1
|
Gao M, Sun Q, Zhang R, Shan G, Zhang H, Peng R, Liu M, Sun G, Qiao L, Li Y, He X. Extracellular vesicles-hitchhiking boosts the deep penetration of drugs to amplify anti-tumor efficacy. Biomaterials 2025; 314:122829. [PMID: 39276410 DOI: 10.1016/j.biomaterials.2024.122829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Developing drug delivery systems capable of achieving deep tumor penetration is a challenging task, yet there is a significant demand for such systems in cancer treatment. Hitchhiking on tumor-derived extracellular vesicles (EVs) represents a promising strategy for enhancing drug penetration into tumors. However, the limited drug assembly on EVs restricts its further application. Here, we present a novel approach to efficiently attach antitumor drugs to EVs using an engineered cell membrane-based vector. This vector includes the AS1411 aptamer for tumor-specific targeting, the vesicular stomatitis virus glycoprotein (VSV-G) for tumor cell membrane fusion, and a photosensitizer as the therapeutic agent while ensuring optimal drug encapsulation and stability. Upon injection, photosensitizers are firstly transferred to the tumor cell membrane and subsequently piggybacked onto EVs with the inherent secretion process. By hitchhiking with EVs, photosensitizers can be transferred layer by layer deep into the solid tumors. The results suggest that this EVs-hitchhiking strategy enables photosensitizers to penetrate deeply into tumor tissue, thereby enhancing the efficacy of phototherapy. This study offers broad application prospects for delivering drugs deeply into tumor tissues.
Collapse
Affiliation(s)
- Min Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Qiuting Sun
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Ruijie Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Guisong Shan
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Huiru Zhang
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Rui Peng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Mengyu Liu
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Lei Qiao
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Yang Li
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China.
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
2
|
Zhu S, Jin G, He X, Li Y, Xu F, Guo H. Mechano-assisted strategies to improve cancer chemotherapy. Life Sci 2024; 359:123178. [PMID: 39471901 DOI: 10.1016/j.lfs.2024.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Chemotherapy remains a cornerstone in cancer treatment; however, its effectiveness is frequently undermined by the development of drug resistance. Recent studies underscores the pivotal role of the tumor mechanical microenvironment (TMME) and the emerging field of mechanical nanomedicine in tackling chemo-resistance. This review offers an in-depth analysis of mechano-assisted strategies aimed at mitigating chemo-resistance through the modification of the TMME and the refinement of mechanical nanomedicine delivery systems. We explore the potential of targeting abnormal tumor mechanical properties as a promising avenue for enhancing the efficacy of cancer chemotherapy, which offers novel directions for advancing future cancer therapies, especially from the mechanomedicine perspective.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
3
|
Chen Y, Liu L, Li M, Chen X, Li Y, Tao J, Deng Y. Nanoparticle-enabled In Situ drug potency activation for enhanced tumor-specific therapy. Eur J Pharm Sci 2024; 205:106989. [PMID: 39675436 DOI: 10.1016/j.ejps.2024.106989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Cancer treatment faces significant challenges including inadequate tumor specificity, drug resistance, and severe side effects, often resulting in unsatisfactory patient outcomes. Nanomedicines offer a transformative platform for tumor-targeted drug delivery and antitumor potency activation, providing an indispensable strategy for overcoming the severe damage to normal tissues caused by the inherent "always-on" cytotoxicity of conventional therapeutic agents. This review focuses on the emerging concept of "nanoparticle-enabled in situ drug potency activation", where inactive or minimally toxic agents are selectively activated within tumors to enhance the therapeutic efficacy and minimize the adverse effects. We systematically analyzed literature from PubMed and Web of Science databases spanning the last two decades, emphasizing experimental evidence supporting this in situ drug potency activation concept. Key strategies including stimuli-responsive prodrug nanoparticles, metal-induced activation, and bioorthogonal reactions are critically evaluated for their potential to overcome limitations in current cancer therapies. The findings highlight the potential of in situ potency activation as a promising alternative to conventional therapeutics, with far-reaching implications for advancing effective and safe cancer treatments.
Collapse
Affiliation(s)
- Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lishan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ming Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Xiaolian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yaoqi Li
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jing Tao
- Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
4
|
Abdel-Hafez SM, Gallei M, Wagner S, Schneider M. Inhalable nano-structured microparticles for extracellular matrix modulation as a potential delivery system for lung cancer. Eur J Pharm Biopharm 2024; 204:114512. [PMID: 39332746 DOI: 10.1016/j.ejpb.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
The use of inhalable nanoparticulate-based systems in the treatment of lung cancer allows for efficient localized delivery to the lungs with less undesirable systemic exposure. For this to be attained, the inhaled particles should have optimum properties for deposition and at the same time avoid pulmonary clearance mechanisms. Drug delivery to solid tumors is furthermore challenging, due to dense extracellular matrix (ECM) formation, which hinders the penetration and diffusion of therapeutic agents. To this end, the aim of the current work is to develop an ECM-modulating nano-structured microparticulate carrier, that not only enables the delivery of therapeutic nanoparticles (NPs) to the lungs, but also enhances their intratumoral penetration. The system is composed of acetalated maltodextrin (AcMD) NPs embedded into a water-soluble trehalose/leucine matrix, in which collagenase was loaded with different mass concentrations (10 %, 30 % and 50 %). The collagenase-containing AcMD nano-structured microparticles (MPs) exhibited suitable median volume diameters (2.58 ± 1.35 to 3.01 ± 0.68 µm), hollow corrugated morphology, sufficient redispersibility, low residual moisture content (2.71 ± 0.17 % to 3.10 ± 0.20 %), and favorable aerodynamic properties (Mass median aerodynamic diameter (MMAD): 1.93 ± 0.06 to 2.80 ± 0.10 µm and fine particle fraction (FPF): 68.02 ± 6.86 % to 69.62 ± 2.01 %). Importantly, collagenase retained as high as 89.5 ± 6.7 % of its enzymatic activity after spray drying. MPs containing 10 % mass content of collagenase did not show signs of cytotoxicity on either human lung adenocarcinoma A549 cells or lung MRC-5 fibroblasts. The nanoparticle penetration was tested using adenocarcinoma A549/MRC-5 co-culture spheroid model, where the inclusion of collagenase resulted in deeper penetration depth of AcMD-NPs.
