1
|
Clegg J, Curvello R, Gabrielyan A, Croagh D, Hauser S, Loessner D. Tailoring metabolic activity assays for tumour-engineered 3D models. BIOMATERIALS ADVANCES 2025; 167:214116. [PMID: 39561578 DOI: 10.1016/j.bioadv.2024.214116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
Monitoring cell behaviour in hydrogel-based 3D models is critical for assessing their growth and response to cytotoxic treatment. Resazurin-based PrestoBlue and AlamarBlue reagents are frequently used metabolic activity assays when determining cell responses. However, both assays are largely applied to cell monolayer cultures but yet to have a defined protocol for use in hydrogel-based 3D models. The assays' performance depends on the cell type, culture condition and measurement sensitivity. To better understand how both assays perform, we grew pancreatic cancer cells in gelatin methacryloyl and collagen hydrogels and evaluated their metabolic activity using different concentrations and incubation times of the PrestoBlue and AlamarBlue reagents. We tested reagent concentrations of 4 % and 10 % and incubation times of 45 min, 2 h and 4 h. In addition, we co-cultured cancer cells together with cancer-associated fibroblasts and peripheral blood mononuclear cells in gelatin methacryloyl hydrogels and subjected them to gemcitabine and nab-paclitaxel to evaluate how both assays perform when characterising cell responses upon drug treatment. CyQuant assays were conducted on the same samples and compared to data from the metabolic activity assays. In cancer monocultures, higher reagent concentration and incubation time increased fluorescent intensity. We found a reagent concentration of 10 % and an incubation time of 2 h suitable for all cell lines and both hydrogels. In multicellular 3D cultures, PrestoBlue and AlamarBlue assays detected similar cell responses upon drug treatment but overestimated cell growth. We recommend to assess cell viability and growth in conjunction with CyQuant assays that directly measure cell functions.
Collapse
Affiliation(s)
- Julien Clegg
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Victoria, Australia
| | - Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Victoria, Australia
| | - Anastasiia Gabrielyan
- Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Centre of Biomaterials, Hohe Straße 6, 01069 Dresden, Germany
| | - Daniel Croagh
- Department of Upper GI and Hepatobiliary Surgery, Monash Medical Centre, Clayton, Victoria, Australia
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Centre of Biomaterials, Hohe Straße 6, 01069 Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
2
|
Bessot A, Medeiros Savi F, Gunter J, Mendhi J, Amini S, Waugh D, McGovern J, Hutmacher DW, Bock N. Humanized In Vivo Bone Tissue Engineering: In Vitro Preculture Conditions Control the Structural, Cellular, and Matrix Composition of Humanized Bone Organs. Adv Healthc Mater 2024:e2401939. [PMID: 39444080 DOI: 10.1002/adhm.202401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/07/2024] [Indexed: 10/25/2024]
Abstract
Bone tissue engineering (BTE) has long sought to elucidate the key factors controlling human/humanized bone formation for regenerative medicine and disease modeling applications, yet with no definitive answers due to the high number and co-dependency of parameters. This study aims to clarify the relative impacts of in vitro biomimetic 'preculture composition' and 'preculture duration' before in vivo implantation as key criteria for the optimization of BTE design. These parameters are directly related to in vitro osteogenic differentiation (OD) and mineralization and are being investigated across different osteoprogenitor-loaded biomaterials, specifically fibrous calcium phosphate-polycaprolactone (CaP-mPCL) scaffolds and gelatin methacryloyl (GelMA) hydrogels. The results show that OD and mineralization levels prior to implantation, enhanced by a mineralization medium supplement to the osteogenic medium (OM), significantly improve ectopic BTE outcomes, regardless of the biomaterial type. Specifically, preculture conditions are pivotal in achieving more faithful mimicry of human bone structure, cellular and extracellular matrix composition and organization, and provide control over bone marrow composition. This work emphasizes the potential of using biomimetic culture compositions, specifically the addition of a mineralization medium as a cost-effective and straightforward approach to enhance BTE outcomes, facilitating rapid development of bone models with superior quality and resemblance to native bone.
