1
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
2
|
Khalil MI, Wang J, Yang C, Vu L, Yin C, Chadha S, Nabors H, Vocelle D, May DG, Chrisopolus RJ, Zhou L, Roux KJ, Bernard MP, Mi QS, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 promotes cancer immune evasion by degrading MHC class I proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626106. [PMID: 39677690 PMCID: PMC11642734 DOI: 10.1101/2024.11.29.626106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC). MARCHF8 knockdown restores MHC-I levels on HPV+ HNC cells. We further reveal that Marchf8 knockout significantly suppresses tumor growth and increases the infiltration of natural killer (NK) and T cells in the tumor microenvironment (TME). Furthermore, Marchf8 knockout markedly increases crosstalk between the cytotoxic NK cells and CD8 + T cells with macrophages and enhances the tumor cell-killing activity of CD8 + T cells. CD8 + T cell depletion in mice abrogates Marchf8 knockout-driven tumor suppression and T cell infiltration. Interestingly, Marchf8 knockout, in combination with anti-PD-1 treatment, synergistically suppresses tumor growth in mice bearing ICI-refractory tumors. Taken together, our finding suggests that MARCHF8 could be a promising target for novel immunotherapy for HPV+ HNC patients. One Sentence Summary Targeting MARCHF8 restores MHC-I proteins, induces antitumor CD8 + T cell activity, and suppresses the growth of ICI-refractory tumors.
Collapse
|
3
|
Yan T, Zhou W, Li C. Discovery of a T cell proliferation-associated regulator signature correlates with prognosis risk and immunotherapy response in bladder cancer. Int Urol Nephrol 2024; 56:3447-3462. [PMID: 38789872 DOI: 10.1007/s11255-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The efficacy of immunotherapy is heavily influenced by T cell activity. This study aimed to examine how T cell proliferation regulators can predict the prognosis and response to immunotherapy in patients with bladder cancer (BCa). METHODS T cell proliferation-related subtypes were determined by employing the non-negative matrix factorization (NMF) algorithm that analyzed the expression patterns of T cell proliferation regulators. Subtypes were assessed for variations in prognosis, immune infiltration, and functional behaviors. Subsequently, a risk model related to T cell proliferation was created through Cox and Lasso regression analyses in the TCGA cohort and then confirmed in two GEO cohorts and an immunotherapy cohort. RESULTS BCa patients were categorized into two subtypes (C1 and C2) according to the expression profiles of 31 T cell proliferation-related genes (TRGs) with distinct prognoses and immune landscapes. The C2 subtype had a shorter overall survival (OS), with higher levels of M2 macrophage infiltration, and the activation of cancer-related pathways than the C1 subtype. Following this, thirteen prognosis-related genes that were involved in T cell proliferation were utilized to create the prognostic signature. The model's predictive accuracy was confirmed by analyzing both internal and external datasets. Individuals in the high-risk category experienced a poorer prognosis, increased immunosuppressive factors in the tumor microenvironment, and diminished responses to immunotherapy. Additionally, the immunotherapeutic prediction efficacy of the model was further confirmed by an immunotherapy cohort (anti-PD-L1 in the IMvigor210 cohort). CONCLUSIONS Our study characterized two subtypes linked to T cell proliferation in BCa patients with distinct prognoses and tumor microenvironment (TME) patterns, providing new insights into the heterogeneity of T cell proliferation in BCa and its connection to the immune landscape. The signature has prospective clinical implications for predicting outcomes and may help physicians to select prospective responders who prioritize current immunotherapy.
Collapse
Affiliation(s)
- Ting Yan
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China
| | - Wei Zhou
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, People's Republic of China
| | - Chun Li
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Giram P, Bist G, Woo S, Wohlfert E, Pili R, You Y. Prodrugs of paclitaxel improve in situ photo-vaccination. Photochem Photobiol 2024. [PMID: 39384406 DOI: 10.1111/php.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/22/2024] [Indexed: 10/11/2024]
Abstract
Photodynamic therapy (PDT) effectively kills cancer cells and initiates immune responses that promote anticancer effects locally and systemically. Primarily developed for local and regional cancers, the potential of PDT for systemic antitumor effects [in situ photo-vaccination (ISPV)] remains underexplored. This study investigates: (1) the comparative effectiveness of paclitaxel (PTX) prodrug [Pc-(L-PTX)2] for PDT and site-specific PTX effects versus its pseudo-prodrug [Pc-(NCL-PTX)2] for PDT combined with checkpoint inhibitors; (2) mechanisms driving systemic antitumor effects; and (3) the prophylactic impact on preventing cancer recurrence. A bilateral tumor model was established in BALB/c mice through subcutaneous injection of CT26 cells. Mice received the PTX prodrug (0.5 μmole kg-1, i.v.), and tumors were treated with a 690-nm laser (75 mW cm-2 for 30 min, drug-light interval 0.5 h, light does 135 J cm-1), followed by anti-CTLA-4 (100 μg dose-1, i.p.) on days 1, 4, and 7. Notable enhancement in both local and systemic antitumor effectiveness was observed with [Pc-(L-PTX)2] compared to [Pc-(NCL-PTX)2] with checkpoint inhibitor. Immune cell depletion and immunohistochemistry confirmed neutrophils and CD8+ T cells are effectors for systemic antitumor effects. Treatment-induced immune memory resisted newly rechallenged CT26, showcasing prophylactic benefits. ISPV with a PTX prodrug and anti-CTLA-4 is a promising approach for treating metastatic cancers and preventing recurrence.
Collapse
Affiliation(s)
- Prabhanjan Giram
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ganesh Bist
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Elizabeth Wohlfert
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, USA
| | - Roberto Pili
- Division of Hematology and Oncology, Department of Medicine, University at Buffalo, Buffalo, New York, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
5
|
Bai Z, Wang X, Liang T, Xu G, Cai J, Xu W, Yang K, Hu L, Pei P. Harnessing Bacterial Membrane Components for Tumor Vaccines: Strategies and Perspectives. Adv Healthc Mater 2024; 13:e2401615. [PMID: 38935934 DOI: 10.1002/adhm.202401615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Tumor vaccines stand at the vanguard of tumor immunotherapy, demonstrating significant potential and promise in recent years. While tumor vaccines have achieved breakthroughs in the treatment of cancer, they still encounter numerous challenges, including improving the immunogenicity of vaccines and expanding the scope of vaccine application. As natural immune activators, bacterial components offer inherent advantages in tumor vaccines. Bacterial membrane components, with their safer profile, easy extraction, purification, and engineering, along with their diverse array of immune components, activate the immune system and improve tumor vaccine efficacy. This review systematically summarizes the mechanism of action and therapeutic effects of bacterial membranes and its derivatives (including bacterial membrane vesicles and hybrid membrane biomaterials) in tumor vaccines. Subsequently, the authors delve into the preparation and advantages of tumor vaccines based on bacterial membranes and hybrid membrane biomaterials. Following this, the immune effects of tumor vaccines based on bacterial outer membrane vesicles are elucidated, and their mechanisms are explained. Moreover, their advantages in tumor combination therapy are analyzed. Last, the challenges and trends in this field are discussed. This comprehensive analysis aims to offer a more informed reference and scientific foundation for the design and implementation of bacterial membrane-based tumor vaccines.
Collapse
Affiliation(s)
- Zhenxin Bai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xuanyu Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | - Tianming Liang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Guangyu Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jinzhou Cai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, P.R. China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| |
Collapse
|
6
|
Wang Z, Wang J, Xu W, Qiao L, Xie Y, Gao M, Wang D, Li C. Fasting-Mimicking Diet Facilitates Anti-tumor Therapeutic Effects by Nutrient-Sensitive Nanocomposites. Adv Healthc Mater 2024; 13:e2400943. [PMID: 38856967 DOI: 10.1002/adhm.202400943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Cancer cells support their uncontrolled proliferation primarily by regulating energy metabolism. Inhibiting tumor growth by blocking the supply of nutrients is an effective treatment strategy. Fasting-mimicking diet (FMD), as a low-calorie, low-protein, low-sugar, high-fat diet, can effectively reduce the nutrient supply to tumor cells. However, the significant biological barrier presented by the tumor microenvironment imposes greater demands and challenges for drug design. This study constructs the multifunctional nanocomposite ZnFe2O4@TiO2@CHC@Orl-FA (ZTCOF), which has great potential to overcome the aforementioned drawbacks. ZnFe2O4@TiO2 could produce 1O2 with ultrasound, and stimulate the Fenton-like conversion of endogenous H2O2 to ·OH, achieving a combined therapeutic effect of sonodynamic therapy (SDT) and chemodynamic therapy (CDT). Orl (Orlistat) and CHC (α-cyano-4-hydroxycinnamic acid) not only block tumor cell energy metabolism but also increase sensitivity to reactive oxygen species, enhancing the cytotoxic effect on tumor cells. Furthermore, combining the treatment strategies with FMD condition control can further inhibit cancer cell energy metabolism, achieving significant synergistic anti-tumor therapy. Both in vitro and in vivo experiments confirm that ZTCOF with SDT/CDT/starvation can achieve effective tumor suppression and destruction. This work provides theoretical and technical support for anti-tumor multimodal synergistic therapy.
