1
|
Urrutia-Cabrera D, Hsiang-Chi Liou R, Lin J, Shi Y, Liu K, Hung SSC, Hewitt AW, Wang PY, Ching-Bong Wong R. Combinatorial Approach of Binary Colloidal Crystals and CRISPR Activation to Improve Induced Pluripotent Stem Cell Differentiation into Neurons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8669-8679. [PMID: 35166105 DOI: 10.1021/acsami.1c17975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Conventional methods of neuronal differentiation in human induced pluripotent stem cells (iPSCs) are tedious and complicated, involving multistage protocols with complex cocktails of growth factors and small molecules. Artificial extracellular matrices with a defined surface topography and chemistry represent a promising venue to improve neuronal differentiation in vitro. In the present study, we test the impact of a type of colloidal self-assembled patterns (cSAPs) called binary colloidal crystals (BCCs) on neuronal differentiation. We developed a CRISPR activation (CRISPRa) iPSC platform that constitutively expresses the dCas9-VPR system, which allows robust activation of the proneural transcription factor NEUROD1 to rapidly induce neuronal differentiation within 7 days. We show that the combinatorial use of BCCs can further improve this neuronal differentiation system. In particular, our results indicate that fine tuning of silica (Si) and polystyrene (PS) particle size is critical to generate specific topographies to improve neuronal differentiation and branching. BCCs with 5 μm silica and 100 nm carboxylated PS (PSC) have the most prominent effect on increasing neurite outgrowth and more complex ramification, while BCCs with 2 μm Si and 65 nm PSC particles are better at promoting neuronal enrichment. These results indicate that biophysical cues can support rapid differentiation and improve neuronal maturation. In summary, our combinatorial approach of CRISPRa and BCCs provides a robust and rapid pipeline for the in vitro production of human neurons. Specific BCCs can be adapted to the late stages of neuronal differentiation protocols to improve neuronal maturation, which has important implications in tissue engineering, in vitro biological studies, and disease modeling.
Collapse
Affiliation(s)
- Daniel Urrutia-Cabrera
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Roxanne Hsiang-Chi Liou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 510810, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325016, China
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Parkville 3010, Australia
- Shenzhen Eye Hospital, Shenzhen University School of Medicine, Shenzhen 510810, China
| |
Collapse
|
2
|
Zhang Z, Yi G, Li P, Zhang X, Wan Z, Wang X, Zhang C, Zhang Y. Recent Advances in Binary Colloidal Crystals for Photonics and Porous Material Fabrication. J Phys Chem B 2021; 125:6012-6022. [PMID: 34038121 DOI: 10.1021/acs.jpcb.1c03349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past few years, binary colloidal crystals (BCCs) composed of both large and small particles have attracted considerable attention from the scientific community as an exciting alternative to single colloidal crystals (SCCs). In particular, more complex structures with diverse nanotopographies and desirable optical properties of BCCs can be obtained by various colloidal assembly methods, as compared to SCCs. Furthermore, high accuracy in crystal growth with controllable stoichiometries allows for a great deal of promising applications in the fields of both interfacial and material sciences. The visible-light diffraction property of BCCs is more superior than that of SCCs, which makes them have more promising applications in the fabrication of photonic crystals with full band gaps. On the other hand, their spherical shapes and ease of removal property make them ideal templates for ordered porous material fabrication. Hence, this perspective outlined recent advances in assembly approaches of BCCs, with an emphasis on their promising applications for advanced photonics and multifunctional porous material fabrication. Eventually, some challenging yet important issues and some future perspectives are further discussed.
Collapse
Affiliation(s)
- Zhengting Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Guiyun Yi
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Peng Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Xiuxiu Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Zhuoyan Wan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Xiaodong Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| | - Yulong Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China.,State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Jiaozuo 454003, China.,Henan Key Laboratory of Coal Green Conversion, Jiaozuo 454003, China
| |
Collapse
|
3
|
Shi Y, Lin J, Tao X, Qu J, Liao S, Li M, Deng K, Du P, Liu K, Thissen H, Li L, Kingshott P, Wang PY. Harnessing Colloidal Self-Assembled Patterns (cSAPs) to Regulate Bacterial and Human Stem Cell Response at Biointerfaces In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20982-20994. [PMID: 33913681 DOI: 10.1021/acsami.1c02591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The generation of complex physicochemical signals on the surface of biomedical materials is still challenging despite the fact that a broad range of surface modification methods have been developed over the last few decades. Colloidal self-assembled patterns (cSAPs) are combinations of unique colloids differing in size and surface chemistry acting as building blocks that can be programmed to generate surface patterns with exquisite control of complexity. This study reports on producing a variety of pre-modified colloids for the fabrication of cSAPs as well as post-assembly modifications to yield complex surfaces. The surface of cSAPs presents hierarchical micro- and nanostructures, localized hydrophilic/hydrophobic characteristics, and tunable surface functionality imparted by the individual colloids. The selected cSAPs can control bacterial adhesion (S. aureus, P. aeruginosa, and E. coli) and affect the cell cycle of human bone marrow stem cells (hBMSCs). Moreover, in a mouse subcutaneous model, cSAPs with selective [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium (SBMA) modification can reduce the inflammatory response after being challenged with bacteria. This study reveals that functionalized cSAPs are versatile tools for controlling cellular responses at biointerfaces, which is instructive for biomaterials or biodevices.