Collapse
Affiliation(s)
- Salma M Abdel-Hafez
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Markus Gallei
- Polymer Chemistry, Saarland University, 66123 Saarbrücken, Germany; Saarene, Saarland Center for Energy Materials and Sustainability, 66123 Saarbrücken, Germany
| | - Sylvia Wagner
- Department Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany.
| |
Collapse
|
5
|
Lu X, Fu Y, Zhu Y, Xi C, Luo Q, Pang H. Construction of in-situ self-assembled agent for NIR/PET dual-modal imaging and photodynamic therapy for hepatocellular cancer. J Nanobiotechnology 2024; 22:614. [PMID: 39385303 PMCID: PMC11465773 DOI: 10.1186/s12951-024-02879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Hepatocellular cancer (HCC) remained a life-threatening carcinoma. Agents for HCC imaging and therapy were expected to possess different intratumoral retention time. To construct an agent with different intratumoral retention time when applied for tumor imaging or therapy remained great values. A lasialoglycoprotein receptor (ASGPR) targeted lactobionic acid derivative (LABO) was constructed for fluorescent imaging and photodynamic therapy of HCC. 18F labeled LABO (18F-LABO) was developed for PET imaging of HCC. LABO and 18F-LABO showed similar molecular structure. LABO exhibited characteristic of viscosity and concentration-induced intratumoral in-situ self-assembly to expand the intratumoral retention. LABO was non-fluorescent at free stage, but emitted NIR fluorescence and generated irradiation-induced ROS after self-assembly for fluorescent imaging and photodynamic therapy. ASGPR specificity of LABO and 18F-LABO was confirmed using HepG2 cell. Biodistribution and fluorescent imaging confirmed the different tumor retention time of LABO and 18F-LABO when used for photodynamic therapy and PET imaging. PET imaging and photodynamic therapy were performed on HepG2 tumor bearing mice, which revealed that 18F-LABO/LABO could specifically accumulated in the HepG2 tumor for tumor location/inhibition. LABO/18F-LABO with excellent HCC specificity but different intratumoral behaviors showed great values for the PET/NIR imaging and photodynamic therapy for HCC.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Yucheng Fu
- Department of Orthopaedic, School of Medicine, Ruijin Hospital, Affiliated to Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yunyun Zhu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, P. R. China.
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China.
| |
Collapse
|
6
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
7
|
Huang R, Qiu H, Pang C, Li L, Wang A, Ji S, Liang H, Shen XC, Jiang BP. Size-Switchable Ru Nanoaggregates for Enhancing Phototherapy: Hyaluronidase-Triggered Disassembly to Alleviate Deep Tumor Hypoxia. Chemistry 2024; 30:e202400115. [PMID: 38369622 DOI: 10.1002/chem.202400115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Hypoxia is a critical factor for restricting photodynamic therapy (PDT) of tumor, and it becomes increasingly severe with increasing tissue depth. Thus, the relief of deep tumor hypoxia is extremely important to improve the PDT efficacy. Herein, tumor microenvironment (TME)-responsive size-switchable hyaluronic acid-hybridized Ru nanoaggregates (HA@Ru NAs) were developed via screening reaction temperature to alleviate deep tumor hypoxia for improving the tumor-specific PDT by the artful integration multiple bioactivated chemical reactions in situ and receptor-mediated targeting (RMT). In this nanosystem, Ru NPs not only enabled HA@Ru NAs to have near infrared (NIR)-mediated photothermal/photodynamic functions, but also could catalyze endogenous H2O2 to produce O2 in situ. More importantly, hyaluronidase (HAase) overexpressed in the TME could trigger disassembly of HA@Ru NAs via the hydrolysis of HA, offering the smart size switch capability from 60 to 15 nm for enhancing tumor penetration. Moreover, the RMT characteristics of HA ensured that HA@Ru NAs could specially enter CD44-overexpressed tumor cells, enhancing tumor-specific precision of phototherapy. Taken together these distinguishing characteristics, smart HA@Ru NAs successfully realized the relief of deep tumor hypoxia to improve the tumor-specific PDT.
