1
|
Kafle U, Truong HQ, Nguyen CTG, Meng F. Development of Thermally Stable mRNA-LNP Delivery Systems: Current Progress and Future Prospects. Mol Pharm 2024; 21:5944-5959. [PMID: 39529245 DOI: 10.1021/acs.molpharmaceut.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The success of mRNA-LNP-based COVID-19 vaccines opens a new era for mRNA-LNP-based therapy. This breakthrough is expected to catalyze the development of more mRNA-LNP-based medicines, not only for preventive vaccines but also for therapeutic purposes. Despite the promising outlook, there are fundamental challenges impeding the progress and widespread application of mRNA-LNP formulations. One of the significant challenges is their thermal instability, requiring these products to be stored at ultralow temperatures for long-term stability. The specific requirements present significant challenges for the storage, transportation, and distribution of mRNA-LNP formulations. To effectively prepare for future infectious disease outbreaks and broaden the application of mRNA-LNP-based therapies for other illnesses, improving the thermostability of mRNA-LNP formulations is critical. In this review, we discuss the potential factors contributing to the thermal instability of mRNA-LNP formulations and examine the roles of key components such as ionizable lipids, cholesterol, pH, buffers, and stabilizing agents like sugars in maintaining their thermal stability, with the goal of providing insights that can guide the future development of thermally stable mRNA-LNP formulations.
Collapse
Affiliation(s)
- Urmila Kafle
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, Massachusetts 01854, United States
| | - Hoang Quan Truong
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, Massachusetts 01854, United States
| | - Cao Thuy Giang Nguyen
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, Massachusetts 01854, United States
| | - Fanfei Meng
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, Massachusetts 01854, United States
| |
Collapse
|
2
|
Clogston JD, Foss W, Harris D, Oberoi H, Pan J, Pu E, Guzmán EAT, Walter K, Brown S, Soo PL. Current state of nanomedicine drug products: An industry perspective. J Pharm Sci 2024; 113:3395-3405. [PMID: 39276979 DOI: 10.1016/j.xphs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Nanomedicine drug products have reached an unprecedented high in terms of global commercial acceptance and media exposure with the approvals of the mRNA COVID-19 vaccines in 2021. In this paper, we examine the current state of the art for nanomedicine technologies as applied for pharmaceutical products and compare those trends with results from a recent IQ Consortium industry survey on nanomedicine drug products. We find that 1) industry companies continue to push the envelope in terms of new technologies for characterizing their specific drug products, 2) new analytical technologies continue to be utilized by industry to characterize the increasingly complex nanomedicine drug products and 3) alignment and communication are key between industry and regulatory authorities to better understand the regulatory filings that are being submitted. There are many CMC challenges that a company must overcome to successfully file a nanomedicine drug product. In 2022, the FDA Guidance on Drug Products containing Nanomaterials was published, and it provides a roadmap for submission of a nanomedicine drug product. We propose that our paper serves as a complimentary guide providing knowledge on specific CMC issues such as quality attributes, physicochemical characterization methods, excipients, and stability.
Collapse
Affiliation(s)
| | - Willard Foss
- Bristol Myers Squibb, Early Biologics Development, Redwood City, CA, USA
| | | | - Hardeep Oberoi
- AbbVie Inc., Drug Product Development, North Chicago, IL, USA
| | - Jiayi Pan
- Biogen, Technical Development, Cambridge, MA, USA
| | - Elaine Pu
- Bristol Myers Squibb, Drug Product Development, Summit, NJ, USA
| | | | - Katrin Walter
- AstraZeneca, Pharmaceutical Product Development, Gothenburg, Sweden
| | - Scott Brown
- GSK plc. Medicines Development and Supply, Drug Substance and Drug Product Analytical, Collegeville, PA 19426, USA
| | - Patrick Lim Soo
- Pfizer, Pharmaceutical Research & Development, Andover, MA, USA.