Collapse
Affiliation(s)
- Zhifang Wang
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Wencheng Xu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Luying Qiao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Yulin Xie
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Chunxia Li
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
7
|
Cheng H, Lee W, Hsu F, Lai Y, Huang S, Lim CSH, Lin Z, Hsu S, Chiang C, Jeng L, Shyu W, Chen S. Manipulating the Crosstalk between Cancer and Immunosuppressive Cells with Phototherapeutic Gold-Nanohut for Reprogramming Tumor Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404347. [PMID: 38923327 PMCID: PMC11348132 DOI: 10.1002/advs.202404347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Photoimmunotherapy faces challenges due to insufficient intratumoral accumulation of photothermal agents and the reversion of the cancer-immunity cycle during treatment. In this study, an anti-PD-L1-immobilized magnetic gold nanohut, AuNH-2-Ab, with photoresponsive, thermosensitive, and immunomodulatory properties to effectively suppress the growth of primary tumors, elevate immunogenic cell death (ICD) levels, reverse the tumor immune microenvironment (TIME), and consequently inhibit metastases are developed. AuNH-2-Ab achieves high tumor accumulation (9.54% injected dose) following systemic administration, allowing the modulation of hyperthermia dose of over 50 °C in the tumor. By optimizing the hyperthermia dose, AuNH-2-Ab simultaneously target and eliminate cancer cells and tumor-associated macrophages, thereby activating potent antitumor immunity without being compromised by immunosuppressive elements. Hyperthermia/pH induced morphological transformation of AuNH-2-Ab involving the detachment of the surface antibody for in situ PD-L1 inhibition, and exposure of the inner fucoidan layer for natural killer (NK) cell activation. This precision photoimmunotherapy approach reprograms the TIME, significantly prolongs survival in a murine hepatocellular carcinoma model (Hep55.1c), and harnesses the synergistic effects of ICD production and checkpoint inhibitors by utilizing a single nanoplatform.
Collapse
Affiliation(s)
- Hung‐Wei Cheng
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Wei Lee
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
| | - Fei‐Ting Hsu
- Department of Biological Science and TechnologyChina Medical UniversityTaichung406040Taiwan
| | - Yen‐Ho Lai
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
| | - Shu‐Rou Huang
- Translational Medicine Research CenterNew Drug development Center and Department of NeurologyChina Medical University HospitalTaichung40447Taiwan
| | - Chris Seh Hong Lim
- Department of Physician Assistant StudiesSchool of Health and Rehabilitation SciencesMGH InstituteBostonMassachusetts02114USA
| | - Zhen‐Kai Lin
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Shih‐Chao Hsu
- Department of SurgeryChina Medical University HospitalTaichung40447Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- Neuroscience and Brain Disease CenterChina Medical UniversityTaichung40447Taiwan
| | - Long‐Bin Jeng
- Cell Therapy CenterChina Medical University HospitalTaichung40447Taiwan
- Organ Transplantation CenterChina Medical University HospitalTaichung40447Taiwan
- School of MedicineChina Medical UniversityTaichung406040Taiwan
| | - Woei‐Cherng Shyu
- Translational Medicine Research CenterNew Drug development Center and Department of NeurologyChina Medical University HospitalTaichung40447Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- Neuroscience and Brain Disease CenterChina Medical UniversityTaichung40447Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and EngineeringNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Graduate Institute of Biomedical ScienceChina Medical UniversityTaichung406040Taiwan
- School of DentistryCollege of Dental MedicineKaohsiung Medical UniversityKaohsiung807Taiwan
| |
Collapse
|
8
|
Fu Y, Zhu X, Ren L, Wan J, Wang H. Syringeable Near-Infrared Light-Activated In Situ Immunogenic Hydrogel Boosts the Cancer-Immunity Cycle to Enhance Anticancer Immunity. ACS NANO 2024; 18:14877-14892. [PMID: 38809421 DOI: 10.1021/acsnano.3c08425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Effective anticancer immunity depends on properly activating multiple stepwise events in the cancer-immunity cycle. An immunologically "cold" tumor microenvironment (TME) engenders immune evasion and refractoriness to conventional checkpoint blockade immunotherapy. Here, we combine nanoparticle formulations and an in situ formed hydrogel scaffold to treat accessible tumors locally and to stimulate systemic immunity against metastatic tumor lesions. The nanoparticles encapsulate poly(ε-caprolactone)-derived cytotoxic chemotherapy and adjuvant of Toll-like receptor 7/8 through a reactive oxygen species (ROS)-cleavable linker that can be self-activated by the coassembled neighboring photosensitizer following near-infrared (NIR) laser irradiation. Further development results in syringeable, NIR light-responsive, and immunogenic hydrogel (iGEL) that can be implanted peritumorally and deposited into the tumor surgical bed. Upon NIR laser irradiation, the generated ROS induces iGEL degradation and bond cleavage in the polymer-drug conjugates, triggering the immunogenic cell death cascade in cancer cells and spontaneously releasing encapsulated agents to rewire the cancer-immunity cycle. Notably, upon application in multiple preclinical models of melanoma and triple-negative breast cancer, which are aggressive and refractory to conventional immunotherapy, iGEL induces durable remission of established tumors, extends postsurgical tumor-free survival, and inhibits metastatic burden. The result of this study is a locally administrable immunogenic hydrogel for triggering host systemic immunity to improve immunotherapeutic efficacy with minimal off-target side effects.
Collapse
Affiliation(s)
- Yang Fu
- The First Affiliated Hospital; NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Xiaoxiao Zhu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310016, P. R. China
| | - Lulu Ren
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
| | - Jianqin Wan
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province 250117, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, P. R. China
| |
Collapse
|
9
|
Ouologuem L, Bartel K. Endolysosomal transient receptor potential mucolipins and two-pore channels: implications for cancer immunity. Front Immunol 2024; 15:1389194. [PMID: 38840905 PMCID: PMC11150529 DOI: 10.3389/fimmu.2024.1389194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Past research has identified that cancer cells sustain several cancer hallmarks by impairing function of the endolysosomal system (ES). Thus, maintaining the functional integrity of endolysosomes is crucial, which heavily relies on two key protein families: soluble hydrolases and endolysosomal membrane proteins. Particularly members of the TPC (two-pore channel) and TRPML (transient receptor potential mucolipins) families have emerged as essential regulators of ES function as a potential target in cancer therapy. Targeting TPCs and TRPMLs has demonstrated significant impact on multiple cancer hallmarks, including proliferation, growth, migration, and angiogenesis both in vitro and in vivo. Notably, endosomes and lysosomes also actively participate in various immune regulatory mechanisms, such as phagocytosis, antigen presentation, and the release of proinflammatory mediators. Yet, knowledge about the role of TPCs and TRPMLs in immunity is scarce. This prompts a discussion regarding the potential role of endolysosomal ion channels in aiding cancers to evade immune surveillance and destruction. Specifically, understanding the interplay between endolysosomal ion channels and cancer immunity becomes crucial. Our review aims to comprehensively explore the current knowledge surrounding the roles of TPCs and TRPMLs in immunity, whilst emphasizing the critical need to elucidate their specific contributions to cancer immunity by pointing out current research gaps that should be addressed.
Collapse
Affiliation(s)
| | - Karin Bartel
- Department of Pharmacy, Drug Delivery, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
10
|
Yu S, Xia G, Yang N, Yuan L, Li J, Wang Q, Li D, Ding L, Fan Z, Li J. Noble Metal Nanoparticle-Based Photothermal Therapy: Development and Application in Effective Cancer Therapy. Int J Mol Sci 2024; 25:5632. [PMID: 38891819 PMCID: PMC11172079 DOI: 10.3390/ijms25115632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Photothermal therapy (PTT) is a promising cancer therapy modality with significant advantages such as precise targeting, convenient drug delivery, better efficacy, and minimal adverse effects. Photothermal therapy effectively absorbs the photothermal transducers in the near-infrared region (NIR), which induces the photothermal effect to work. Although PTT has a better role in tumor therapy, it also suffers from low photothermal conversion efficiency, biosafety, and incomplete tumor elimination. Therefore, the use of nanomaterials themselves as photosensitizers, the targeted modification of nanomaterials to improve targeting efficiency, or the combined use of nanomaterials with other therapies can improve the therapeutic effects and reduce side effects. Notably, noble metal nanomaterials have attracted much attention in PTT because they have strong surface plasmon resonance and an effective absorbance light at specific near-infrared wavelengths. Therefore, they can be used as excellent photosensitizers to mediate photothermal conversion and improve its efficiency. This paper provides a comprehensive review of the key role played by noble metal nanomaterials in tumor photothermal therapy. It also describes the major challenges encountered during the implementation of photothermal therapy.
Collapse
Affiliation(s)
- Shujie Yu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Guoyu Xia
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Nan Yang
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Longlong Yuan
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jianmin Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Qingluo Wang
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Dingyang Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Lijun Ding
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| | - Jinyao Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830000, China
| |
Collapse
|
11
|
He M, Zhang M, Xu T, Xue S, Li D, Zhao Y, Zhi F, Ding D. Enhancing photodynamic immunotherapy by reprograming the immunosuppressive tumor microenvironment with hypoxia relief. J Control Release 2024; 368:233-250. [PMID: 38395154 DOI: 10.1016/j.jconrel.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Tumor hypoxia impairs the generation of reactive oxygen species and the induction of immunogenic cell death (ICD) for photodynamic therapy (PDT), thus impeding its efficacy and the subsequent immunotherapy. In addition, hypoxia plays a critical role in forming immunosuppressive tumor microenvironments (TME) by regulating the infiltration of immunosuppressive tumor-associated macrophages (TAMs) and the expression of programmed death ligand 1 (PD-L1). To simultaneously tackle these issues, a MnO2-containing albumin nanoplatform co-delivering IR780, NLG919, and a paclitaxel (PTX) dimer is designed to boost photodynamic immunotherapy. The MnO2-catalyzed oxygen supply bolsters the efficacy of PDT and PTX-mediated chemotherapy, collectively amplifying the induction of ICD and the expansion of tumor-specific cytotoxic T lymphocytes (CTLs). More importantly, hypoxia releif reshapes the immunosuppressive TME via down-regulating the intratumoral infiltration of M2-type TAMs and the PD-L1 expression of tumor cells to enhance the infiltration and efficacy of CTLs in combination with immune checkpoint blockade (ICB) by NLG919, consequently eradicating primary tumors and almost completely preventing tumor relapse and metastasis. This study sets an example of enhanced immunotherapy for breast cancers through dual ICD induction and simultaneous immunosuppression modulation via both hypoxia relief and ICB, providing a strategy for the treatment of other hypoxic and immunosuppressive cancers.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Zou KL, Lan Z, Cui H, Zhao YY, Wang WM, Yu GT. CD24 blockade promotes anti-tumor immunity in oral squamous cell carcinoma. Oral Dis 2024; 30:163-171. [PMID: 36056698 DOI: 10.1111/odi.14367] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Our study elucidates the prognostic role of cluster of differentiation (CD) 24 expression in oral squamous cell carcinoma (OSCC) and determines whether targeting CD24 enhances the anti-tumor immune response by inhibiting tumor-associated macrophages (TAMs). MATERIALS AND METHODS The expression of CD24 and CD68 was analyzed immunohistochemically via tissue microarrays constructed using 56 cohorts of patients with OSCC and 20 control specimens. Further, CD24 was inhibited in an allograft squamous cell carcinoma (SCC) related mouse model with CD24mAb to determine the tumor volume and weight. Changes in immune cells such as TAMs and T cells in the tumor microenvironment (TME) were analyzed by Flow cytometry. The expression of CD4, CD8, and Ki67 was analyzed via immunohistochemistry. The inhibition of CD24 was confirmed by Western blot and immunohistochemistry. RESULTS CD24 was overexpressed in OSCC. High expression of CD24 indicated poor survival in patients with OSCC (p = 0.0334). CD24 expression was significantly correlated with CD68 (p = 0.0424). The inhibition of CD24 delayed tumor growth in vivo. A decrease in TAMs number and an increase in T cell number were confirmed, while the ability of tumor proliferation was impaired. CONCLUSION Targeting CD24 could enhance anti-tumor immune response by inhibiting TAMs.