Collapse
Affiliation(s)
- Rimei Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Huimin Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Congcong Pang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Liqun Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Aihui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| |
Collapse
|
8
|
Wu Y, Li Y, Hu Z, Li Y, Zhang S, Bao X, Zhou Y, Gao Y, Li Y, Zhang Z. Extracellular Matrix-Trapped Bioinspired Lipoprotein Prolongs Tumor Retention to Potentiate Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310982. [PMID: 38216153 DOI: 10.1002/adma.202310982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/28/2023] [Indexed: 01/14/2024]
Abstract
The immunomodulatory effects of many therapeutic agents are significantly challenged by their insufficient delivery efficiency and short retention time in tumors. Regarding the distinctively upregulated fibronectin (FN1) and tenascin C (TNC) in tumor stroma, herein a protease-activated FN1 and/or TNC binding peptide (FTF) is designed and an extracellular matrix (ECM)-trapped bioinspired lipoprotein (BL) (FTF-BL-CP) is proposed that can be preferentially captured by the TNC and/or FN1 for tumor retention, and then be responsively dissociated from the matrix to potentiate the antitumor immunity. The FTF-BL-CP treatment produces a 6.96-, 9.24-, 6.72-, 7.32-, and 6.73-fold increase of CD3+CD8+ T cells and their interferon-γ-, granzyme B-, perforin-, and Ki67-expressing subtypes versus the negative control, thereby profoundly eliciting the antitumor immunity. In orthotopic and lung metastatic breast cancer models, FTF-BL-CP produces notable therapeutic benefits of retarding tumor growth, extending survivals, and inhibiting lung metastasis. Therefore, this ECM-trapping strategy provides an encouraging possibility of prolonging tumor retention to potentiate the antitumor immunity for anticancer immunotherapy.
Collapse
Affiliation(s)
- Yao Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yongping Li
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Zixin Hu
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China
| | - Yuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shixuan Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences & Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xinyue Bao
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan Gao
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264005, China
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
9
|
Zeng T, Chen H, Yoshitomi T, Kawazoe N, Yang Y, Chen G. Effect of Hydrogel Stiffness on Chemoresistance of Breast Cancer Cells in 3D Culture. Gels 2024; 10:202. [PMID: 38534620 DOI: 10.3390/gels10030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Chemotherapy is one of the most common strategies for cancer treatment, whereas drug resistance reduces the efficiency of chemotherapy and leads to treatment failure. The mechanism of emerging chemoresistance is complex and the effect of extracellular matrix (ECM) surrounding cells may contribute to drug resistance. Although it is well known that ECM plays an important role in orchestrating cell functions, it remains exclusive how ECM stiffness affects drug resistance. In this study, we prepared agarose hydrogels of different stiffnesses to investigate the effect of hydrogel stiffness on the chemoresistance of breast cancer cells to doxorubicin (DOX). Agarose hydrogels with a stiffness range of 1.5 kPa to 112.3 kPa were prepared and used to encapsulate breast cancer cells for a three-dimensional culture with different concentrations of DOX. The viability of the cells cultured in the hydrogels was dependent on both DOX concentration and hydrogel stiffness. Cell viability decreased with DOX concentration when the cells were cultured in the same stiffness hydrogels. When DOX concentration was the same, breast cancer cells showed higher viability in high-stiffness hydrogels than they did in low-stiffness hydrogels. Furthermore, the expression of P-glycoprotein mRNA in high-stiffness hydrogels was higher than that in low-stiffness hydrogels. The results suggested that hydrogel stiffness could affect the resistance of breast cancer cells to DOX by regulating the expression of chemoresistance-related genes.
Collapse
Affiliation(s)
- Tianjiao Zeng
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Huajian Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Naoki Kawazoe
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Guoping Chen
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
10
|
Ling H, Zhang Q, Luo Q, Ouyang D, He Z, Sun J, Sun M. Dynamic immuno-nanomedicines in oncology. J Control Release 2024; 365:668-687. [PMID: 38042376 DOI: 10.1016/j.jconrel.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qinyi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
11
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
12
|
Wen Z, Zhang Y, Wang X, Wu Y, Mao J, Li Q, Gong S. THBS1-Mediated Degradation of Collagen via the PI3K/AKT Pathway Facilitates the Metastasis and Poor Prognosis of OSCC. Int J Mol Sci 2023; 24:13312. [PMID: 37686118 PMCID: PMC10488045 DOI: 10.3390/ijms241713312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent form of malignant tumor, characterized by a persistently high incidence and mortality rate. The extracellular matrix (ECM) plays a crucial role in the initiation, progression, and diverse biological behaviors of OSCC, facilitated by mechanisms such as providing structural support, promoting cell migration and invasion, regulating cell morphology, and modulating signal transduction. This study investigated the involvement of ECM-related genes, particularly THBS1, in the prognosis and cellular behavior of OSCC. The analysis of ECM-related gene data from OSCC samples identified 165 differentially expressed genes forming two clusters with distinct prognostic outcomes. Seventeen ECM-related genes showed a significant correlation with survival. Experimental methods were employed to demonstrate the impact of THBS1 on proliferation, migration, invasion, and ECM degradation in OSCC cells. A risk-prediction model utilizing four differentially prognostic genes demonstrated significant predictive value in overall survival. THBS1 exhibited enrichment of the PI3K/AKT pathway, indicating its potential role in modulating OSCC. In conclusion, this study observed and verified that ECM-related genes, particularly THBS1, have the potential to influence the prognosis, biological behavior, and immunotherapy of OSCC. These findings hold significant implications for enhancing survival outcomes and providing guidance for precise treatment of OSCC.