Collapse
Affiliation(s)
- Agathe Bessot
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
| | - Flavia Medeiros Savi
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jennifer Gunter
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Australian Prostate Cancer Research Centre (APCRC-Q), QUT, Brisbane, QLD, 4102, Australia
| | - Jayanti Mendhi
- Central Analytical Research Facility, QUT, Brisbane, QLD, 4102, Australia
| | - Shahrouz Amini
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - David Waugh
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, South Australia, Australia
| | - Jacqui McGovern
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Cell and Tissue Engineering Technologies (CTET), QUT, Brisbane, QLD, 4000, Australia
| | - Dietmar W Hutmacher
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Nathalie Bock
- School of Biomedical Sciences, Faculty of Health, and Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, 4102, Australia
- Centre for Biomedical Technologies, QUT, Brisbane, QLD, 4000, Australia
- Max Planck Queensland Centre, Brisbane, QLD, 4000, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
3
|
Shamiya Y, Chakraborty A, Zahid AA, Bainbridge N, Guan J, Feng B, Pjontek D, Chakrabarti S, Paul A. Ascorbyl palmitate nanofiber-reinforced hydrogels for drug delivery in soft issues. COMMUNICATIONS MATERIALS 2024; 5:197. [PMID: 39309138 PMCID: PMC11415299 DOI: 10.1038/s43246-024-00641-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Nanofiber-based hydrogel delivery systems have recently shown great potential in biomedical applications, specifically due to their high surface-to-volume ratio of ultra-fine nanofibers and their ability to carry low solubility drugs. Herein, we introduce a visible light-triggered in situ-gelling drug vehicle (GAP Gel) composed of ascorbyl palmitate (AP) nanofibers and gelatin methacryloyl polymer. AP nanofibers form self-assembled structures through intermolecular interactions with a hydrophobic drug-loading core. We demonstrate that the hydrophilic periphery of AP nanofibers allows them to interact with other hydrophilic molecules via hydrogen bonds. The presence of AP nanofibers significantly enhances the viscoelasticity of GAP Gel in a concentration-dependent manner. Further, GAP Gel shows in vitro biocompatibility and sustained drug delivery efficacy when loaded with a hydrophobic antibiotic. Likewise, GAP Gel shows excellent in vivo biocompatibility when implanted in immunocompetent mice in various forms. Lastly, GAP Gels maintain cell viability when cultured in a 3D-environment over 7 days, establishing it as a promising and versatile hydrogel platform for the delivery of biotherapeutics.
Collapse
Affiliation(s)
- Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
- Collaborative Specialization in Muscoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON Canada
| | - Alap Ali Zahid
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Nicholas Bainbridge
- Department of Chemistry, The University of Western Ontario, London, ON Canada
| | - Jingyuan Guan
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Dominic Pjontek
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, ON Canada
| | - Arghya Paul
- Department of Chemistry, The University of Western Ontario, London, ON Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON Canada
| |
Collapse
|
4
|
Yamada S, Al-Sharabi N, Torelli F, Volponi AA, Sandven L, Ueda M, Fristad I, Mustafa K. Harnessing the Antioxidative Potential of Dental Pulp Stem Cell-Conditioned Medium in Photopolymerized GelMA Hydrogels. Biomater Res 2024; 28:0084. [PMID: 39290361 PMCID: PMC11406670 DOI: 10.34133/bmr.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Gelatin methacryloyl (GelMA) stands out for its biocompatibility, tunability, and functionality, being often selected as a scaffolding material. However, the biological modulations induced by its photocrosslinking process on mesenchymal stem cells as well as stress mitigation measures remain insufficiently explored. By using GelMA of Good Manufacturing Practice (GMP) grade, this study aimed (a) to achieve a comprehensive understanding of the biological effects of photocrosslinking process with a specific focus on oxidative stress and (b) to develop a strategy to mitigate the adverse effects by employing conditioned medium (CM) by dental pulp stem cells (DPSCs). Following photocrosslinking, pathways related to oxidative phosphorylation and DNA repair were enriched in the presence of DPSC-CM carrying various antioxidants such as peroxiredoxin (PRDX) 1-6 and superoxide dismutase type 1 (SOD1), while the control samples exhibited enrichment in inflammatory signaling pathways. Incorporating DPSC-CM into the hydrogel notably reduced the degree of cellular oxidation caused by photocrosslinking and stress responses, resulting in improved cell viability, growth, motility, and osteogenic differentiation, as well as fewer apoptotic and senescent cells compared to those without DPSC-CM. The deteriorated biocompatibility of freshly crosslinked GelMA hydrogel was confirmed by the disrupted vasculature of chorioallantoic membranes in chicken embryos after implantation, which was prevented by DPSC-CM. In conclusion, this study demonstrates the robust antioxidative effects of DPSC-CM, mitigating the negative effect of GelMA photocrosslinking processes.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Niyaz Al-Sharabi
