1
|
Atsuta Y, Takeuchi K, Shioda N, Hamada W, Hirai T, Nakamura Y, Oaki Y, Fujii S. Colloidally Stable Polypyrrole Nanoparticles Synthesized by Surfactant-Free Coupling Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14984-14995. [PMID: 37831595 DOI: 10.1021/acs.langmuir.3c01859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Surfactant-free polypyrrole (PPy) nanoparticles, which were colloidally stable in aqueous medium, were successfully synthesized by coupling polymerization of pyrrole using Fe(NO3)3 solids in the absence of any colloidal stabilizer. The pyrrole monomers were gradually supplied from the vapor phase, and the coupling reaction of the monomers could proceed to generate PPy in a water medium. The resulting PPy nanoparticles were extensively characterized in terms of diameter, bulk chemical composition, surface chemistry, and colloidal stability by dynamic light scattering, electron microscopy, elemental microanalysis, Fourier transform infrared spectroscopy, Raman spectroscopy, electrophoresis, and X-ray photoelectron spectroscopy. The characterization results indicated that the PPy nanoparticles can be colloidally stable based on the electrostatic stabilization mechanism due to cationic charges generated on the PPy molecules by doping during the polymerization. General chemical oxidative polymerization in aqueous medium using the Fe(NO3)3 oxidant without a colloidal stabilizer as a control experiment resulted in generation of atypical PPy aggregates with over a micrometer size, indicating that the polymerization at low ionic strength is essential for colloidal particle formation. Finally, it was demonstrated that the PPy nanoparticles worked as a surfactant-free black-colored particulate emulsifier by adsorption at the oil-water interface to stabilize Pickering-type oil-in-water emulsions.
Collapse
Affiliation(s)
- Yuya Atsuta
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Kazusa Takeuchi
- Division of Applied Chemistry, Environmental and Biomedical Engineering, Graduate School of Engineering, Osaka Institute of Technology 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Nano Shioda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Wakana Hamada
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Tomoyasu Hirai
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yoshinobu Nakamura
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku 535-8585, Osaka, Japan
| |
Collapse
|
2
|
Muñoz-Ortiz T, Alayeto I, Lifante J, Ortgies DH, Marin R, Martín Rodríguez E, Iglesias de la Cruz MDC, Lifante-Pedrola G, Rubio-Retama J, Jaque D. 3D Optical Coherence Thermometry Using Polymeric Nanogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301819. [PMID: 37352307 DOI: 10.1002/adma.202301819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Indexed: 06/25/2023]
Abstract
In nanothermometry, the use of nanoparticles as thermal probes enables remote and minimally invasive sensing. In the biomedical context, nanothermometry has emerged as a powerful tool where traditional approaches, like infrared thermal sensing and contact thermometers, fall short. Despite the strides of this technology in preclinical settings, nanothermometry is not mature enough to be translated to the bedside. This is due to two major hurdles: the inability to perform 3D thermal imaging and the requirement for tools that are readily available in the clinics. This work simultaneously overcomes both limitations by proposing the technology of optical coherence thermometry (OCTh). This is achieved by combining thermoresponsive polymeric nanogels and optical coherence tomography (OCT)-a 3D imaging technology routinely used in clinical practice. The volume phase transition of the thermoresponsive nanogels causes marked changes in their refractive index, making them temperature-sensitive OCT contrast agents. The ability of OCTh to provide 3D thermal images is demonstrated in tissue phantoms subjected to photothermal processes, and its reliability is corroborated by comparing experimental results with numerical simulations. The results included in this work set credible foundations for the implementation of nanothermometry in the form of OCTh in clinical practice.
Collapse
Affiliation(s)
- Tamara Muñoz-Ortiz
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Idoia Alayeto
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - José Lifante
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid, 28029, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Dirk H Ortgies
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Riccardo Marin
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Emma Martín Rodríguez
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - María Del Carmen Iglesias de la Cruz
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo 2, Madrid, 28029, Spain
| | - Ginés Lifante-Pedrola
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
| | - Jorge Rubio-Retama
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Plaza de Ramón y Cajal, s/n, Universidad Complutense de Madrid, Madrid, 28040, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
| | - Daniel Jaque
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- Instituto Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, Madrid, 28049, Spain
- nanomaterials for BioImaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria, Ctra de Colmenar Viejo Km 9,100, Madrid, 28034, Spain
- nanomaterials for BioImaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| |
Collapse
|
3
|
Zhang Z, Xie J, Xing J, Li C, Wong TM, Yu H, Li Y, Yang F, Tian Y, Zhang H, Li W, Ning C, Wang X, Yu P. Light-Programmable Nanocomposite Hydrogel for State-Switchable Wound Healing Promotion and Bacterial Infection Elimination. Adv Healthc Mater 2023; 12:e2201565. [PMID: 36208068 DOI: 10.1002/adhm.202201565] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Indexed: 01/18/2023]
Abstract
Developing an ideal wound dressing that not only accelerates wound healing but also eliminates potential bacterial infections remains a difficult balancing act. This work reports the design of a light-programmable sodium alginate nanocomposite hydrogel loaded with BiOCl/polypyrrole (BOC/PPy) nanosheets for state-switchable wound healing promotion and bacterial infection elimination remotely. The nanocomposite hydrogel possesses programmable photoelectric or photothermal conversion due to the expanded light absorption range, optimized electron transmission interface, promoted photo-generated charge separation, and transfer of the BOC/PPy nanosheets. Under white light irradiation state, the nanocomposite hydrogel induces human umbilical vein endothelial cells migration and angiogenesis, and accelerates the healing efficiency of mouse skin in vivo. Under near-infrared light irradiation state, the nanocomposite hydrogel presents superior antibacterial capability in vitro, and reaches an antibacterial rate of 99.1% for Staphylococcus aureus infected skin wound in vivo. This light-programmable nanocomposite hydrogel provides an on-demand resolution of biological state-switching to balance wound healing and elimination of bacterial infection.
Collapse
Affiliation(s)
- Zhekun Zhang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Juning Xie
- School of Medicine, South China University of Technology, Guangzhou, 510640, P. R. China.,Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Jun Xing
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Changhao Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, 999077, China
| | - Hui Yu
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Yuanxing Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fabang Yang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yu Tian
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Huan Zhang
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wei Li
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaolan Wang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers (Basel) 2022; 14:polym14235139. [PMID: 36501534 PMCID: PMC9738686 DOI: 10.3390/polym14235139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
In the past decade, nanostructured polypyrrole (PPy) has been widely studied because of its many specific properties, which have obvious advantages over bulk-structured PPy. This review outlines the main structures, preparation methods, physicochemical properties, potential applications, and future prospects of PPy nanomaterials. The preparation approaches include the soft micellar template method, hard physical template method and templateless method. Due to their excellent electrical conductivity, biocompatibility, environmental stability and reversible redox properties, PPy nanomaterials have potential applications in the fields of energy storage, biomedicine, sensors, adsorption and impurity removal, electromagnetic shielding, and corrosion resistant. Finally, the current difficulties and future opportunities in this research area are discussed.