Collapse
Affiliation(s)
- Zhihao Wen
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
| | - Yuxiao Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiangyao Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yaxin Wu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Jing Mao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Shiqiang Gong
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.W.); (Y.Z.); (X.W.); (Y.W.); (J.M.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
13
|
Zhang J, Ji K, Ning Y, Sun L, Fan M, Shu C, Zhang Z, Tu T, Cao J, Gao F, Chen Y. Biological Hyperthermia-Inducing Nanoparticles for Specific Remodeling of the Extracellular Matrix Microenvironment Enhance Pro-Apoptotic Therapy in Fibrosis. ACS NANO 2023. [PMID: 37229569 DOI: 10.1021/acsnano.2c12831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The extracellular matrix (ECM) is a major driver of fibrotic diseases and forms a dense fibrous barrier that impedes nanodrug delivery. Because hyperthermia causes destruction of ECM components, we developed a nanoparticle preparation to induce fibrosis-specific biological hyperthermia (designated as GPQ-EL-DNP) to improve pro-apoptotic therapy against fibrotic diseases based on remodeling of the ECM microenvironment. GPQ-EL-DNP is a matrix metalloproteinase (MMP)-9-responsive peptide, (GPQ)-modified hybrid nanoparticle containing fibroblast-derived exosomes and liposomes (GPQ-EL) and is loaded with a mitochondrial uncoupling agent, 2,4-dinitrophenol (DNP). GPQ-EL-DNP can specifically accumulate and release DNP in the fibrotic focus, inducing collagen denaturation through biological hyperthermia. The preparation was able to remodel the ECM microenvironment, decrease stiffness, and suppress fibroblast activation, which further enhanced GPQ-EL-DNP delivery to fibroblasts and sensitized fibroblasts to simvastatin-induced apoptosis. Therefore, simvastatin-loaded GPQ-EL-DNP achieved an improved therapeutic effect on multiple types of murine fibrosis. Importantly, GPQ-EL-DNP did not induce systemic toxicity to the host. Therefore, the nanoparticle GPQ-EL-DNP for fibrosis-specific hyperthermia can be used as a potential strategy to enhance pro-apoptotic therapy in fibrotic diseases.
Collapse
Affiliation(s)
- Jinru Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Keqin Ji
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanmeng Ning
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingna Sun
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingrui Fan
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chunjie Shu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ziqi Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tianyu Tu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyun Cao
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanzuo Chen
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Chen W, Li C, Jiang X. Advanced Biomaterials with Intrinsic Immunomodulation Effects for Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201404. [PMID: 36811240 DOI: 10.1002/smtd.202201404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
In recent years, tumor immunotherapy has achieved significant success in tumor treatment based on immune checkpoint blockers and chimeric antigen receptor T-cell therapy. However, about 70-80% of patients with solid tumors do not respond to immunotherapy due to immune evasion. Recent studies found that some biomaterials have intrinsic immunoregulatory effects, except serve as carriers for immunoregulatory drugs. Moreover, these biomaterials have additional advantages such as easy functionalization, modification, and customization. In this review, the recent advances of these immunoregulatory biomaterials in cancer immunotherapy and their interaction with cancer cells, immune cells, and the immunosuppressive tumor microenvironment are summarized. Finally, the opportunities and challenges of immunoregulatory biomaterials used in the clinic and the prospect of their future in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
15
|
Xu X, Wang Q, Qian X, Wu Y, Wang J, Li J, Li Y, Zhang Z. Spatial-Drug-Laden Protease-Activatable M1 Macrophage System Targets Lung Metastasis and Potentiates Antitumor Immunity. ACS NANO 2023; 17:5354-5372. [PMID: 36877635 DOI: 10.1021/acsnano.2c08834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lung metastasis is a critical cause of cancer mortality and its therapy is largely challenged by the limited drug delivery efficiency and robust immunosuppression in metastatic tumors. Herein, we designed a spatial-drug-laden M1 macrophage system with liposomal R848 inside and fibroblast activation protein protease (FAP)-sensitive phospholipid-DM4 conjugate on the membrane of M1 macrophage (RDM). RDM could preferentially accumulate at the metastatic lesions in lungs and responsively release the therapeutic agents as free drug molecules or drug-loaded nanovesicles. RDM treatment notably enhanced the infiltration of CD3+CD8+ T cells to lung metastasis and, respectively, caused an 8.54-, 12.87- and 2.85-fold improvement of the granzyme-B-, interferon-γ-, and Ki67-positive subtypes versus negative control. Moreover, RDM treatment produced a 90.99% inhibition of lung metastasis in 4T1 models and significant prolongation of survival in three murine lung metastatic models. Therefore, the drug-laden FAP-sensitive M1 macrophage system represents a feasible strategy to target lung metastasis and boost antitumor immunity for antimetastasis therapy.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Wang
- Department of Cardiothoracic Surgery, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 200125, China
| | - Xindi Qian
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- School of Pharmacy and Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Zhang
- School of Pharmacy and Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| |
Collapse
|
16
|
