1
|
Liu X, Guo C, Yang W, Wang W, Diao N, Cao M, Cao Y, Wang X, Wang X, Pei H, Jiang Y, Kong M, Chen D. Composite microneedles loaded with Astragalus membranaceus polysaccharide nanoparticles promote wound healing by curbing the ROS/NF-κB pathway to regulate macrophage polarization. Carbohydr Polym 2024; 345:122574. [PMID: 39227108 DOI: 10.1016/j.carbpol.2024.122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/12/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
The healing of chronic diabetic wounds remains a formidable challenge in modern times. In this study, a novel traditional Chinese medicine microneedle patch was designed based on the physiological characteristics of wounds, with properties including hemostasis, anti-inflammatory, antioxidant, antimicrobial, and induction of angiogenesis. Initially, white peony polysaccharide (BSP) with hemostatic properties and carboxymethyl chitosan (CMCS) with antimicrobial capabilities were used as materials for microneedle fabrication. To endow it with antimicrobial, procoagulant, and adhesive properties. Among them, loaded with ROS-sensitive nanoparticles of Astragalus polysaccharides (APS) based on effective components baicalein (Bai) and berberine (Ber) from Scutellaria baicalensis (SB) and Coptis chinensis (CC) drugs (APB@Ber). Together, they are constructed into multifunctional traditional Chinese medicine composite microneedles (C/B@APB@Ber). Bai and Ber synergistically exert anti-inflammatory and antimicrobial effects. Microneedle patches loaded with BSP and APS exhibited significant effects on cell proliferation and angiogenesis induction. The combination of composite polysaccharides enabled the microneedles to adhere stably to wounds and provide sufficient strength to penetrate the biofilm and induce dispersion. The combination of composite polysaccharides enabled the microneedles to adhere stably to wounds and provide sufficient strength to penetrate the biofilm and induce dispersion. Therefore, traditional Chinese medicine multifunctional microneedle patches offer potential medical value in promoting the healing of diabetic wounds.
Collapse
Affiliation(s)
- Xiaowei Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China
| | - Weili Yang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Wenxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ningning Diao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Min Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yuxin Cao
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xuemei Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Xinxin Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Huijie Pei
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Yifan Jiang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, China.
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs, School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
2
|
Zhao X, Su S, Wu C, Deng Y, Chen Y, Yu T, Li C, Zhang Y, Wang X, Zhou Y, Zhang X. High-throughput screening-based design of multifunctional natural polyphenol nano-vesicles to accelerate diabetic wound healing. J Nanobiotechnology 2024; 22:725. [PMID: 39574119 PMCID: PMC11580636 DOI: 10.1186/s12951-024-02950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/22/2024] [Indexed: 11/25/2024] Open
Abstract
Oxidative stress is a major pathological factor that impedes the diabetic wound healing process. Procyanidins (PC) form nanoparticle-vesicles (PPNs) through hydrogen bonding and exhibit good drug delivery capability; however, their application in diabetic wounds is unsatisfactory. To meet the antioxidant needs for treating, high-throughput screening in the natural product library (NPL) under in vitro oxidative stress conditions was conducted to enhance the antioxidant activity of PPNs. HUVECs treated with tert-Butyl Hydroperoxide (TBHP) were established as screening model in vitro. Baicalein (BAI) was identified from over 600 products in the library as the most effective one to combat oxidative stress. Further study showed that PC and BAI may react in equal proportions to synthesize new vesicles, named BAI-PC Polyphenolic nanovesicles (BPPNs), which possess reactive oxygen species (ROS) responsive and antioxidant effects. Network pharmacology indicated that in diabetic wounds, the target genes of PC are mainly enriched in the vascular endothelial growth factor (VEGF)-related pathways, while BAI primarily regulates tyrosine phosphorylation. The complementarity between the two has been validated in both in vitro and in vivo experiments. In summary, the antioxidant drug BAI, identified through high-throughput screening of NPL, could optimize the biological function of PPNs; the newly-synthesized BPPNs may accelerate diabetic wound healing through dual mechanisms of promoting angiogenesis and combating oxidative stress.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shenkai Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuxin Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Tanxin Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Wenzhou, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Shen X, Zhao D, Shi J, Li C, Bai Y, Qiu L, Xuan Y, Wang J. Copper peroxide loaded gelatin/oxide dextran hydrogel with temperature and pH responsiveness for antibacterial and wound healing activity. Int J Biol Macromol 2024; 274:133258. [PMID: 38925171 DOI: 10.1016/j.ijbiomac.2024.133258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Bacterial infection and tissue hypoxia always prevent wound healing, so multifunctional platforms with antimicrobial and oxygen-supplying functions were developed. However, they face many difficulties such as complex preparation and low oxygen release. To address this challenge, a copper peroxide loaded gelatin/oxide dextran hydrogel (CGO) was prepared. Surprisingly, CGO hydrogel as a wound dressing not only had good biocompatibility, injectivity, and mechanical properties, but also exhibited mild photothermal properties, temperature responsiveness, and pH responsiveness. After being applied to wounds infected with bacteria, CGO hydrogel released copper peroxide under near-infrared laser irradiation, which produced copper ions and hydrogen peroxide, combined with PTT to kill bacteria. After the bacteria were cleared from the wound and the pH of the wound was changed to be acidic, CGO hydrogel released copper peroxide via pH response. Copper ions and oxygen produced from copper peroxide accelerated wound healing by promoting angiogenesis. The multi-responsive and multi-mode treatment platform provided a potential strategy for treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Xinyue Shen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Donghui Zhao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Junyi Shi