Collapse
|
5
|
Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Wang L, Liu G, Hu Y, Gou S, He T, Feng Q, Cai K. Doxorubicin-loaded polypyrrole nanovesicles for suppressing tumor metastasis through combining photothermotherapy and lymphatic system-targeted chemotherapy. NANOSCALE 2022; 14:3097-3111. [PMID: 35141740 DOI: 10.1039/d2nr00186a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lymphatic system provides a main route for the dissemination of most malignancies, which was related to high mortality in cancer patients. Traditional intravenous chemotherapy is of limited effectiveness on lymphatic metastasis due to the difficulty in accessing the lymphatic system. Herein, a novel lymphatic-targeting nanoplatform is prepared by loading doxorubicin (DOX) into sub-50 nm polypyrrole nanovesicles (PPy NVs). The PPy NVs possessed hollow spherical morphologies and a negative surface charge, leading to high drug loading capacity. These vesicles can also convert near-infrared (NIR) light into heat and thus can be used for tumor thermal ablation. DOX loaded PPy NVs (PPy@DOX NVs) along with NIR illumination are highly effective against 4T1 breast cancer cells in vitro. More importantly, following subcutaneous (SC) injection, a direct lymphatic migration of PPy@DOX NVs is confirmed through fluorescence observation of the isolated draining nodes. The acidic conditions in metastatic nodes might subsequently trigger the release of the encapsulated DOX NVs based on their pH-sensitive release profile. In a mouse model bearing 4T1 breast cancer, lymphatic metastases, as well as lung metastases, are significantly inhibited by nanocarrier-mediated trans-lymphatic drug delivery in combination with photothermal ablation. In conclusion, this platform holds great potential in impeding tumor growth and metastasis.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou, Fujian 350007, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
7
|
Viola W, Andrew TL. Sustainable polymer materials for flexible light control and thermal management. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wesley Viola
- Department of Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| | - Trisha L. Andrew
- Department of Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
- Department of Chemistry and Chemical Engineering University of Massachusetts Amherst Amherst Massachusetts USA
| |
Collapse
|
8
|
Xiang H, Xin C, Hu Z, Aigouy L, Chen Z, Yuan X. Long-Term Stable Near-Infrared-Short-Wave-Infrared Photodetector Driven by the Photothermal Effect of Polypyrrole Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45957-45965. [PMID: 34520660 DOI: 10.1021/acsami.1c11674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm. Under the illumination of λ = 1.5 μm, the maximum photoresponsivity was measured to be ∼1.3 A/W with a 131 μs photoresponse rise time. Owing to the excellent material stability from both PPy-NPs and the Pt pattern, the current photodetectors show long-term stable photoresponsivity when they were stored in air without encapsulation. The results suggest that the PPy-NPs/Pt hybrid PDs are promising candidates for a new type of low-cost and broadband due to their multiple advantages such as free of toxic heavy metals, air stability, and solution processing.
Collapse
Affiliation(s)
- Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Chenghao Xin
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhelu Hu
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Lionel Aigouy
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Zhuoying Chen
- LPEM, ESPCI Paris, PSL Research University, Sorbonne Université, CNRS, 10 Rue Vauquelin, F-75005 Paris, France
| | - Xiaojiao Yuan
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
9
|
Li B, Wang X, Hong S, Wang Q, Li L, Eltayeb O, Dong C, Shuang S. MnO 2 nanosheets anchored with polypyrrole nanoparticles as a multifunctional platform for combined photothermal/photodynamic therapy of tumors. Food Funct 2021; 12:6334-6347. [PMID: 34100053 DOI: 10.1039/d1fo00032b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, PPy@MnO2 nanocomposites were first harvested by anchoring MnO2 nanosheets on polypyrrole (PPy) nanoparticles via an in situ redox reaction, then polyethylene glycol (PEG) modifier and methylene blue (MB) photosensitizer were linked through electrostatic interactions to obtain PPy@MnO2-PEG-MB nanoarchitectures. PPy nanoparticles ensure photothermal therapy (PTT) ability and MnO2 nanosheets ameliorate tumor hypoxia for enhanced photodynamic therapy (PDT). Therefore, a multifunctional nanotherapeutic system was constructed for the combined PTT/PDT of tumors. For extracellular photothermal properties, the optimal temperature elevation was 52.6 °C with 54.4% photothermal conversion efficiency. The extracellular PDT ability was measured by detecting 1O2 generation; more 1O2 was produced under acidic conditions in the presence of H2O2 (a simulated tumor microenvironment). The effective cellular uptake of the nanotherapeutic system in HeLa cells was observed by confocal laser scanning microscopy (CLSM). CLSM also indicated that more 1O2 was generated by the nanotherapeutic system as compared to free MB in HeLa cells, confirming the amelioration of tumor hypoxia by MnO2 nanosheets. MTT assays demonstrated that the nanotherapeutic system possessed superior biocompatibility without laser irradiation, and the lowest cell viabilities for single PTT and PDT groups were 13.78%, 38.82% respectively, while there was only 1.29% cell viability in the combined PTT and PDT group. These results suggest that the strategy of assembling PPy with MnO2 for a multifunctional PTT and enhanced PDT nanoplatform was realized, and opens up an unimpeded approach for integrating photothermal reduction materials with MnO2 for use in synergistic PTT and PDT.
Collapse
Affiliation(s)
- Bei Li
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yasun E, Gandhi S, Choudhury S, Mohammadinejad R, Benyettou F, Gozubenli N, Arami H. Hollow micro and nanostructures for therapeutic and imaging applications. J Drug Deliv Sci Technol 2020; 60:102094. [PMID: 34335877 PMCID: PMC8320649 DOI: 10.1016/j.jddst.2020.102094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hollow particles have been extensively used in bioanalytical and biomedical applications for almost two decades due to their unique and tunable optoelectronic properties as well as their significantly high loading capacities. These intrinsic properties led them to be used in various bioimaging applications as contrast agents, controlled delivery (i.e. drugs, nucleic acids and other biomolecules) platforms and photon-triggered therapies (e.g. photothermal and photodynamic therapies). Since recent studies showed that imaging-guided targeted therapeutics have higher success rates, multimodal theranostic platforms (combination of one or more therapy and diagnosis modality) have been employed more often and hollow particles (i.e. nanoshells) have been one of the most efficient candidates to be used in multiple-purpose platforms, owing to their intrinsic properties that enable synergistic multimodal performance. In this review, recent advances in the applications of such hollow particles fabricated with various routes (either inorganic or organic based) were summarized to delineate strategies for tuning their properties for more efficient biomedical performance by overcoming common biological barriers. This review will pave the ways for expedited progress in design of next generation of hollow particles for clinical applications.