Collapse
Affiliation(s)
- Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jing Qu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Shumin Liao
- Department of Medicine, Nursing and Health Sciences, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Mengyao Li
- Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong 519020, China
| | - Ke Deng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton, 3168 Victoria, Australia
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055 China
| | - Peter Kingshott
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
4
|
Deng K, Du P, Liu K, Tao X, Harati J, Jhang JW, Kim J, Wang PY. Programming Colloidal Self-Assembled Patterns (cSAPs) into Thermo-Responsible Hybrid Surfaces for Controlling Human Stem Cells and Macrophages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18563-18580. [PMID: 33861071 DOI: 10.1021/acsami.1c02969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid surfaces with tunable topography, chemistry, and stiffness have potential to rebuild native extracellular matrix (ECM) and manipulate cell behavior in vitro. However, the fabrication of controllable hybrid surfaces is still challenging. In this study, colloidal self-assembly technology was used to program particles into highly ordered structures with hybrid chemistry and stiffness at biointerfaces. These colloidal self-assembled patterns (cSAPs), including unary, binary, and ternary cSAPs, composed of silicon (Si), polystyrene (PS), and/or poly(N-isopropylacrylamide) (pNIPAM) nanogels (PNGs), were fabricated using either coassembly or layer-by-layer (LBL) methods. The selected binary cSAPs (i.e., PS/PNG and PNG/PS) have a tunable surface topography and wettability between 25 and 37 °C; thus, they can be used as dynamic cell culture substrates. Human adipose-derived mesenchymal stem cells (hASCs), bone marrow-derived mesenchymal stem cells (hBMSCs), and macrophages (THP-1) were investigated on these hybrid cSAPs under a static or dynamic system. The results showed that hybrid cSAPs significantly influenced the focal adhesions, cell morphology, cell migration, and gene expressions of stem cells. In general, stem cells had more vinculin puncta, smaller spreading size, and faster migration speed than the TCPS control. Hybrid cSAPs up-regulated gene expressions of focal adhesion kinase (FAK) and chondrocytes (AGG and SOX9) under static culture, while they also up-regulated osteocytes (COL1 and RUNX2) under dynamic culture. THP-1 macrophages were at M0 state on all cSAPs under static culture. However, cells became sensitive under dynamic culture. For example, some M1 genes (i.e., IL6, CD68, and TNFα) and M2 genes (i.e., IL10 and CD206) were down-regulated, while other M1 genes (i.e., IL1β) and M2 genes (i.e., TGF-β and IL1ra) were up-regulated, depending on the particle combinations. In conclusion, new hybrid cSAPs with thermoresponsive surface properties are versatile materials for stem cells and macrophages manipulation.
Collapse
Affiliation(s)
- Ke Deng
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jhe-Wei Jhang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
5
|
Sikder MKU, Tong W, Pingle H, Kingshott P, Needham K, Shivdasani MN, Fallon JB, Seligman P, Ibbotson MR, Prawer S, Garrett DJ. Laminin coated diamond electrodes for neural stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111454. [PMID: 33255039 DOI: 10.1016/j.msec.2020.111454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The performance of many implantable neural stimulation devices is degraded due to the loss of neurons around the electrodes by the body's natural biological responses to a foreign material. Coating of electrodes with biomolecules such as extracellular matrix proteins is one potential route to suppress the adverse responses that lead to loss of implant functionality. Concurrently, however, the electrochemical performance of the stimulating electrode must remain optimal to continue to safely provide sufficient charge for neural stimulation. We have previously found that oxygen plasma treated nitrogen included ultrananocrystalline diamond coated platinum electrodes exhibit superior charge injection capacity and electrochemical stability for neural stimulation (Sikder et al., 2019). To fabricate bioactive diamond electrodes, in this work, laminin, an extracellular matrix protein known to be involved in inter-neuron adhesion and recognition, was used as an example biomolecule. Here, laminin was covalently coupled to diamond electrodes. Electrochemical analysis found that the covalently coupled films were robust and resulted in minimal change to the charge injection capacity of diamond electrodes. The successful binding of laminin and its biological activity was further confirmed using primary rat cortical neuron cultures, and the coated electrodes showed enhanced cell attachment densities and neurite outgrowth. The method proposed in this work is versatile and adaptable to many other biomolecules for producing bioactive diamond electrodes, which are expected to show reduced the inflammatory responses in vivo.
Collapse
Affiliation(s)
- Md Kabir Uddin Sikder
- Department of Medical Bionics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia; Department of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Wei Tong
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC 3010, Australia; School of Physics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Hitesh Pingle
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Peter Kingshott
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, The University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Australia
| | - Mohit N Shivdasani
- Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, NSW 2033, Australia
| | - James B Fallon
- Department of Medical Bionics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia; Department of Otolaryngology, The University of Melbourne, Royal Victorian Eye & Ear Hospital, East Melbourne, Australia
| | - Peter Seligman
- Bionics Institute, 384 Albert St, East Melbourne, VIC 3002, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, Carlton, VIC 3010, Australia; Department of Optometry and Vision Sciences, Melbourne School of Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven Prawer
- School of Physics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - David J Garrett
- School of Physics, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia; RMIT University, School of Engineering, Melbourne, VIC 3001, Australia
| |
Collapse
|
6
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
7
|
Nanoaperture fabrication via colloidal lithography for single molecule fluorescence analysis. PLoS One 2019; 14:e0222964. [PMID: 31600217 PMCID: PMC6786550 DOI: 10.1371/journal.pone.0222964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022] Open
Abstract
In single molecule fluorescence studies, background emission from labeled substrates often restricts their concentrations to non-physiological nanomolar values. One approach to address this challenge is the use of zero-mode waveguides (ZMWs), nanoscale holes in a thin metal film that physically and optically confine the observation volume allowing much higher concentrations of fluorescent substrates. Standard fabrication of ZMWs utilizes slow and costly E-beam nano-lithography. Herein, ZMWs are made using a self-assembled mask of polystyrene microspheres, enabling fabrication of thousands of ZMWs in parallel without sophisticated equipment. Polystyrene 1 μm dia. microbeads self-assemble on a glass slide into a hexagonal array, forming a mask for the deposition of metallic posts in the inter-bead interstices. The width of those interstices (and subsequent posts) is adjusted within 100–300 nm by partially fusing the beads at the polystyrene glass transition temperature. The beads are dissolved in toluene, aluminum or gold cladding is deposited around the posts, and those are dissolved, leaving behind an array ZMWs. Parameter optimization and the performance of the ZMWs are presented. By using colloidal self-assembly, typical laboratories can make use of sub-wavelength ZMW technology avoiding the availability and expense of sophisticated clean-room environments and equipment.
