ZIF-8 to form the B@FMZ/MTX nanoparticles. The Fenton-like reaction catalyzes Fe2+/Mn2+ ions by decomposing H2O2 in the tumor microenvironment, resulting in the formation of toxic hydroxyl radicals (·OH), which promotes the CDT effect of killing cancer cells. Furthermore, under 808 nm laser irradiation, these B@FMZ nanoparticles showed a strong PTT effect, owing to the presence of intense BS NRs as a photothermal agent. The B@FMZ nanoparticles exhibited a prominent drug release efficiency of 87.25% at pH 5.5 under near-infrared laser irradiation due to the PTT effect can promote the drug delivery performance. The B@FMZ nanoparticles were subjected to dual-modal imaging, guided magnetic resonance imaging, and X-ray computed tomography imaging. Both in vitro and in vivo results suggested that the B@FMZ/MTX nanoparticles exhibited enhanced antitumor effects through the combined therapeutic effects of PTT, CDT, and chemotherapy. Therefore, these nanoparticles exhibit good biocompatibility and are promising candidates for cancer treatment.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Pradeep Kumar Panda
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 32003, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei City 110, Taiwan
- International Ph. D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei city 110, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei city 110, Taiwan
- International Ph. D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei city 110, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- ZhongSun Co., LTD, New Taipei City 220031, Taiwan
| | - Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
3
|
Dash P, Thirumurugan S, Nataraj N, Lin YC, Liu X, Dhawan U, Chung RJ. Near-Infrared Driven Gold Nanoparticles-Decorated g-C 3N 4/SnS 2 Heterostructure through Photodynamic and Photothermal Therapy for Cancer Treatment. Int J Nanomedicine 2024; 19:10537-10550. [PMID: 39435043 PMCID: PMC11492912 DOI: 10.2147/ijn.s478883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Background Phototherapy based on photocatalytic semiconductor nanomaterials has received considerable attention for the cancer treatment. Nonetheless, intense efficacy for in vivo treatment is restricted by inadequate photocatalytic activity and visible light response. Methods In this study, we designed a photocatalytic heterostructure using graphitic carbon nitride (g-C3N4) and tin disulfide (SnS2) to synthesize g-C3N4/SnS2 heterostructure through hydrothermal process. Furthermore, Au nanoparticles were decorated in situ deposition on the surface of the g-C3N4/SnS2 heterostructure to form g-C3N4/SnS2@Au nanoparticles. Results The g-C3N4/SnS2@Au nanoparticles generated intense reactive oxygen species radicals under near-infrared (NIR) laser irradiation through photodynamic therapy (PDT) pathways (Type-I and Type-II). These nanoparticles exhibited enhanced photothermal therapy (PTT) efficacy with high photothermal conversion efficiency (41%) when subjected to 808 nm laser light, owing to the presence of Au nanoparticles. The in vitro studies have indicated that these nanoparticles can induce human liver carcinoma cancer cell (HepG2) apoptosis (approximately 80% cell death) through the synergistic therapeutic effects of PDT and PTT. The in vivo results demonstrated that these nanoparticles exhibited enhanced efficient antitumor effects based on the combined effects of PDT and PTT. Conclusion The g-C3N4/SnS2@Au nanoparticles possessed enhanced photothermal properties and PDT effect, good biocompatibility and intense antitumor efficacy. Therefore, these nanoparticles could be considered promising candidates through synergistic PDT/PTT effects upon irradiation with NIR laser for cancer treatment.