La Rocca A, De Gregorio V, Lagreca E, Vecchione R, Netti PA, Imparato G. Colorectal Cancer Bioengineered Microtissues as a Model to Replicate Tumor-ECM Crosstalk and Assess Drug Delivery Systems In Vitro. Int J Mol Sci 2023; 24:5678. [PMID: 36982752 PMCID: PMC10059762 DOI: 10.3390/ijms24065678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Current 3D cancer models (in vitro) fail to reproduce complex cancer cell extracellular matrices (ECMs) and the interrelationships occurring (in vivo) in the tumor microenvironment (TME). Herein, we propose 3D in vitro colorectal cancer microtissues (3D CRC μTs), which reproduce the TME more faithfully in vitro. Normal human fibroblasts were seeded onto porous biodegradable gelatin microbeads (GPMs) and were continuously induced to synthesize and assemble their own ECMs (3D Stroma μTs) in a spinner flask bioreactor. Then, human colon cancer cells were dynamically seeded onto the 3D Stroma μTs to achieve the 3D CRC μTs. Morphological characterization of the 3D CRC μTs was performed to assess the presence of different complex macromolecular components that feature in vivo in the ECM. The results showed the 3D CRC μTs recapitulated the TME in terms of ECM remodeling, cell growth, and the activation of normal fibroblasts toward an activated phenotype. Then, the microtissues were assessed as a drug screening platform by evaluating the effect of 5-Fluorouracil (5-FU), curcumin-loaded nanoemulsions (CT-NE-Curc), and the combination of the two. When taken together, the results showed that our microtissues are promising in that they can help clarify complex cancer-ECM interactions and evaluate the efficacy of therapies. Moreover, they may be combined with tissue-on-chip technologies aimed at addressing further studies in cancer progression and drug discovery.
Collapse
Affiliation(s)
- Alessia La Rocca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vincenza De Gregorio
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy;
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, 80126 Naples, Italy
| | - Elena Lagreca
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, 80125 Naples, Italy;
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Giorgia Imparato
- Center for Advanced Biomaterials for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Napoli, Italy; (A.L.R.); (E.L.); (R.V.); (P.A.N.)
| |
Collapse
|
17
|
Zhang C, Xu M, Zeng Z, Wei X, He S, Huang J, Pu K. A Polymeric Extracellular Matrix Nanoremodeler for Activatable Cancer Photo-Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202217339. [PMID: 36694443 DOI: 10.1002/anie.202217339] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/29/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Cancer immunotherapy has shown tremendous potential to train the intrinsic immune system against malignancy in the clinic. However, the extracellular matrix (ECM) in tumor microenvironment is a formidable barrier that not only restricts the penetration of therapeutic drugs but also prevents the infiltration of antitumor immune cells. We herein report a semiconducting polymer-based ECM nanoremodeler (SPNcb) to combine photodynamic antitumor activity with cancer-specific inhibition of collagen-crosslinking enzymes (lysyl oxidase (LOX) family) for activatable cancer photo-immunotherapy. SPNcb is self-assembled from an amphiphilic semiconducting polymer conjugated with a LOX inhibitor (β-aminopropionitrile, BAPN) via a cancer biomarker (cathepsin B, CatB)-cleavable segment. BAPN can be exclusively activated to inhibit LOX activity in the presence of the tumor-overexpressed CatB, thus blocking collagen crosslinking and decreasing ECM stiffness. Such an ECM nanoremodeler synergizes immunogenic phototherapy and checkpoint blockade immunotherapy to improve the tumor infiltration of cytotoxic T cells, inhibiting tumor growth and metastasis.
Collapse
Affiliation(s)
- Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Mengke Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Ziling Zeng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Shasha He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
18
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
19
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
20
|
He Y, Tian X, Fan X, Gong X, Tan S, Pan A, Liang S, Xu H, Zhou F. Enzyme-Triggered Size-Switchable Nanosystem for Deep Tumor Penetration and Hydrogen Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:552-565. [PMID: 36594282 DOI: 10.1021/acsami.2c18184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The poor penetration of nanocarriers within tumor dense extracellular matrices (ECM) greatly restricts the access of anticancer drugs to the deep tumor cells, resulting in low therapeutic efficacy. Moreover, the high toxicity of the traditional chemotherapeutics inevitably causes undesirable side effects. Herein, taking the advantages of biosafe H2 and small-sized nanoparticles in diffusion within tumor ECM, we develop a matrix metalloprotease 2 (MMP-2) responsive size-switchable nanoparticle (UAMSN@Gel-PEG) that is composed of ultrasmall amino-modified mesoporous silica nanoparticles (UAMSN) wrapped within a PEG-conjugated gelatin to deliver H2 to the deep part of tumors for effective gas therapy. Ammonia borane (AB) is chosen as the H2 prodrug that can be effectively loaded into UAMSN by hydrogen-bonding adsorption. Gelatin is used as the substrate of MMP-2 to trigger size change and block AB inside UAMSN during blood circulation. PEG is introduced to further increase the particle size and endow the nanoparticle with long blood circulation to achieve effective tumor accumulation via the EPR effect. After accumulation into the tumor site, MMP-2 promptly digests gelatin to expose UAMSN loading AB for deep tumor penetration. Upon stimulation by the acidic tumor microenvironment, AB decomposes into H2 for further intratumor diffusion to achieve effective hydrogen therapy. Consequently, such a simultaneous deep tumor penetration of nanocarriers and H2 results in an evident suppression on tumor growth in a 4T1 tumor-bearing model without any obvious toxicity on normal tissues. Our synthetic nanosystem provides a promising strategy for the development of nanomedicines with enhanced tumor permeability and good biosafety for efficient tumor treatment.