| |
Collapse
|
3
|
Wan J, Wang C, Wang Z, Wang L, Wang H, Zhou M, Fu ZF, Zhao L. CXCL13 promotes broad immune responses induced by circular RNA vaccines. Proc Natl Acad Sci U S A 2024; 121:e2406434121. [PMID: 39436660 PMCID: PMC11536096 DOI: 10.1073/pnas.2406434121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 10/23/2024] Open
Abstract
Antibody responses induced by current vaccines for influenza and SARS-CoV-2 often lack robust cross-reactivity. As hubs where diverse immune cells converge and interact, the alterations in the immune microenvironment within lymph nodes (LNs) are intricately linked to immune responses. Herein, we designed a lipid nanoparticle (LNP) loaded with circular RNA (circRNA) and targeted to LNs, in which CXCL13 was directly integrated into antigen-encoding circRNA strands. We demonstrated that CXCL13 alters the transcriptomic profiles of LNs, especially the upregulation of IL-21 and IL-4. Meanwhile, CXCL13 promotes the formation of germinal center and elicits robust antigen-specific T cell responses. With the codelivery of CXCL13 and the antigen, CXCL13 enhances cross-reactive antibodies against influenza virus and SARS-CoV-2, achieving protection against both homologous and heterologous influenza virus challenges in a mouse model. Notably, the targeted modification of LNP surfaces with antibodies helps address some of the challenges associated with lyophilized LNP vaccines, which is crucial for the long-term storage of LNP-circRNA vaccines. Overall, the circRNA-based antigen-CXCL13 coexpression system developed herein provides a simple and robust platform that enhances the magnitude and breadth of antibody responses against multiple viral glycoproteins, highlighting the potential utility of CXCL13 in inducing broad immune responses.
Collapse
Affiliation(s)
- Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
4
|
Alejo T, Toro-Córdova A, Fernández L, Rivero A, Stoian AM, Pérez L, Navarro V, Martínez-Oliván J, de Miguel D. Comprehensive Optimization of a Freeze-Drying Process Achieving Enhanced Long-Term Stability and In Vivo Performance of Lyophilized mRNA-LNPs. Int J Mol Sci 2024; 25:10603. [PMID: 39408932 PMCID: PMC11476828 DOI: 10.3390/ijms251910603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
The success of mRNA vaccines against SARS-CoV-2 has prompted interest in mRNA-based pharmaceuticals due to their rapid production, adaptability, and safety. Despite these advantages, the inherent instability of mRNA and its rapid degradation in vivo underscores the need for an encapsulation system for the administration and delivery of RNA-based therapeutics. Lipid nanoparticles (LNPs) have proven the most robust and safest option for in vivo applications. However, the mid- to long-term storage of mRNA-LNPs still requires sub-zero temperatures along the entire chain of supply, highlighting the need to develop alternatives to improve mRNA vaccine stability under non-freezing conditions to facilitate logistics and distribution. Lyophilization presents itself as an effective alternative to prolong the shelf life of mRNA vaccines under refrigeration conditions, although a complex optimization of the process parameters is needed to maintain the integrity of the mRNA-LNPs. Recent studies have demonstrated the feasibility of freeze-drying LNPs, showing that lyophilized mRNA-LNPs retain activity and stability. However, long-term functional data remain limited. Herein, we focus on obtaining an optimized lyophilizable mRNA-LNP formulation through the careful selection of an optimal buffer and cryoprotectant and by tuning freeze-drying parameters. The results demonstrate that our optimized lyophilization process maintains LNP characteristics and functionality for over a year at refrigerated temperatures, offering a viable solution to the logistical hurdles of mRNA vaccine distribution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Juan Martínez-Oliván
- CerTest Biotec S.L., 50840 San Mateo de Gállego, Spain; (T.A.); (A.T.-C.); (L.F.); (A.R.); (A.M.S.); (L.P.); (V.N.)
| | - Diego de Miguel
- CerTest Biotec S.L., 50840 San Mateo de Gállego, Spain; (T.A.); (A.T.-C.); (L.F.); (A.R.); (A.M.S.); (L.P.); (V.N.)