Collapse
Affiliation(s)
- Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- ZhongSun Co., LTD, New Taipei City, 220031, Taiwan
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen, 518060, People’s Republic of China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G116EW, UK
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
- High-Value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| |
Collapse
|
4
|
Zhou Z, Han J, Lang P, Zhang M, Shu H, Zhang L, Huang S. ROS-responsive self-assembly nanoplatform overcomes hypoxia for enhanced photodynamic therapy. Biomater Sci 2024; 12:5105-5114. [PMID: 39221610 DOI: 10.1039/d4bm00712c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising treatment for malignant tumours in recent decades due to its impressive spatiotemporal selectivity, minimal invasiveness, and few adverse effects. Despite these advancements, there remain significant challenges in effectively delivering photosensitizers to tumours and overcoming tumour hypoxia to maximize the therapeutic benefits of PDT. Ongoing research efforts are focused on developing innovative strategies to overcome the above-mentioned challenges, such as nanoplatforms and combination therapy approaches. Hence, reactive oxygen species (ROS)-responsive polymeric micelles are promising candidates to enhance the distribution and retention of photosensitizers within tumours. Additionally, efforts to alleviate tumour hypoxia may further improve the anti-tumour effects of PDT. In this study, we designed ROS-responsive polymeric micelles (TC@PTP) co-loaded with a Tapp-COF, a porphyrin derivative, and capsaicin for PDT of melanoma. These ROS-responsive nanocarriers, constructed from thioketal (TK)-linked amphiphilic di-block copolymers (PEG5K-TK-PLGA5K), could accumulate in the tumor microenvironment and release drugs under the action of ROS. Capsaicin, acting as a biogenic respiratory inhibitor, suppressed mitochondrial respiration and the hypoxia-inducible factor 1 (HIF-1) signaling pathway, thereby increasing oxygen levels at the tumour site. These PDT-triggered ROS-responsive nanoparticles effectively alleviated the tumour hypoxic microenvironment and enhanced anti-tumour efficacy. With superior biocompatibility and tumour-targeting abilities, the platform holds great promise for advancing anti-tumour combination therapy.
Collapse
Affiliation(s)
- Zhaojie Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, China.
| | - Jiaxi Han
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, China.
| | - Puxin Lang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, China.
| | - Mengxing Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, China.
| | - Haozhou Shu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, China.
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610000, China
| | - Shiqi Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
5
|
Zhang Y, Cheng Y, Zhao Z, Jiang S, Zhang Y, Li J, Huang S, Wang W, Xue Y, Li A, Tao Z, Wu Z, Zhang X. Enhanced Chemoradiotherapy for MRSA-Infected Osteomyelitis Using Immunomodulatory Polymer-Reinforced Nanotherapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304991. [PMID: 38408365 DOI: 10.1002/adma.202304991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/27/2023] [Indexed: 02/28/2024]
Abstract
The eradication of osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge due to its development of biofilm-induced antibiotic resistance and impaired innate immunity, which often leads to frequent surgical failure. Here, the design, synthesis, and performance of X-ray-activated polymer-reinforced nanotherapeutics that modulate the immunological properties of infectious microenvironments to enhance chemoradiotherapy against multidrug-resistant bacterial deep-tissue infections are reported. Upon X-ray radiation, the proposed polymer-reinforced nanotherapeutic generates reactive oxygen species and reactive nitrogen species. To robustly eradicate MRSA biofilms at deep infection sites, these species can specifically bind to MRSA and penetrate biofilms for enhanced chemoradiotherapy treatment. X-ray-activated nanotherapeutics modulate the innate immunity of macrophages to prevent the recurrence of osteomyelitis. The remarkable anti-infection effects of these nanotherapeutics are validated using a rat osteomyelitis model. This study demonstrates the significant potential of a synergistic chemoradiotherapy and immunotherapy method for treating MRSA biofilm-infected osteomyelitis.
Collapse
Affiliation(s)
- Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhe Zhao
- Department of Surgery of Traditional Chinese Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Shengpeng Jiang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuhan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yun Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Anran Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhen Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Tianjin Key Laboratory of functional polymer materials College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
He G, Mei C, Chen C, Liu X, Wu J, Deng Y, Liao Y. Application and progress of nanozymes in antitumor therapy. Int J Biol Macromol 2024; 265:130960. [PMID: 38518941 DOI: 10.1016/j.ijbiomac.2024.130960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Tumors remain one of the major threats to public health and there is an urgent need to design new pharmaceutical agents for their diagnosis and treatment. In recent years, due to the rapid development of nanotechnology, biotechnology, catalytic science, and theoretical computing, subtlety has gradually made great progress in research related to tumor diagnosis and treatment. Compared to conventional drugs, enzymes can improve drug distribution and enhance drug enrichment at the tumor site, thereby reducing drug side effects and enhancing drug efficacy. Nanozymes can also be used as tumor tracking imaging agents to reshape the tumor microenvironment, providing a versatile platform for the diagnosis and treatment of malignancies. In this paper, we review the current status of research on enzymes in oncology and analyze novel oncology therapeutic approaches and related mechanisms. To date, a large number of nanomaterials, such as noble metal nanomaterials, nonmetallic nanomaterials, and carbon-based nanomaterials, have been shown to be able to function like natural enzymes, particularly with significant advantages in tumor therapy. In light of this, the authors in this review have systematically summarized and evaluated the construction, enzymatic activity, and their characteristics of nanozymes with respect to current modalities of tumor treatment. In addition, the application and research progress of different types of nicknames and their features in recent years are summarized in detail. We conclude with a summary and outlook on the study of nanozymes in tumor diagnosis and treatment. It is hoped that this review will inspire researchers in the fields of nanotechnology, chemistry, biology, materials science and theoretical computing, and contribute to the development of nano-enzymology.