Collapse
Affiliation(s)
- Yongju He
- School of Materials Science and Engineering, Central South University, Changsha, Hunan410083, China
| | - Xiangjie Tian
- School of Materials Science and Engineering, Central South University, Changsha, Hunan410083, China
| | - Xingyu Fan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan410083, China
| | - Xiyu Gong
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan410013, China
| | - Anqiang Pan
- School of Materials Science and Engineering, Central South University, Changsha, Hunan410083, China
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan410083, China
| | - Hui Xu
- Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha, Hunan410083, China
| | - Fangfang Zhou
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan410011, China
| |
Collapse
|
21
|
Chen B, Song L, Yuan Y, Liu X, Guo Z, Gu Y, Lou Z, Liu Y, Zhang C, Li C, Guo C. Chirality-Dependent Tumor Phototherapy Using Amino Acid-Engineered Chiral Phosphorene. ACS APPLIED MATERIALS & INTERFACES 2023; 15:651-661. [PMID: 36591814 DOI: 10.1021/acsami.2c19291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phosphorene, also known as black phosphorus nanosheet (BPNS), has been investigated as a nanoagent for tumor therapy. However, promoting its intracellular accumulation while preventing the cytoplasmic decomposition remains challenging. Herein, for the first time, we propose a chiral BPNS designed through surface engineering based on amino acids with high biocompatibility and an abundant source for application in chirality-dependent tumor phototherapy based on its intracellular metabolism. The advantage of using cysteine (Cys) over other amino acids was that its d, l, or dl-form could efficiently work as the chirality inducer to modify the BPNS through electrostatic interaction and prevent alterations in the intrinsic properties of the BPNS. In particular, d-Cys-BPNS displayed an approximately threefold cytotoxic effect on tumor cells compared with l-Cys-BPNS, demonstrating a chirality-dependent therapy behavior. d-Cys-BPNS not only promoted high intracellular content but also showed resistance to cytoplasmic decomposition. Cys-engineered BPNS also demonstrated chirality-dependent phototherapy effects on tumor-bearing mice, in proximity to the results in vitro. Chiral engineering is expected to open new avenues that could promote the use of BPNS in tumor phototherapy and boost chiral nanomedicine.
Collapse
Affiliation(s)
- Bo Chen
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Luping Song
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Ying Yuan
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Xin Liu
- The Third School of Clinical Medical, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing210028, P. R. China
| | - Zhanhang Guo
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing210096, P. R. China
| | - Yu Gu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Zhichao Lou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yang Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing210096, P. R. China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Changming Li
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou215009, Jiangsu, P. R. China
| |
Collapse
|
22
|
Yao Y, Ji P, Chen H, Ge J, Xu Y, Wang P, Xu L, Yan Z. Ferroptosis-based drug delivery system as a new therapeutic opportunity for brain tumors. Front Oncol 2023; 13:1084289. [PMID: 36910646 PMCID: PMC9996339 DOI: 10.3389/fonc.2023.1084289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
The brain tumor is a kind of malignant tumor with brutal treatment, high recurrence rate, and poor prognosis, and the incidence and death rate is increasing yearly. Surgery is often used to remove the primary tumor, supplemented by radiotherapy and chemotherapy, which have highly toxic side effects. Therefore, there is an urgent need to explore new strategies, methods, and technologies that can genuinely improve the treatment of brain tumors. Ferroptosis differs from traditional apoptosis's morphological and biochemical characteristics, and ferroptosis possesses its unique characteristics and mechanisms, opening up a new field of ferroptosis treatment for cancer. It has been found that there is a close relationship between ferroptosis and brain tumors, and a novel nano-drug delivery system based on ferroptosis has been used for the ferroptosis treatment of brain tumors with remarkable effects. This review firstly analyzes the characteristics of ferroptosis, summarizes the mechanism of its occurrence and some factors that can be involved in the regulation of ferroptosis, introduces the potential link between ferroptosis and brain tumors, and clarifies the feasibility of ferroptosis in the treatment of brain tumors. It then presents the ferroptosis nano drug delivery systems developed under different metabolic pathways for ferroptosis treatment of brain tumors. Finally, it summarizes the current problems and solutions of ferroptosis nano drugs for brain tumor treatment, aiming to provide a reference for developing ferroptosis nano drugs against brain tumors.