Collapse
|
8
|
Abstract
The DNA origami technique has made its way into various areas of nanotechnology, materials science, biophysics, and medicine. Among the many applications of DNA origami nanostructures, their use as masks for patterning of organic and inorganic materials by molecular lithography has received great attention. Here, we describe a protocol for the self-assembly of ordered monolayers of DNA origami nanostructures on mica surfaces and the subsequent fabrication of regular protein patterns over large surface areas via directed adsorption through the DNA origami mask. While the geometry of the pattern is determined by the shape of the DNA origami nanostructures, protein coverage inside the holes of the mask can be varied from single proteins to dense monolayers by adjusting the protein concentration and cationic strength of the adsorption buffer.
Collapse
|
9
|
Diba FS, Boden A, Thissen H, Bhave M, Kingshott P, Wang PY. Binary colloidal crystals (BCCs): Interactions, fabrication, and applications. Adv Colloid Interface Sci 2018; 261:102-127. [PMID: 30243666 DOI: 10.1016/j.cis.2018.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/08/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
The organization of matter into hierarchical structures is a fundamental characteristic of functional materials and living organisms. Binary colloidal crystal (BCC) systems present a diversified range of nanotopographic structures where large and small colloidal particles simultaneously self-assemble into either 2D monolayer or 3D hierarchical crystal lattices. More importantly, understanding how BCCs form opens up the possibility to fabricate more complex systems such as ternary or quaternary colloidal crystals. Monolayer BCCs can also offer the possibility to achieve surface micro- and nano-topographies with heterogeneous chemistries, which can be challenging to achieve with other traditional fabrication tools. A number of fabrication methods have been reported that enable generation of BCC structures offering high accuracy in growth with controllable stoichiometries; however, it is still a challenge to make uniform BCC structures over large surface areas. Therefore, fully understand the mechanism of binary colloidal self-assembly is crucial and new/combinational methods are needed. In this review, we summarize the recent advances in BCC fabrication using particles made of different materials, shapes, and dispersion medium. Depending on the potential application, the degree of order and efficiency of crystal formation has to be determined in order to induce variability in the intended lattice structures. The mechanisms involved in the formation of highly ordered lattice structures from binary colloidal suspensions and applications are discussed. The generation of BCCs can be controlled by manipulation of their extensive phase behavior, which facilitates a wide range potential applications in the fields of both material and biointerfacial sciences including photonics, biosensors, chromatography, antifouling surfaces, biomedical devices, and cell culture tools.
Collapse
|
10
|
Boden A, Bhave M, Wang PY, Jadhav S, Kingshott P. Binary Colloidal Crystal Layers as Platforms for Surface Patterning of Puroindoline-Based Antimicrobial Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2264-2274. [PMID: 29281884 DOI: 10.1021/acsami.7b10392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ability of bacteria to form biofilms and the emergence of antibiotic-resistant strains have prompted the need to develop the next generation of antibacterial coatings. Antimicrobial peptides (AMPs) are showing promise as molecules that can address these issues, especially if used when immobilized as a surface coating. We present a method that explores how surface patterns together with the selective immobilization of an AMP called PuroA (FPVTWRWWKWWKG-NH2) can be used to both kill bacteria and also as a tool to study bacterial attachment mechanisms. Surface patterning is achieved using stabilized self-assembled binary colloidal crystal (BCC) layers, allowing selective PuroA immobilization to carboxylated particles using N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide (EDC) hydrochloride/N-hydroxysuccinimide (NHS) coupling chemistry. Covalent immobilization of PuroA was compared with physical adsorption (i.e., without the addition of EDC/NHS). The AMP-functionalized colloids and BCC layers were characterized by X-ray photoelectron spectroscopy, ζ potentials, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Surface antimicrobial activity was assessed by viability assays using Escherichia coli. MALDI-TOF MS analysis revealed that although not all of PuroA was successfully covalently immobilized, a relatively low density of PuroA (1.93 × 1013 molecules/cm2 and 7.14 × 1012 molecules/cm2 for covalent and physical immobilization, respectively) was found to be sufficient at significantly decreasing the viability of E. coli by 70% when compared to that of control samples. The findings provide a proof of concept that BCC layers are a suitable platform for the patterned immobilization of AMPs and the importance of ascertaining the success of small-molecule grafting reactions using surface-MALDI, something that is often assumed to be successful in the field.
Collapse
Affiliation(s)
- Andrew Boden
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Peng-Yuan Wang
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Snehal Jadhav
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn, 3122 VIC, Australia
| |
Collapse
|
11
|
Wang J, Li H, Zou H, Wang C, Zhang H, Mano JF, Song W. Flexible method for fabricating protein patterns on superhydrophobic platforms controlled by magnetic field. Biomater Sci 2017; 5:408-411. [DOI: 10.1039/c6bm00867d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flexible, magnetic-field controlled patterning method of water soluble proteins or other functional materials has been developed based on superhydrophobic platforms.