Collapse
Affiliation(s)
- Gaihua He
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | - Chao Mei
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Chenbo Chen
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Xiao Liu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Jiaxuan Wu
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Yue Deng
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China
| | - Ye Liao
- Department of Pharmacy, Jinzhou Medical University, Jinzhou 121001, PR China; College of Veterinary Medicine, Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
7
|
Hu Q, Xu L, Huang X, Duan Y, Sun D, Fu Z, Ge Y. Polydopamine-Modified Zeolite Imidazole Framework Drug Delivery System for Photothermal Chemotherapy of Hepatocellular Carcinoma. Biomacromolecules 2023; 24:5964-5976. [PMID: 37938159 DOI: 10.1021/acs.biomac.3c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Metal-organic frameworks (MOFs) are promising drug-delivering platforms for their intrinsic capability of loading and releasing different cargoes. To further extend their biomedical practices, the development of collaborative MOF systems with good biocompatibility and synergistic efficacy is essential. Herein, the near-infrared and pH dual-response collaborative zeolitic imidazolate framework-8 (ZIF-8) platform SOR@ZIF-8@PDA (SZP) was constructed, in which the chemotherapeutic drug sorafenib (SOR) was encapsulated in ZIF-8 and via polydopamine (PDA) coating on ZIF-8 by hierarchical self-assembly. PDA coating serves as a photothermal agent for PPT while reducing the toxicity of ZIF-8. SZP achieves intelligent release of therapeutic drugs by responding to the lower pH of the tumor microenvironment and thermal stimulation generated by near-infrared light irradiation. In addition, under light irradiation, SZP could effectively realize treatment of cancer cells through synergistic chemo-photothermal therapy, as evidenced by the enhanced cell apoptosis, inhibited tumor cell proliferation and migration. This collaborative MOFs system showed excellent biocompatibility and antitumor ability in vivo on a mouse HepG2 tumor model. Our results demonstrated that PDA-modified MOFs exhibited a fantastic good development prospect in biomedical applications.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwang Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoyu Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuxuan Duan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yunfen Ge
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
8
|
Qi Y, Ren S, Ye J, Bi S, Shi L, Fang Y, Wang G, Finfrock YZ, Li J, Che Y, Ning G. Copper-Single-Atom Coordinated Nanotherapeutics for Enhanced Sonothermal-Parallel Catalytic Synergistic Cancer Therapy. Adv Healthc Mater 2023; 12:e2300291. [PMID: 37157943 DOI: 10.1002/adhm.202300291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Phototherapy and sonotherapy are recognized by scientific medicine as effective strategies for treating certain cancers. However, these strategies have limitations such as an inability to penetrate deeper tissues and overcome the antioxidant tumor microenvironment. In this study, a novel "BH" interfacial-confined coordination strategy to synthesize hyaluronic acid-functionalized single copper atoms dispersed over boron imidazolate framework-derived nanocubes (HA-NC_Cu) to achieve sonothermal-catalytic synergistic therapy is reported. Notably, HA-NC_Cu demonstrates exceptional sonothermal conversion performance under low-intensity ultrasound irradiation, attained through intermolecular lattice vibrations. In addition, it shows promise as an efficient biocatalyst, able to generate high-toxicity hydroxyl radicals in response to tumor-endogenous hydrogen peroxide and glutathione. Density functional theory calculations reveal that the superior parallel catalytic performance of HA-NC_Cu originates from the CuN4 C/B active sites. Both in vitro and in vivo evaluations consistently demonstrate that the sonothermal-catalytic synergistic strategy significantly improves tumor inhibition rate (86.9%) and long-term survival rate (100%). In combination with low-intensity ultrasound irradiation, HA-NC_Cu triggers a dual death pathway of apoptosis and ferroptosis in MDA-MB-231 breast cancer cells, comprehensively limiting primary triple-negative breast cancer. This study highlights the applications of single-atom-coordinated nanotherapeutics in sonothermal-catalytic synergistic therapy, which may create new opportunities in biomedical research.