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Francesco Torelli
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Linda Sandven
- The Molecular Imaging Center, Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Saiseiken Co. Ltd., Tokyo, Japan
| | - Inge Fristad
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kamal Mustafa
- Center of Translational Oral Research, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Dogan E, Galifi CA, Cecen B, Shukla R, Wood TL, Miri AK. Extracellular matrix regulation of cell spheroid invasion in a 3D bioprinted solid tumor-on-a-chip. Acta Biomater 2024; 186:156-166. [PMID: 39097123 PMCID: PMC11390304 DOI: 10.1016/j.actbio.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Tumor organoids and tumors-on-chips can be built by placing patient-derived cells within an engineered extracellular matrix (ECM) for personalized medicine. The engineered ECM influences the tumor response, and understanding the ECM-tumor relationship accelerates translating tumors-on-chips into drug discovery and development. In this work, we tuned the physical and structural characteristics of ECM in a 3D bioprinted soft-tissue sarcoma microtissue. We formed cell spheroids at a controlled size and encapsulated them into our gelatin methacryloyl (GelMA)-based bioink to make perfusable hydrogel-based microfluidic chips. We then demonstrated the scalability and customization flexibility of our hydrogel-based chip via engineering tools. A multiscale physical and structural data analysis suggested a relationship between cell invasion response and bioink characteristics. Tumor cell invasive behavior and focal adhesion properties were observed in response to varying polymer network densities of the GelMA-based bioink. Immunostaining assays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) helped assess the bioactivity of the microtissue and measure the cell invasion. The RT-qPCR data showed higher expressions of HIF-1α, CD44, and MMP2 genes in a lower polymer density, highlighting the correlation between bioink structural porosity, ECM stiffness, and tumor spheroid response. This work is the first step in modeling STS tumor invasiveness in hydrogel-based microfluidic chips. STATEMENT OF SIGNIFICANCE: We optimized an engineering protocol for making tumor spheroids at a controlled size, embedding spheroids into a gelatin-based matrix, and constructing a perfusable microfluidic device. A higher tumor invasion was observed in a low-stiffness matrix than a high-stiffness matrix. The physical characterizations revealed how the stiffness is controlled by the density of polymer chain networks and porosity. The biological assays revealed how the structural properties of the gelatin matrix and hypoxia in tumor progression impact cell invasion. This work can contribute to personalized medicine by making more effective, tailored cancer models.
Collapse
Affiliation(s)
- Elvan Dogan
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Christopher A Galifi
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Roshni Shukla
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology, and Neuroscience and Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Amir K Miri
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA; Department of Mechanical and Industrial Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA.
| |
Collapse
|
6
|
Zhang X, Al‐Danakh A, Zhu X, Feng D, Yang L, Wu H, Li Y, Wang S, Chen Q, Yang D. Insights into the mechanisms, regulation, and therapeutic implications of extracellular matrix stiffness in cancer. Bioeng Transl Med 2024. [DOI: 10.1002/btm2.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/29/2024] [Indexed: 01/03/2025] Open
Abstract
AbstractThe tumor microenvironment (TME) is critical for cancer initiation, growth, metastasis, and therapeutic resistance. The extracellular matrix (ECM) is a significant tumor component that serves various functions, including mechanical support, TME regulation, and signal molecule generation. The quantity and cross‐linking status of ECM components are crucial factors in tumor development, as they determine tissue stiffness and the interaction between stiff TME and cancer cells, resulting in aberrant mechanotransduction, proliferation, migration, invasion, angiogenesis, immune evasion, and treatment resistance. Therefore, broad knowledge of ECM dysregulation in the TME might aid in developing innovative cancer therapies. This review summarized the available information on major ECM components, their functions, factors that increase and decrease matrix stiffness, and related signaling pathways that interplay between cancer cells and the ECM in TME. Moreover, mechanotransduction alters during tumorogenesis, and current drug therapy based on ECM as targets, as well as future efforts in ECM and cancer, are also discussed.