| |
Collapse
|
5
|
Tamming L, Duque D, Bavananthasivam J, Tran A, Lansdell C, Frahm G, Wu J, Fekete EE, Creskey M, Thulasi Raman SN, Laryea E, Zhang W, Pfeifle A, Gravel C, Stalker A, Hashem AM, Chen W, Stuible M, Durocher Y, Safronetz D, Cao J, Wang L, Sauve S, Rosu-Myles M, Zhang X, Johnston MJ, Li X. Lipid nanoparticle encapsulation of a Delta spike-CD40L DNA vaccine improves effectiveness against Omicron challenge in Syrian hamsters. Mol Ther Methods Clin Dev 2024; 32:101325. [PMID: 39309757 PMCID: PMC11416279 DOI: 10.1016/j.omtm.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The effectiveness of mRNA vaccines largely depends on their lipid nanoparticle (LNP) component. Herein, we investigate the effectiveness of DLin-KC2-DMA (KC2) and SM-102-based LNPs for the intramuscular delivery of a plasmid encoding B.1.617.2 (Delta) spike fused with CD40 ligand. LNP encapsulation of this CD40L-adjuvanted DNA vaccine with either LNP formulation drastically enhanced antibody responses, enabling neutralization of heterologous Omicron variants. The DNA-LNP formulations provided excellent protection from homologous challenge, reducing viral replication, and preventing histopathological changes in the pulmonary tissues. Moreover, the DNA-LNP vaccines maintained a high level of protection against heterologous Omicron BA.5 challenge despite a reduced neutralizing response. In addition, we observed that DNA-LNP vaccination led to the pulmonary downregulation of interferon signaling, interleukin-12 signaling, and macrophage response pathways following SARS-CoV-2 challenge, shedding some light on the mechanisms underlying the prevention of pulmonary injury. These results highlight the potential combination of molecular adjuvants with LNP-based vaccine delivery to induce greater and broader immune responses capable of preventing inflammatory damage and protecting against emerging variants. These findings could be informative for the future design of both DNA and mRNA vaccines.
Collapse
Affiliation(s)
- Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Diana Duque
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Jegarubee Bavananthasivam
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Anh Tran
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Casey Lansdell
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Grant Frahm
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Jianguo Wu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Emily E.F. Fekete
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Marybeth Creskey
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Emmanuel Laryea
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Andrew Stalker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - David Safronetz
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jingxin Cao
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Michael Rosu-Myles
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Michael J.W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Wang T, Yu T, Liu Q, Sung TC, Higuchi A. Lipid nanoparticle technology-mediated therapeutic gene manipulation in the eyes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102236. [PMID: 39005878 PMCID: PMC11245926 DOI: 10.1016/j.omtn.2024.102236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Millions of people worldwide have hereditary genetic disorders, trauma, infectious diseases, or cancer of the eyes, and many of these eye diseases lead to irreversible blindness, which is a major public health burden. The eye is a relatively small and immune-privileged organ. The use of nucleic acid-based drugs to manipulate malfunctioning genes that target the root of ocular diseases is regarded as a therapeutic approach with great promise. However, there are still some challenges for utilizing nucleic acid therapeutics in vivo because of certain unfavorable characteristics, such as instability, biological carrier-dependent cellular uptake, short pharmacokinetic profiles in vivo (RNA), and on-target and off-target side effects (DNA). The development of lipid nanoparticles (LNPs) as gene vehicles is revolutionary progress that has contributed the clinical application of nucleic acid therapeutics. LNPs have the capability to entrap and transport various genetic materials such as small interfering RNA, mRNA, DNA, and gene editing complexes. This opens up avenues for addressing ocular diseases through the suppression of pathogenic genes, the expression of therapeutic proteins, or the correction of genetic defects. Here, we delve into the cutting-edge LNP technology for ocular gene therapy, encompassing formulation designs, preclinical development, and clinical translation.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD, Jhongli, Taoyuan 32001, Taiwan
| |
Collapse
|
7
|
Wang T, Yu T, Li W, Liu Q, Sung TC, Higuchi A. Design and lyophilization of mRNA-encapsulating lipid nanoparticles. Int J Pharm 2024; 662:124514. [PMID: 39067550 DOI: 10.1016/j.ijpharm.2024.124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The remarkable success of two FDA-approved mRNA-encapsulating vaccines (Comirnaty® and Spikevax®) indicated the importance of lipid nanoparticles (LNPs) delivery systems in clinical use. Currently, mRNA-encapsulating LNPs (mRNA-LNPs) vaccines are stored as frozen liquid at low or ultralow temperatures. We designed lyophilized LNPs utilizing FDA-approved lipids to expedite the clinical application of our developed lyophilized mRNA-LNPs in the future. The key parameters of sucrose concentration and the selection and molar ratio of the four lipids in these vaccines were optimized for long-term stability with high transfection efficiency after