Collapse
Affiliation(s)
- Emir Yasun
- University of California, Santa Barbara and California NanoSystems Institute (CNSI), Santa Barbara, CA, 93106, USA
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Samraggi Choudhury
- DBT-National Institute of Animal Biotechnology, Hyderabad, 500032, Telangana, India
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farah Benyettou
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Numan Gozubenli
- Molecular Biology and Genetics Department, Harran University, Sanliurfa, Turkey
| | - Hamed Arami
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford (MIPS), The James H Clark Center, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Wang T, Okejiri F, Qiao ZA, Dai S. Tailoring Polymer Colloids Derived Porous Carbon Spheres Based on Specific Chemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002475. [PMID: 32643210 DOI: 10.1002/adma.202002475] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Porous carbon spheres derived from polymer colloids with regular geometry, monodispersed morphology, well-controlled contents and structures play important roles in many areas of application, such as energy storage/conversion, gas adsorption/separation, catalysis, and chemo-photothermal therapy. Suitable polymerization reaction and synthetic strategy are both critical for the obtainment of stable polymer colloids as carbon precursors. Basic polymerization reactions are the cornerstones of synthetic strategies, which directly provides the direct molecular-based design of functionalized polymer/carbon spheres. Thus, this progress report mainly focuses on the summary of suitable polymerization reactions for colloidal polymer derived porous carbon spheres. Recent advances in the synthetic strategies and applications are also discussed, including their corresponding polymerization reactions. Finally, the perspectives for the development of polymer derived porous carbon spheres are provided based on the controlled synthesis of polymer colloids and optimization over the carbonization process to achieve highly functionalized carbon spheres for practical applications.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012, China
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Francis Okejiri
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Sheng Dai
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
12
|
Xiao YF, Xiang C, Li S, Mao C, Chen H, Chen JX, Tian S, Cui X, Wan Y, Huang Z, Li X, Zhang XH, Guo W, Lee CS. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002672. [PMID: 32697430 DOI: 10.1002/smll.202002672] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Multi-modality imaging-guided cancer therapy is considered as a powerful theranostic platform enabling simultaneous precise diagnosis and treatment of cancer. However, recently reported multifunctional systems with multiple components and sophisticate structures remain major obstacles for further clinical translation. In this work, a single-photomolecular theranostic nanoplatform is fabricated via a facile nanoprecipitation strategy. By encapsulating a semiconductor oligomer (IT-S) into an amphiphilic lipid, water-dispersible IT-S nanoparticles (IT-S NPs) are prepared. The obtained IT-S NPs have a very simple construction and possess ultra-stable near-infrared (NIR) fluorescence (FL)/photoacoustic (PA) dual-modal imaging and high photothermal conversion efficiency of 72.3%. Accurate spatiotemporal distribution profiles of IT-S NPs are successfully visualized by NIR FL/PA dual-modal imaging. With the comprehensive in vivo imaging information provided by IT-S NPs, tumor photothermal ablation is readily realized under precise manipulation of laser irradiation, which greatly improves the therapeutic efficacy without any obvious side effects. Therefore, the IT-S NPs allow high tumor therapeutic efficacy under the precise guidance of FL/PA imaging techniques and thus hold great potential as an effective theranostic platform for future clinical applications.
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Chenyang Xiang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Cong Mao
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Haoting Chen
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Jia-Xiong Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao-Hong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
13
|
Li X, Zhang W, Wang WY, Wu X, Li Y, Tan X, Matera DL, Baker BM, Paulus YM, Fan X, Wang X. Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers. BIOMEDICAL OPTICS EXPRESS 2020; 11:3659-3672. [PMID: 33014558 PMCID: PMC7510899 DOI: 10.1364/boe.395369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 05/24/2023]
Abstract
Emerging cell-based therapies such as stem cell therapy and immunotherapy have attracted broad attention in both biological research and clinical practice. However, a long-standing technical gap of cell-based therapies is the difficulty of directly assessing treatment efficacy via tracking therapeutically administered cells. Therefore, imaging techniques to follow the in vivo distribution and migration of cells are greatly needed. Optical coherence tomography (OCT) is a clinically available imaging technology with ultrahigh-resolution and excellent imaging depth. It also shows great potential for in vivo cellular imaging. However, due to the homogeneity of current OCT cell labeling contrast agents (such as gold and polymer nanoparticles), only the distribution of entire cell populations can be observed. Precise tracking of the trajectory of individual single cells is not possible with such conventional contrast agents. Microlasers may provide a route to track unique cell identifiers given their small size, high emission intensities, rich emission spectra, and narrow linewidths. Here, we demonstrate that nanowire lasers internalized by cells provide both OCT and fluorescence signal. In addition, cells can be individually identified by the unique lasing emission spectra of the nanowires that they carry. Furthermore, single cell migration trajectories can be monitored both in vitro and in vivo with OCT and fluorescence microscopy dual-modality imaging system. Our study demonstrates the feasibility of nanowire lasers combined with the dual-modality imaging system for in vivo single cell tracking with a high spatial resolution and identity verification, an approach with great utility for stem cell and immunomodulatory therapies.
Collapse
Affiliation(s)
- Xuzhou Li
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
- Xuzhou Li and Wei Zhang contributed equally to this work
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
- Xuzhou Li and Wei Zhang contributed equally to this work
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Xiaoqin Wu
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA
| | - Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Daniel L Matera
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Yannis M Paulus
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Guo X, Cao B, Wang C, Lu S, Hu X. In vivo photothermal inhibition of methicillin-resistant Staphylococcus aureus infection by in situ templated formulation of pathogen-targeting phototheranostics. NANOSCALE 2020; 12:7651-7659. [PMID: 32207761 DOI: 10.1039/d0nr00181c] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection has caused a serious threat to human public health. Methicillin-resistant Staphylococcus aureus (MRSA) is a representative drug-resistant bacterium, which is difficult to eradicate completely, resulting in high infection probability with severe mortality. Herein, pathogen-targeting phototheranostic nanoparticles, Van-OA@PPy, are developed for efficient elimination of MRSA infection. Van-OA@PPy nanoparticles are fabricated from the in situ templated formation of polypyrrole (PPy) in the presence of ferric ions (Fe3+) and a polymer template, hydrophilic poly(2-hydroxyethyl methacrylate-co-N,N-dimethyl acrylamide), P(HEMA-co-DMA). PPy nanoparticles are further coated with vancomycin conjugated oleic acid (Van-OA) to afford the resultant pathogen-targeting Van-OA@PPy. A high photothermal conversion efficiency of ∼49.4% is achieved. MRSA can be efficiently killed due to sufficient nanoparticle adhesion and fusion with MRSA, followed by photothermal therapy upon irradiation with an 808 nm laser. Remarkable membrane damage of MRSA is observed, which contributes greatly to the inhibition of MRSA infection. Furthermore, the nanoparticles have high stability and good biocompatibility without causing any detectable side effects. On the other hand, residual Fe3+ and PPy moieties in Van-OA@PPy endow the nanoparticles with magnetic resonance (MR) imaging and photoacoustic (PA) imaging potency, respectively. The current strategy has the potential to inspire further advances in precise diagnosis and efficient elimination of MRSA infection in biomedicine.