Collapse
Affiliation(s)
- Jian Wang
- The State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130023
- P. R. China
| | - Hao Li
- The State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130023
- P. R. China
| | - Haoyang Zou
- The State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130023
- P. R. China
| | - Chenmiao Wang
- The State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130023
- P. R. China
| | - Hao Zhang
- The State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130023
- P. R. China
| | - João F. Mano
- Department of Chemistry
- CICECO
- University of Aveiro
- Aveiro 3810-194
- Portugal
| | - Wenlong Song
- The State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130023
- P. R. China
| |
Collapse
|
12
|
Tang Y, Su B, Liu M, Feng Y, Jiang X, Jiang L, Yu A. Superwettability Strategy: 1D Assembly of Binary Nanoparticles as Gas Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601087. [PMID: 27322357 DOI: 10.1002/smll.201601087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Binary 1D nanowires consisting of both SnO2 nanoparticles and Au nanorods are fabricated through a "substrate-particle solution template" assembling method, which shows highly enhanced gas sensitivity toward acetone under ambient conditions.
Collapse
Affiliation(s)
- Yue Tang
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Bin Su
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Minsu Liu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Yuan Feng
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Xuchuan Jiang
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Aibing Yu
- Department of Chemical Engineering, Faculty of Engineering, Monash University, Wellington Road, VIC, 3800, Australia
| |
Collapse
|
13
|
Singh G, Bremmell K, Griesser HJ, Kingshott P. Colloid-probe AFM studies of the surface functionality and adsorbed proteins on binary colloidal crystal layers. RSC Adv 2017. [DOI: 10.1039/c6ra28491d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate the applicability of colloid-probe AFM to detect different surface chemistries on binary colloidal crystal layers of different chemical and protein patterns.
Collapse
Affiliation(s)
- Gurvinder Singh
- Interdisciplinary Nanoscience Centre
- Faculty of Science
- Aarhus University
- Denmark
- Department of Materials Science and Engineering
| | - Kristen Bremmell
- School of Pharmacy and Medical Sciences
- University of South Australia
- Adelaide 5000
- Australia
| | - Hans J. Griesser
- Future Industries Institute
- University of South Australia
- Mawson Lakes
- Australia
| | - Peter Kingshott
- Interdisciplinary Nanoscience Centre
- Faculty of Science
- Aarhus University
- Denmark
- Department of Chemistry and Biotechnology
| |
Collapse
|
14
|
Wang PY, Hung SSC, Thissen H, Kingshott P, Wong RCB. Binary colloidal crystals (BCCs) as a feeder-free system to generate human induced pluripotent stem cells (hiPSCs). Sci Rep 2016; 6:36845. [PMID: 27833126 PMCID: PMC5104981 DOI: 10.1038/srep36845] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into any cell type and provide significant advances to cell therapy and regenerative medicine. However, the current protocol for hiPSC generation is relatively inefficient and often results in many partially reprogrammed colonies, which increases the cost and reduces the applicability of hiPSCs. Biophysical stimulation, in particular from tuning cell-surface interactions, can trigger specific cellular responses that could in turn promote the reprogramming process. In this study, human fibroblasts were reprogrammed into hiPSCs using a feeder-free system and episomal vectors using novel substrates based on binary colloidal crystals (BCCs). BCCs are made from two different spherical particle materials (Si and PMMA) ranging in size from nanometers to micrometers that self-assemble into hexagonal close-packed arrays. Our results show that the BCCs, particularly those made from a crystal of 2 μm Si and 0.11 μm PMMA particles (2SiPM) facilitate the reprogramming process and increase the proportion of fully reprogrammed hiPSC colonies, even without a vitronectin coating. Subsequent isolation of clonal hiPSC lines demonstrates that they express pluripotent markers (OCT4 and TRA-1-60). This proof-of-concept study demonstrates that cell reprogramming can be improved on substrates where surface properties are tailored to the application.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Anatomy and Neuroscience, Florey Neuroscience and Mental Health Institute, The University of Melbourne, Victoria 3000, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168 Victoria, Australia
| | - Sandy Shen-Chi Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Victoria 3002, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Bayview Avenue, Clayton, 3168 Victoria, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Raymond Ching-Bong Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital; Ophthalmology, Department of Surgery, University of Melbourne, Victoria 3002, Australia
| |
Collapse
|
15
|
Nguyen DHK, Pham VTH, Al Kobaisi M, Bhadra C, Orlowska A, Ghanaati S, Manzi BM, Baulin VA, Joudkazis S, Kingshott P, Crawford RJ, Ivanova EP. Adsorption of Human Plasma Albumin and Fibronectin onto Nanostructured Black Silicon Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10744-10751. [PMID: 27718587 DOI: 10.1021/acs.langmuir.6b02601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The protein adsorption of two human plasma proteins-albumin (Alb) and fibronectin (Fn)-onto synthetic nanostructured bactericidal material-black silicon (bSi) surfaces (that contain an array of nanopillars) and silicon wafer (nonstructured) surfaces-was investigated. The adsorption behavior of Alb and Fn onto two types of substrata was studied using a combination of complementary analytical techniques. A two-step Alb adsorption mechanism onto the bSi surface has been proposed. At low bulk concentrations (below 40 μg/mL), the Alb preferentially adsorbed at the base of the nanopillars. At higher bulk concentrations, the Alb adsorbed on the top of the nanopillars. In the case of Fn, the protein preferentially adsorbed on the top of the nanopillars, irrespective of its bulk concentration.