Collapse
Affiliation(s)
- Ke-Long Zou
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhou Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hao Cui
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Yue Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wei-Ming Wang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Guang-Tao Yu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Xu Y, Shao B, Zhang Y. The significance of targeting lysosomes in cancer immunotherapy. Front Immunol 2024; 15:1308070. [PMID: 38370407 PMCID: PMC10869645 DOI: 10.3389/fimmu.2024.1308070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Lysosomes are intracellular digestive organelles that participate in various physiological and pathological processes, including the regulation of immune checkpoint molecules, immune cell function in the tumor microenvironment, antigen presentation, metabolism, and autophagy. Abnormalities or dysfunction of lysosomes are associated with the occurrence, development, and drug resistance of tumors. Lysosomes play a crucial role and have potential applications in tumor immunotherapy. Targeting lysosomes or harnessing their properties is an effective strategy for tumor immunotherapy. However, the mechanisms and approaches related to lysosomes in tumor immunotherapy are not fully understood at present, and further basic and clinical research is needed to provide better treatment options for cancer patients. This review focuses on the research progress related to lysosomes and tumor immunotherapy in these.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Yafeng Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
- Institute for Hospital Management of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Guo L, Yang J, Wang H, Yi Y. Multistage Self-Assembled Nanomaterials for Cancer Immunotherapy. Molecules 2023; 28:7750. [PMID: 38067480 PMCID: PMC10707962 DOI: 10.3390/molecules28237750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Advances in nanotechnology have brought innovations to cancer therapy. Nanoparticle-based anticancer drugs have achieved great success from bench to bedside. However, insufficient therapy efficacy due to various physiological barriers in the body remains a key challenge. To overcome these biological barriers and improve the therapeutic efficacy of cancers, multistage self-assembled nanomaterials with advantages of stimuli-responsiveness, programmable delivery, and immune modulations provide great opportunities. In this review, we describe the typical biological barriers for nanomedicines, discuss the recent achievements of multistage self-assembled nanomaterials for stimuli-responsive drug delivery, highlighting the programmable delivery nanomaterials, in situ transformable self-assembled nanomaterials, and immune-reprogramming nanomaterials. Ultimately, we perspective the future opportunities and challenges of multistage self-assembled nanomaterials for cancer immunotherapy.
Collapse
Affiliation(s)
- Lamei Guo
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Jinjun Yang
- Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, School of Environmental Science and Safety Engineering, Tianjin University of Technology, 391 Binshui Xidao, Xiqing District, Tianjin 300384, China; (L.G.); (J.Y.)
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China;
| |
Collapse
|
15
|
Chen W, Zou F, Song T, Xia Y, Xing J, Rao T, Zhou X, Ning J, Zhao S, Yu W, Cheng F. Comprehensive analysis reveals XCL2 as a cancer prognosis and immune infiltration-related biomarker. Aging (Albany NY) 2023; 15:11891-11917. [PMID: 37905956 PMCID: PMC10683633 DOI: 10.18632/aging.205156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND X-C Motif Chemokine Ligand 2 (XCL2) is a 114 amino acid, structurally conserved chemokine involved in activating cytotoxic T cells. However, the pathophysiological mechanisms of XCL2 protein in various disease conditions, particularly cancer, remain poorly understood. METHODS Bioinformatics was used to detect the expression of XCL2, the relationship between survival time and XCL2 in BLCA patients, the mutational status of XCL2, the role of XCL2 in the tumor immune microenvironment, and the sensitivity of XCL2-targeted drugs in 33 cancers. In vitro experiments were conducted to investigate the chemotactic effects of XCL2 expression on M1-type macrophages in human specimens and in isolated cancer cells. RESULTS XCL2 expression was downregulated in tumor tissues and closely associated with the prognosis of human cancers. Furthermore, XCL2 affects DNA methylation, tumor mutation burden (TMB), microsatellite instability (MSI), and mismatch repair (MMR) in human cancers. The expression level of XCL2 significantly correlated with infiltrated immune cells, immunological pathways, and other immune markers. More importantly, we found that XCL2 was positively associated with T lymphocytes and macrophages in the transcriptome and single-cell sequencing data. Using multiple immunofluorescence staining, we found that the expression level of XCL2 was upregulated in many cells in pan-cancer samples, and the number of M1 macrophage marker CD68 and INOS-positive cells increased. 786O, U251, and MDA-MB-231 cells could recruit more M1 macrophages in vitro after overexpressing XCL2. CONCLUSIONS Our results reveal that XCL2 could act as a vital chemokine in pan-cancer and provide new targets and concepts for cancer treatment.
Collapse
Affiliation(s)
- Wu Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianbao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuqi Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ji Xing
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
16
|
Liu K, Yao Y, Xue S, Zhang M, Li D, Xu T, Zhi F, Liu Y, Ding D. Recent Advances of Tumor Microenvironment-Responsive Nanomedicines-Energized Combined Phototherapy of Cancers. Pharmaceutics 2023; 15:2480. [PMID: 37896240 PMCID: PMC10610502 DOI: 10.3390/pharmaceutics15102480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as a powerful tumor treatment tool due to its advantages including minimal invasiveness, high selectivity and thus dampened side effects. On the other side, the efficacy of PDT is severely frustrated by the limited oxygen level in tumors, thus promoting its combination with other therapies, particularly photothermal therapy (PTT) for bolstered tumor treatment outcomes. Meanwhile, nanomedicines that could respond to various stimuli in the tumor microenvironment (TME) provide tremendous benefits for combined phototherapy with efficient hypoxia relief, tailorable drug release and activation, improved cellular uptake and intratumoral penetration of nanocarriers, etc. In this review, we will introduce the merits of combining PTT with PDT, summarize the recent important progress of combined phototherapies and their combinations with the dominant tumor treatment regimen, chemotherapy based on smart nanomedicines sensitive to various TME stimuli with a focus on their sophisticated designs, and discuss the challenges and future developments of nanomedicine-mediated combined phototherapies.
Collapse
Affiliation(s)
- Kehan Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Yao Yao
- Department of Gerontology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, China;
| | - Shujuan Xue
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Mengyao Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dazhao Li
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Tao Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), D02 NY74 Dublin, Ireland
| | - Feng Zhi
- Department of Neurosurgery, The First People’s Hospital of Changzhou, Changzhou 213003, China; (D.L.); (F.Z.)
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yang Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; (K.L.); (S.X.); (M.Z.); (T.X.)
| |
Collapse
|
17
|
Sun Z, Wen H, Zhang Z, Xu W, Bao M, Mo H, Hua X, Niu J, Song J, Kang M, Wang D, Tang BZ. Acceptor engineering-facilitated versatile AIEgen for mitochondria-targeted multimodal imaging-guided cancer photoimmunotherapy. Biomaterials 2023; 301:122276. [PMID: 37579564 DOI: 10.1016/j.biomaterials.2023.122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Photoimmunotherapy has been acknowledged to be an unprecedented strategy to obtain significantly improved cancer treatment efficacy. In this regard, the exploitation of high-performance multimodal phototheranostic agents is highly desired. Apart from tailoring electron donors, acceptor engineering is gradually rising as a deliberate approach in this field. Herein, we rationally designed a family of aggregation-induced emission (AIE)-active compounds with the same donors but different acceptors based on the acceptor engineering. Through finely adjusting the functional groups on electron acceptors, the electron affinity of electron acceptors and the conformation of the compounds were simultaneously modulated. It was found that one of the molecules (named DCTIC), bearing a moderately electrophilic electron acceptor and the best planarity, exhibited optimal phototheranostic properties in terms of light-harvesting ability, fluorescence emission, reactive oxygen species (ROS) production, and photothermal performance. For the purpose of amplified therapeutic outcomes, DCTIC was fabricated into tumor and mitochondria dual-targeted DCTIC nanoparticles (NPs), which afforded good performance in the fluorescence/photoacoustic/photothermal trimodal imaging-guided photodynamic/photothermal-synergized cancer immunotherapy with the combination of programmed cell death protein-1 (PD-1) antibody. Not only the primary tumors were totally eradicated, but efficient growth inhibition of distant tumors was also realized.