Collapse
Affiliation(s)
- Xujuan Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| | | | | | | | | |
Collapse
|
15
|
Bhattarai DP, Hwang TI, Kim JI, Lee JH, Chun S, Kim BS, Park CH, Kim CS. Synthesis of polypyrrole nanorods via sacrificial removal of aluminum oxide nanopore template: A study on cell viability, electrical stimulation and neuronal differentiation of PC12 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110325. [DOI: 10.1016/j.msec.2019.110325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 09/18/2019] [Accepted: 10/14/2019] [Indexed: 12/26/2022]
|
16
|
Shan X, Chen Q, Yin X, Jiang C, Li T, Wei S, Zhang X, Sun G, Liu J, Lu L. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy. J Mater Chem B 2020; 8:426-437. [DOI: 10.1039/c9tb02254f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A polypyrrole-based theranostic agent containing double rare-earth elements was constructed and demonstrated promising application for T1/T2-weighted MRI/CT tri-modal imaging guided photothermal cancer therapy.
Collapse
|
17
|
Behzadpour N, Sattarahmady N, Akbari N. Antimicrobial Photothermal Treatment of Pseudomonas Aeruginosa by a Carbon Nanoparticles-Polypyrrole Nanocomposite. J Biomed Phys Eng 2019; 9:661-672. [PMID: 32039097 PMCID: PMC6943850 DOI: 10.31661/jbpe.v0i0.1024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nowadays, it is needed to explore new routes to treat infectious bacterial pathogens due to prevalence of antibiotic-resistant bacteria. Antimicrobial photothermal therapy (PTT), as a new strategy, eradicates pathogenic bacteria. OBJECTIVE In this study, the antimicrobial effects of a carbon nanoparticles-polypyrrole nanocomposite (C-PPy) upon laser irradiation were investigated to destroy the pathogenic gram-negative Pseudomonas aeruginosa. MATERIAL AND METHODS In this experimental study, the bacterial cells were incubated with 50, 100 and 250 µg mL-1 concentrations of C-PPy and irradiated with a 808-nm laser at two power densities of 0.5 and 1.0 W cm-2. CFU numbers were counted for the irradiated cells, and compared to an untreated sample (kept in dark). To explore the antibacterial properties and mechanism(s) of C-PPy, temperature increment, reactive oxygen species formation, and protein and DNA leakages were evaluated. Field emission scanning electron microscopy was also employed to investigate morphological changes in the bacterial cell structures. RESULTS The results showed that following C-PPy attachment to the bacteria surface, irradiation of near-infrared light resulted in a significant decrement in the bacterial cell viability due to photothermal lysis. Slightly increase in protein leakage and significantly increase intracellular reactive oxygen species (ROS) were observed in the bacteria upon treating with C-PPy. CONCLUSION Photo-ablation strategy is a new minimally invasive and inexpensive method without overdose risk manner for combat with bacteria.
Collapse
Affiliation(s)
- N Behzadpour
- MSc, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- MSc, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Sattarahmady
- PhD, Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Akbari
- PhD, Department of Microbiology, Faculty of Science, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
18
|
Tsukada S, Nakanishi Y, Kai H, Ishimoto T, Okada K, Adachi Y, Imae I, Ohshita J. NIR‐shielding films based on PEDOT‐PSS/polysiloxane and polysilsesquioxane hybrid. J Appl Polym Sci 2019. [DOI: 10.1002/app.48367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Satoru Tsukada
- Department of Materials Science Graduate School of Engineering, Chiba University, 1‐33 Yayoi‐cho, Inage‐ku Chiba 263‐8522 Japan
| | - Yuki Nakanishi
- Department of Applied Chemistry, Graduate School of Engineering Hiroshima University, 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| | - Hiroyuki Kai
- Mazda Motor Corporation, 3‐1 Shinchi, Fuchu‐cho, Aki‐gun Hiroshima 730‐8670 Japan
| | - Takayoshi Ishimoto
- Advanced Materials Laboratory, Advanced Automotive Research Collaborative Laboratory, Graduate School of Engineering Hiroshima University, 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
- Quantum Chemistry Division, Graduate School of Science Yokohama City University, 22‐2 Seto, Kanazawa‐ku, Yokohama Kanagawa 236‐0027 Japan
| | - Kenta Okada
- Advanced Materials Laboratory, Advanced Automotive Research Collaborative Laboratory, Graduate School of Engineering Hiroshima University, 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| | - Yohei Adachi
- Department of Applied Chemistry, Graduate School of Engineering Hiroshima University, 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| | - Ichiro Imae
- Department of Applied Chemistry, Graduate School of Engineering Hiroshima University, 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| | - Joji Ohshita
- Department of Applied Chemistry, Graduate School of Engineering Hiroshima University, 1‐4‐1 Kagamiyama, Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| |
Collapse
|
19
|
Liu Y, Bhattarai P, Dai Z, Chen X. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem Soc Rev 2019; 48:2053-2108. [PMID: 30259015 PMCID: PMC6437026 DOI: 10.1039/c8cs00618k] [Citation(s) in RCA: 1622] [Impact Index Per Article: 324.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nonradiative conversion of light energy into heat (photothermal therapy, PTT) or sound energy (photoacoustic imaging, PAI) has been intensively investigated for the treatment and diagnosis of cancer, respectively. By taking advantage of nanocarriers, both imaging and therapeutic functions together with enhanced tumour accumulation have been thoroughly studied to improve the pre-clinical efficiency of PAI and PTT. In this review, we first summarize the development of inorganic and organic nano photothermal transduction agents (PTAs) and strategies for improving the PTT outcomes, including applying appropriate laser dosage, guiding the treatment via imaging techniques, developing PTAs with absorption in the second NIR window, increasing photothermal conversion efficiency (PCE), and also increasing the accumulation of PTAs in tumours. Second, we introduce the advantages of combining PTT with other therapies in cancer treatment. Third, the emerging applications of PAI in cancer-related research are exemplified. Finally, the perspectives and challenges of PTT and PAI for combating cancer, especially regarding their clinical translation, are discussed. We believe that PTT and PAI having noteworthy features would become promising next-generation non-invasive cancer theranostic techniques and improve our ability to combat cancers.
