1
|
Sun Y, Liu Y. Oriented Metal-Organic Framework Membranes for Molecular Separations. Chemistry 2024; 30:e202304162. [PMID: 38695867 DOI: 10.1002/chem.202304162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Indexed: 06/15/2024]
Abstract
Metal-organic framework (MOF) membranes, which are recognized as state-of-the-art platforms applied in various separation processes, have attracted widespread attention. Nonetheless, to overcome the trade-off between permeability and selectivity, which is crucial for achieving efficient separation, it is important to rationally design and manipulate MOF membrane structure. Given remarkable advances in the past decade, a timely summary of recent advancement in this field has become indispensable. This review introduces major strategies for fabricating oriented MOF membranes, including in situ growth, contra-diffusion method, interface-assisted approach, and laminated nanosheet assembly. New insights into their updated progress and potential are elucidated. Of particular note, recent development and emerging applications of oriented MOF membranes, illustrating their potential to address environmental and energy challenges, are highlighted. Finally, remaining challenges facing their bath production and practical applications are discussed.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
- Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, 116024, China
- Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Tian X, Li F, Tang Z, Wang S, Weng K, Liu D, Lu S, Liu W, Fu Z, Li W, Qiu H, Tu M, Zhang H, Li J. Crosslinking-induced patterning of MOFs by direct photo- and electron-beam lithography. Nat Commun 2024; 15:2920. [PMID: 38575569 PMCID: PMC10995132 DOI: 10.1038/s41467-024-47293-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) with diverse chemistry, structures, and properties have emerged as appealing materials for miniaturized solid-state devices. The incorporation of MOF films in these devices, such as the integrated microelectronics and nanophotonics, requires robust patterning methods. However, existing MOF patterning methods suffer from some combinations of limited material adaptability, compromised patterning resolution and scalability, and degraded properties. Here we report a universal, crosslinking-induced patterning approach for various MOFs, termed as CLIP-MOF. Via resist-free, direct photo- and electron-beam (e-beam) lithography, the ligand crosslinking chemistry leads to drastically reduced solubility of colloidal MOFs, permitting selective removal of unexposed MOF films with developer solvents. This enables scalable, micro-/nanoscale (≈70 nm resolution), and multimaterial patterning of MOFs on large-area, rigid or flexible substrates. Patterned MOF films preserve their crystallinity, porosity, and other properties tailored for targeted applications, such as diffractive gas sensors and electrochromic pixels. The combined features of CLIP-MOF create more possibilities in the system-level integration of MOFs in various electronic, photonic, and biomedical devices.
Collapse
Affiliation(s)
- Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Fu Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenyuan Tang
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wangyu Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhong Fu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Min Tu
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
- Beijing Institute of Life Science and Technology, Beijing, 102206, China
- Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
4
|
Song M, Jia J, Li P, Peng J, Pang X, Qi M, Xu Y, Chen L, Chi L, Lu G. Ligand-Oxidation-Based Anodic Synthesis of Oriented Films of Conductive M-Catecholate Metal-Organic Frameworks with Controllable Thickness. J Am Chem Soc 2023; 145:25570-25578. [PMID: 37967022 DOI: 10.1021/jacs.3c05606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Effective control over the crystallization of metal-organic framework (MOF) films is of great importance not only for the performance study and optimization in related applications but also for the fundamental understanding of the involved reticular chemistry. Featuring many technological advantages, electrochemical synthesis has been extensively reported for many MOF materials but is still challenged by the production of dense oriented films with a large-range tuning of thickness. Here, we report a ligand-oxidation-based anodic strategy capable of synthesizing oriented films of two-dimensional (2D) and three-dimensional (3D) conductive M-catecholate MOFs (2D Cu3(HHTP)2, 2D Zn3(HHTP)2, 2D Co3(HHTP)2, 3D YbHHTP, and 2D Cu2TBA) with tunable thicknesses up to tens of micrometers on commonly used electrodes. This anodic strategy relies on the oxidation of redox-active catechol ligands and follows a stepwise electrochemical-chemical reaction mechanism to achieve effective control over crystallizing M-catecholate MOFs into films oriented in the [001] direction. Benefiting from the electrically conductive nature, Cu3(HHTP)2 films could be thickened at a steady rate (17.4 nm·min-1) from ∼90 nm to 10.7 μm via a growth mechanism differing from those adopted in previous electrochemical synthesis of dense MOF films with limited thickness due to the self-inhibition effect. This anodic synthesis could be further combined with a templating strategy to fabricate not only films with well-defined 2D features in sizes from micrometers to millimeters but also high aspect ratio mesostructures, such as nanorods, of Cu3(HHTP)2.