lyophilization. We demonstrated that 8.7% sucrose is the optimal cryoprotectant concentration to maintain the transfection efficiency of lyophilized mRNA-LNPs. Optimal lipid formulations with high transfection efficiency both before and after lyophilization were screened using an orthogonal experimental design. The ratios of distearoylphosphatidylcholine (DSPC)/cholesterol and the selection of the ionizable and PEGylated lipids are the main factors influencing the long-term stability of mRNA-LNPs. Comparative mouse transfection experiments showed that the optimal lyophilized mRNA-LNPs maintained high mRNA expression after lyophilization, predominantly in the spleen or liver, with no expression in the kidneys or eyes. Our studies demonstrated the importance of the sucrose concentration and of the selection and molar ratio of the four lipids composing LNPs for maintaining mRNA-LNP stability under lyophilization and for long-term storage under mild conditions.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Wanqi Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, No. 270, Xueyuan Road, Wenzhou, Zhejiang 325027, China; Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda RD., Jhongli, Taoyuan 32001, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.
| |
Collapse
|
8
|
Zhang T, Zheng X, Lin R, Sun H, Wu H, Zhang J, Chen S, Li Y, Xu D, Gao J. Lyophilizable Stem Cell-Hybrid Liposome with Long-Term Stability and High Targeting Capacity. Adv Healthc Mater 2024; 13:e2400704. [PMID: 38781020 DOI: 10.1002/adhm.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The hybridization of liposome with stem cell membranes is an emerging technology to prepare the nanovehicle with the capacity of disease-responsive targeting. However, the long-term storage of this hybrid liposome has received limited attention in the literature, which is essential for its potential applicability in the clinic. Therefore, the preservation of long-term activity of stem cell-hybrid liposome using freeze-drying is investigated in the present study. Mesenchymal stem cell-hybrid liposome is synthesized and its feasibility for freeze-drying under different conditions is examined. Results reveal that pre-freezing the hybrid liposome at -20 °C in Tris buffer solution (pH 7.4) containing 10% trehalose can well preserve the liposomal structure for at least three months. Notably, major membrane proteins on the hybrid liposome are protected in this formulation and CXCR4-associated targeting capacity is maintained both in vitro and in vivo. Consequently, the hybrid liposome stored for three months demonstrates a comparable tumor inhibition as the fresh-prepared one. The present study provides the first insights into the long-term storage of stem cell hybrid liposome using lyophilization, which may make an important step forward in enhancing the long-term stability of these promising biomimetic nanovehicle and ease the logistics and the freeze-storage in the potential clinical applications.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Xixi Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaosheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Fan Y, Rigas D, Kim LJ, Chang FP, Zang N, McKee K, Kemball CC, Yu Z, Winkler P, Su WC, Jessen P, Hura GL, Chen T, Koenig SG, Nagapudi K, Leung D, Yen CW. Physicochemical and structural insights into lyophilized mRNA-LNP from lyoprotectant and buffer screenings. J Control Release 2024; 373:727-737. [PMID: 39059500 DOI: 10.1016/j.jconrel.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
The surge in RNA therapeutics has revolutionized treatments for infectious diseases like COVID-19 and shows the potential to expand into other therapeutic areas. However, the typical requirement for ultra-cold storage of mRNA-LNP formulations poses significant logistical challenges for global distribution. Lyophilization serves as a potential strategy to extend mRNA-LNP stability while eliminating the need for ultra-cold supply chain logistics. Although recent advancements have demonstrated the promise of lyophilization, the choice of lyoprotectant is predominately focused on sucrose, and there remains a gap in comprehensive evaluation and comparison of lyoprotectants and buffers. Here, we aim to systematically investigate the impact of a diverse range of excipients including oligosaccharides, polymers, amino acids, and various buffers, on the quality and performance of lyophilized mRNA-LNPs. From the screening of 45 mRNA-LNP formulations under various lyoprotectant and buffer conditions for lyophilization, we identified previously unexplored formulation compositions, e.g., polyvinylpyrrolidone (PVP) in Tris or acetate buffers, as promising alternatives to the commonly used oligosaccharides to maintain the physicochemical stability of lyophilized mRNA-LNPs. Further, we delved into how physicochemical and structural properties influence the functionality of lyophilized mRNA-LNPs. Leveraging high-throughput small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM), we showed that there is complex interplay between mRNA-LNP structural features and cellular translation efficacy. We also assessed innate immune responses of the screened mRNA-LNPs in human peripheral blood mononuclear cells (PBMCs), and showed minimal alterations of cytokine secretion profiles induced by lyophilized formulations. Our results provide valuable insights into the structure-activity relationship of lyophilized formulations of mRNA-LNP therapeutics, paving the way for rational design of these formulations. This work creates a foundation for a comprehensive understanding of mRNA-LNP properties and in vitro performance change resulting from lyophilization.