Collapse
Affiliation(s)
- Duy H K Nguyen
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Vy T H Pham
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Mohammad Al Kobaisi
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Chris Bhadra
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Anna Orlowska
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Shahram Ghanaati
- Frankfurt Orofacial Regenerative Medicine, University Hospital Frankfurt , Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Berardo Mario Manzi
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A Baulin
- Department d'Enginyeria Quimica, Universitat Rovira i Virgili , 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Saulius Joudkazis
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University , Melbourne VIC 3001, Australia
| | - Elena P Ivanova
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology , Hawthorn VIC 3122, Australia
| |
Collapse
|
16
|
Albisetti E, Carroll KM, Lu X, Curtis JE, Petti D, Bertacco R, Riedo E. Thermochemical scanning probe lithography of protein gradients at the nanoscale. NANOTECHNOLOGY 2016; 27:315302. [PMID: 27344982 DOI: 10.1088/0957-4484/27/31/315302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro.
Collapse
Affiliation(s)
- E Albisetti
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy. School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
A Novel Approach to Quantitatively Assess the Uniformity of Binary Colloidal Crystal Assemblies. CRYSTALS 2016. [DOI: 10.3390/cryst6080084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Blanco E, Smoukov SK, Velev OD, Velikov KP. Organic-inorganic patchy particles as a versatile platform for fluid-in-fluid dispersion stabilisation. Faraday Discuss 2016; 191:73-88. [PMID: 27442153 DOI: 10.1039/c6fd00036c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present a new class of organic-inorganic patchy particles for the efficient stabilization of Pickering foams and emulsions. Using solvent-based heterogeneous precipitation, we decorate inorganic silica particles with discrete domains of water insoluble plant protein (zein). By varying the extent of protein coverage on the silica surface, we tune the pH-dependent interactions of the particles and the interfaces. We observe an optimum foam stabilization, which is attributed to the creation of a slightly positive low effective surface potential from positively charged protein patches and the negatively charged silica surface. The effect of surface coverage on foam stability is in line with the predicted low interfacial potential of the patchy particles in water, which determines the energy of particle adsorption. In emulsions, the increase of the protein amount on the silica particles causes a progressive bridging of the oil droplets into a close-packing configuration due to gelation of the protein patches. Protein-based organic-inorganic surface heterogeneous particles represent a new versatile platform for the stabilization of fluid-in-fluid dispersions and as precursors for the assembly of advanced functional materials.
Collapse
Affiliation(s)
- E Blanco
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, USA.
| | | | | | | |
Collapse
|
19
|
Wang PY, Shields CW, Zhao T, Jami H, López GP, Kingshott P. Rapid Self-Assembly of Shaped Microtiles into Large, Close-Packed Crystalline Monolayers on Solid Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1309-1314. [PMID: 26756607 DOI: 10.1002/smll.201503130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/22/2015] [Indexed: 06/05/2023]
Abstract
The rapid self-assembly of photolithographic microtiles into large crystalline monolayers is achieved. Crystalline monolayers get trapped at the liquid-liquid interface and re-emerge at the air-liquid interface by mixing a cosolvent, which then deposits on the solid surface in seconds. This method has the potential to assemble different shapes and sizes of microtiles into complex architectures.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| | - C W Shields
- Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Durham, NC, USA
| | - Tianheng Zhao
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| | - Hesamodin Jami
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| | - Gabriel P López
- Department of Biomedical Engineering, Department of Mechanical Engineering and Materials Science, NSF Research Triangle Materials Research Science and Engineering Center (MRSEC), Duke University, Durham, NC, USA
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, John St, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
20
|
Wang PY, Thissen H, Kingshott P. Stimulation of Early Osteochondral Differentiation of Human Mesenchymal Stem Cells Using Binary Colloidal Crystals (BCCs). ACS APPLIED MATERIALS & INTERFACES 2016; 8:4477-4488. [PMID: 26812467 DOI: 10.1021/acsami.5b12660] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A new surface based on self-assembly of two colloids into well-defined nanostructures, so-called binary colloidal crystals (BCCs), was fabricated for stem cell culture. The facile fabrication process are able to cover large surface areas (>3 cm-diameter, i.e. > 7 cm(2)) with ordered surface nanotopographies that is often a challenge particularly in biomaterials science. From our library, four different combinations of BCCs were selected using mixtures of silica, polystyrene and poly(methyl methacrylate) particles with sizes in the range from 100 nm to 5 μm. Cell spreading, proliferation, and surface-induced lineage commitment of human adipose-derived stem cells (hADSCs) was studied using quantitative real time polymerase chain reaction (qRT-PCR) and immunostaining. The results showed that BCCs induced osteo- and chondro- but not adipo-gene expression in the absence of induction medium suggesting that the osteochondral lineage can be stimulated by the BCCs. When applying induction media, higher osteo- and chondro-gene expression on BCCs was found compared with tissue culture polystyrene (TCPS) and flat silica (Si) controls, respectively. Colony forming of chondrogenic hADSCs was found on BCCs and TCPS but not Si controls, suggesting that the differentiation of stem cells is surface-dependent. BCCs provide access to complex nanotopographies and chemistries, which can find applications in cell culture and regenerative medicine.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Department of Chemistry and Biotechnology, Swinburne University of Technology , Hawthorn, 3122 Victoria, Australia
- CSIRO Manufacturing , Bayview Avenue, Clayton, 3168 Victoria, Australia
- Department of Anatomy and Neuroscience, Florey Neuroscience and Mental Health Institute, The University of Melbourne , Melbourne, Australia
| | - Helmut Thissen
- CSIRO Manufacturing , Bayview Avenue, Clayton, 3168 Victoria, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology , Hawthorn, 3122 Victoria, Australia
| |
Collapse
|
21
|
Aβhoff SJ, Sukas S, Yamaguchi T, Hommersom CA, Le Gac S, Katsonis N. Superstructures of chiral nematic microspheres as all-optical switchable distributors of light. Sci Rep 2015; 5:14183. [PMID: 26400584 PMCID: PMC4585848 DOI: 10.1038/srep14183] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/20/2015] [Indexed: 11/09/2022] Open
Abstract
Light technology is based on generating, detecting and controlling the wavelength, polarization and direction of light. Emerging applications range from electronics and telecommunication to health, defence and security. In particular, data transmission and communication technologies are currently asking for increasingly complex and fast devices, and therefore there is a growing interest in materials that can be used to transmit light and also to control the distribution of light in space and time. Here, we design chiral nematic microspheres whose shape enables them to reflect light of different wavelengths and handedness in all directions. Assembled in organized hexagonal superstructures, these microspheres of well-defined sizes communicate optically with high selectivity for the colour and chirality of light. Importantly, when the microspheres are doped with photo-responsive molecular switches, their chiroptical communication can be tuned, both gradually in wavelength and reversibly in polarization. Since the kinetics of the "on" and "off" switching can be adjusted by molecular engineering of the dopants and because the photonic cross-communication is selective with respect to the chirality of the incoming light, these photo-responsive microspheres show potential for chiroptical all-optical distributors and switches, in which wavelength, chirality and direction of the reflected light can be controlled independently and reversibly.