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China; Hua Lookeng Honors College, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chaoqing Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine & Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning 116600, China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
4
|
Gu J, Huang W, Duanmu Z, Zhuang R, Yang X. Cuproptosis and copper deficiency in ischemic vascular injury and repair. Apoptosis 2024; 29:1007-1018. [PMID: 38649508 DOI: 10.1007/s10495-024-01969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Ischemic vascular diseases are on the rise globally, including ischemic heart diseases, ischemic cerebrovascular diseases, and ischemic peripheral arterial diseases, posing a significant threat to life. Copper is an essential element in various biological processes, copper deficiency can reduce blood vessel elasticity and increase platelet aggregation, thereby increasing the risk of ischemic vascular disease; however, excess copper ions can lead to cytotoxicity, trigger cell death, and ultimately result in vascular injury through several signaling pathways. Herein, we review the role of cuproptosis and copper deficiency implicated in ischemic injury and repair including myocardial, cerebral, and limb ischemia. We conclude with a perspective on the therapeutic opportunities and future challenges of copper biology in understanding the pathogenesis of ischemic vascular disease states.
Collapse
Affiliation(s)
- Jiayi Gu
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Huang
- Department of Neurology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Duanmu
- School of Instrument Science and Opto-Electronics Engineering of Beijing Information Science and Technology University, Beijing, China
| | - Rulin Zhuang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xilan Yang
- Department of General Practice, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Xiao X, Zhao F, DuBois DB, Liu Q, Zhang YL, Yao Q, Zhang GJ, Chen S. Nanozymes for the Therapeutic Treatment of Diabetic Foot Ulcers. ACS Biomater Sci Eng 2024; 10:4195-4226. [PMID: 38752382 DOI: 10.1021/acsbiomaterials.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430065, China
| | - Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yu Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
6
|
Meng W, Ma Z, Ye H, Liu L, Han Q, Shi Q. Polyphenolic oligomer-derived multienzyme activity for the treatment of ischemic Stroke through ROS scavenging and blood-brain barrier restoration. J Mater Chem B 2024; 12:2123-2138. [PMID: 38314923 DOI: 10.1039/d3tb02676k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Oxidative stress and blood-brain barrier (BBB) injury are two major stress disorders before and after ischemic stroke (IS) therapy. The intense inflammatory response also causes damage to nerve cells, affecting the repair of brain tissue. In this study, polyphenolic nanoparticles (PPNs) with strong free radical scavenging ability were designed to treat IS multimodally. To investigate the mechanism of polyphenolic polymerization, solid nanoparticles were synthesized using four kinds of polyphenol compounds as the basic unit under the control of temperature. The form of polymerization between monomers with different structures led to changes in the chemical properties of the corresponding nanoparticles as well as the antioxidant capacity at the cellular level. Particularly, PPNs can significantly improve cerebral infarction and penetrate and repair the BBB, and even downregulate levels of inflammatory cytokines. Molecular signaling pathway studies have shown that PPNs can provide comprehensive treatment of IS by promoting the expression of tight junction protein and enhancing the activity of antioxidant enzymes. Therefore, PPNs combined with the antioxidant, anti-inflammatory and BBB repair ability not only provide a perfect therapeutic pathway but also give ideas for the development of natural material carriers that have a wide application prospect.
Collapse
Affiliation(s)
- Wei Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Hongbo Ye
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
| | - Lei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiaoyi Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Wang C, Chen H, Wang W, Yan G, Zheng S, Wang C, Li N, Tang H. Facile strategy for gelatin-based hydrogel with multifunctionalities to remodel wound microenvironment and accelerate healing of acute and diabetic wounds. Int J Biol Macromol 2024; 256:128372. [PMID: 38000588 DOI: 10.1016/j.ijbiomac.2023.128372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Chronic diabetic wounds represent the most common diabetes complication. Wound healing depends on scavenging reactive oxygen species (ROS), neovascularization, and controlling infection. A naturally derived gelatin-based hydrogel is biocompatible, biodegradable, does not promote inflammation, and can remove ROS, but strategies for developing a gelatin-based hydrogel currently require careful chemical modification of gelatin and time-consuming purification and post-crosslinking processing. Herein, a facile method of combining zirconium (Zr4+), gelatin, and quercetin (QCN) to generate an injectable gelatin-based hydrogel (QCN@Gel-Zr) for diabetic wound treatment was presented. Adding QCN improved the mechanical, injection, and adhesive performance of the Gel-Zr hydrogel and conferred antibacterial and free radical-scavenging abilities. These properties induced cellular proliferation and migration, protection against oxidative stress, and reduction in inflammatory expression. In vivo models of acute and chronic diabetic skin wounds were used to demonstrate biocompatibility and the ability of the gelatin hydrogels to promote wound healing. The histological analysis showed that the QCN@Gel-Zr hydrogel promoted angiogenesis, collagen deposition, and hair follicle regeneration with no detectable cytotoxicity. This study demonstrates the preparation of gelatin-based hydrogel with various flexible functions to address the complex biological requirements of diabetic wound repair.