Collapse
Affiliation(s)
- Yuchen Fan
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Diamanda Rigas
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lee Joon Kim
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94020, USA
| | - Feng-Peng Chang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nanzhi Zang
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kristina McKee
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christopher C Kemball
- Biochemical and Cellular Pharmacology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zhixin Yu
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Pascal Winkler
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wan-Chih Su
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Pierce Jessen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, CA 94020, USA; Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tao Chen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan G Koenig
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dennis Leung
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chun-Wan Yen
- Synthetic Molecule Pharmaceutical Sciences, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
10
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
11
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
12
|
Hashiba K, Taguchi M, Sakamoto S, Otsu A, Maeda Y, Ebe H, Okazaki A, Harashima H, Sato Y. Overcoming thermostability challenges in mRNA-lipid nanoparticle systems with piperidine-based ionizable lipids. Commun Biol 2024; 7:556. [PMID: 38730092 PMCID: PMC11087515 DOI: 10.1038/s42003-024-06235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as promising platforms for efficient in vivo mRNA delivery owing to advancements in ionizable lipids. However, maintaining the thermostability of mRNA/LNP systems remains challenging. While the importance of only a small amount of lipid impurities on mRNA inactivation is clear, a fundamental solution has not yet been proposed. In this study, we investigate an approach to limit the generation of aldehyde impurities that react with mRNA nucleosides through the chemical engineering of lipids. We demonstrated that piperidine-based lipids improve the long-term storage stability of mRNA/LNPs at refrigeration temperature as a liquid formulation. High-performance liquid chromatography analysis and additional lipid synthesis revealed that amine moieties of ionizable lipids play a vital role in limiting reactive aldehyde generation, mRNA-lipid adduct formation, and loss of mRNA function during mRNA/LNP storage. These findings highlight the importance of lipid design and help enhance the shelf-life of mRNA/LNP systems.
Collapse
Affiliation(s)
- Kazuki Hashiba
- Nucleic Acid Medicine Business Division, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan.
| | - Masamitsu Taguchi
- Nucleic Acid Medicine Business Division, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan
| | - Sachiko Sakamoto
- Nucleic Acid Medicine Business Division, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan
| | - Ayaka Otsu
- Nucleic Acid Medicine Business Division, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan
| | - Yoshiki Maeda
- Nucleic Acid Medicine Business Division, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan
| | - Hirofumi Ebe
- Nucleic Acid Medicine Business Division, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan
| | - Arimichi Okazaki
- Nucleic Acid Medicine Business Division, Nitto Denko Corporation, 1-1-2, Shimohozumi, Ibaraki, Osaka, 567-8680, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
13
|
Thanaskody K, Natashah FN, Nordin F, Kamarul Zaman WSW, Tye GJ. Designing molecules: directing stem cell differentiation. Front Bioeng Biotechnol 2024; 12:1396405. [PMID: 38803845 PMCID: PMC11129639 DOI: 10.3389/fbioe.2024.1396405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Stem cells have been widely applied in regenerative and therapeutic medicine for their unique regenerative properties. Although much research has shown their potential, it remains tricky in directing stem cell differentiation. The advancement of genetic and therapeutic technologies, however, has facilitated this issue through development of design molecules. These molecules are designed to overcome the drawbacks previously faced, such as unexpected differentiation outcomes and insufficient migration of endogenous or exogenous MSCs. Here, we introduced aptamer, bacteriophage, and biological vectors as design molecules and described their characteristics. The methods of designing/developing discussed include various Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedures, in silico approaches, and non-SELEX methods for aptamers, and genetic engineering methods such as homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), Bacteriophage Recombineering with Infectious Particles (BRIP), and genome rebooting for bacteriophage. For biological vectors, methods such as alternate splicing, multiple promoters, internal ribosomal entry site, CRISPR-Cas9 system and Cre recombinase mediated recombination were used to design viral vectors, while non-viral vectors like exosomes are generated through parental cell-based direct engineering. Besides that, we also discussed the pros and cons, and applications of each design molecule in directing stem cell differentiation to illustrate their great potential in stem cells research. Finally, we highlighted some safety and efficacy concerns to be considered for future studies.