Collapse
Affiliation(s)
- Min Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jingjing Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Pingping Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Jiahao Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Xinghan Pang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Meiling Qi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yulong Xu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Guang Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Jo YM, Jo YK, Lee JH, Jang HW, Hwang IS, Yoo DJ. MOF-Based Chemiresistive Gas Sensors: Toward New Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206842. [PMID: 35947765 DOI: 10.1002/adma.202206842] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The sensing performances of gas sensors must be improved and diversified to enhance quality of life by ensuring health, safety, and convenience. Metal-organic frameworks (MOFs), which exhibit an extremely high surface area, abundant porosity, and unique surface chemistry, provide a promising framework for facilitating gas-sensor innovations. Enhanced understanding of conduction mechanisms of MOFs has facilitated their use as gas-sensing materials, and various types of MOFs have been developed by examining the compositional and morphological dependences and implementing catalyst incorporation and light activation. Owing to their inherent separation and absorption properties and catalytic activity, MOFs are applied as molecular sieves, absorptive filtering layers, and heterogeneous catalysts. In addition, oxide- or carbon-based sensing materials with complex structures or catalytic composites can be derived by the appropriate post-treatment of MOFs. This review discusses the effective techniques to design optimal MOFs, in terms of computational screening and synthesis methods. Moreover, the mechanisms through which the distinctive functionalities of MOFs as sensing materials, heterostructures, and derivatives can be incorporated in gas-sensor applications are presented.
Collapse
Affiliation(s)
- Young-Moo Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yong Kun Jo
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jong-Heun Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In-Sung Hwang
- Sentech Gmi Co. Ltd, Seoul, 07548, Republic of Korea
| | - Do Joon Yoo
- SentechKorea Co. Ltd, Paju, 10863, Republic of Korea
| |
Collapse
|
6
|
Guo Q, Ghalei B, Qin D, Mizutani D, Joko I, Al-Aziz H, Higashino T, Ito MM, Imahori H, Sivaniah E. Graphene oxide-fullerene nanocomposite laminates for efficient hydrogen purification. Chem Commun (Camb) 2023; 59:10012-10015. [PMID: 37523152 DOI: 10.1039/d3cc02175k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Graphene oxide (GO) with its unique two-dimensional structure offers an emerging platform for designing advanced gas separation membranes that allow for highly selective transport of hydrogen molecules. Nevertheless, further tuning of the interlayer spacing of GO laminates and its effect on membrane separation efficiency remains to be explored. Here, positively charged fullerene C60 derivatives are electrostatically bonded to the surface of GO sheets in order to manipulate the interlayer spacing between GO nanolaminates. The as-prepared GO-C60 membranes have a high H2 permeance of 3370 GPU (gas permeance units) and an H2/CO2 selectivity of 59. The gas separation selectivity is almost twice that of flat GO membranes because of the role of fullerene.
Collapse
Affiliation(s)
- Qi Guo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Behnam Ghalei
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Detao Qin
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Daizu Mizutani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Ikumi Joko
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Habib Al-Aziz
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Tomohiro Higashino
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Masateru M Ito
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Kyoto, 606-8316, Japan
| | - Easan Sivaniah
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Wu T, Chen W, Wu M, Zhang Y. Membrane-based purification and recovery of phosphate and antibiotics by two-dimensional zeolitic nanoflakes. RSC Adv 2023; 13:18799-18811. [PMID: 37346951 PMCID: PMC10281495 DOI: 10.1039/d3ra02933f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023] Open
Abstract
The pervasive presence of persistent contaminants in water resources, including phosphate and antibiotics, has attracted significant attention due to their potential adverse effects on ecosystems and human health. Adsorption membranes packed with metal-organic frameworks (MOFs) have been proposed as a potential solution to this challenge due to their high surface area to volume ratio, and the tailored functionality they can provide for selective purification. However, devising a straightforward method to enhance the stability of MOF membranes on polymer supports and manipulate their surface morphology remains challenging. In this study, we present a facile solution immersion technique to fabricate a ZIF-L adsorption membrane on commercial supports by leveraging the self-polymerization characteristics of dopamine. The simple coating methodology provides a polydopamine-lined interface that regulates the ZIF-L heteroepitaxial growth, along with tailored nanoflake morphology. Compared with crystals prepared in bulk solution, the sorbents grown on the membrane exhibit a higher saturation capacity of 248 mg g-1 of phosphate (∼80 mg phosphorus per g sorbent) and 196 mg g-1 for tetracycline in static adsorption experiments at 30 °C. Additionally, the membranes are capable of selectively removing 99.5% of the phosphate in simulant solutions comprising competitive background ions in various concentrations, and efficiently removing tetracycline. The result from the static adsorption experiments directly translates to a flow-through process, showcasing the utility of a composite membrane with a 3 μm thick active layer in practical adsorption applications. The facile solution immersion fabrication protocol introduced in this work may offer a more efficient paradigm to harness the potential of MOF composite membranes in selective adsorption and resource recovery applications.
Collapse
Affiliation(s)
- Tong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Yizhou Zhang
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
8
|
Khalil IE, Fonseca J, Reithofer MR, Eder T, Chin JM. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
9
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Moghaddam FM, Jarahiyan A, Haris MH, Pazoki PY, Aghamiri B. High catalytic performance of CoCuFe2O4/ZIF-8(Zn) NanoCatalyst for Synthesis of new Benzimidazole Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Tocco D, Chelazzi D, Mastrangelo R, Casini A, Salis A, Fratini E, Baglioni P. Conformational changes and location of BSA upon immobilization on zeolitic imidazolate frameworks. J Colloid Interface Sci 2023; 641:685-694. [PMID: 36965340 DOI: 10.1016/j.jcis.2023.03.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
The location and the conformational changes of proteins/enzymes immobilized within Metal Organic Frameworks (MOFs) are still poorly investigated and understood. Bovine serum albumin (BSA), used as a model protein, was immobilized within two different zeolitic imidazolate frameworks (ZIF-zni and ZIF-8). Pristine ZIFs and BSA@ZIFs were characterized by X-ray diffraction, small-angle X-ray scattering, scanning electron microscopy, confocal laser scanning microscopy, thermogravimetric analysis, micro-FTIR and confocal Raman spectroscopy to characterize MOFs structure and the protein location in the materials. Moreover, the secondary structure and conformation changes of BSA after immobilization on both ZIFs were studied with FTIR. BSA is located both in the inner and on the outer surface of MOFs, forming domains that span from the micro- to the nanoscale. BSA crystallinity (β-sheets + α-helices) increases up to 25 % and 40 % due to immobilization within ZIF-zni and ZIF-8, respectively, with a consequent reduction of β-turns.