Collapse
Affiliation(s)
- Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pravin Bhattarai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Wu H, Cheng K, He Y, Li Z, Su H, Zhang X, Sun Y, Shi W, Ge D. Fe3O4-Based Multifunctional Nanospheres for Amplified Magnetic Targeting Photothermal Therapy and Fenton Reaction. ACS Biomater Sci Eng 2018; 5:1045-1056. [DOI: 10.1021/acsbiomaterials.8b00468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Huanhuan Wu
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Keman Cheng
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuan He
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Ziyang Li
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Huiling Su
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiuming Zhang
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Yanan Sun
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Shi
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| | - Dongtao Ge
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province University, Research Center of Biomedical Engineering of Xiamen, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
21
|
Huang J, Li N, Zhang C, Meng Z. Metal-Organic Framework as a Microreactor for in Situ Fabrication of Multifunctional Nanocomposites for Photothermal-Chemotherapy of Tumors in Vivo. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38729-38738. [PMID: 30335360 DOI: 10.1021/acsami.8b12394] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-organic frameworks (MOFs) have been applied in chemotherapeutic drug loading for cancer treatment, but challenging for cases with large and malignant lesions. To overcome these difficulties, combinational therapies of chemotherapy and photothermal therapy (PTT) with potentially high selectivity and slight aggressiveness have drawn tremendous attention to treat various tumors. However, current MOF-based nanohybrids with photothermal agents involve tedious synthesis processes and heterogeneous structures. Herein, we employ MIL-53 as a microreactor to grow polypyrrole (PPy) nanoparticles in situ for the fabrication of PPy@MIL-53 nanocomposites. Fe3+ in MIL-53, as an intrinsic oxidizing agent, can oxidize the pyrrole monomer to generate PPy nanoparticles. The prepared PPy@MIL-53 nanocomposites integrate the intrinsic advantages of MOFs with high drug loading ability and magnetic resonance imaging (MRI) capacity, and PPy nanoparticles with outstanding PTT ability and excellent biocompatibility. The versatile PPy@MIL-53 nanocomposites with multiple functions displayed in vitro and in vivo synergism of photothermal-chemotherapy for cancer, potentially MRI-guided. The proposed MOF microreactor-based synthesis strategy shows a promising prospect in the fabrication of diverse multifunctional nanohybrids for tumor theranostics in vivo.
Collapse
Affiliation(s)
- Jiani Huang
- Department of Nuclear Medicine , Tianjin Medical University General Hospital , Tianjin 300052 , P. R. China
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , P. R. China
| | - Ning Li
- Department of Nuclear Medicine , Tianjin Medical University General Hospital , Tianjin 300052 , P. R. China
| | - Chunmei Zhang
- Department of Nuclear Medicine , Tianjin Medical University General Hospital , Tianjin 300052 , P. R. China
| | - Zhaowei Meng
- Department of Nuclear Medicine , Tianjin Medical University General Hospital , Tianjin 300052 , P. R. China
| |
Collapse
|
22
|
Electrostatic formation of polymer particle stabilised liquid marbles and metastable droplets – Effect of latex shell conductivity. J Colloid Interface Sci 2018; 529:486-495. [DOI: 10.1016/j.jcis.2018.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
|
23
|
Zhang C, Pan H, Wang X, Sun SK. Microwave-assisted ultrafast fabrication of high-performance polypyrrole nanoparticles for photothermal therapy of tumors in vivo. Biomater Sci 2018; 6:2750-2756. [PMID: 30187038 DOI: 10.1039/c8bm00653a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photothermal therapy with minimal invasiveness and high selectivity has been regarded as a powerful technique for tumor therapy to overcome the risks of toxic side effects and limited therapeutic efficacy of clinic cancer treatments. Among various photothermal therapeutic agents, polypyrrole (PPy) nanoparticles show a promising prospect in tumor ablation in vivo due to their admirable biocompatibility and outstanding photothermal performance. Besides, polypyrrole nanoparticles are extensively applied in biosensors, electrochemical sensors, tissue engineering, flexible microelectronics, and so on. However, the available synthesis methods of PPy nanoparticles are all time-consuming and seriously hindered their highly efficient production for diverse applications. Here we present a microwave-assisted strategy for the fabrication of PPy nanoparticles in 2 min, and the required synthesis time is shortened by 120-720 times compared to that in traditional ways. The prepared PPy nanoparticles possess uniform size, favorable aqueous solubility, and enhanced photothermal performance derived from the stronger near-infrared absorbance. Low cytotoxicity and in vivo toxicity of the nanoparticles were confirmed via comprehensive assessments. The PPy nanoparticle-based photothermal therapy in vitro led to a remarkable death of tumor cells, and in vivo tumor ablation using the nanoparticles was achieved under mild laser irradiation with a FDA-approved safe power. The proposed microwave-assisted synthesis strategy opens up a facile and ultrafast way for the construction of organic nanoparticles and facilitates a wide range of applications of them in biomedicine and other fields.
Collapse
Affiliation(s)
- Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin 300071, China
| | | | | | | |
Collapse
|
24
|
Bhattarai DP, Tiwari AP, Maharjan B, Tumurbaatar B, Park CH, Kim CS. Sacrificial template-based synthetic approach of polypyrrole hollow fibers for photothermal therapy. J Colloid Interface Sci 2018; 534:447-458. [PMID: 30248614 DOI: 10.1016/j.jcis.2018.09.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 01/05/2023]
Abstract
In the present work, polypyrrole hollow fibers (PPy-HFs) were fabricated by sacrificial removal of soft templates of electrospun polycaprolactone (PCL) fibers with polypyrrole (PPy) coating through chemical polymerization of pyrrole monomer. Different physicochemical properties of as-fabricated PPy-HFs were then studied by Field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transform infra-red (FT-IR) spectroscopy, Differential scanning calorimetry/Thermogravimetric analysis (DSC/TGA), and X-ray photoelectron spectroscopy (XPS). The photothermal activity of PPy-HF was studied by irradiating 808-nm near infra-red (NIR) light under different power values with various concentrations of PPy-HFs dispersed in phosphate buffer solution (PBS, pH 7.4). These PPy-HFs exhibited enhanced photothermal performance compared with polypyrrole nanoparticles (PPy-NPs). Furthermore, these PPy-HFs showed photothermal effect that was laser-power- and concentration-dependent. The photothermal toxicity of the resulting nanofiber was evaluated using cell counting kit-8 (CCK-8) and live and dead cell assays. Results showed that these PPy-HFs were more effective in killing cancer cells under NIR irradiation. In contrast, hollow-fiber showed no cytotoxicity without NIR exposure. Among different nanofiber formulations, PPy-160 exhibited the highest photothermal toxicity. It could be explained by its enhanced photothermal performance compared to other specimens. The resulting PPy-HFs showed superior drug-loading capacity to PPy-NPs. This might be attributed to adequate binding of the drug into both luminal and abluminal hollow-fiber surfaces. Fabrication of this substrate type opens a promising new avenue for architectural design of biocompatible organic polymer for biomedical field.