Collapse
Affiliation(s)
- Sarah J. Aβhoff
- Laboratory for Biomolecular Nanotechnology (BNT), MESA+Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Sertan Sukas
- BIOS, Lab on a Chip Group, MESA+Institute for Nanotechnology and MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Tadatsugu Yamaguchi
- Laboratory for Biomolecular Nanotechnology (BNT), MESA+Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Catharina A. Hommersom
- Laboratory for Biomolecular Nanotechnology (BNT), MESA+Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Séverine Le Gac
- BIOS, Lab on a Chip Group, MESA+Institute for Nanotechnology and MIRA Institute for Biomedical Engineering and Technical Medicine, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Nathalie Katsonis
- Laboratory for Biomolecular Nanotechnology (BNT), MESA+Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
Vogel N, Retsch M, Fustin CA, del Campo A, Jonas U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem Rev 2015; 115:6265-311. [DOI: 10.1021/cr400081d] [Citation(s) in RCA: 531] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse
4, 91058 Erlangen, Germany
- Cluster
of Excellence - Engineering of Advanced Materials, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Markus Retsch
- Physical
Chemistry 1 - Polymer Systems, University of Bayreuth, Universitätsstraße
30, 95447 Bayreuth, Germany
| | - Charles-André Fustin
- Institute
of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
Division (BSMA), Université catholique de Louvain, Place Louis
Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Aranzazu del Campo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ulrich Jonas
- Macromolecular
Chemistry, Cμ - The Research Center for Micro- and Nanochemistry
and Engineering, University of Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
- Bio-Organic Materials Chemistry Laboratory (BOMCLab), Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Nikolaou Plastira 100, Vassilika Vouton, P.O. Box 1527, 71110 Heraklion, Crete, Greece
| |
Collapse
|
23
|
Singh G, Bremmell KE, Griesser HJ, Kingshott P. Colloid-probe AFM studies of the interaction forces of proteins adsorbed on colloidal crystals. SOFT MATTER 2015; 11:3188-3197. [PMID: 25758979 DOI: 10.1039/c4sm02669a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In recent years, colloid-probe AFM has been used to measure the direct interaction forces between colloidal particles of different size or surface functionality in aqueous media, as one can study different forces in symmerical systems (i.e., sphere-sphere geometry). The present study investigates the interaction between protein coatings on colloid probes and hydrophilic surfaces decorated with hexagonally close packed single particle layers that are either uncoated or coated with proteins. Controlled solvent evaporation from aqueous suspensions of colloidal particles (coated with or without lysozyme and albumin) produces single layers of close-packed colloidal crystals over large areas on a solid support. The measurements have been carried out in an aqueous medium at different salt concentrations and pH values. The results show changes in the interaction forces as the surface charge of the unmodified or modified particles, and ionic strength or pH of the solution is altered. At high ionic strength or pH, electrostatic interactions are screened, and a strong repulsive force at short separation below 5 nm dominates, suggesting structural changes in the absorbed protein layer on the particles. We also study the force of adhesion, which decreases with an increment in the salt concentration, and the interaction between two different proteins indicating a repulsive interaction on approach and adhesion on retraction.
Collapse
Affiliation(s)
- Gurvinder Singh
- Interdisciplinary Nanoscience Centre, Faculty of Science, Aarhus University, Ny Munkegade, Aarhus C 8000, Denmark
| | | | | | | |
Collapse
|
24
|
Wang PY, Pingle H, Koegler P, Thissen H, Kingshott P. Self-assembled binary colloidal crystal monolayers as cell culture substrates. J Mater Chem B 2015; 3:2545-2552. [DOI: 10.1039/c4tb02006e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large-area highly ordered self-assembled binary colloidal crystal (BCC) monolayers are fabricated for mammalian cell culture and biointerface control.