Collapse
Affiliation(s)
- Kalaiselvaan Thanaskody
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fajriyah Nur Natashah
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Wan Safwani Wan Kamarul Zaman
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Innovation in Medical Engineering (CIME), Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Malaysia
| |
Collapse
|
14
|
Cooper CG, Kafetzis KN, Patabendige A, Tagalakis AD. Blood-brain barrier disruption in dementia: Nano-solutions as new treatment options. Eur J Neurosci 2024; 59:1359-1385. [PMID: 38154805 DOI: 10.1111/ejn.16229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/30/2023]
Abstract
Candidate drugs targeting the central nervous system (CNS) demonstrate extremely low clinical success rates, with more than 98% of potential treatments being discontinued due to poor blood-brain barrier (BBB) permeability. Neurological conditions were shown to be the second leading cause of death globally in 2016, with the number of people currently affected by neurological disorders increasing rapidly. This increasing trend, along with an inability to develop BBB permeating drugs, is presenting a major hurdle in the treatment of CNS-related disorders, like dementia. To overcome this, it is necessary to understand the structure and function of the BBB, including the transport of molecules across its interface in both healthy and pathological conditions. The use of CNS drug carriers is rapidly gaining popularity in CNS research due to their ability to target BBB transport systems. Further research and development of drug delivery vehicles could provide essential information that can be used to develop novel treatments for neurological conditions. This review discusses the BBB and its transport systems and evaluates the potential of using nanoparticle-based delivery systems as drug carriers for CNS disease with a focus on dementia.
Collapse
Affiliation(s)
| | | | - Adjanie Patabendige
- Department of Biology, Edge Hill University, Ormskirk, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
| | - Aristides D Tagalakis
- Department of Biology, Edge Hill University, Ormskirk, UK
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
15
|
Wan J, Wang Z, Wang L, Wu L, Zhang C, Zhou M, Fu ZF, Zhao L. Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio 2024; 15:e0177523. [PMID: 38078742 PMCID: PMC10790773 DOI: 10.1128/mbio.01775-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, the inherent instability of mRNA and the nonspecificity of lipid nanoparticle-encapsulated (LNP) delivery systems result in the need for cold storage and a relatively short-duration immune response to mRNA vaccines. Herein, we develop a novel vaccine in the form of circRNAs encapsulated in LNPs, and the circular structure of the circRNAs enhances their stability. Lyophilization is considered the most effective method for the long-term preservation of RNA vaccines. However, this process may result in irreversible damage to the nanoparticles, particularly the potential disruption of targeting modifications on LNPs. During the selection of lymph node-targeting ligands, we found that LNPs modified with mannose maintained their physical properties almost unchanged after lyophilization. Additionally, the targeting specificity and immunogenicity remained unaffected. In contrast, even with the addition of cryoprotectants such as sucrose, the physical properties of LNPs were impaired, leading to an obvious decrease in immunogenicity. This may be attributed to the protective role of mannose on the surface of LNPs during lyophilization. Freshly prepared and lyophilized mLNP-circRNA vaccines elicited comparable immune responses in both the rabies virus model and the SARS-CoV-2 model. Our data demonstrated that mLNP-circRNA vaccines elicit robust immune responses while improving stability after lyophilization, with no compromise in tissue targeting specificity. Therefore, mannose-modified LNP-circRNA vaccines represent a promising vaccine design strategy.