Collapse
Affiliation(s)
- Zhe Sun
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China
| | - Haifei Wen
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weilin Xu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mengni Bao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China
| | - Han Mo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianlou Niu
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325400, China
| | - Jiangping Song
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, 518038, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Miaomiao Kang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, (CUHK-Shenzhen), Guangdong, 518172, China.
| |
Collapse
|
18
|
Wang M, He M, Zhang M, Xue S, Xu T, Zhao Y, Li D, Zhi F, Ding D. Controllable hypoxia-activated chemotherapy as a dual enhancer for synergistic cancer photodynamic immunotherapy. Biomaterials 2023; 301:122257. [PMID: 37531778 DOI: 10.1016/j.biomaterials.2023.122257] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
The efficacy of photodynamic therapy (PDT) is severely limited by the hypoxic tumor microenvironment (TME), while the performance of PDT-aroused antitumor immunity is frustrated by the immunosuppressive TME and deficient immunogenic cell death (ICD) induction. To simultaneously tackle these pivotal problems, we herein create an albumin-based nanoplatform co-delivering IR780, NLG919 dimer and a hypoxia-activated prodrug tirapazamine (TPZ) as the dual enhancer for synergistic cancer therapy. Under NIR irradiation, IR780 generates 1O2 for PDT, which simultaneously cleaves the ROS-sensitive linker for triggered TPZ release, and activates its chemotherapy via exacerbated tumor hypoxia. Meanwhile, firstly found by us, TPZ-mediated chemotherapy boosts PDT-induced tumor ICD to evoke stronger antitumor immunity including the development of tumor-specific cytotoxic T lymphocytes (CTLs). Eventually, enriched intratumoral GSH triggers the activation of NLG919 to mitigate the immunosuppressive TME via specific indoleamine 2,3-dioxygenase 1 (IDO-1) inhibition, consequently promoting the intratumoral infiltration of CTLs and the killing of both primary and distant tumors, while the resultant memory T cells allows nearly 100% suppression of tumor recurrence and metastasis. This nanoplatform sets up an example for dully enhanced photodynamic immunotherapy of breast cancer via hypoxia-activated chemotherapy, and paves a solid way for the treatment of other hypoxic and immunosuppressive malignant tumors.
Collapse
Affiliation(s)
- Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shujuan Xue
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, D02 NY74, Ireland
| | - Yanan Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Dazhao Li
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Feng Zhi
- Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou, 213003, China; Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
19
|
Wang J, Zong D, Dong S, Gao S, Yang Y, Zhang P, Wang X, Yao W, Tian Z. Argon-helium knife cryoablation plus programmed cell death protein 1 inhibitor in the treatment of advanced soft tissue sarcomas: there is no evidence of the synergistic effects of this combination therapy. Front Oncol 2023; 13:1185291. [PMID: 37736543 PMCID: PMC10509548 DOI: 10.3389/fonc.2023.1185291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Background Effective treatment for advanced soft tissue sarcomas (STSs) is necessary for improved outcomes. Previous studies have suggested that cryoablation can have a synergistic effect with programmed cell death protein-1 (PD-1) inhibitor in the treatment of malignancy. This study aimed to clarify the efficacy and safety of argon-helium knife cryoablation in combination with PD-1 inhibitor in the treatment of STSs. Methods Retrospectively collected and analyzed the clinical data of patients with advanced STS who underwent cryoablation and PD-1 inhibitor between March 2018 and December 2021. Results This study included 27 patients with advanced STS. In terms of target lesions treated with cryoablation, 1 patient achieved complete response, 15 patients had partial response (PR), 10 patients had stable disease, and 1 patient had progressive disease. This corresponded to an overall response rate of 59.3% and a disease control rate of 96.3%. In terms of distant target lesions untreated with cryoablation, only two patients had a PR compared to the diameter of the lesion before ablation. The combination therapy was relatively well tolerated. None of the patients experienced treatment-related death or delayed treatment due to adverse events. Conclusion Cryoablation combined with PD-1 inhibitors in the therapy of advanced STS is safe and can effectively shrink the cryoablation-target lesion. However, there is no evidence of the synergistic effects of this combination therapy.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Dengwei Zong
- Department of Interventional, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuping Dong
- Department of Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Shilei Gao
- Department of Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yonghao Yang
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Zhang
- Department of Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xin Wang
- Department of Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Weitao Yao
- Department of Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhichao Tian
- Department of Sarcoma, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Mo R, Dawulieti J, Chi N, Wu Z, Yun Z, Du J, Li X, Liu J, Xie X, Xiao K, Chen F, Shao D, Ma K. Self-polymerized platinum (II)-Polydopamine nanomedicines for photo-chemotherapy of bladder Cancer favoring antitumor immune responses. J Nanobiotechnology 2023; 21:235. [PMID: 37481565 PMCID: PMC10362689 DOI: 10.1186/s12951-023-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023] Open
Abstract
Systemic administration of platinum-based drugs has obvious limitations in the treatment of advanced bladder cancer (BC) owing to lower tumor accumulation and uncontrolled release of chemotherapeutics. There is an urgent need for advanced strategies to overcome the current limitations of platinum-based chemotherapy, to achieve maximal therapeutic outcomes with reduced side effects. In this study, self-polymerized platinum (II)-polydopamine nanocomplexes (PtPDs) were tailored for efficient chemo-photoimmunotherapy of BC. PtPDs with high Pt loading content (11.3%) were degradable under the combination of a reductive tumor microenvironment and near-infrared (NIR) light irradiation, thus controlling the release of Pt ions to achieve efficient chemotherapy. In addition, polydopamine promoted stronger photothermal effects to supplement platinum-based chemotherapy. Consequently, PtPDs provided effective chemo-photothermal therapy of MB49 BC in vitro and in vivo, strengthening the immunogenic cell death (ICD) effect and robust anti-tumoral immunity response. When combined with a PD-1 checkpoint blockade, PtPD-based photochemotherapy evoked systemic immune responses that completely suppressed primary and distant tumor growth without inducing systemic toxicities. Our work provides a highly versatile approach through metal-dopamine self-polymerization for the precise delivery of metal-based chemotherapeutic drugs, and may serve as a promising nanomedicine for efficient and safe platinum-based chemotherapy for BC.
Collapse
Affiliation(s)
- Ren Mo
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China.
| | - Jianati Dawulieti
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Ning Chi
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Ziping Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Zhizhong Yun
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Jianjun Du
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Xinhua Li
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Junfeng Liu
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kai Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Fangman Chen
- Guangdong Provincial Key Laboratory of Biomedical Engineering Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Dan Shao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kewei Ma
- Department of Urology, Inner Mongolia people's Hospital, Inner Mongolia Urological Institute, Hohhot, Inner Mongolia, 010017, China.
- Department of Urology, Hohhot First Hospital, Hohhot, Inner Mongolia, 010020, China.
| |
Collapse
|
21
|
Huang PL, Kan HT, Hsu CH, Hsieh HT, Cheng WC, Huang RY, You JJ. A bispecific antibody AP203 targeting PD-L1 and CD137 exerts potent antitumor activity without toxicity. J Transl Med 2023; 21:346. [PMID: 37226226 PMCID: PMC10210478 DOI: 10.1186/s12967-023-04193-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Bispecific antibody has garnered considerable attention in the recent years due to its impressive preliminary efficacy in hematological malignancies. For solid tumors, however, the main hindrance is the suppressive tumor microenvironment, which effectively impedes the activation of infiltrating T cells. Herein, we designed a bispecific antibody AP203 with high binding affinity to PD-L1 and CD137 and assessed its safety and anti-tumor efficacy, as well as explored the mechanism of action. METHODS The optimal antibody binders against PD-L1 and CD137 were screened from the OmniMab phagemid library. The binding affinity of the constructed AP203 were evaluated using enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). T-cell stimulatory capacity was assessed using the allogeneic mixed lymphocyte reaction (MLR), antigen-specific recall response, and coculture with PD-L1-expressing cells. In vivo antitumor efficacy was evaluated using two models of tumor-xenografted humanized mice with profiling of tumor infiltrating lymphocytes (TILs). The possible toxicity of AP203 was examined using in vitro cytokine release assay by human PBMCs. RESULTS AP203, which simultaneously targeted PD-L1 and costimulatory CD137, elicit superior agonistic effects over parental antibodies alone or in combination in terms of T cell activation, enhanced memory recall responses, and overcoming Treg-mediated immunosuppression (P < 0.05). The agonistic activity of AP203 was further demonstrated PD-L1-dependent by coculturing T cells with PD-L1-expressing cells. In vivo animal studies using immunodeficient or immunocompetent mice both showed a dose-related antitumor efficacy superior to parental antibodies in combination (P < 0.05). Correspondingly, AP203 significantly increased tumor infiltrating CD8 + T cells, while decreased CD4 + T cells, as well as Treg cells (P < 0.05), resulting in a dose-dependent increase in the CD8 + /CD4 + ratio. Moreover, either soluble or immobilized AP203 did not induce the production of inflammatory cytokines by human PBMCs. CONCLUSIONS AP203 exerts potent antitumor activity not only by blocking PD-1/PD-L1 inhibitory signaling, but also by activating CD137 costimulatory signaling in effector T cells that consequently counteracts Treg-mediated immunosuppression. Based on promising preclinical results, AP203 should be a suitable candidate for clinical treatment of solid tumors.