Collapse
Affiliation(s)
- Deval Prasad Bhattarai
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Arjun Prasad Tiwari
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Batgerel Tumurbaatar
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Chonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
25
|
Yang J, Zhai S, Qin H, Yan H, Xing D, Hu X. NIR-controlled morphology transformation and pulsatile drug delivery based on multifunctional phototheranostic nanoparticles for photoacoustic imaging-guided photothermal-chemotherapy. Biomaterials 2018; 176:1-12. [DOI: 10.1016/j.biomaterials.2018.05.033] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 02/02/2023]
|
26
|
Lee NP, Chan CM, Tung LN, Wang HK, Law S. Tumor xenograft animal models for esophageal squamous cell carcinoma. J Biomed Sci 2018; 25:66. [PMID: 30157855 PMCID: PMC6116446 DOI: 10.1186/s12929-018-0468-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer worldwide and highly prevalent in less developed regions. Management of ESCC is challenging and involves multimodal treatments. Patient prognosis is generally poor especially for those diagnosed in advanced disease stage. One factor contributing to this clinical dismal is the incomplete understanding of disease mechanism, for which this situation is further compounded by the presence of other limiting factors for disease diagnosis, patient prognosis and treatments. Tumor xenograft animal models including subcutaneous tumor xenograft model, orthotopic tumor xenograft model and patient-derived tumor xenograft model are vital tools for ESCC research. Establishment of tumor xenograft models involves the implantation of human ESCC cells/xenografts/tissues into immunodeficient animals, in which mice are most commonly used. Different tumor xenograft models have their own advantages and limitations, and these features serve as key factors to determine the use of these models at different stages of research. Apart from their routine use on basic research to understand disease mechanism of ESCC, tumor xenograft models are actively employed for undertaking preclinical drug screening project and biomedical imaging research.
Collapse
Affiliation(s)
- Nikki P Lee
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| | - Chung Man Chan
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Lai Nar Tung
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Hector K Wang
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Simon Law
- Department of Surgery, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
27
|
Su H, Wang Y, Gu Y, Bowman L, Zhao J, Ding M. Potential applications and human biosafety of nanomaterials used in nanomedicine. J Appl Toxicol 2018; 38:3-24. [PMID: 28589558 PMCID: PMC6506719 DOI: 10.1002/jat.3476] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
Abstract
With the rapid development of nanotechnology, potential applications of nanomaterials in medicine have been widely researched in recent years. Nanomaterials themselves can be used as image agents or therapeutic drugs, and for drug and gene delivery, biological devices, nanoelectronic biosensors or molecular nanotechnology. As the composition, morphology, chemical properties, implant sites as well as potential applications become more and more complex, human biosafety of nanomaterials for clinical use has become a major concern. If nanoparticles accumulate in the human body or interact with the body molecules or chemical components, health risks may also occur. Accordingly, the unique chemical and physical properties, potential applications in medical fields, as well as human biosafety in clinical trials are reviewed in this study. Finally, this article tries to give some suggestions for future work in nanomedicine research. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hong Su
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yafei Wang
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Yuanliang Gu
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
| | - Linda Bowman
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Provincial
Key Laboratory of Pathological and Physiological Technology, School of Medicine,
Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province 315211,
People’s Republic of China
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| | - Min Ding
- Toxicology and Molecular Biology Branch, Health Effects
Laboratory Division, National Institute for Occupational Safety and Health,
Morgantown, WV, 26505, USA
| |
Collapse
|
28
|
Gao A, Xu W, Ponce de León Y, Bai Y, Gong M, Xie K, Park BH, Yin Y. Controllable Fabrication of Au Nanocups by Confined-Space Thermal Dewetting for OCT Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28466959 DOI: 10.1002/adma.201701070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/20/2017] [Indexed: 05/03/2023]
Abstract
Here, this study reports a novel confined-space thermal dewetting strategy for the fabrication of Au nanocups with tunable diameter, height, and size of cup opening. The nanocup morphology is defined by the cup-shaped void space created by a yolk-shell silica template that spontaneously takes an eccentric configuration during annealing. Thermal dewetting of Au, which is sandwiched between the yolk and shell, leads to the desired nanocup morphology. With strong scattering in near infrared, the Au nanocups exhibit superior efficiency as contrast agents for spectral-domain optical coherence tomography imaging. This confined-space thermal dewetting strategy is scalable and general, and can be potentially extended to the synthesis of novel anisotropic nanostructures of various compositions that are difficult to produce by conventional wet chemical or physical methods, thus opening up opportunities for many new applications.
Collapse
Affiliation(s)
- Aiqin Gao
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Wenjing Xu
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | | | - Yaocai Bai
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Mingfu Gong
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Kongliang Xie
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Boris Hyle Park
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
29
|
Yue X, Zhang Q, Dai Z. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer. Adv Drug Deliv Rev 2017; 115:155-170. [PMID: 28455188 DOI: 10.1016/j.addr.2017.04.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022]
Abstract
Near infrared (NIR) light allows deep tissue penetration and high spatial resolution due to the reduced scattering of long-wavelength photons. NIR light-activatable polymer nanoparticles are widely exploited for enhanced cancer imaging (diagnosis) and therapy owing to their superior photostability, photothermal conversion efficiency (or high emission rate), and minimal toxicity to cells and tissues. This review surveys the most recent advances in the synthesis of different NIR-absorbing and emissive polymer nanoformulations, and their applications for cancer imaging, photothermal therapy, theranostics and combination therapy by delivering multiple small molecule chemotherapeutics. Photo-responsive drug delivery systems for NIR light-triggered drug release are also discussed with particular emphasis on their molecular designs and formulations as well as photo-reaction mechanisms. Finally, outlook and challenges are presented regarding potential clinical applications of NIR light-activatable nanoformulations.
Collapse
Affiliation(s)
- Xiuli Yue
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, College of Engineering, College of Pharmaceutics, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, College of Engineering, College of Pharmaceutics, Peking University, Beijing 100871, China.
| |
Collapse
|
30
|
Jiang X, Tang P, Gao P, Zhang YS, Yi C, Zhou J. Gold Nanoprobe-Enabled Three-Dimensional Ozone Imaging by Optical Coherence Tomography. Anal Chem 2017; 89:2561-2568. [PMID: 28192946 DOI: 10.1021/acs.analchem.6b04785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ozone (O3) would be harmful to human skin for its strong oxidizing property, especially when stratum corneum or corneal epithelium is wounded. Imaging the penetration and distribution of ozone at depth is beneficial for studying the influence of ozone on skin or eyes. Here, we introduced a facile method for three-dimensional (3D) imaging of the penetration of O3 into the anterior chamber of an isolated crucian carp eye by using optical coherence tomography (OCT) combined with gold triangular nanoprisms (GTNPs) as the contrast agent and molecular probe. We illustrated the specific response of GTNPs to ozone and demonstrated that GTNPs can function as an efficient nanoprobe for sensing O3. The stabilities of GTNPs in different biologic solutions, as well as the signal intensity of GTNPs on an OCT imaging system, were investigated. Visualization of 3D penetration and distribution of O3 in the biologic tissue was proved for the first time. The quantitative analysis of O3 diffusion in the anterior chamber of the fish eye revealed a penetration depth of 311 μm within 172 min. Due to the strong scattering, near-infrared extinction band, and easy functionalization of GTNPs, they could further serve as nanoprobes for 3D OCT or multimodal imaging of other molecules or ions in the future.