Collapse
Affiliation(s)
- Chenglong Wang
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City 250021, China
| | - Hua Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Wenchao Wang
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guo Yan
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co. Ltd, Wenzhou 325000, China
| | - Cheng Wang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, China.
| | - Na Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Hongli Tang
- Department of Anesthesiology, Wenzhou Key Laboratory of perioperative medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
8
|
Jia P, Zou Y, Jiang J. Antibacterial, antioxidant and injectable hydrogels constructed using CuS and curcumin co-loaded micelles for NIR-enhanced infected wound healing. J Mater Chem B 2023; 11:11319-11334. [PMID: 37990627 DOI: 10.1039/d3tb02278a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Constructing antibacterial and antioxidant hydrogels is critical for treating infected full-thickness skin wounds. Herein, we report a co-encapsulation strategy to load CuS nanoparticles and hydrophobic antioxidant curcumin (cur) in aldehyde-terminated F127 micelles, which are then cross-linked with carboxymethyl chitosan through a Schiff base reaction to form a functional composite hydrogel (CF-CuS-cur). Apart from its suitable swelling and degradation behavior, good biocompatibility, and injectability for treating irregular wounds, the CF-CuS-cur hydrogel displayed excellent photothermal antibacterial ability under 1064 nm NIR laser irradiation, and antioxidant activity to protect cells from excessive oxidative stress. Using a full-thickness infected wound model, we demonstrated that the CF-CuS-cur hydrogel accelerated the wound healing process by effective sterilization and decreased inflammation, under synergistic action from CuS, curcumin and NIR irradiation. Histological and immunohistochemistry analysis further revealed the promoted skin attachments and regeneration, collagen deposition, neovascularization, and early transition to anti-inflammatory M2 macrophages, when the wounds were treated with the CF-CuS-cur hydrogel. This work demonstrates a facile strategy to construct functional hydrogels with NIR-enhanced antibacterial and antioxidant properties, which can be potentially applied as wound dressings for treating chronic wounds.
Collapse
Affiliation(s)
- Pengpeng Jia
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yu Zou
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiang Jiang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
- i-Lab, CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
9
|
Li Q, Song H, Li S, Hu P, Zhang C, Zhang J, Feng Z, Kong D, Wang W, Huang P. Macrophage metabolism reprogramming EGCG-Cu coordination capsules delivered in polyzwitterionic hydrogel for burn wound healing and regeneration. Bioact Mater 2023; 29:251-264. [PMID: 37533477 PMCID: PMC10391721 DOI: 10.1016/j.bioactmat.2023.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Excessive reactive oxygen species (ROS) at severe burn injury sites may promote metabolic reprogramming of macrophages to induce a deteriorative and uncontrolled inflammation cycle, leading to delayed wound healing and regeneration. Here, a novel bioactive, anti-fouling, flexible polyzwitterionic hydrogel encapsulated with epigallocatechin gallate (EGCG)-copper (Cu) capsules (termed as EGCG-Cu@CBgel) is engineered for burn wound management, which is dedicated to synergistically exerting ROS-scavenging, immune metabolic regulation and pro-angiogenic effects. EGCG-Cu@CBgel can scavenge ROS to normalize intracellular redox homeostasis, effectively relieving oxidative damages and blocking proinflammatory signal transduction. Importantly, EGCG-Cu can inhibit the activity of hexokinase and phosphofructokinase, alleviate accumulation of pyruvate and convert it to acetyl coenzyme A (CoA), whereby inhibits glycolysis and normalizes tricarboxylic acid (TCA) cycle. Additionally, metabolic reprogramming of macrophages by EGCG-Cu downregulates M1-type polarization and the expression of proinflammatory cytokines both in vitro and in vivo. Meanwhile, copper ions (Cu2+) released from the hydrogel facilitate angiogenesis. EGCG-Cu@CBgel significantly accelerates the healing of severe burn wound via promoting wound closure, weakening tissue-damaging inflammatory responses and enhancing the remodeling of pathological structure. Overall, this study demonstrates the great potential of bioactive hydrogel dressing in treating burn wounds without unnecessary secondary damage to newly formed skin, and highlights the importance of immunometabolism modulation in tissue repair and regeneration.
Collapse
Affiliation(s)
- Qinghua Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pengbo Hu
- Emergency Department of Binzhou Medical University Hospital, Binzhou, Shandong Province, 256600, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Zujian Feng
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|