Collapse
Affiliation(s)
- Ximo Zhang
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Abdullah Al‐Danakh
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xinqing Zhu
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Dan Feng
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Yang
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Haotian Wu
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yingying Li
- Department of Discipline Construction Dalian Medical University Dalian China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology Dalian Medical University Dalian China
| | - Qiwei Chen
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
- Zhongda Hospital, Medical School Advanced Institute Life Health Southeast University Nanjing China
| | - Deyong Yang
- Department of Urology First Affiliated Hospital of Dalian Medical University Dalian China
- Department of Surgery Healinghands Clinic Dalian China
| |
Collapse
|
7
|
Brennen WN, Le Magnen C, Karkampouna S, Anselmino N, Bock N, Choo N, Clark AK, Coleman IM, Dolgos R, Ferguson AM, Goode DL, Krutihof-de Julio M, Navone NM, Nelson PS, O'Neill E, Porter LH, Ranasinghe W, Sunada T, Williams ED, Butler LM, Corey E, van Weerden WM, Taylor RA, Risbridger GP, Lawrence MG. Defining the challenges and opportunities for using patient-derived models in prostate cancer research. Prostate 2024; 84:623-635. [PMID: 38450798 PMCID: PMC11014775 DOI: 10.1002/pros.24682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND There are relatively few widely used models of prostate cancer compared to other common malignancies. This impedes translational prostate cancer research because the range of models does not reflect the diversity of disease seen in clinical practice. In response to this challenge, research laboratories around the world have been developing new patient-derived models of prostate cancer, including xenografts, organoids, and tumor explants. METHODS In May 2023, we held a workshop at the Monash University Prato Campus for researchers with expertise in establishing and using a variety of patient-derived models of prostate cancer. This review summarizes our collective ideas on how patient-derived models are currently being used, the common challenges, and future opportunities for maximizing their usefulness in prostate cancer research. RESULTS An increasing number of patient-derived models for prostate cancer are being developed. Despite their individual limitations and varying success rates, these models are valuable resources for exploring new concepts in prostate cancer biology and for preclinical testing of potential treatments. Here we focus on the need for larger collections of models that represent the changing treatment landscape of prostate cancer, robust readouts for preclinical testing, improved in vitro culture conditions, and integration of the tumor microenvironment. Additional priorities include ensuring model reproducibility, standardization, and replication, and streamlining the exchange of models and data sets among research groups. CONCLUSIONS There are several opportunities to maximize the impact of patient-derived models on prostate cancer research. We must develop large, diverse and accessible cohorts of models and more sophisticated methods for emulating the intricacy of patient tumors. In this way, we can use the samples that are generously donated by patients to advance the outcomes of patients in the future.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins University, Baltimore, Maryland, USA
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Pharmacology & Molecular Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Clémentine Le Magnen
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nathalie Bock
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Max Planck Queensland Centre for the Materials Science of Extracellular Matrices, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nicholas Choo
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ashlee K Clark
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Robin Dolgos
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Urology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alison M Ferguson
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, Division of Research and Enterprise, University of New South Wales, Sydney, NSW, Australia
| | - David L Goode
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Marianna Krutihof-de Julio
- Urology Research Laboratory, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Translational Organoid Resource, University of Bern, Bern, Switzerland
| | - Nora M Navone
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Edward O'Neill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Laura H Porter
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
| | - Weranja Ranasinghe
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Department of Surgery, Monash University, Melbourne, VIC, Australia
- Department of Urology, Monash Health, Melbourne, VIC, Australia
- Department of Urology, Austin Health, Melbourne, VIC, Australia
| | - Takuro Sunada
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Elizabeth D Williams
- School of Biomedical Sciences at Translational Research Institute, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre-Queensland, Brisbane, QLD, Australia
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | | | - Renea A Taylor