Collapse
Affiliation(s)
- Yansheng Yao
- Department of Endocrinology, The Affiliated Taixing People's Hospital of Medical College, Yangzhou University, Taixing, China
| | - Peng Ji
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Hao Chen
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Jianwen Ge
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Yajing Xu
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Peng Wang
- College of Pharmacy and Chemistry & Chemical Engineering, Jiangsu Provincial Key Laboratory of Chiral Pharmaceutical Chemicals Biologically Manufacturing, Taizhou University, Taizhou, China
| | - Li Xu
- Department of Nursing, Liaoning Vocational College of Medicine, Shenyang, China
| | - Zhirong Yan
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian, China
| |
Collapse
|
23
|
Imparato G, Urciuolo F, Mazio C, Netti PA. Capturing the spatial and temporal dynamics of tumor stroma for on-chip optimization of microenvironmental targeting nanomedicine. LAB ON A CHIP 2022; 23:25-43. [PMID: 36305728 DOI: 10.1039/d2lc00611a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Malignant cells grow in a complex microenvironment that plays a key role in cancer progression. The "dynamic reciprocity" existing between cancer cells and their microenvironment is involved in cancer differentiation, proliferation, invasion, metastasis, and drug response. Therefore, understanding the molecular mechanisms underlying the crosstalk between cancer cells and their surrounding tissue (i.e., tumor stroma) and how this interplay affects the disease progression is fundamental to design and validate novel nanotherapeutic approaches. As an important regulator of tumor progression, metastasis and therapy resistance, the extracellular matrix of tumors, the acellular component of the tumor microenvironment, has been identified as very promising target of anticancer treatment, revolutionizing the traditional therapeutic paradigm that sees the neoplastic cells as the preferential objective to fight cancer. To design and to validate such a target therapy, advanced 3D preclinical models are necessary to correctly mimic the complex, dynamic and heterogeneous tumor microenvironment. In addition, the recent advancement in microfluidic technology allows fine-tuning and controlling microenvironmental parameters in tissue-on-chip devices in order to emulate the in vivo conditions. In this review, after a brief description of the origin of tumor microenvironment heterogeneity, some examples of nanomedicine approaches targeting the tumor microenvironment have been reported. Further, how advanced 3D bioengineered tumor models coupled with a microfluidic device can improve the design and testing of anti-cancer nanomedicine targeting the tumor microenvironment has been discussed. We highlight that the presence of a dynamic extracellular matrix, able to capture the spatiotemporal heterogeneity of tumor stroma, is an indispensable requisite for tumor-on-chip model and nanomedicine testing.
Collapse
Affiliation(s)
- Giorgia Imparato
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Claudia Mazio
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
| | - Paolo A Netti
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci n. 53, 80125 Napoli, Italy.
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| |
Collapse
|
24
|
Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater Today Bio 2022; 16:100364. [PMID: 35875197 PMCID: PMC9305626 DOI: 10.1016/j.mtbio.2022.100364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Nanomedicines have shown a promising strategy for cancer therapy because of their higher safety and efficiency relative to small-molecule drugs, while the dense extracellular matrix (ECM) in tumors often acts as a physical barrier to hamper the accumulation and diffusion of nanoparticles, thus compromising the anticancer efficacy. To address this issue, two major strategies including degrading ECM components and inhibiting ECM formation have been adopted to enhance the therapeutic efficacies of nanomedicines. In this review, we summarize the recent progresses of tumor ECM modulating strategies for enhanced antitumor therapy of nanomedicines. Through degrading ECM components or inhibiting ECM formation, the accumulation and diffusion of nanoparticles in tumors can be facilitated, leading to enhanced efficacies of chemotherapy and phototherapy. Moreover, the ECM degradation can improve the infiltration of immune cells into tumor tissues, thus achieving strong immune response to reject tumors. The adoptions of these two ECM modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are discussed in detail. A conclusion, current challenges and outlook are then given. Extracellular matrix modulating strategies have been adopted to enhance the therapeutic efficacies of nanomedicines. Degrading extracellular matrix components or inhibiting extracellular matrix formation can improve the accumulation and diffusion of nanoparticles in tumors and the infiltration of immune cells into tumor tissues. The adoptions of two extracellular matrix modulating strategies to improve the efficacies of chemotherapy, phototherapy, and immunotherapy are summarized.
Collapse
|
25
|
Gong X, Li J, Xu X, Wu Y, Lei Y, Liu H, Qian X, Li Y, Zhang Z. Microvesicle-inspired oxygen-delivering nanosystem potentiates radiotherapy-mediated modulation of tumor stroma and antitumor immunity. Biomaterials 2022; 290:121855. [DOI: 10.1016/j.biomaterials.2022.121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/24/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022]
|
26
|
Ahmed Z, Qaisar R. Nanomedicine for Treating Muscle Dystrophies: Opportunities, Challenges, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231912039. [PMID: 36233338 PMCID: PMC9569435 DOI: 10.3390/ijms231912039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies are a group of genetic muscular diseases characterized by impaired muscle regeneration, which leads to pathological inflammation that drives muscle wasting and eventually results in weakness, functional dependency, and premature death. The most known causes of death include respiratory muscle failure due to diaphragm muscle decay. There is no definitive treatment for muscular dystrophies, and conventional therapies aim to ameliorate muscle wasting by promoting physiological muscle regeneration and growth. However, their effects on muscle function remain limited, illustrating the requirement for major advancements in novel approaches to treatments, such as nanomedicine. Nanomedicine is a rapidly evolving field that seeks to optimize drug delivery to target tissues by merging pharmaceutical and biomedical sciences. However, the therapeutic potential of nanomedicine in muscular dystrophies is poorly understood. This review highlights recent work in the application of nanomedicine in treating muscular dystrophies. First, we discuss the history and applications of nanomedicine from a broader perspective. Second, we address the use of nanoparticles for drug delivery, gene regulation, and editing to target Duchenne muscular dystrophy and myotonic dystrophy. Next, we highlight the potential hindrances and limitations of using nanomedicine in the context of cell culture and animal models. Finally, the future perspectives for using nanomedicine in clinics are summarized with relevance to muscular dystrophies.