Collapse
Affiliation(s)
- Davide Tocco
- Department of Chemical and Geological Sciences, University of Cagliari & CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy; Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Rosangela Mastrangelo
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Andrea Casini
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| | - Andrea Salis
- Department of Chemical and Geological Sciences, University of Cagliari & CSGI, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy.
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy.
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff", University of Florence & CSGI, via della Lastruccia 3, Sesto Fiorentino (FI) I-50019, Italy
| |
Collapse
|
12
|
Timofeeva M, Lukoyanov I, Kalashnikova G, Panchenko V, Shefer К, Yu Gerasimov E, Mel'gunov M. Synthesis of glycidol via transesterification glycerol with dimethylcarbonate in the presence of composites based on a layered titanosilicate AM-4 and ZIF-8. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
13
|
Sun Y, Yan J, Gao Y, Ji T, Chen S, Wang C, Lu P, Li Y, Liu Y. Fabrication of Highly Oriented Ultrathin Zirconium Metal-Organic Framework Membrane from Nanosheets towards Unprecedented Gas Separation. Angew Chem Int Ed Engl 2023; 62:e202216697. [PMID: 36790362 DOI: 10.1002/anie.202216697] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Concurrent regulation of crystallographic orientation and thickness of zirconium metal-organic framework (Zr-MOF) membranes is challenging but promising for their performance enhancement. In this study, we pioneered the fabrication of uniform triangular-shaped, 40 nm thick UiO-66 nanosheet (NS) seeds by employing an anisotropic etching strategy. Through innovating confined counter-diffusion-assisted epitaxial growth, highly (111)-oriented 165 nm-thick UiO-66 membrane was prepared. The significant reduction in thickness and diffusion barrier in the framework endowed the membrane with unprecedented CO2 permeance (2070 GPU) as well as high CO2 /N2 selectivity (35.4), which surpassed the performance limits of state-of-the-art polycrystalline MOF membranes. In addition, highly (111)-oriented 180 nm-thick NH2 -UiO-66 membrane showing superb H2 /CO2 separation performance with H2 permeance of 1230 GPU and H2 /CO2 selectivity of 41.3, was prepared with the above synthetic procedure.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Yunlei Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China.,School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China.,Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
14
|
Narayanan M, Singh Chauhan NP, Perumal P. A highly efficient metal oxide incorporated metal organic framework [Nd 2O 3-MIL(Fe)-88A] for the electrochemical detection of dichlorvos. RSC Adv 2023; 13:5565-5575. [PMID: 36798612 PMCID: PMC9926162 DOI: 10.1039/d2ra07877e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
In this study, a Nd2O3@MIL(Fe)-88A composite was prepared through a hydrothermal method and used to detect dichlorvos. The XRD result demonstrated that the prepared sensor is highly crystalline in nature. The affinity of metal oxide and MIL(Fe)-88A could be utilised to overcome low stability and sensitivity owing to their synergistic and electronic effects. Differential pulse voltammetry (DPV) exhibits the electrocatalytic behaviour of Nd2O3@MIL(Fe)-88A; it functions at a lower potential at -0.5 to 0.8 V and has a wide linear range of 1-250 nM. It shows a very low detection limit of 0.92 nM with good sensitivity (4.42 mA nM-1) and selectivity. The developed Nd2O3@MIL(Fe)-88A sensor was successfully applied to detect dichlorvos in real analysis. The recovery range calculated for cabbage and orange extracts was 96-97% and 99.5-103.4%, respectively, and RSD% calculated for cabbage and orange extracts was from 1.40 to 3.39% and from 0.64 to 2.26%, respectively.