Collapse
Affiliation(s)
- Peng-Yuan Wang
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
- CSIRO Manufacturing Flagship
| | - Hitesh Pingle
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
| | - Peter Koegler
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
- CSIRO Manufacturing Flagship
| | | | - Peter Kingshott
- Swinburne University of Technology
- Industrial Research Institute Swinburne (IRIS)
- Department of Chemistry and Biotechnology
- Australia
| |
Collapse
|
25
|
Awsiuk K, Budkowski A, Marzec MM, Petrou P, Rysz J, Bernasik A. Effects of polythiophene surface structure on adsorption and conformation of bovine serum albumin: a multivariate and multitechnique study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13925-13933. [PMID: 25347041 DOI: 10.1021/la502646w] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein interactions with surfaces of promising conducting polymers are critical for development of bioapplications. Surfaces of spin-cast and postbaked poly(3-alkylthiophenes), regiorandom P3BT, and regioregular RP3HT are examined prior to and after adsorption of model protein, bovine serum albumin, with time-of-flight secondary ion mass spectrometry, atomic force microscopy, and X-ray photoelectron spectroscopy. The multivariate method of principal component analysis applied to ToF-SIMS data maximizes information on subtle differences in surface chemistry: PCA reveals alkyl side chains and conjugated backbones, exposed for RP3HT and P3BT, respectively. Phase imaging AFM shows semicrystalline microstructure of RP3HT and amorphous morphology of P3BT films. A cellular-like pattern of proteins adsorbed on RP3HT develops with coverage to more uniform overlayer, observed always on P3BT. The amount of adsorbed protein, determined by XPS as a function of BSA concentration (up to 10 mg/mL), is ∼21% lower for RP3HT than P3BT (up to 1.1 mg/m(2)). Although PCA differentiates protein from polythiophene, relative protein surface composition evaluated from ToF-SIMS saturates rather than increases with amount of adsorbed BSA from XPS. This reflects ToF-SIMS sensitivity to outermost layer of proteins, enabling multivariate analysis of protein conformation or orientation. PCA distinguishes between amino acids characteristic for external regions of BSA adsorbed to P3BT and RP3HT. These amino acids are identified for P3BT and RP3HT as hydrophilic and hydrophobic, respectively, by relative hydrophobicity of amino acid side chains. Alternative identification with BSA domains fails, pointing to substrate-induced changes in conformation and degree of denaturation rather than orientation of adsorbed protein.
Collapse
Affiliation(s)
- K Awsiuk
- M. Smoluchowski Institute of Physics, Jagiellonian University , Kraków, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Bley K, Sinatra N, Vogel N, Landfester K, Weiss CK. Switching light with light--advanced functional colloidal monolayers. NANOSCALE 2014; 6:492-502. [PMID: 24227011 DOI: 10.1039/c3nr04897g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colloidal monolayers comprising of highly ordered two dimensional crystals are of high interest to generate surface patterns for a variety of different applications. Mostly, unfunctionalized polymer or silica colloids are assembled into monolayers. However, the incorporation of functional molecules into such colloids offers a convenient possibility of implementing additional properties to the two-dimensional crystal. Here, we present the formation of novel functional colloidal monolayers with photoswitchable fluorescence. The miniemulsion polymerization technique was used to incorporate an appropriate dye system of a perylene-based fluorophore and a bis-arylethene as a photochrome in polymeric colloids in defined ratios. Upon irradiation with UV or visible light the photochrome reversibly isomerizes from the ring-closed form, which is able to absorb light of the emission wavelength of the fluorescent dye and the ring-open form, which is not. The fluorescence emission of the dye can thus be reversibly switched on and off with light even when embedded in colloids. The colloids were self-assembled at the air-water interface to produce hexagonally ordered functional monolayers and more complex binary crystals. We investigate in detail the influence of the polymeric matrix on the switching properties of the fluorophore/photochrome system and find that the rate constants for the photoswitching, which all lie in the same range, are less influenced by the polymeric environment than expected. We demonstrate the reversible switching of the fluorescence emission in self-assembled colloidal monolayers. The arrangement of broadly distributed functional colloids into ordered monolayers with high addressability was obtained by the formation of binary colloidal monolayers.
Collapse
Affiliation(s)
- K Bley
- Max-Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
27
|
Yao X, Peng R, Ding J. Cell-material interactions revealed via material techniques of surface patterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5257-5286. [PMID: 24038153 DOI: 10.1002/adma.201301762] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Cell-material interactions constitute a key fundamental topic in biomaterials study. Various cell cues and matrix cues as well as soluble factors regulate cell behaviors on materials. These factors are coupled with each other as usual, and thus it is very difficult to unambiguously elucidate the role of each regulator. The recently developed material techniques of surface patterning afford unique ways to reveal the underlying science. This paper reviews the pertinent material techniques to fabricate patterns of microscale and nanoscale resolutions, and corresponding cell studies. Some issues are emphasized, such as cell localization on patterned surfaces of chemical contrast, and effects of cell shape, cell size, cell-cell contact, and seeding density on differentiation of stem cells. Material cues to regulate cell adhesion, cell differentiation and other cell events are further summed up. Effects of some physical properties, such as surface topography and matrix stiffness, on cell behaviors are also discussed; nanoscaled features of substrate surfaces to regulate cell fate are summarized as well. The pertinent work sheds new insight into the cell-material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high-throughput detection, diagnosis, and drug screening.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, 200433, Shanghai, China
| | | | | |
Collapse
|
28
|
Pi F, Dillard P, Limozin L, Charrier A, Sengupta K. Nanometric protein-patch arrays on glass and polydimethylsiloxane for cell adhesion studies. NANO LETTERS 2013; 13:3372-8. [PMID: 23808889 DOI: 10.1021/nl401696m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present a simple cost-effective benchtop protocol to functionalize glass and polydimethylsiloxane (PDMS) with nanometric protein patches for cell adhesion studies. Evaporation masks, covering macroscopic areas on glass, were made using improved strategies for self-assembly of colloidal microbeads which then served as templates for creating the protein patch arrays via the intermediate steps of organo-aminosilane deposition and polyethylene-glycol grafting. The diameter of the patches could be varied down to about 80 nm. The glass substrates were used for advanced optical imaging of T-lymphocytes to explore adhesion by reflection interference contrast microscopy and the possible colocalization of T-cell receptor microclusters and the activating protein patches by total internal reflection fluorescence microscopy. The selectively functionalized glass could also serve as template for transferring the protein nanopatches to the surface of a soft elastomer. We demonstrated successful reverse contact printing onto the surface of thin layers of PDMS with stiffness ranging from 30 KPa to 3 MPa.