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Physiology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Gail P Risbridger
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Mitchell G Lawrence
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute Cancer Program, Monash University, Clayton, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cabrini Institute, Cabrini Health, Malvern, VIC, Australia
- Melbourne Urological Research Alliance, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Bernero M, Zauchner D, Müller R, Qin XH. Interpenetrating network hydrogels for studying the role of matrix viscoelasticity in 3D osteocyte morphogenesis. Biomater Sci 2024; 12:919-932. [PMID: 38231154 PMCID: PMC10863643 DOI: 10.1039/d3bm01781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
During bone formation, osteoblasts are embedded in a collagen-rich osteoid tissue and differentiate into an extensive 3D osteocyte network throughout the mineralizing matrix. However, how these cells dynamically remodel the matrix and undergo 3D morphogenesis remains poorly understood. Although previous reports investigated the impact of matrix stiffness in osteocyte morphogenesis, the role of matrix viscoelasticity is often overlooked. Here, we report a viscoelastic alginate-collagen interpenetrating network (IPN) hydrogel for 3D culture of murine osteocyte-like IDG-SW3 cells. The IPN hydrogels consist of an ionically crosslinked alginate network to tune stress relaxation as well as a permissive collagen network to promote cell adhesion and matrix remodeling. Two IPN hydrogels were developed with comparable stiffnesses (4.4-4.7 kPa) but varying stress relaxation times (t1/2, 1.5 s and 14.4 s). IDG-SW3 cells were pre-differentiated in 2D under osteogenic conditions for 14 days to drive osteoblast-to-osteocyte transition. Cellular mechanosensitivity to fluid shear stress (2 Pa) was confirmed by live-cell calcium imaging. After embedding in the IPN hydrogels, cells remained highly viable following 7 days of 3D culture. After 24 h, osteocytes in the fast-relaxing hydrogels showed the largest cell area and long dendritic processes. However, a significantly larger increase of some osteogenic markers (ALP, Dmp1, hydroxyapatite) as well as intercellular connections via gap junctions were observed in slow-relaxing hydrogels on day 14. Our results imply that fast-relaxing IPN hydrogels promote early cell spreading, whereas slow relaxation favors osteogenic differentiation. These findings may advance the development of 3D in vivo-like osteocyte models to better understand bone mechanobiology.
Collapse
Affiliation(s)
| | | | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Switzerland.
| | - Xiao-Hua Qin
- Institute for Biomechanics, ETH Zürich, Switzerland.
| |
Collapse
|
9
|
Boscaro D, Sikorski P. Spheroids as a 3D in vitro model to study bone and bone mineralization. BIOMATERIALS ADVANCES 2024; 157:213727. [PMID: 38101067 DOI: 10.1016/j.bioadv.2023.213727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Traumas, fractures, and diseases can severely influence bone tissue. Insight into bone mineralization is essential for the development of therapies and new strategies to enhance bone regeneration. 3D cell culture systems, in particular cellular spheroids, have gained a lot of interest as they can recapitulate crucial aspects of the in vivo tissue microenvironment, such as the extensive cell-cell and cell-extracellular matrix (ECM) interactions found in tissue. The potential of combining spheroids and various classes of biomaterials opens also new opportunities for research within bone tissue engineering. Characterizing cellular organization, ECM structure, and ECM mineralization is a fundamental step for understanding the biological processes involved in bone tissue formation in a spheroid-based model system. Still, many experimental techniques used in this field of research are optimized for use with monolayer cell cultures. There is thus a need to develop new and improving existing experimental techniques, for applications in 3D cell culture systems. In this review, bone composition and spheroids properties are described. This is followed by an insight into the techniques that are currently used in bone spheroids research and how these can be used to study bone mineralization. We discuss the application of staining techniques used with optical and confocal fluorescence microscopy, molecular biology techniques, second harmonic imaging microscopy, Raman spectroscopy and microscopy, as well as electron microscopy-based techniques, to evaluate osteogenic differentiation, collagen production and mineral deposition. Challenges in the applications of these methods in bone regeneration and bone tissue engineering are described. STATEMENT OF SIGNIFICANCE: 3D cell cultures have gained a lot of interest in the last decades as a possible technique that can be used to recreate in vitro in vivo biological process. The importance of 3D environment during bone mineralization led scientists to use this cell culture to study this biological process, to obtain a better understanding of the events involved. New and improved techniques are also required for a proper analysis of this cell model and the process under investigation. This review summarizes the state of the art of the techniques used to study bone mineralization and how 3D cell cultures, in particular spheroids, are tested and analysed to obtain better resolved results related to this complex biological process.