Collapse
Affiliation(s)
- Ye Qi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shuangsong Ren
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Junwei Ye
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Shengnan Bi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Yueguang Fang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Guangyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| | - Y Zou Finfrock
- Structural Biology Center, X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ying Che
- Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning, 116011, P. R. China
| | - Guiling Ning
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
9
|
Plasmonic stimulation of gold nanorods for the photothermal control of engineered living materials. BIOMATERIALS ADVANCES 2023; 147:213332. [PMID: 36801796 DOI: 10.1016/j.bioadv.2023.213332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Engineered living materials (ELMs) encapsulate microorganisms within polymeric matrices for biosensing, drug delivery, capturing viruses, and bioremediation. It is often desirable to control their function remotely and in real time and so the microorganisms are often genetically engineered to respond to external stimuli. Here, we combine thermogenetically engineered microorganisms with inorganic nanostructures to sensitize an ELM to near infrared light. For this, we use plasmonic gold nanorods (AuNR) that have a strong absorption maximum at 808 nm, a wavelength where human tissue is relatively transparent. These are combined with Pluronic-based hydrogel to generate a nanocomposite gel that can convert incident near infrared light into heat locally. We perform transient temperature measurements and find a photothermal conversion efficiency of 47 %. Steady-state temperature profiles from local photothermal heating are quantified using infrared photothermal imaging and correlated with measurements inside the gel to reconstruct spatial temperature profiles. Bilayer geometries are used to combine AuNR and bacteria-containing gel layers to mimic core-shell ELMs. The thermoplasmonic heating of an AuNR-containing hydrogel layer that is exposed to infrared light diffuses to the separate but connected hydrogel layer with bacteria and stimulates them to produce a fluorescent protein. By tuning the intensity of the incident light, it is possible to activate either the entire bacterial population or only a localized region.
Collapse
|
10
|
Du L, Ren S, Qi Y, Wen R, Feng Y, Tong M, Liu X, Li Y, Che Y. Boron Imidazolate Framework‐Derived Porous Carbon Nanospheres for Dual‐Mode Bioimaging‐Guided Photothermal/Sonodynamic Synergistic Cancer Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Linyao Du
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Shuangsong Ren
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Ye Qi
- State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian Liaoning 116024 P. R. China
| | - Ru Wen
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Yue Feng
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Mengying Tong
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology School of Public Health Dalian Medical University 9 West Section Lvshun South Road Dalian Liaoning 116044 P. R. China
| | - Yachen Li
- Department of Environmental Health and Toxicology School of Public Health Dalian Medical University 9 West Section Lvshun South Road Dalian Liaoning 116044 P. R. China
| | - Ying Che
- Department of Ultrasound the First Affiliated Hospital of Dalian Medical University 193 Lianhe Road Dalian Liaoning 116011 P. R. China
| |
Collapse
|
11
|
Core-shell structured nanoparticles for photodynamic therapy-based cancer treatment and related imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Qi Y, Ren S, Ye J, Tian Y, Wang G, Zhang S, Du L, Li Y, Che Y, Ning G. Infection microenvironment-activated core-shell nanoassemblies for photothermal/chemodynamic synergistic wound therapy and multimodal imaging. Acta Biomater 2022; 143:445-458. [PMID: 35235864 DOI: 10.1016/j.actbio.2022.02.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 02/08/2023]
Abstract