Collapse
Affiliation(s)
- Zaheer Ahmed
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Rizwan Qaisar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Cardiovascular Research Group, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: ; Tel.: +971-6505-7254; Fax: +971-6558-5879
| |
Collapse
|
27
|
Shin GR, Kim HE, Ju HJ, Kim JH, Choi S, Choi HS, Kim MS. Injectable click-crosslinked hydrogel containing resveratrol to improve the therapeutic effect in triple negative breast cancer. Mater Today Bio 2022; 16:100386. [PMID: 35991627 PMCID: PMC9386493 DOI: 10.1016/j.mtbio.2022.100386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022] Open
Abstract
Triple-negative breast cancer (TNBC) patients are considered intractable, as this disease has few effective treatments and a very poor prognosis even in its early stages. Here, intratumoral therapy with resveratrol (Res), which has anticancer and metastasis inhibitory effects, was proposed for the effective treatment of TNBC. An injectable Res-loaded click-crosslinked hyaluronic acid (Res-Cx-HA) hydrogel was designed and intratumorally injected to generate a Res-Cx-HA depot inside the tumor. The Res-Cx-HA formulation exhibited good injectability into the tumor tissue, quick depot formation inside the tumor, and the depot remained inside the injected tumor for extended periods. In vivo formed Res-Cx-HA depots sustained Res inside the tumor for extended periods. More importantly, the bioavailability and therapeutic efficacy of Res remained almost exclusively within the tumor and not in other organs. Intratumoral injection of Res-Cx-HA in animal models resulted in significant negative tumor growth rates (i.e., the tumor volume decreased over time) coupled with large apoptotic cells and limited angiogenesis in tumors. Therefore, Res-Cx-HA intratumoral injection is a promising way to treat TNBC patients with high efficacy and minimal adverse effects. Intratumoral injection was developed for treatment of triple negative breast cancer. Injectable formulation exhibited good injectability, quick depot formation. The formed depot remained inside the injected tumor for extended periods. Bioavailability and therapeutic efficacy of Res inside tumor were improved. In vivo formed depots resulted in significant negative cancer growth.
Collapse
|
28
|
Qian X, Xu X, Wu Y, Wang J, Li J, Chen S, Wen J, Li Y, Zhang Z. Strategies of engineering nanomedicines for tumor retention. J Control Release 2022; 346:193-211. [PMID: 35447297 DOI: 10.1016/j.jconrel.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 01/29/2023]
Abstract
The retention of therapeutic agents in solid tumors at sufficient concentration and duration is crucial for their antitumor effects. Given the important contribution of nanomedicines to oncology, we herein summarized two major strategies of nanomedicines for tumor retention, such as transformation- and interactions-mediated strategies. The transformation-mediated retention strategy was achieved by enlarging particle size of nanomedicines or modulating the morphology into fibrous structures, while the interactions-mediated retention strategy was accomplished by modulating nanomedicines to promote their interactions with versatile cells or components in tumors. Moreover, we provide some considerations and perspectives of tumor-retaining nanomedicines for effective cancer therapy.
Collapse
Affiliation(s)
- Xindi Qian
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaoying Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shuo Chen
- School of Pharmacy, the University of Auckland, Auckland 1142, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, the University of Auckland, Auckland 1142, New Zealand
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China.; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, China.; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Chu X, Xue P, Zhu S. Management of chemotherapy dose intensity for metastatic colorectal cancer (Review). Oncol Lett 2022; 23:141. [PMID: 35340557 PMCID: PMC8931773 DOI: 10.3892/ol.2022.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy dose intensity is a momentous parameter of antitumor clinical medication. In certain clinical trials, the actual application dose of the chemotherapeutic drugs is frequently different from the prescribed dose. The chemotherapy dose intensity completed in different trials is also variable, which has an impact on the treatment efficacy, disease prognosis and patient safety. When these agents are tested in the population, chemotherapy reduction and delay or failure to complete the planned cycle constantly occur due to age, performance status, adverse reactions and other reasons, resulting in the modification of the chemotherapy dose intensity. The present review analyzed the correlation between the chemotherapy dose intensity and the incidence of adverse reactions, the treatment efficacy and disease prognosis in clinical trials of metastatic colorectal cancer. Moreover, the clinical applications of chemotherapy dose intensity were discussed. Based on individual differences, the present review analyzed the clinical trials that examined the efficacy of the chemotherapy dose intensity in different patient populations. The conclusions suggested that different populations require a specific dose intensity to reduce treatment toxicity without affecting the curative effect.
Collapse
Affiliation(s)
- Xuelei Chu
- Department of Oncology, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Peng Xue
- Department of Oncology, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital Affiliated to China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| |
Collapse
|