Collapse
Affiliation(s)
- Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Zhang W, Pfeifle A, Lansdell C, Frahm G, Cecillon J, Tamming L, Gravel C, Gao J, Thulasi Raman SN, Wang L, Sauve S, Rosu-Myles M, Li X, Johnston MJW. The Expression Kinetics and Immunogenicity of Lipid Nanoparticles Delivering Plasmid DNA and mRNA in Mice. Vaccines (Basel) 2023; 11:1580. [PMID: 37896985 PMCID: PMC10610642 DOI: 10.3390/vaccines11101580] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, lipid nanoparticles (LNPs) have emerged as a revolutionary technology for vaccine delivery. LNPs serve as an integral component of mRNA vaccines by protecting and transporting the mRNA payload into host cells. Despite their prominence in mRNA vaccines, there remains a notable gap in our understanding of the potential application of LNPs for the delivery of DNA vaccines. In this study, we sought to investigate the suitability of leading LNP formulations for the delivery of plasmid DNA (pDNA). In addition, we aimed to explore key differences in the properties of popular LNP formulations when delivering either mRNA or DNA. To address these questions, we compared three leading LNP formulations encapsulating mRNA- or pDNA-encoding firefly luciferase based on potency, expression kinetics, biodistribution, and immunogenicity. Following intramuscular injection in mice, we determined that RNA-LNPs formulated with either SM-102 or ALC-0315 lipids were the most potent (all p-values < 0.01) and immunogenic (all p-values < 0.05), while DNA-LNPs formulated with SM-102 or ALC-0315 demonstrated the longest duration of signal. Additionally, all LNP formulations were found to induce expression in the liver that was proportional to the signal at the injection site (SM102: r = 0.8787, p < 0.0001; ALC0315: r = 0.9012, p < 0.0001; KC2: r = 0.9343, p < 0.0001). Overall, this study provides important insights into the differences between leading LNP formulations and their applicability to DNA- and RNA-based vaccinations.
Collapse
Affiliation(s)
- Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Casey Lansdell
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Grant Frahm
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Jonathon Cecillon
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Jun Gao
- Centre for Vaccines, Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
| | - Michael Rosu-Myles
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON K1A 0K9, Canada; (W.Z.); (A.P.)
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
17
|
McKenzie RE, Minnell JJ, Ganley M, Painter GF, Draper SL. mRNA Synthesis and Encapsulation in Ionizable Lipid Nanoparticles. Curr Protoc 2023; 3:e898. [PMID: 37747354 DOI: 10.1002/cpz1.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
mRNA vaccines have recently generated significant interest due to their success during the COVID-19 pandemic. Their success is due to advances in mRNA design and encapsulation into ionizable lipid nanoparticles (iLNPs). This has highlighted the potential for the use of mRNA-iLNPs in other settings such as cancer, gene therapy, or vaccines for different infectious diseases. Here, we describe the production of mRNA-iLNPs using commercially available reagents that are suitable for use as vaccines and therapeutics. This article contains detailed protocols for the synthesis of mRNA by in vitro transcription with enzymatic capping and tailing and the encapsulation of the mRNA into iLNPs using the ionizable lipid DLin-MC3-DMA. DLin-MC3-DMA is often used as a benchmark for new formulations and provides an efficient delivery vehicle for screening mRNA design. The protocol also describes how the formulation can be adapted to other lipids. Finally, a stepwise methodology is presented for the characterization and quality control of mRNA-iLNPs, including measuring mRNA concentration and encapsulation efficiency, particle size, and zeta potential. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synthesis of mRNA by in vitro transcription and enzymatic capping and tailing Basic Protocol 2: Encapsulation of mRNA into ionizable lipid nanoparticles Alternate Protocol: Small-scale encapsulation of mRNA using preformed vesicles Basic Protocol 3: Characterization and quality control of mRNA ionizable lipid nanoparticles.
Collapse
Affiliation(s)
- Rebecca Elizabeth McKenzie
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Jordan James Minnell
- Malaghan Institute of Medical Research, Wellington, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Mitch Ganley
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Gavin Frank Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sarah Louise Draper
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|