Collapse
Affiliation(s)
- Mariyammal Narayanan
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India +91 9688538842
| | | | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur 603 203 Tamil Nadu India +91 9688538842
| |
Collapse
|
15
|
UiO-66-(COONa)2 membrane with programmable ionic channels for lithium ion-selective transport. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Liu H, Cong S, Yan X, Wang X, Gao A, Wang Z, Liu X. Honeycomb-like Hofmann-type metal-organic framework membranes for C2H2/CO2 and H2/CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Wang J, Wang L, He M, Wang X, Lv Y, Huang D, Wang J, Miao R, Nie L, Hao J, Wang J. Recent advances in thin film nanocomposite membranes containing an interlayer (TFNi): fabrication, applications, characterization and perspectives. RSC Adv 2022; 12:34245-34267. [PMID: 36545600 PMCID: PMC9706687 DOI: 10.1039/d2ra06304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Polyamide (PA) reverse osmosis and nanofiltration membranes have been applied widely for desalination and wastewater reuse in the last 5-10 years. A novel thin-film nanocomposite (TFN) membrane featuring a nanomaterial interlayer (TFNi) has emerged in recent years and attracted the attention of researchers. The novel TFNi membranes are prepared from different nanomaterials and with different loading methods. The choices of intercalated nanomaterials, substrate layers and loading methods are based on the object to be treated. The introduction of nanostructured interlayers improves the formation of the PA separation layer and provides ultrafast water molecule transport channels. In this manner, the TFNi membrane mitigates the trade-off between permeability and selectivity reported for polyamide composite membranes. In addition, TFNi membranes enhance the removal of metal ions and organics and the recovery of organic solvents during nanofiltration and reverse osmosis, which is critical for environmental ecology and industrial applications. This review provides statistics and analyzes the developments in TFNi membranes over the last 5-10 years. The latest research results are reviewed, including the selection of the substrate and interlayer materials, preparation methods, specific application areas and more advanced characterization methods. Mechanistic aspects are analyzed to encourage future research, and potential mechanisms for industrialization are discussed.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lei Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Miaolu He
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Xudong Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Yongtao Lv
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Danxi Huang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jin Wang
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Rui Miao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Lujie Nie
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jiajin Hao
- Research Institute of Membrane Separation Technology of Shaanxi Province, Key Laboratory of Membrane Separation of Shaanxi Province, Key Laboratory of Northwest Water Resources, Environmental and Ecology, Ministry of Education, Key Laboratory of Environmental Engineering No. 13 Yan Ta Road Shaanxi Province Xi'an 710055 China
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology No. 13 Yan Ta Road Xi'an 710055 China
| | - Jianmin Wang
- Zhongfan International Engineering Design Co. Lian Hu Road, No. 6 Courtyard Xi'an 710082 China
| |
Collapse
|
18
|
Yang W, Yang X, Wang Y, Hou R, Gong Q, Pan Y. Pervaporation separation of C6 alkane isomers by Al-bttotb membrane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Xu LH, Li SH, Mao H, Li Y, Zhang AS, Wang S, Liu WM, Lv J, Wang T, Cai WW, Sang L, Xie WW, Pei C, Li ZZ, Feng YN, Zhao ZP. Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation. Science 2022; 378:308-313. [PMID: 36264816 DOI: 10.1126/science.abo5680] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-performance pervaporation membranes have potential in industrial separation applications, but overcoming the permeability-selectivity trade-off is a challenge. We report a strategy to create highly flexible metal-organic framework nanosheet (MOF-NS) membranes with a faveolate structure on polymer substrates for alcohol-water separation. The controlled growth followed by a surface-coating method effectively produced flexible and defect-free superhydrophobic MOF-NS membranes. The reversible deformation of the flexible MOF-NS and the vertical interlamellar pathways were captured with electron microscopy. Molecular simulations confirmed the structure and revealed transport mechanism. The ultrafast transport channels in MOF-NS exhibited an ultrahigh flux and a separation factor of 8.9 in the pervaporation of 5 weight % ethanol-water at 40°C, which can be used for biofuel recovery. MOF-NS and polydimethylsiloxane synergistically contribute to the separation performance.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Heng Mao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ao-Shuai Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Min Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Jing Lv
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wei-Wei Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Le Sang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Wen-Wen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Chan Pei
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zheng-Zheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Ying-Nan Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P.R. China
| |
Collapse
|
20
|
Xu M, Cai P, Meng SS, Yang Y, Zheng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal-Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022; 61:e202207786. [PMID: 35723492 DOI: 10.1002/anie.202207786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Precise shaping of metal-organic frameworks (MOFs) is significant in both fundamental coordination chemistry and practical applications, such as catalysis, separation, and biomedicine. Herein, we demonstrated a linker scissoring strategy for precisely shaping MOFs through surface conformational pairing. In this strategy, the bidentate linkers which were designed according to the original tetratopic ligands and the coordination environment of MOF surfaces, were utilized as the covering agents. The shape of these covering agents and the surface conformation of metals onto MOFs restricted them to coordinate on specific MOF facets thus precisely controlling the shape of the MOFs. Different shapes of PCN-608 from nanoplate (PCN-NP) to nanorod (PCN-NR) have been targeted by adding different bidentate linkers. The universality of this strategy was demonstrated by controlling the shapes of the NU-MOFs from nanoplate to nanorod. This strategy provides a new guiding principle to synthesize MOF nanocrystals with controlled shapes.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qing-Hua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
21
|
Cheng Y, Datta SJ, Zhou S, Jia J, Shekhah O, Eddaoudi M. Advances in metal-organic framework-based membranes. Chem Soc Rev 2022; 51:8300-8350. [PMID: 36070414 DOI: 10.1039/d2cs00031h] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Membrane-based separations have garnered considerable attention owing to their high energy efficiency, low capital cost, small carbon footprint, and continuous operation mode. As a class of highly porous crystalline materials with well-defined pore systems and rich chemical functionalities, metal-organic frameworks (MOFs) have demonstrated great potential as promising membrane materials over the past few years. Different types of MOF-based membranes, including polycrystalline membranes, mixed matrix membranes (MMMs), and nanosheet-based membranes, have been developed for diversified applications with remarkable separation performances. In this comprehensive review, we first discuss the general classification of membranes and outline the historical development of MOF-based membranes. Subsequently, particular attention is devoted to design strategies for MOF-based membranes, along with detailed discussions on the latest advances on these membranes for various gas and liquid separation processes. Finally, challenges and future opportunities for the industrial implementation of these membranes are identified and outlined with the intent of providing insightful guidance on the design and fabrication of high-performance membranes in the future.