Collapse
Affiliation(s)
- Fuwei Pi
- Aix-Marseille Université , CNRS, CINaM UMR 7325, 13288 Marseille, France
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Li Y, Zhang J, Liu W, Li D, Fang L, Sun H, Yang B. Hierarchical polymer brush nanoarrays: a versatile way to prepare multiscale patterns of proteins. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2126-2132. [PMID: 23429856 DOI: 10.1021/am3031757] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents a versatile way to prepare multiscale and gradient patterns of proteins. The protein patterns are fabricated by conjugating proteins covalently on patterns of polymer brush that are prepared by techniques combining colloidal lithography with photolithography, and two-step colloidal lithography. Taking advantages of this technique, the parameters of protein patterns, such as height, diameters, periods, and distances between two dots, can be arbitrarily tuned. In addition, the protein patterns with varies of architectures, such as microdiscs, microstripes, microrings, microtriangles, microgrids, etc., consisting of protein nanodots, are prepared and the sample size is up to 4 cm(2). The as-prepared patterns of fibronectin can promote the cell adhesion and cell location.
Collapse
Affiliation(s)
- Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Physicochemical characterization of fish protein adlayers with bacteria repelling properties. Colloids Surf B Biointerfaces 2013; 102:504-10. [DOI: 10.1016/j.colsurfb.2012.08.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/15/2012] [Accepted: 08/28/2012] [Indexed: 11/24/2022]
|
32
|
Koegler P, Clayton A, Thissen H, Santos GNC, Kingshott P. The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev 2012; 64:1820-39. [PMID: 22705547 DOI: 10.1016/j.addr.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.
Collapse
Affiliation(s)
- Peter Koegler
- Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
33
|
Dai Z, Li Y, Duan G, Jia L, Cai W. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface. ACS NANO 2012; 6:6706-16. [PMID: 22845626 DOI: 10.1021/nn3013178] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flexible structural design and accurate controlled fabrication with structural tunability according to need for binary or multicomponent colloidal crystals have been expected. However, it is still a challenge. In this work, the phase diagram of monolayer binary colloidal crystals (bCCs) is established on the assumption that both large and small polystyrene (PS) colloidal spheres can stay at the air/water interface, and the range diagram for the size ratio and number ratio of small to large colloidal spheres is presented. From this phase diagram, combining the range diagram, we can design and relatively accurately control fabrication of the bCCs with specific structures (or patterns) according to need, including single or mixed patterns with the given relative content. Further, a simple and facile approach is presented to fabricate large-area (more than 10 cm(2)) monolayer bCCs without any surfactants, using differently sized PS spheres, based on ethanol-assisted self-assembly at the air/water interface. bCCs with different patterns and stoichiometries are thus designed from the established phase diagram and then successfully fabricated based on the volume ratios (V(S/L)) of the small to large PS suspensions using the presented colloidal self-assembling method. Interestingly, these monolayer bCCs can be transferred to any desired substrates using water as the medium. This study allows us to design desired patterns of monolayer bCCs and to more accurately control their structures with the used V(S/L).
Collapse
Affiliation(s)
- Zhengfei Dai
- Key Lab of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Zhang SY, Ye E, Liu S, Lim SH, Tee SY, Dong Z, Han MY. Temperature and chemical bonding-directed self-assembly of cobalt phosphide nanowires in reaction solutions into vertical and horizontal alignments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:4369-4375. [PMID: 22806698 DOI: 10.1002/adma.201201618] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Indexed: 06/01/2023]
Abstract
The preparation of vertically or horizontally aligned self-assemblies of CoP nanowires is demonstrated for the first time by aging them in the reaction solution for a sufficient time at 20 or 0 °C. This strategy opens up a way for exploring the controlled self-assembly of various highly anisotropic nanostructures into long-range ordered structures with collective properties.
Collapse
Affiliation(s)
- Shuang-Yuan Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research 3 Research Link, 117602, Singapore
| | | | | | | | | | | | | |
Collapse
|
35
|
Larsen EKU, Nielsen T, Wittenborn T, Rydtoft LM, Lokanathan AR, Hansen L, Østergaard L, Kingshott P, Howard KA, Besenbacher F, Nielsen NC, Kjems J. Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. NANOSCALE 2012; 4:2352-2361. [PMID: 22395568 DOI: 10.1039/c2nr11554a] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20,000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (M(w)) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating M(w) of 10,000 Da.
Collapse
Affiliation(s)
- Esben Kjær Unmack Larsen
- Interdisciplinary Nanoscience Center (iNANO), Departments of Molecular Biology, Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gao Z, Zhi C, Bando Y, Golberg D, Komiyama M, Serizawa T. Efficient disentanglement of boron nitride nanotubes using water-soluble polysaccharides for protein immobilization. RSC Adv 2012. [DOI: 10.1039/c2ra20765f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Li Y, Zhang J, Fang L, Jiang L, Liu W, Wang T, Cui L, Sun H, Yang B. Polymer brush nanopatterns with controllable features for protein pattern applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35197h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Kingshott P, Andersson G, McArthur SL, Griesser HJ. Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol 2011; 15:667-76. [DOI: 10.1016/j.cbpa.2011.07.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 07/15/2011] [Indexed: 12/14/2022]
|
39
|
Yu Q, Huang H, Chen R, Yang H, Peng X, Ye Z. Filtration-assembling colloidal crystal templates for ordered macroporous nanoparticle films. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm13231h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|