Collapse
Affiliation(s)
- Po-Lin Huang
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan.
| | - Hung-Tsai Kan
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Ching-Hsuan Hsu
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Hsin-Ta Hsieh
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan
| | - Wan-Chien Cheng
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Ren-Yeong Huang
- Department of Periodontology, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Jhong-Jhe You
- AP Biosciences, Inc., 17F., No. 3, Yuanqu St., Nangang Dist., Taipei, 115603, Taiwan.
| |
Collapse
|
22
|
Zhou Q, Dutta D, Cao Y, Ge Z. Oxidation-Responsive PolyMOF Nanoparticles for Combination Photodynamic-Immunotherapy with Enhanced STING Activation. ACS NANO 2023; 17:9374-9387. [PMID: 37141569 DOI: 10.1021/acsnano.3c01333] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stimulator of interferon genes (STING) activation by STING agonists has been recognized as one of the potent and promising immunotherapy strategies. However, the immunosuppressive tumor microenvironment always hinders the therapeutic efficacy of cancer immunotherapy. In this report, we present polymeric metal-organic framework (PMOF) nanoparticles (NPs) for the combination of photodynamic therapy (PDT) and enhanced STING activation to improve the immunotherapeutic efficacy. The PMOF NPs with poly(ethylene glycol) (PEG) shells were obtained via coordination between the block copolymer ligand PEG-b-PABDA consisting of 1,4-bezenedicarboxylic acid-bearing polyacrylamide (PABDA), meso-tetra(carboxyphenyl)porphyrin (TCPP), thioketal diacetic acid, and zirconyl chloride. Subsequently, the STING agonist SR-717 was loaded into the porous structure of PMOF to obtain SR@PMOF NPs which show excellent stability under the physiological conditions. After intravenous injection and tumor accumulation, light irradiation on the tumor sites results in efficient singlet oxygen (1O2) production from TCPP and cellular apoptosis to release fragmented DNA and tumor-associated antigens. Simultaneously, thioketal bonds can be broken by 1O2 to destroy the PMOF structure and rapidly release SR717. SR-717 and PDT synergistically enhance the antitumor immunity via combination photodynamic-immunotherapy due to reversal of the immunosuppressive tumor microenvironment and enhanced endogenous STING activation, which can suppress the growth of the primary and distant tumors efficiently. The oxidation-responsive SR@PMOF NPs represent a promising delivery system of STING agonists and efficient PDT NPs for simultaneous suppression of the primary and metastatic tumors via the rational combination of PDT and enhanced STING activation.
Collapse
Affiliation(s)
- Qinghao Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Debabrata Dutta
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yufei Cao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhishen Ge
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
23
|
Guo Z, Zhu AT, Fang RH, Zhang L. Recent Developments in Nanoparticle-Based Photo-Immunotherapy for Cancer Treatment. SMALL METHODS 2023; 7:e2300252. [PMID: 36960932 PMCID: PMC10192221 DOI: 10.1002/smtd.202300252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Indexed: 05/17/2023]
Abstract
Phototherapy is an emerging approach for cancer treatment that is effective at controlling the growth of primary tumors. In the presence of light irradiation, photothermal and photodynamic agents that are delivered to tumor sites can induce local hyperthermia and the production of reactive oxygen species, respectively, that directly eradicate cancer cells. Nanoparticles, characterized by their small size and tunable physiochemical properties, have been widely utilized as carriers for phototherapeutic agents to improve their biocompatibility and tumor-targeted delivery. Nanocarriers can also be used to implement various codelivery strategies for further enhancing phototherapeutic efficiency. More recently, there has been considerable interest in augmenting the immunological effects of nanoparticle-based phototherapies, which can yield durable and systemic antitumor responses. This review provides an overview of recent developments in using nanoparticle technology to achieve photo-immunotherapy.
Collapse
Affiliation(s)
- Zhongyuan Guo
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Audrey T Zhu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
24
|
Shi F, Huang X, Hong Z, Lu N, Huang X, Liu L, Liang T, Bai X. Improvement strategy for immune checkpoint blockade: A focus on the combination with immunogenic cell death inducers. Cancer Lett 2023; 562:216167. [PMID: 37031916 DOI: 10.1016/j.canlet.2023.216167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Cancer immunotherapies have yielded promising outcomes in various malignant tumors by blocking specific immune checkpoint molecules, such as programmed cell death 1 and cytotoxic T lymphocyte antigen 4. However, only a few patients respond to immune checkpoint blockade therapy because of the poor immunogenicity of tumor cells and immune-suppressive tumor microenvironment. Accumulating evidence suggests that chemotherapeutic agents, including oxaliplatin and doxorubicin, not only mediate direct cytotoxicity in tumor cells but also induce immunogenic cancer cell death to stimulate a powerful anti-cancer immune response in the tumor microenvironment. In this review, we summarize the recent advances in cancer combination therapy based on immune checkpoint inhibitors plus immunogenic cell death inducers. Despite some clinical failures and challenges, immunogenic cell death inducers have displayed great potential when combined with immune checkpoint inhibitors for anti-cancer treatment in both preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Fukang Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Na Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xin Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Lingyue Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
25
|
He M, Wang M, Xu T, Zhang M, Dai H, Wang C, Ding D, Zhong Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J Control Release 2023; 356:623-648. [PMID: 36868519 DOI: 10.1016/j.jconrel.2023.02.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules that can arouse immune system. In recent decades, ROS has emerged as a unique therapeutic strategy for malignant tumors as (i) it can not only directly reduce tumor burden but also trigger immune responses by inducing immunogenic cell death (ICD); and (ii) it can be facilely generated and modulated by radiotherapy, photodynamic therapy, sonodynamic therapy and chemodynamic therapy. The anti-tumor immune responses are, however, mostly downplayed by the immunosuppressive signals and dysfunction of effector immune cells within the tumor microenvironment (TME). The past years have seen fierce developments of various strategies to power ROS-based cancer immunotherapy by e.g. combining with immune checkpoints inhibitors, tumor vaccines, and/or immunoadjuvants, which have shown to potently inhibit primary tumors, metastatic tumors, and tumor relapse with limited immune-related adverse events (irAEs). In this review, we introduce the concept of ROS-powered cancer immunotherapy, highlight the innovative strategies to boost ROS-based cancer immunotherapy, and discuss the challenges in terms of clinical translation and future perspectives.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
26
|
Yadav D, Puranik N, Meshram A, Chavda V, Lee PCW, Jin JO. How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:35-48. [PMID: 36636642 PMCID: PMC9830082 DOI: 10.2147/ijn.s388349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Cancer is a broad term for a group of diseases involving uncontrolled cell growth and proliferation. There is no cure for cancer despite recent significant improvements in screening, treatment, and prevention approaches. Among the available treatments, immunotherapy has been successful in targeting and killing cancer cells by stimulating or enhancing the body's immune system. Antibody-based immunotherapeutic agents that block immune checkpoint proteins expressed by cancer cells have shown promising results. The rapid development of nanotechnology has contributed to improving the effectiveness and reducing the adverse effects of these anti-cancer immunotherapeutic agents. Recently, engineered nanomaterials have been the focus of many state-of-The-art approaches toward effective cancer treatment. In this review, the contribution of various nanomaterials such as polymeric nanoparticles, dendrimers, microspheres, and carbon nanomaterials in improving the efficiency of anti-cancer immunotherapy is discussed as well as nanostructures applied to combination cancer immunotherapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Anju Meshram
- Department of Biotechnology, Kalinga University, Naya Raipur, Chhattisgarh, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Peter Chang-Whan Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea,Correspondence: Peter Chang-Whan Lee, Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea, Email
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea,Jun-O Jin, Department of Microbiology, University of Ulsan College of Medicine, Seoul, 05505, South Korea, Email
| |
Collapse
|
27
|
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ, Yuan CS. Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023. [PMID: 37033201 DOI: 10.1016/j.cej.2022.134869] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Sheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujiang Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
28
|
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ, Yuan CS. Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 451:138781. [PMID: 37033201 PMCID: PMC10079280 DOI: 10.1016/j.cej.2022.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Sheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujiang Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
29
|
He DN, Wang N, Wen XL, Li XH, Guo Y, Fu SH, Xiong FF, Wu ZY, Zhu X, Gao XL, Wang ZZ, Wang HJ. Multi-omics analysis reveals a molecular landscape of the early recurrence and early metastasis in pan-cancer. Front Genet 2023; 14:1061364. [PMID: 37152984 PMCID: PMC10157260 DOI: 10.3389/fgene.2023.1061364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cancer remains a formidable challenge in medicine due to its propensity for recurrence and metastasis, which can result in unfavorable treatment outcomes. This challenge is particularly acute for early-stage patients, who may experience recurrence and metastasis without timely detection. Here, we first analyzed the differences in clinical characteristics among the primary tumor, recurrent tumor, and metastatic tumor in different stages of cancer, which may be caused by the molecular level. Moreover, the importance of predicting early cancer recurrence and metastasis is emphasized by survival analyses. Next, we used a multi-omics approach to identify key molecular changes associated with early cancer recurrence and metastasis and discovered that early metastasis in cancer demonstrated a high degree of genomic and cellular heterogeneity. We performed statistical comparisons for each level of omics data including gene expression, mutation, copy number variation, immune cell infiltration, and cell status. Then, various analytical techniques, such as proportional hazard model and Fisher's exact test, were used to identify specific genes or immune characteristics associated with early cancer recurrence and metastasis. For example, we observed that the overexpression of BPIFB1 and high initial B-cell infiltration levels are linked to early cancer recurrence, while the overexpression or amplification of ANKRD22 and LIPM, mutation of IGHA1 and MUC16, high fibroblast infiltration level, M1 polarization of macrophages, cellular status of DNA repair are all linked to early cancer metastasis. These findings have led us to construct classifiers, and the average area under the curve (AUC) of these classifiers was greater than 0.75 in The Cancer Genome Atlas (TCGA) cancer patients, confirming that the features we identified could be biomarkers for predicting recurrence and metastasis of early cancer. Finally, we identified specific early sensitive targets for targeted therapy and immune checkpoint inhibitor therapy. Once the biomarkers we identified changed, treatment-sensitive targets can be treated accordingly. Our study has comprehensively characterized the multi-omics characteristics and identified a panel of biomarkers of early cancer recurrence and metastasis. Overall, it provides a valuable resource for cancer recurrence and metastasis research and improves our understanding of the underlying mechanisms driving early cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Dan-ni He
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Na Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xiao-Ling Wen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xu-Hua Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Yu Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Shu-heng Fu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Fei-fan Xiong
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Zhe-yu Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xu Zhu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
| | - Xiao-ling Gao
- The Medical Laboratory Center, Hainan General Hospital, Haikou, China
- *Correspondence: Hong-jiu Wang, ; Zhen-zhen Wang, ; Xiao-ling Gao,
| | - Zhen-zhen Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- *Correspondence: Hong-jiu Wang, ; Zhen-zhen Wang, ; Xiao-ling Gao,
| | - Hong-jiu Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- College of Biomedical Information and Engineering, Hainan Medical University, Haikou, China
- *Correspondence: Hong-jiu Wang, ; Zhen-zhen Wang, ; Xiao-ling Gao,
| |
Collapse
|
30
|
Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharm Sin B 2022; 12:4327-4347. [PMID: 36561994 PMCID: PMC9764075 DOI: 10.1016/j.apsb.2022.11.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer immunotherapy has significantly flourished and revolutionized the limited conventional tumor therapies, on account of its good safety and long-term memory ability. Discouragingly, low patient response rates and potential immune-related side effects make it rather challenging to literally bring immunotherapy from bench to bedside. However, it has become evident that, although the immunosuppressive tumor microenvironment (TME) plays a pivotal role in facilitating tumor progression and metastasis, it also provides various potential targets for remodeling the immunosuppressive TME, which can consequently bolster the effectiveness of antitumor response and tumor suppression. Additionally, the particular characteristics of TME, in turn, can be exploited as avenues for designing diverse precise targeting nanomedicines. In general, it is of urgent necessity to deliver nanomedicines for remodeling the immunosuppressive TME, thus improving the therapeutic outcomes and clinical translation prospects of immunotherapy. Herein, we will illustrate several formation mechanisms of immunosuppressive TME. More importantly, a variety of strategies concerning remodeling immunosuppressive TME and strengthening patients' immune systems, will be reviewed. Ultimately, we will discuss the existing obstacles and future perspectives in the development of antitumor immunotherapy. Hopefully, the thriving bloom of immunotherapy will bring vibrancy to further exploration of comprehensive cancer treatment.