Collapse
Affiliation(s)
- Youdong Cheng
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Shuvo Jit Datta
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Sheng Zhou
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Jiangtao Jia
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Osama Shekhah
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Mohamed Eddaoudi
- Functional Materials, Design, Discovery and Development (FMD3), Advanced Membrane & Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
22
|
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Sun Y, Liu L, Ji T, Yan J, Liu Y. Complete twin suppression in oriented NH 2-MIL-125 film via facile coordination modulation. Chem Commun (Camb) 2022; 58:8822-8825. [PMID: 35848496 DOI: 10.1039/d2cc03028d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complete suppression of twin crystal formation in oriented metal-organic framework (MOF) film remains a great challenge. In this study, we successfully avoided the twin generation in c-oriented NH2-MIL-125 film through simple competitive metal ion-based coordination modulation. Simultaneously, relevant mechanism associated with twin suppression was elucidated.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Liangliang Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China.
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian, 116024, China. .,Dalian Key Laboratory of Membrane Materials and Membrane Processes Dalian University of Technology Dalian, 116024, China
| |
Collapse
|
24
|
Controllable synthesis of nickel doped hierarchical zinc MOF with tunable morphologies for enhanced supercapability. J Colloid Interface Sci 2022; 618:375-385. [DOI: 10.1016/j.jcis.2022.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022]
|
25
|
Miao P, Zhang L, Zhang J, Ma M, Du Y, Gan J, Yang J. Metal organic framework- modified monolithic column immobilized with pepsin for enantioseparation in capillary electrochromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123306. [DOI: 10.1016/j.jchromb.2022.123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 01/19/2023]
|
26
|
Zhang Y, Liu H, Gao F, Tan X, Cai Y, Hu B, Huang Q, Fang M, Wang X. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. ENERGYCHEM 2022; 4:100078. [DOI: doi.org/10.1016/j.enchem.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
27
|
Xu M, Cai P, Meng SS, Yang Y, Zeng DS, Zhang QH, Gu L, Zhou HC, Gu ZY. Linker Scissoring Strategy Enables Precise Shaping of Metal‐Organic Frameworks for Chromatographic Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming Xu
- Nanjing Normal University chemistry CHINA
| | - Peiyu Cai
- Texas A&M University chemistry UNITED STATES
| | | | - Yihao Yang
- Texas A&M University chemistry UNITED STATES
| | | | | | - Lin Gu
- Chinese Academy of Sciences physics CHINA
| | - Hong-Cai Zhou
- Texas A&M University College Station: Texas A&M University Department of Chemistry Corner of Ross and Spence StreetsP O Box 30012 77842-3012 College Station UNITED STATES
| | | |
Collapse
|
28
|
Yang Z, Ying Y, Pu Y, Wang D, Yang H, Zhao D. Poly(ionic liquid)-Functionalized UiO-66-(OH) 2: Improved Interfacial Compatibility and Separation Ability in Mixed Matrix Membranes for CO 2 Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunchuan Pu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Dechao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
29
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
30
|
Bimetallic UTSA-16 (Zn, X; X=Mg, Mn, Cu) metal organic framework developed by a microwave method with improved CO2capture performances. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Fabrication of MIL-96 nanosheets and relevant c-oriented ultrathin membrane through solvent optimization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Xiang X, Chen D, Li N, Xu Q, Li H, He J, Lu J. Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
33
|
Coliaie P, Bhawnani RR, Prajapati A, Ali R, Verma P, Giri G, Kelkar MS, Korde A, Langston M, Liu C, Nazemifard N, Patience D, Rosenbaum T, Skliar D, Nere NK, Singh MR. Patterned microfluidic devices for rapid screening of metal-organic frameworks yield insights into polymorphism and non-monotonic growth. LAB ON A CHIP 2022; 22:211-224. [PMID: 34989369 DOI: 10.1039/d1lc01086g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are porous crystalline structures that are composed of coordinated metal ligands and organic linkers. Due to their high porosity, ultra-high surface-to-volume ratio, and chemical and structural flexibility, MOFs have numerous applications. MOFs are primarily synthesized in batch reactors under harsh conditions and long synthesis times. The continuous depletion of metal ligands and linkers in batch processes affects the kinetics of the oligomerization reaction and, hence, their nucleation and growth rates. Therefore, the existing screening systems that rely on batch processes, such as microtiter plates and droplet-based microfluidics, do not provide reliable nucleation and growth rate data. Significant challenges still exist for developing a relatively inexpensive, safe, and readily scalable screening device and ensuring consistency of results before scaling up. Here, we have designed patterned-surface microfluidic devices for continuous-flow synthesis of MOFs that allow effective and rapid screening of synthesis conditions. The patterned surface reduces the induction time of MOF synthesis for rapid screening while providing support to capture MOF crystals for growth measurements. The efficacy of the continuous-flow patterned microfluidic device to screen polymorphs, morphology, and growth rates is demonstrated for the HKUST-1 MOF. The effects of solvent composition and pH modulators on the morphology, polymorphs, and size distribution of HKUST-1 are evaluated using the patterned microfluidic device. Additionally, a time-resolved FT-IR analysis coupled with the patterned microfluidic device provides quantitative insights into the non-monotonic growth of MOF crystals with respect to the progression of the bulk oligomerization reaction. The patterned microfluidic device can be used to screen crystals with a longer induction time, such as proteins, covalent-organic frameworks, and MOFs.