Collapse
Affiliation(s)
- Xueqin Jiang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Peijun Tang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Panpan Gao
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Yu Shrike Zhang
- Brigham and Women's Hospital, Harvard Medical School , Cambridge, Massachusetts 02139, United States
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Engineering, Sun Yat-sen University , Guangzhou 510275, China
| |
Collapse
|
31
|
Tsai MT, Zhang JW, Liu YH, Yeh CK, Wei KC, Liu HL. Acoustic-actuated optical coherence angiography. OPTICS LETTERS 2016; 41:5813-5816. [PMID: 27973509 DOI: 10.1364/ol.41.005813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Optical coherence tomography (OCT) angiography requires high sensitivity and image penetration for detailed microvascular monitoring. Unfortunately, no effective contrast-medium-enhanced scheme is currently available for imaging improvement. We here propose the simultaneous use of gas-filled microbubbles (MBs) and acoustic actuation to enhance the imaging contrast of OCT angiography. OCT-synchronized acoustic actuation was applied in the presence of MBs, and different moving object tracking angiographic algorithms were tested in in vitro tubing and in vivo mouse experiments. This scheme significantly enhanced the OCT angiography performance, including its sensitivity and penetration, and should advance the utilization of OCT as an effective microvascular diagnostic tool.
Collapse
|
32
|
Wang M. Emerging Multifunctional NIR Photothermal Therapy Systems Based on Polypyrrole Nanoparticles. Polymers (Basel) 2016; 8:E373. [PMID: 30974650 PMCID: PMC6432477 DOI: 10.3390/polym8100373] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 01/09/2023] Open
Abstract
Near-infrared (NIR)-light-triggered therapy platforms are now considered as a new and exciting possibility for clinical nanomedicine applications. As a promising photothermal agent, polypyrrole (PPy) nanoparticles have been extensively studied for the hyperthermia in cancer therapy due to their strong NIR light photothermal effect and excellent biocompatibility. However, the photothermal application of PPy based nanomaterials is still in its preliminary stage. Developing PPy based multifunctional nanomaterials for cancer treatment in vivo should be the future trend and object for cancer therapy. In this review, the synthesis of PPy nanoparticles and their NIR photothermal conversion performance were first discussed, followed by a summary of the recent progress in the design and implementation on the mulitifunctionalization of PPy or PPy based therapeutic platforms, as well as the introduction of their exciting biomedical applications based on the synergy between the photothermal conversion effect and other stimulative responsibilities.
Collapse
Affiliation(s)
- Mozhen Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
33
|
Zhang H, Xiong L, Liao X, Huang K. Controlled‐Release System of Small Molecules Triggered by the Photothermal Effect of Polypyrrole. Macromol Rapid Commun 2015; 37:149-54. [DOI: 10.1002/marc.201500523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/05/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Zhang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Linfeng Xiong
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Kun Huang
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
| |
Collapse
|
34
|
Huang CC, Chang PY, Liu CL, Xu JP, Wu SP, Kuo WC. New insight on optical and magnetic Fe3O4 nanoclusters promising for near infrared theranostic applications. NANOSCALE 2015; 7:12689-97. [PMID: 26151814 DOI: 10.1039/c5nr03157e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extensive efforts have been devoted to the development of a new biophotonic system using near infrared (NIR) nano-agents for non-invasive cancer diagnosis and therapy. Here, we developed a simple synthesis reaction of ligands, hydrazine, and iron(ii) chloride to fabricate Fe3O4 cluster-structured nanoparticles (CNPs) with interesting NIR photonics and high magnetization (Ms: 98.3 emu g(-1) and proton relaxivity r2: 234.6 mM(-1) s(-1)). These Fe3O4 CNPs exhibited optical absorption and reflection over all wavelengths, showing a U-shape absorption band with a low absorbance at a range of 750-950 nm and a progressive evolution in the second near infrared region. Strengthening of the scattering effect by incubating Fe3O4 CNPs with HeLa cells was observed when optical contrast enhancement was performed in an optical coherence tomography (OCT) microscope system with a laser light source at 860 nm. Using a 1064 nm laser at a low power density (380 mW cm(-2)) to excite the Fe3O4 CNPs (375 ppm[Fe]) led to a rise in the water temperature from 25 °C to 58 °C within 10 min. Finally, we present the first example of magnetomotive OCT cellular imaging combined with enhanced photothermal therapy using Fe3O4 CNPs and applying a magnetic field, which is promising for preclinical and clinical trials in the future.
Collapse
Affiliation(s)
- Chih-Chia Huang
- Department of Photonics, Center for Micro/Nano Science and Technology, and Advanced Optoelectronic Technology Center, National Cheng Kung University, 701, Tainan, Taiwan.
| | | | | | | | | | | |
Collapse
|
35
|
Peng Z, Qin J, Li B, Ye K, Zhang Y, Yang X, Yuan F, Huang L, Hu J, Lu X. An effective approach to reduce inflammation and stenosis in carotid artery: polypyrrole nanoparticle-based photothermal therapy. NANOSCALE 2015; 7:7682-7691. [PMID: 25833402 DOI: 10.1039/c5nr00542f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photothermal therapy (PTT), as a promising treatment for tumours, has rarely been reported for application in artery restenosis, which is a common complication of endovascular management due to enduring chronic inflammation and abnormal cell proliferation. In our study, biodegradable polypyrrole nanoparticles (PPy-NPs) were synthesized and characterized, including their size distribution, UV-vis-NIR absorbance, molar extinction coefficients, and photothermal properties. We then verified that PPy-NP incubation followed by 915 nm near-infrared (NIR) laser irradiation could effectively ablate inflammatory macrophages in vitro, leading to significant cell apoptosis and cell death. Further, it was found that a combination of local PPy-NP injection with 915 nm NIR laser irradiation could significantly alleviate arterial inflammation by eliminating infiltrating macrophages and further ameliorating artery stenosis in an ApoE(-/-) mouse model, without showing any obvious toxic side effects. Thus, we propose that PTT based on PPy-NPs as photothermal agents and a 915 nm NIR laser as a power source can serve as a new effective treatment for reducing inflammation and stenosis formation in inflamed arteries after endovascular management.