Collapse
|
31
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
32
|
Shen Y, Meng X, Wang L, Wang X, Chang H. Advanced primary vaginal squamous cell carcinoma: A case report and literature review. Front Immunol 2022; 13:1007462. [PMID: 36483563 PMCID: PMC9722770 DOI: 10.3389/fimmu.2022.1007462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Vaginal carcinoma is a gynecological malignancy with low incidence, and there are few relevant and specific guidelines for vaginal cancer in our country and abroad. Here, we report the case who was diagnosed with advanced, primary vaginal squamous cell carcinoma and underwent integrated treatment successfully. Case introduction A 64-year-old Chinese woman underwent subtotal hysterectomy for uterine fibroids in 1998 and laparoscopic extensive residual cervical resection, bilateral ovarian salpingectomy, and pelvic lymph node dissection for residual cervical adenocarcinoma (stage IB1) in the First Affiliated Hospital of China Medical University in 2018. There was no postoperative review. The patient experienced vaginal discharge in March 2020, and vaginal bleeding occurred in July 2020. Our patient was diagnosed with stage IVA vaginal squamous cell carcinoma, based on a gynecological examination, colposcopy biopsy with histopathological examination, computed tomography scan, and tumor marker levels by two professors. After three phases of treatment (sequential treatment with chemotherapy plus radiotherapy, chemotherapy combined with immune checkpoint inhibitors, and immune checkpoint inhibitors combined with tyrosine kinase inhibitors therapy), her condition improved. Her current state is generally good, and she has achieved complete remission. Conclusion We report a rare case of a patient with primary advanced vaginal carcinoma combined with cervical adenocarcinoma. The patient was treated for approximately 2 years, and her personalized treatment showed promising results. We will continue to follow up with the patient and monitor her response to the current treatment process.
Collapse
|
33
|
Zhang X, Lu X, Yu Y, Tan K, Cui H. Changes of IL-6 And IFN-γ before and after the adverse events related to immune checkpoint inhibitors: A retrospective study. Medicine (Baltimore) 2022; 101:e31761. [PMID: 36401365 PMCID: PMC9678612 DOI: 10.1097/md.0000000000031761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed the status of tumor immunotherapy. ICIs-related adverse events (irAEs) have the high incidence and are difficult to predict and prevent. Researches have suggested that changes of cytokines were associated with irAEs. This study focused on the changes of interleukin-6 (IL-6) and interferon-γ in patients before and after irAEs and trying to find the biomarkers of irAEs. Collect basic data of patients who were treated with ICIs in China-Japan Friendship Hospital from January 2017 to August 2021 and had irAEs. Make statistics on IL-6 and INF-γ in the blood before and after irAEs. A total of 10 patients were enrolled, including 7 males and 3 females. According to statistical analysis, the IL-6 concentration level after irAEs was significantly higher than before, and the difference was statistically significant (P = .023); the interferon-γ concentration level was not changed significantly from before, the difference was not statistically significant (P = .853). The elevation of IL-6 was associated with the occurrence of adverse reactions in ICIs.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xingyu Lu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yixuan Yu
- Beijing University of Chinese Medicine, Beijing, China
| | - Kexin Tan
- Beijing University of Chinese Medicine, Beijing, China
| | - Huijuan Cui
- Integrative Oncology Department, China-Japan Friendship Hospital, Beijng, China
- *Correspondence: Huijuan Cui, Integrative Oncology Department, China-Japan Friendship Hospital, Beijing 100029, China (e-mail: )
| |
Collapse
|
34
|
Liu Z, Xiang Y, Zheng Y, Kang X. Advancing immune checkpoint blockade in colorectal cancer therapy with nanotechnology. Front Immunol 2022; 13:1027124. [PMID: 36341334 PMCID: PMC9630919 DOI: 10.3389/fimmu.2022.1027124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 09/07/2024] Open
Abstract
Immune checkpoint blockade (ICB) has gained unparalleled success in the treatment of colorectal cancer (CRC). However, undesired side effects, unsatisfactory response rates, tumor metastasis, and drug resistance still hinder the further application of ICB therapy against CRC. Advancing ICB with nanotechnology can be game-changing. With the development of immuno-oncology and nanomaterials, various nanoplatforms have been fabricated to enhance the efficacy of ICB in CRC treatment. Herein, this review systematically summarizes these recent nano-strategies according to their mechanisms. Despite their diverse and complex designs, these nanoplatforms have four main mechanisms in enhancing ICB: 1) targeting immune checkpoint inhibitors (ICIs) to tumor foci, 2) increasing tumor immunogenicity, 3) remodeling tumor microenvironment, and 4) pre-sensitizing immune systems. Importantly, advantages of nanotechnology in CRC, such as innovating the mode-of-actions of ICB, modulating intestinal microbiome, and integrating the whole process of antigen presentation, are highlighted in this review. In general, this review describes the latest applications of nanotechnology for CRC immunotherapy, and may shed light on the future design of ICB platforms.
Collapse
Affiliation(s)
- Zefan Liu
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yucheng Xiang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| | - Yaxian Zheng
- Department of Pharmacy, Third People’s Hospital of Chengdu, Chengdu, China
| | - Xin Kang
- Department of General Surgery, First People's Hospital of Shuangliu District, Chengdu, China
| |
Collapse
|
35
|
Taheri-Ledari R, Ahghari MR, Ansari F, Forouzandeh-Malati M, Mirmohammadi SS, Zarei-Shokat S, Ramezanpour S, Zhang W, Tian Y, Maleki A. Synergies in antimicrobial treatment by a levofloxacin-loaded halloysite and gold nanoparticles with a conjugation to a cell-penetrating peptide. NANOSCALE ADVANCES 2022; 4:4418-4433. [PMID: 36321152 PMCID: PMC9552876 DOI: 10.1039/d2na00431c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Herein, a novel designed antimicrobial therapeutic drug delivery system is presented, in which halloysite nanotubes (HNTs) encapsulate a determined dosage of levofloxacin (lvx). Moreover, gold nanoparticles (AuNPs) have been embedded into the structure for plasmonic heating under irradiation of the green LED light (7 W, 526 nm). It was revealed that the plasmonic heating of the AuNPs leads to a controlled trend in the lvx release process. Also, a synergistic effect on the antimicrobial activity of the prepared therapeutic system has been observed through photothermal heating of the structure. To enhance the cell adhesion, a cell-penetrating peptide sequence (CPP) is conjugated to the surfaces. This CPP has led to quick co-localization of the prepared nano-cargo (denoted as lvx@HNT/Au-CPP) with the bacterial living cells and further attachment (confirmed by confocal microscopy). Concisely, the structure of the designed nano-cargo has been investigated by various methods, and the in vitro cellular experiments (zone of inhibition and colony-counting) have disclosed that the antimicrobial activity of the lvx is significantly enhanced through incorporation into the HNT/Au-CPP delivery system (drug content: 16 wt%), in comparison with the individual lvx with the same dosage. Hence, it can be stated that the bacterial resistance against antibiotics and the toxic effects of the chemical medications are reduced through the application of the presented strategy.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Fatemeh Ansari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohadeseh Forouzandeh-Malati
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology P.O. Box 15875-4416 Tehran Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P.R. China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No.14, 3rd section of South Renmin Road Chengdu 610041 P.R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| |
Collapse
|
36
|
Ding YN, Xue M, Tang QS, Wang LJ, Ding HY, Li H, Gao CC, Yu WP. Immunotherapy-based novel nanoparticles in the treatment of gastrointestinal cancer: Trends and challenges. World J Gastroenterol 2022; 28:5403-5419. [PMID: 36312831 PMCID: PMC9611702 DOI: 10.3748/wjg.v28.i37.5403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/27/2022] [Accepted: 09/15/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal cancer (GIC) is the most common cancer with a poor prognosis. Currently, surgery is the main treatment for GIC. However, the high rate of postoperative recurrence leads to a low five-year survival rate. In recent years, immunotherapy has received much attention. As the only immunotherapy drugs approved by the Food and Drug Administration (FDA), immune checkpoint blockade (ICB) drugs have great potential in cancer therapy. Nevertheless, the efficacy of ICB treatment is greatly limited by the low immunogenicity and immunosuppressive microenvironment of GIC. Therefore, the targets of immunotherapy have expanded from ICB to increasing tumor immunogenicity, increasing the recruitment and maturation of immune cells and reducing the proportion of inhibitory immune cells, such as M2-like macrophages, regulatory T cells and myeloid-derived suppressor cells. Moreover, with the development of nanotechnology, a variety of nanoparticles have been approved by the FDA for clinical therapy, so novel nanodrug delivery systems have become a research focus for anticancer therapy. In this review, we summarize recent advances in the application of immunotherapy-based nanoparticles in GICs, such as gastric cancer, hepatocellular carcinoma, colorectal cancer and pancreatic cancer, and described the existing challenges and future trends.