Collapse
Affiliation(s)
- Diamante Boscaro
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, Trondheim 7034, Norway.
| |
Collapse
|
10
|
Gong T, Wu D, Pan H, Sun Z, Yao X, Wang D, Huang Y, Li X, Guo Y, Lu Y. Biomimetic Microenvironmental Stiffness Boosts Stemness of Pancreatic Ductal Adenocarcinoma via Augmented Autophagy. ACS Biomater Sci Eng 2023; 9:5347-5360. [PMID: 37561610 DOI: 10.1021/acsbiomaterials.3c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features high recurrence rates and intensified lethality, accompanied by stiffening of the extracellular matrix (ECM) microenvironment, which is mainly due to the deposition, remodeling, and cross-linking of collagen. Boosted stemness plays an essential role during occurrence and progression, which indicates a poor prognosis. Therefore, it is of great importance to understand the effect of the underlying interaction of matrix stiffness and stemness on PDAC. For this purpose, a methacrylated gelatin (GelMA) hydrogel with tunable stiffness was applied for incubating MIA PaCa-2 and PANC-1 cells. The results demonstrated that compared to the soft group (5% GelMA, w/v), the expression of stemness-related genes (SOX2, OCT4, and NANOG) in the stiff group (10% GelMA, w/v) displayed pronounced elevation as well as sphere formation. Intriguingly, we also observed that matrix stiffness regulated autophagy of PDAC, which played a momentous role in stemness promotion. In order to clarify the underlying relationship between matrix stiffness-mediated cell autophagy and stemness, rescue experiments with rapamycin and chloroquine were conducted with transmission electron microscopy, immunofluorescence staining, sphere formation, and qRT-PCR assays to evaluate the level of stemness and autophagy. For exploring the molecular mechanism in depth, RNA-seq and differential expression of miRNAs were carried out, which may sensor and respond to matrix stiffness during the regulation of stemness and autophagy. In conclusion, we validated that blocking autophagy repressed the stemness induced by matrix stiffness in PDAC and provided a potential therapeutic strategy for this aggressive cancer.
Collapse
Affiliation(s)
- Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Haopeng Pan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zhongxiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
11
|
Kwak JG, Lee J. Bone Marrow Adipocytes Contribute to Tumor Microenvironment-Driven Chemoresistance via Sequestration of Doxorubicin. Cancers (Basel) 2023; 15:2737. [PMID: 37345073 PMCID: PMC10216070 DOI: 10.3390/cancers15102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Chemoresistance is a significant problem in the effective treatment of bone metastasis. Adipocytes are a major stromal cell type in the bone marrow and may play a crucial role in developing microenvironment-driven chemoresistance. However, detailed investigation remains challenging due to the anatomical inaccessibility and intrinsic tissue complexity of the bone marrow microenvironment. In this study, we developed 2D and 3D in vitro models of bone marrow adipocytes to examine the mechanisms underlying adipocyte-induced chemoresistance. We first established a protocol for the rapid and robust differentiation of human bone marrow stromal cells (hBMSCs) into mature adipocytes in 2D tissue culture plastic using rosiglitazone (10 μM), a PPARγ agonist. Next, we created a 3D adipocyte culture model by inducing aggregation of hBMSCs and adipogenesis to create adipocyte spheroids in porous hydrogel scaffolds that mimic bone marrow sinusoids. Simulated chemotherapy treatment with doxorubicin (2.5 μM) demonstrated that mature adipocytes sequester doxorubicin in lipid droplets, resulting in reduced cytotoxicity. Lastly, we performed direct coculture of human multiple myeloma cells (MM1.S) with the established 3D adipocyte model in the presence of doxorubicin. This resulted in significantly accelerated multiple myeloma proliferation following doxorubicin treatment. Our findings suggest that the sequestration of hydrophobic chemotherapeutics by mature adipocytes represents a potent mechanism of bone marrow microenvironment-driven chemoresistance.
Collapse
Affiliation(s)
- Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|