Collapse
Affiliation(s)
- Paria Coliaie
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St, Chicago, IL 60607, USA.
| | - Rajan R Bhawnani
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St, Chicago, IL 60607, USA.
| | - Aditya Prajapati
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St, Chicago, IL 60607, USA.
| | - Rabia Ali
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St, Chicago, IL 60607, USA.
| | - Prince Verma
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Gaurav Giri
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Manish S Kelkar
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Akshay Korde
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Marianne Langston
- Pharmaceutics Research - Analytical Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Chengxiang Liu
- Pharmaceutical Development, Biogen, Cambridge, MA 02142, USA
| | - Neda Nazemifard
- Pharmaceutics Research - Analytical Development, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Daniel Patience
- Chemical Process Development, Biogen, Cambridge, MA 02142, USA
| | - Tamar Rosenbaum
- Bristol-Myers Squibb Co., Drug Product Science & Technology, New Brunswick, NJ 08901, USA
| | - Dimitri Skliar
- Bristol Myers Squibb Co., Chemical & Synthetic Development, New Brunswick, NJ 08901, USA
| | - Nandkishor K Nere
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St, Chicago, IL 60607, USA.
- Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA
| | - Meenesh R Singh
- Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St, Chicago, IL 60607, USA.
| |
Collapse
|
34
|
Kapteijn F, Wang X. Zeolite membranes – The importance of support analysis. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Freek Kapteijn
- Delft University of Technology Catalysis Engineering – Chemical Engineering Department Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Xuerui Wang
- Nanjing Tech University State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials No. 30 Puzhu South Road 211816 Nanjing China
| |
Collapse
|
35
|
Wang C, Yuan H, Yu F, Zhang J, Li Y, Bao W, Wang Z, Lu K, Yu J, Bai G, Wang G, Peng B, Zhang L. Enhanced oxygen reduction reaction performance of Co@N-C derived from metal-organic frameworks ZIF-67 via a continuous microchannel reactor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Abdul Hamid MR, Qian Y, Wei R, Li Z, Pan Y, Lai Z, Jeong HK. Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119802] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
|
38
|
Ma Q, Wang X, Feng S, Jin H, Mo K, Li Y. Effect of Activation Process on the Performance of ZIF‐8 Membrane for Propylene/Propane Separation. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiang Ma
- Ningbo University School of Materials Science and Chemical Engineering Fenghua Road 315211 Ningbo China
| | - Xu Wang
- Ningbo University School of Materials Science and Chemical Engineering Fenghua Road 315211 Ningbo China
| | - Shengwei Feng
- Ningbo University School of Materials Science and Chemical Engineering Fenghua Road 315211 Ningbo China
| | - Hua Jin
- Ningbo University School of Materials Science and Chemical Engineering Fenghua Road 315211 Ningbo China
| | - Kai Mo
- Ningbo University School of Materials Science and Chemical Engineering Fenghua Road 315211 Ningbo China
| | - Yanshuo Li
- Ningbo University School of Materials Science and Chemical Engineering Fenghua Road 315211 Ningbo China
| |
Collapse
|
39
|
Wei Y, Yang Z, Wang L, Yu Y, Yang H, Jin H, Lu P, Wang Y, Wu D, Li Y, Tang CY. Facile ZIF–8 nanocrystals interlayered solvent–resistant thin–film nanocomposite membranes for enhanced solvent permeance and rejection. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119586] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
|
41
|
Yang K, Hu S, Ban Y, Zhou Y, Cao N, Zhao M, Xiao Y, Li W, Yang W. ZIF-L membrane with a membrane-interlocked-support composite architecture for H 2/CO 2 separation. Sci Bull (Beijing) 2021; 66:1869-1876. [PMID: 36654396 DOI: 10.1016/j.scib.2021.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
Metal-organic framework (MOF) membranes hold great promise in energy-efficient chemical separations. The outstanding challenges of the microstructural design stem from (1) thinning of membranes to immensely reduce the mass-transfer resistance (for high permeances); (2) tuning of orientation to optimize the selective transport of gas molecules, and (3) reinforcement of intercrystalline structure to subside leakage through defective gaps (for high selectivity). Here, we propose the ZIF-L membrane that is completely confined into the voids of the alumina support through an interfacial assembly process, producing an appealing membrane-interlocked-support (MIS) composite architecture that meets the requirements of the microstructural design of MOF membranes. Consequently, the membranes show average H2 permeances of above 4000 GPU and H2/CO2 separation factor (SF) of above 200, representing record-high separation performances of ZIF-L membranes and falling into the industrial target zone (H2 permeance > 1000 GPU and H2/CO2 SF > 60). Furthermore, the ZIF-L membrane possessing the MIS composite architecture that is established with alumina particles as scaffolds shows mechanical stability, scraped repeatedly by a piece of silicon rubber causing no selectivity loss.