Collapse
Affiliation(s)
- Yi-Nan Ding
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Ming Xue
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Qiu-Sha Tang
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Li-Jun Wang
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Hui-Yan Ding
- Department of Pathophysiology, College of Medicine, Southeast University, Nanjing 210000, Jiangsu Province, China
| | - Han Li
- Department of Tuberculosis, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Cheng-Cheng Gao
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Ping Yu
- Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
37
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
38
|
Bimetallic oxide nanozyme-mediated depletion of glutathione to boost oxidative stress for combined nanocatalytic therapy. J Colloid Interface Sci 2022; 623:787-798. [DOI: 10.1016/j.jcis.2022.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022]
|
39
|
Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J Control Release 2022; 350:761-776. [PMID: 36063961 DOI: 10.1016/j.jconrel.2022.08.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/21/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022]
Abstract
Arsenotherapy has been clinically exploited to treat a few types of solid tumors despite of acute promyelocytic leukemia using arsenic trioxide (ATO), however, its efficacy is hampered by inadequate delivery of ATO into solid tumors owing to the absence of efficient and biodegradable vehicles. Precise spatiotemporal control of subcellular ATO delivery for potent arsenotherapy thus remains challengeable. Herein, we report the self-activated arsenic manganite nanohybrids for high-contrast magnetic resonance imaging (MRI) and arsenotherapeutic synergy on triple-negative breast cancer (TNBC). The nanohybrids, composed of arsenic‑manganese-co-biomineralized nanoparticles inside albumin nanocages (As/Mn-NHs), switch signal-silent background to high proton relaxivity, and simultaneously afford remarkable subcellular ATO level in acidic and glutathione environments, together with reduced ATO resistance against tumor cells. Then, the nanohybrids enable in vivo high-contrast T1-weighted MRI signals in various tumor models for delineating tumor boundary, and simultaneously yield efficient arsenotherapeutic efficacy through multiple apoptotic pathways for potently suppressing subcutaneous and orthotopic breast models. As/Mn-NHs exhibited the maximum tumor-to-normal tissue (T/N) contrast ratio of 205% and tumor growth inhibition rate of 88% at subcutaneous 4T1 tumors. These nanohybrids further yield preferable synergistic antitumor efficacy against both primary and metastatic breast tumors upon combination with concurrent thermotherapy. More importantly, As/Mn-NHs considerably induce immunogenic cell death (ICD) effect to activate the immunogenically "cold" tumor microenvironment into "hot" one, thus synergizing with immune checkpoint blockade to yield the strongest tumor inhibition and negligible metastatic foci in the lung. Our study offers the insight into clinically potential arsenotherapeutic nanomedicine for potent therapy against solid tumors.
Collapse
|
40
|
Chen X, Gao M, An S, Zhao L, Han W, Wan W, Chen J, Ma S, Cai W, Cao Y, Ding D, Yang YY, Cheng L, Zheng Y. Enhancing adoptive T cell therapy for solid tumor with cell-surface anchored immune checkpoint inhibitor nanogels. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102591. [PMID: 35907618 DOI: 10.1016/j.nano.2022.102591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The efficacy of Adoptive Cell Therapy (ACT) for solid tumor is still mediocre. This is mainly because tumor cells can hijack ACT T cells' immune checkpoint pathways to exert immunosuppression in the tumor microenvironment. Immune Checkpoint Inhibitors such as anti-PD-1 (aPD1) can counter the immunosuppression, but the synergizing effects of aPD1 to ACT was still not satisfactory. Here we demonstrate an approach to safely anchor aPD1-formed nanogels onto T cell surface via bio-orthogonal click chemistry before adoptive transfer. The spatial-temporal co-existence of aPD1 with ACT T cells and the responsive drug release significantly improved the treatment outcome of ACT in murine solid tumor model. The average tumor weight of the group treated by cell-surface anchored aPD1 was only 18 % of the group treated by equivalent dose of free aPD1 and T cells. The technology can be broadly applicable in ACTs employing natural or Chimeric Antigen Receptor (CAR) T cells.
Collapse
Affiliation(s)
- Xingye Chen
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Mengqian Gao
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Shan An
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Lei Zhao
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wenqing Han
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wenjun Wan
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Jin Chen
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Siqi Ma
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wenhua Cai
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Yanni Cao
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Yi Yan Yang
- Agency for Science Technology and Research, Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Lifang Cheng
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China.
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China.
| |
Collapse
|
41
|
Tian Z, Yao W. PD-1/L1 inhibitor plus chemotherapy in the treatment of sarcomas. Front Immunol 2022; 13:898255. [PMID: 36072581 PMCID: PMC9441887 DOI: 10.3389/fimmu.2022.898255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
There is an urgent clinical need for new therapeutic regimens for the effective treatment of advanced sarcomas. Accumulating evidence suggests that programmed death receptor-1/programmed death protein ligand-1 (PD-1/L1) inhibitors have synergistic effects with chemotherapy and have been approved for treatment of lung cancer, gastroesophageal cancer, and breast cancer. In this review, we reviewed the synergistic mechanism of PD-1/L1 inhibitors plus chemotherapy in the treatment of cancers, and the application of this combined regimen in several cancers, followed by a summary of the current evidence on the application of this combined regimen in the treatment of sarcomas as well as the main clinical trials currently underway. Based on the findings of this review, we believe that this combined approach will play an important role in the treatment of some subtypes of sarcomas in the future.
Collapse
|
42
|
Wang R, Liu H, He P, An D, Guo X, Zhang X, Feng M. Inhibition of PCSK9 enhances the antitumor effect of PD-1 inhibitor in colorectal cancer by promoting the infiltration of CD8+ T cells and the exclusion of Treg cells. Front Immunol 2022; 13:947756. [PMID: 36003387 PMCID: PMC9393481 DOI: 10.3389/fimmu.2022.947756] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy especially immune checkpoint inhibitors (ICIs) has brought favorable clinical results for numerous cancer patients. However, the efficacy of ICIs in colorectal cancer (CRC) is still unsatisfactory due to the poor median progression-free survival and overall survival. Here, based on the CRC models, we tried to elucidate novel relapse mechanisms during anti-PD-1 therapy. We found that PD-1 blockade elicited a mild antitumor effect in these tumor models with both increased CD8+ T cells and Treg cells. Gene mapping analysis indicated that proprotein convertase subtilisin/kexin type 9 (PCSK9), low-density lipoprotein receptor, transforming growth factor-β (TGF-β), and CD36 were unexpectedly upregulated during PD-1 blockade. To investigate the critical role of these proteins especially PCSK9 in tumor growth, anti-PCSK9 antibody in combination with anti-PD-1 antibody was employed to block PCSK9 and PD-1 simultaneously in CRC. Data showed that neutralizing PCSK9 during anti-PD-1 therapy elicited a synergetic antitumor effect with increased CD8+ T-cell infiltration and inflammatory cytokine releases. Moreover, the proportion of Treg cells was significantly reduced by co-inhibiting PCSK9 and PD-1. Overall, inhibiting PCSK9 can further enhance the antitumor effect of anti-PD-1 therapy in CRC, indicating that targeting PCSK9 could be a promising approach to potentiate ICI efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuyao Zhang
- *Correspondence: Xuyao Zhang, ; Meiqing Feng,
| | | |
Collapse
|
43
|
Wang F, Wu X. Cardiovascular toxicities associated with immune checkpoint inhibitors: An updated comprehensive disproportionality analysis of the FDA adverse event reporting system. J Clin Pharm Ther 2022; 47:1576-1584. [PMID: 35726369 DOI: 10.1111/jcpt.13707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Immune checkpoint inhibitors (ICIs) have significantly improved clinical outcomes for a wide range of cancers but can also lead to cardiovascular toxicities. This study was to scientifically and systematically explore the association between cardiovascular toxicities and immune checkpoint inhibitors (ICIs) and also to characterize the main features of ICI-related cardiovascular toxicities. METHODS From January 2012 to December 2020, data in the Food and Drug Administration Adverse Event Reporting System (FAERS) database were retrieved for disproportionality analysis. The definition of adverse events (AEs) relied on the Medical Dictionary for Regulatory Activities (MedDRA). We used the reporting odds ratio (ROR) with 95% confidence intervals (CIs) to evaluate the association between ICIs and cardiovascular AEs. Clinical characteristics of patients with ICI-associated cardiovascular toxicities were collected, and the time to onset following different ICI regimens was further investigated. RESULTS AND DISCUSSION We identified a total of 13,713 ICI-associated cardiovascular toxicities which appeared to influence more men (56.90%) than women (36.79%), with a median age of 67 (interquartile range [IQR] 58-74) years. ICI-associated cardiovascular AEs were most frequently reported in lung, pleura, thymus and heart cancer patients (34.49%). Compared with the full database, ICI therapies were detected with pharmacovigilance of myocardial disorders (ROR: 2.64; 95% CI: 2.55-2.75) and pericardial disorders (ROR: 4.51; 95% CI: 4.30-4.74). Concerning myocardial and pericardial disorders, a significant increased ROR was found for all anti-PD-1 and anti-PD-L1 monotherapies, with the exception of anti-CTLA-4 monotherapies. Regarding cardiac arrhythmias, only tremelimumab among ICI monotherapies was associated with an increased ROR (1.92, 1.09-4.72; 4 cases). Compared with ICI monotherapy, ICI combination therapy detected an increase in cardiovascular toxicity spectrum, but did not prolong the onset time. WHAT IS NEW AND CONCLUSION We observed that the spectrum and risk of ICI-associated cardiovascular AEs differed between therapeutic regimens. The poor clinical outcome and early onset of these events should attract clinical attention.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Pharmacy, Hefei BOE Hospital, Hefei, People's Republic of China