The development of intelligent designs of new antibacterial modalities for diagnosing and treating chronic multidrug-resistant bacterial infections is an urgent need, but achieving the precisive theranostic in response to specific inflammatory microenvironments remains a great challenge. This paper describes our work designing and demonstrating infection microenvironment-activated core-shell Gd-doped Bi2S3@Cu(II) boron imidazolate framework (Bi2S3:Gd@Cu-BIF) nanoassemblies. Upon exposure to a single beam of 808 nm laser, Bi2S3:Gd@Cu-BIF nanoassemblies showed exceptional photothermal conversion (η = 52.6%) and produced several cytotoxic reactive oxygen species, such as singlet oxygen and hydroxyl radicals, by depleting the intracellular glutathione and in-situ catalyzing the decomposition of endogenous hydrogen peroxide in the inflammatory microenvironment. The broad-spectrum antibacterial properties of nanoassemblies were confirmed to be effective against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) with an inhibition rate of 99.99% in vitro. Additionally, in vivo wound-healing studies revealed that Bi2S3:Gd@Cu-BIF nanoassemblies could serve as an effective wound spray to accelerate healing following MRSA infections via photothermal/chemodynamic (PTT/CDT) synergistic therapy. The effective wound healing rate in the synergistic treatment group was 99.8%, which is higher than the 69.5% wound healing rate in the control group. Furthermore, magnetic resonance and computed tomography dual-modal imaging mediated by Bi2S3:Gd@Cu-BIF nanoassemblies also exhibits promising potential as an integrated diagnostic nanoplatform. Overall, this work provides useful insights for developing all-in-one theranostic nanoplatforms for clinical treatment of drug-resistant bacterial infections. STATEMENT OF SIGNIFICANCE: New treatments and effective diagnostic strategies are critical for fighting drug-resistant bacterial infections. Infection microenvironment-activated Bi2S3@Cu-BIF nanoassemblies can simultaneously increase eigen temperature and generate cytotoxic reactive oxygen species, such as singlet oxygen and hydroxyl radicals, under near-infrared laser irradiation, achieving the synergistic effect of photothermal and chemodynamic therapy, which has been proven to be highly effective for inhibiting bacterial activity and speeding wound healing from methicillin-resistant Staphylococcus aureus infection. More importantly, the nanoassemblies could enable early precise visualized detection of bacterial abscess using magnetic resonance/computed tomography dual-modal bio-imaging techniques.
Collapse
|
13
|
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
15
|
Zhou M, Liu Y, Su Y, Su Q. Plasmonic Oxygen Defects in MO 3- x (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv Healthc Mater 2021; 10:e2101331. [PMID: 34549537 DOI: 10.1002/adhm.202101331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Indexed: 12/31/2022]
Abstract
Nanomedicine is a promising technology with many advantages and provides exciting opportunities for cancer diagnosis and therapy. During recent years, the newly developed oxygen-deficiency transition metal oxides MO3- x (M = W or Mo) have received significant attention due to the unique optical properties, such as strong localized surface plasmon resonance (LSPR) , tunable and broad near-IR absorption, high photothermal conversion efficiency, and large X-ray attenuation coefficient. This review presents an overview of recent advances in the development of MO3- x nanomaterials for biomedical applications. First, the fundamentals of the LSPR effect are introduced. Then, the preparation and modification methods of MO3- x nanomaterials are summarized. In addition, the biological effects of MO3- x nanomaterials are highlighted and their applications in the biomedical field are outlined. This includes imaging modalities, cancer treatment, and antibacterial capability. Finally, the prospects and challenges of MO3- x and MO3- x -based nanomaterial for fundamental studies and clinical applications are also discussed.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yan Su
- Genome Institute of Singapore Agency of Science Technology and Research Singapore 138672 Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| |
Collapse
|
16
|
Blum NT, Fu LH, Lin J, Huang P. When Chemodynamic Therapy Meets Photodynamic Therapy: A Synergistic Combination of Cancer Treatments. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Soltani S, Akhbari K, White J. Effect of structural features on the stability and bactericidal potential of two cadmium coordination polymers. CrystEngComm 2021. [DOI: 10.1039/d1ce00979f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two mixed ligand Cd(ii) coordination polymers have been synthesized using three methods by in situ decarboxylation of phenylmalonic acid. CPs were screened for their antibacterial activities and the influence of structural properties was studied.
Collapse
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Jonathan White
- School of Chemistry, Bio21 Institute, The University of Melbourne, VIC 3010, Australia
| |
Collapse
|