Collapse
Affiliation(s)
- Kun Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sulei Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yujie Ban
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Yingwu Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Na Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Meng Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yifei Xiao
- Department of Chemical Physics, School of Chemistry and Materials Science, iCHeM, Chinese Academy of Sciences, Excellence Center for Nanoscience, University of Science and Technology of China, Hefei 230026, China
| | - Weixue Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; Department of Chemical Physics, School of Chemistry and Materials Science, iCHeM, Chinese Academy of Sciences, Excellence Center for Nanoscience, University of Science and Technology of China, Hefei 230026, China; Dalian National Laboratory for Clean Energy, Dalian 116023, China
| | - Weishen Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
42
|
One-pot synthesis of 3D-ZIF-7 supported on 2D-Zn–Benzimidazole–Acetate and its catalytic activity in the methoxycarbonylation of aniline with dimethyl carbonate. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Deneff JI, Butler KS, Kotula PG, Rue BE, Sava Gallis DF. Expanding the ZIFs Repertoire for Biological Applications with the Targeted Synthesis of ZIF-20 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27295-27304. [PMID: 34085832 DOI: 10.1021/acsami.1c05657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their facile synthesis, tailorable porosity, diverse compositions, and low toxicity, zeolitic imidazolate framework (ZIF) nanoparticles (NPs) have emerged as attractive platforms for a variety of biologically relevant applications. To date, a small subset of ZIFs representing only two topologies and very few linker chemistries have been studied in this realm. We seek to expand the bio-design space for ZIF NPs through the targeted synthesis of a hierarchically complex ZIF based on two types of cages, ZIF-20, with lta topology. This study demonstrates the rapid synthesis and size tunability of ZIF-20 particles across the micro and nanoregimes via microwave heating and the use of a modulating agent. To evaluate the utility of ZIF particles for biological applications, we examine their stability in biologically relevant media and demonstrate biocompatibility with A549 human epithelial cells. Further, the ability to encapsulate and release methylene blue, a therapeutic and bioimaging agent, is validated. Importantly, ZIF-20 NPs display a unique behavior relative to previously studied ZIFs based on their specific structural and chemical features. This finding highlights the need to expand the design space across the broader ZIFs family, to exploit a wider range of relevant properties for biological applications and beyond.
Collapse
Affiliation(s)
- Jacob I Deneff
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Paul G Kotula
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Braden E Rue
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
44
|
Wang W, Zhang P, Shi Y, Zhang Z, Xu X, Ding P. Fabrication of in‐situ polymerized
UiO
‐66/
PVDF
supramolecular membranes with high anti‐fouling performance. J Appl Polym Sci 2021. [DOI: 10.1002/app.50519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wei Wang
- State Key Laboratory of Separation Membrane and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Peng Zhang
- State Key Laboratory of Separation Membrane and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Yaping Shi
- State Key Laboratory of Separation Membrane and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Zhichao Zhang
- School of environmental science and engineering Nankai University Tianjin China
| | - Xin Xu
- State Key Laboratory of Separation Membrane and Membrane Processes, School of Material Science and Engineering Tiangong University Tianjin China
| | - Ping Ding
- State Key Lab of Space Medicine Fundamentals and Application China Astronauts Research and Training Center Beijing China
| |
Collapse
|
45
|
Meng L, Yu B, Qin Y. Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Commun Chem 2021; 4:82. [PMID: 36697527 PMCID: PMC9814928 DOI: 10.1038/s42004-021-00522-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/06/2021] [Indexed: 01/28/2023] Open
Abstract
Metal-organic frameworks (MOF) are an emerging class of microporous materials with promising applications. MOF nanocrystals, and their assembled super-structures, can display unique properties and reactivities when compared with their bulk analogues. MOF nanostructures of 0-D, 2-D, and 3-D dimensions can be routinely obtained by controlling reaction conditions and ligand additives, while formation of 1-D MOF nanocrystals (nanowires and nanorods) and super-structures has been relatively rare. We report here a facile templated interfacial synthesis methodology for the preparation of a series of 1-D MOF nano- and micro-structures with precisely controlled shapes and sizes. Specifically, by applying track-etched polycarbonate (PCTE) membranes as the templates and at the oil/water interface, we rapidly and reproducibly synthesize zeolitic imidazolate framework-8 (ZIF-8) and ZIF-67 nano- and micro structures of sizes ranging from 10 nm to 20 μm. We also identify a size confinement effect on MOF crystal growth, which leads to single crystals under the most restricted conditions and inter-grown polycrystals at larger template pore sizes, as well as surface directing effects that influence the crystallographic preferred orientation. Our findings provide a potentially generalizable method for controlling the size, morphology, and crystal orientations of MOF nanomaterials, as well as offering fundamental understanding into MOF crystal growth mechanisms.