| | - Xinan Wu
- Department of Pharmacy, Hefei BOE Hospital, Hefei, People's Republic of China
| |
Collapse
|
44
|
Yang H, Wang K, Li Y, Li S, Yuan L, Ge H. Local Ablative Treatment Improves Survival in ESCC Patients With Specific Metastases, 2010–2016: A Population-Based SEER Analysis. Front Oncol 2022; 12:783752. [PMID: 35785182 PMCID: PMC9243329 DOI: 10.3389/fonc.2022.783752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background We aimed to explore the role of local ablative treatment (LAT) in metastatic esophageal squamous cell cancer (ESCC) patients who received chemotherapy and identify patients who will most likely benefit. Methods We analyzed data of metastatic ESCC patients from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2016. The chi-square test was used to evaluate the unadjusted clinicopathological categorical variables between the two groups. Univariate and multivariate Cox regression analyses were conducted to identify independent prognostic factors of overall survival. Propensity score matching (PSM) was used to adjust the differences between the two groups. Results Overall, 720 metastatic ESCC patients treated with chemotherapy were analyzed in this study; 63.2% of patients (n = 455) received LAT, including radiotherapy (n = 444), primary site surgery (n = 12), or lymph node dissection (n = 27). Gender (HR = 1.220, 95% CI: 1.024–1.453, p = 0.026), bone metastases (HR = 1.559, 95% CI: 1.292–1.882, p < 0.001), and liver metastases (HR = 1.457, 95% CI: 1.237–1.716, p < 0.001) were independent prognostic factors in the entire population. However, LAT was not an independent prognostic factor. Further subgroup analyses showed that LAT improved OS from 8.0 months to 10.0 months in patients with metastases other than bone/liver (HR = 0.759, 95% CI: 0.600–0.961, p = 0.022). LAT was not a prognostic factor in patients with bone/liver metastases (HR = 0.995, 95% CI: 0.799–1.239, p = 0.961). After PSM, the median OS was 8.0 months (95% CI: 7.2–8.8 months) and patients who received LAT had a better OS than patients without LAT (HR = 0.796, 95% CI: 0.653–0.968, p = 0.023). Patients with metastases other than bone/liver could benefit from LAT compared with those with bone/liver metastases. Conclusions Our study indicated that metastatic ESCC patients with metastases other than bone/liver could derive additional benefit from LAT with systemic chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Ling Yuan
- *Correspondence: Ling Yuan, ; Hong Ge,
| | - Hong Ge
- *Correspondence: Ling Yuan, ; Hong Ge,
| |
Collapse
|
45
|
Wang B, Cai H, Waterhouse GIN, Qu X, Yang B, Lu S. Carbon Dots in Bioimaging, Biosensing and Therapeutics: A Comprehensive Review. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Boyang Wang
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | - Huijuan Cai
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| | | | - Xiaoli Qu
- Erythrocyte Biology Laboratory School of Life Sciences Zhengzhou University Zhengzhou 450001 China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Siyu Lu
- Green Catalysis Center College of Chemistry Zhengzhou University Zhengzhou 450000 China
| |
Collapse
|
46
|
Ding P, Ma Z, Liu D, Pan M, Li H, Feng Y, Zhang Y, Shao C, Jiang M, Lu D, Han J, Wang J, Yan X. Lysine Acetylation/Deacetylation Modification of Immune-Related Molecules in Cancer Immunotherapy. Front Immunol 2022; 13:865975. [PMID: 35585975 PMCID: PMC9108232 DOI: 10.3389/fimmu.2022.865975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
As major post-translational modifications (PTMs), acetylation and deacetylation are significant factors in signal transmission and cellular metabolism, and are modulated by a dynamic process via two pivotal categories of enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs). In previous studies, dysregulation of lysine acetylation and deacetylation has been reported to be associated with the genesis and development of malignancy. Scientists have recently explored acetylation/deacetylation patterns and prospective cancer therapy techniques, and the FDA has approved four HDAC inhibitors (HDACi) to be used in clinical treatment. In the present review, the most recent developments in the area of lysine acetylation/deacetylation alteration in cancer immunotherapy were investigated. Firstly, a brief explanation of the acetylation/deacetylation process and relevant indispensable enzymes that participate therein is provided. Subsequently, a multitude of specific immune-related molecules involved in the lysine acetylation/deacetylation process are listed in the context of cancer, in addition to several therapeutic strategies associated with lysine acetylation/deacetylation modification in cancer immunotherapy. Finally, a number of prospective research fields related to cancer immunotherapy concepts are offered with detailed analysis. Overall, the present review may provide a reference for researchers in the relevant field of study, with the aim of being instructive and meaningful to further research as well as the selection of potential targets and effective measures for future cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Changjian Shao
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Di Lu
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Jinliang Wang
- Department of Medical Oncology, Senior Department of Oncology, Chinese People'’s Liberation Army of China (PLA) General Hospital, The Fifth Medical Center, Beijing, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an, China
- *Correspondence: Jing Han, ; Jinliang Wang, ; Xiaolong Yan,
| |
Collapse
|
47
|
Li ZY, Shen QH, Mao ZW, Tan CP. A Rising Interest in the Development of Metal Complexes in Cancer Immunotherapy. Chem Asian J 2022; 17:e202200270. [PMID: 35419865 DOI: 10.1002/asia.202200270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Metal complexes have shown great potential in cancer immunotherapy. This review briefly introduces the basic concepts and strategies of cancer immunotherapy and summarizes the recent discoveries on the immune effects of traditional platinum-based anticancer compounds. In addition, we also outline the latest research progresses on metal complexes for cancer immunotherapy focusing on platinum, ruthenium, iridium, rhenium and copper complexes. Finally, the research perspectives and unsolved problems on the applications of metallo-anticancer agents in cancer immunotherapy are purposed.
Collapse
Affiliation(s)
- Zhi-Yuan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Qing-Hua Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
48
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [PMID: 35074555 DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
49
|
Yang S, Wang Y, Tan J, Teo JY, Tan KH, Yang YY. Antimicrobial Polypeptides Capable of Membrane Translocation for Treatment of MRSA Wound Infection In Vivo. Adv Healthc Mater 2022; 11:e2101770. [PMID: 34846807 DOI: 10.1002/adhm.202101770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/06/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistant infections are plaguing the healthcare sector over the past few decades with limited treatment options. To overcome this problem, the authors synthesize a series of novel guanidinium-functionalized polypeptides. Specifically, poly(l-lysine) (PLL) with different lengths is first synthesized by ring-opening polymerization of Nε -benzyloxycarbonyl-l-lysine-N-carboxyanhydride (Lys(Z)-NCA) followed by functionalization with a guanidinium-functional group to obtain guanidinium-functionalized PLL (PLL-Gua). To study the effect of hydrophobicity on antimicrobial activity, relatively more hydrophobic leucine-NCA monomer or hydrophobic vitamin E moiety is introduced to PLL-Gua. These polypeptides are characterized for antimicrobial activity against a panel of microbes including multidrug-resistant bacteria, and hemolytic activity. Among all the polypeptides, PLL22 -Gua is most effective against bacteria and yeast. Particularly, excellent bactericidal activity is observed against Staphylococcus aureus and MRSA. PLL22 -Gua kills bacteria mainly by membrane translocation. In addition, PLL22 -Gua kills MRSA with low resistance frequency (<3.3 × 10-8 ). In an MRSA-caused wound infection mouse model, two-day treatment (twice daily) with 10, 20, or 40 mg per kg of PLL22 -Gua shows up to 99.5% bacterial removal. Moreover, no acute dermal toxicity is observed even at a dose of 200 mg per kg. These promising results show the excellent potential of PLL22 -Gua as an antimicrobial agent against multidrug-resistant infection in vivo.
Collapse
Affiliation(s)
- Shengcai Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Jason Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Jye Yng Teo
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Ko Hui Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way, The Nanos Singapore 138669 Singapore
| |
Collapse
|
50
|
Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022; 86:909-922. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Traditional approaches, such as surgery, chemotherapy, and radiotherapy have been the main cancer therapeutic modalities in recent years. Cancer immunotherapy is a novel therapeutic modality that potentiates the immune responses of patients against malignancy. Immune checkpoint proteins expressed on T cells or tumor cells serve as a target for inhibiting T cell overactivation, maintaining the balance between self-reactivity and autoimmunity. Tumors essentially hijack the immune checkpoint pathway in order to survive and spread. Immune checkpoint inhibitors (ICIs) are being developed as a result to reactivate the anti-tumor immune response. Recent advances in nanotechnology have contributed to the development of successful, safe, and efficient anticancer drug systems based on nanoparticles. Nanoparticle-based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. The fundamental and physiochemical properties of nanoparticles depend on various cancer therapeutic strategies, such as chemotherapeutics, nucleic acid-based treatments, photothermal therapy, and photodynamic agents. The review discusses the use of nanoparticles as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | | | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|