Collapse
Affiliation(s)
- Lingyao Meng
- grid.266832.b0000 0001 2188 8502Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM USA
| | - Binyu Yu
- grid.63054.340000 0001 0860 4915Department of Chemical and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT USA
| | - Yang Qin
- grid.266832.b0000 0001 2188 8502Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM USA ,grid.63054.340000 0001 0860 4915Department of Chemical and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT USA
| |
Collapse
|
46
|
Recent advances in metal-organic frameworks/membranes for adsorption and removal of metal ions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116226] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Li R, Chen T, Pan X. Metal-Organic-Framework-Based Materials for Antimicrobial Applications. ACS NANO 2021; 15:3808-3848. [PMID: 33629585 DOI: 10.1021/acsnano.0c09617] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
To address the serious threat of bacterial infection to public health, great efforts have been devoted to the development of antimicrobial agents for inhibiting bacterial growth, preventing biofilm formation, and sterilization. Very recently, metal-organic frameworks (MOFs) have emerged as promising materials for various antimicrobial applications owing to their different functions including the controlled/stimulated decomposition of components with bactericidal activity, strong interactions with bacterial membranes, and formation of photogenerated reactive oxygen species (ROS) as well as high loading and sustained releasing capacities for other antimicrobial materials. This review focuses on recent advances in the design, synthesis, and antimicrobial applications of MOF-based materials, which are classified by their roles as component-releasing (metal ions, ligands, or both), photocatalytic, and chelation antimicrobial agents as well as carriers or/and synergistic antimicrobial agents of other functional materials (antibiotics, enzymes, metals/metal oxides, carbon materials, etc.). The constituents, fundamental antimicrobial mechanisms, and evaluation of antimicrobial activities of these materials are highlighted to present the design principles of efficient MOF-based antimicrobial materials. The prospects and challenges in this research field are proposed.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Tongtong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province College of Environment, Zhejiang University of Technology Hangzhou 310014, China
| |
Collapse
|
48
|
Kim JY, Barcus K, Cohen SM. Controlled Two-Dimensional Alignment of Metal-Organic Frameworks in Polymer Films. J Am Chem Soc 2021; 143:3703-3706. [PMID: 33683860 DOI: 10.1021/jacs.0c13459] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Controlling the alignment of metal-organic framework (MOF) particles is valueable for fully exploiting the anisotropic properties and porous structure of these materials. Herein, we propose a simple, one-step method that can control the two-dimensional (2D) alignment of MOF particles over large areas. Orientational control is achieved without consideration of the underlying lattice parameters or the need for particle surface modification, but instead was achieved by selection of the casting solvent on a water surface. Two distinct types of MOF particles, a hexagonal bifrustum morphology of MIL-96 and an octahedral morphology of the UiO-66 family were aligned and captured in a polydimethylsiloxane (PDMS) matrix using this approach. This work provides opportunities for studying and utilizing the anisotropic properties of MOFs in thin film applications.
Collapse
Affiliation(s)
- Jin Yeong Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kyle Barcus
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
49
|
Chen S, Sun Y, Chen S, Gao Y, Wang F, Li H, Liu Y. Facile fabrication of a highly (110)-oriented ZIF-7 film with rod-shaped seeds. Chem Commun (Camb) 2021; 57:2128-2131. [PMID: 33588430 DOI: 10.1039/d0cc07810g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report a novel synthetic strategy to prepare a highly (110)-oriented ZIF-7 film possessing superior anti-corrosion properties via oriented epitaxial growth. Our work provides insights into facile preparation of oriented uniform MOF single seed layers and films with rod-shaped MOF seeds as building blocks.
Collapse
Affiliation(s)
- Sixing Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Yanwei Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Sikang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Yunlei Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hong Li
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi, Dalian 116024, China.
| |
Collapse
|
50
|
Kang Z, Guo H, Fan L, Yang G, Feng Y, Sun D, Mintova S. Scalable crystalline porous membranes: current state and perspectives. Chem Soc Rev 2021; 50:1913-1944. [PMID: 33319885 DOI: 10.1039/d0cs00786b] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Crystalline porous materials (CPMs) with uniform and regular pore systems show great potential for separation applications using membrane technology. Along with the research on the synthesis of precisely engineered porous structures, significant attention has been paid to the practical application of these materials for preparation of crystalline porous membranes (CPMBs). In this review, the progress made in the preparation of thin, large area and defect-free CPMBs using classical and novel porous materials and processing is presented. The current state-of-the-art of scalable CPMBs with different nodes (inorganic, organic and hybrid) and various linking bonds (covalent, coordination, and hydrogen bonds) is revealed. The advances made in the scalable production of high-performance crystalline porous membranes are categorized according to the strategies adapted from polymer membranes (interfacial assembly, solution-casting, melt extrusion and polymerization of CPMs) and tailored based on CPM properties (seeding-secondary growth, conversion of precursors, electrodeposition and chemical vapor deposition). The strategies are compared and ranked based on their scalability and cost. The potential applications of CPMBs have been concisely summarized. Finally, the performance and challenges in the preparation of scalable CPMBs with emphasis on their sustainability are presented.
Collapse
Affiliation(s)
- Zixi Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China. and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Lili Fan
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Ge Yang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China
| | - Yang Feng
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580 Qingdao, China.
| | - Svetlana Mintova
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China University of Petroleum (East China), 266555 Qingdao, China and Laboratoire Catalyse et Spectrochimie (LCS), Normandie University, ENSICAEN, CNRS, 6 boulevard du Marechal Juin, 14050 Caen, France.
| |
Collapse
|