Collapse
Affiliation(s)
- Zhiyou Peng
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang J, Zhao J, Li Y, Yang M, Chang YQ, Zhang JP, Sun Z, Wang Y. Enhanced Light Absorption in Porous Particles for Ultra-NIR-Sensitive Biomaterials. ACS Macro Lett 2015; 4:392-397. [PMID: 35596327 DOI: 10.1021/acsmacrolett.5b00089] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conducting polymers with the capability of photothermal conversion extend the application of near-infrared light (NIR), satisfying the demands of less toxicity, easy availability, and high flexibility for NIR-sensitive materials. The improvement of light use efficiency is still urgent and challenging. In this work, an ultra-NIR-sensitive biocompatible porous particle composed of a polylactic acid matrix and polypyrrole nanoparticles is prepared via a one-step double-emulsion method. It is revealed that the light absorption of polyprryole is effectively improved within the porous structure. This particle is exploited as a cost-effective sensing material in terms of its conductivity change for preparing paper-based NIR light sensors. Moreover, the microspheres act as a guardian to encapsulate and lock excess nucleic acids which is useful for preventing inflammatory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Jing Zhao
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Yanbo Li
- School
of Public Health and Family Medicine, Capital Medical University, Beijing 100069, P. R. China
| | - Man Yang
- School
of Public Health and Family Medicine, Capital Medical University, Beijing 100069, P. R. China
| | - Yu-Qiang Chang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Jian-Ping Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Zhiwei Sun
- School
of Public Health and Family Medicine, Capital Medical University, Beijing 100069, P. R. China
| | - Yapei Wang
- Department
of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
37
|
Jia Y, Liu G, Gordon AY, Gao SS, Pechauer AD, Stoddard J, McGill TJ, Jayagopal A, Huang D. Spectral fractionation detection of gold nanorod contrast agents using optical coherence tomography. OPTICS EXPRESS 2015; 23:4212-25. [PMID: 25836459 PMCID: PMC4394760 DOI: 10.1364/oe.23.004212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 05/27/2023]
Abstract
We demonstrate the proof of concept of a novel Fourier-domain optical coherence tomography contrast mechanism using gold nanorod contrast agents and a spectral fractionation processing technique. The methodology detects the spectral shift of the backscattered light from the nanorods by comparing the ratio between the short and long wavelength halves of the optical coherence tomography signal intensity. Spectral fractionation further divides the halves into sub-bands to improve spectral contrast and suppress speckle noise. Herein, we show that this technique can detect gold nanorods in intralipid tissue phantoms. Furthermore, cellular labeling by gold nanorods was demonstrated using retinal pigment epithelial cells in vitro.
Collapse
Affiliation(s)
- Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
- Co-first authors
| | - Gangjun Liu
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
- Co-first authors
| | - Andrew Y. Gordon
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232,
USA
| | - Simon S. Gao
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Alex D. Pechauer
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Jonathan Stoddard
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Trevor J. McGill
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| | - Ashwath Jayagopal
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Nashville, Tennessee 37232,
USA
| | - David Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239,
USA
| |
Collapse
|
38
|
Fielding LA, Hillier JK, Burchell MJ, Armes SP. Space science applications for conducting polymer particles: synthetic mimics for cosmic dust and micrometeorites. Chem Commun (Camb) 2015; 51:16886-99. [DOI: 10.1039/c5cc07405c] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of conducting polymer-based particles as synthetic mimics for understanding the behaviour of micro-meteorites (a.k.a. cosmic dust) is reviewed and the implications for various space science applications is discussed.
Collapse
Affiliation(s)
| | - Jon K. Hillier
- Department of Space Science
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | - Mark J. Burchell
- Department of Space Science
- School of Physical Sciences
- University of Kent
- Canterbury
- UK
| | | |
Collapse
|
39
|
Wang J, Lin F, Chen J, Wang M, Ge X. The preparation, drug loading and in vitro NIR photothermal-controlled release behavior of raspberry-like hollow polypyrrole microspheres. J Mater Chem B 2015; 3:9186-9193. [DOI: 10.1039/c5tb01314c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raspberry-like hollow polypyrrole microspheres (H-PPy), which are prepared through a templating method, exhibit promising synergistic cancer therapy effect.
Collapse
Affiliation(s)
- Jie Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Fuxing Lin
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Jinxing Chen
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Mozhen Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Xuewu Ge
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
40
|
Hu W, Chen H, Li CM. One-step synthesis of monodisperse gold dendrite@polypyrrole core-shell nanoparticles and their enhanced catalytic durability. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3440-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
|
42
|
Cheng L, Wang C, Feng L, Yang K, Liu Z. Functional Nanomaterials for Phototherapies of Cancer. Chem Rev 2014; 114:10869-939. [DOI: 10.1021/cr400532z] [Citation(s) in RCA: 1846] [Impact Index Per Article: 184.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Kai Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Magnetomotive optical coherence tomography for the assessment of atherosclerotic lesions using αvβ3 integrin-targeted microspheres. Mol Imaging Biol 2014; 16:36-43. [PMID: 23907212 DOI: 10.1007/s11307-013-0671-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE We investigated the early-stage fatty streaks/plaques detection using magnetomotive optical coherence tomography (MM-OCT) in conjunction with αvβ3 integrin-targeted magnetic microspheres (MSs). The targeting of functionalized MSs was investigated by perfusing ex vivo aortas from an atherosclerotic rabbit model in a custom-designed flow chamber at physiologically relevant pulsatile flow rates and pressures. PROCEDURES Aortas were extracted and placed in a flow chamber. Magnetic MS contrast agents were perfused through the aortas and MM-OCT, fluorescence confocal, and bright field microscopy were performed on the ex vivo aorta specimens for localizing the MSs. RESULTS The results showed a statistically significant and stronger MM-OCT signal (3.30 ± 1.73 dB) from the aorta segment perfused with targeted MSs, compared with the nontargeted MSs (1.18 ± 0.94 dB) and control (0.78 ± 0.41 dB) aortas. In addition, there was a good co-registration of MM-OCT signals with confocal microscopy. CONCLUSIONS Early-stage fatty streaks/plaques have been successfully detected using MM-OCT in conjunction with αvβ3 integrin-targeted magnetic MSs.
Collapse
|
44
|
Yoon J, Kwag J, Shin TJ, Park J, Lee YM, Lee Y, Park J, Heo J, Joo C, Park TJ, Yoo PJ, Kim S, Park J. Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4559-4564. [PMID: 24789764 DOI: 10.1002/adma.201400906] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Phase separation in films of phospholipids and conjugated polymers results in nanoassemblies because of a difference in the physicochemical properties between the hydrophobic polymers and the polar lipid heads, together with the comparable polymer side-chain lengths to lipid tail lengths, thus producing nanoparticles of conjugated polymers upon disassembly in aqueous media by the penetration of water into polar regions of the lipid heads.
Collapse
Affiliation(s)
- Jungju Yoon
- School of Chemical Engineering and Materials Science, Department of Chemistry, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zha Z, Wang J, Qu E, Zhang S, Jin Y, Wang S, Dai Z. Polypyrrole hollow microspheres as echogenic photothermal agent for ultrasound imaging guided tumor ablation. Sci Rep 2014; 3:2360. [PMID: 23912977 PMCID: PMC3733053 DOI: 10.1038/srep02360] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/18/2013] [Indexed: 12/04/2022] Open
Abstract
Ultrasound (US) imaging provides a valuable opportunity to administer photothermal therapy (PTT) of cancer with real-time guidance to ensure proper targeting, but only a few theranostic agents were developed by physically grafting near infrared (NIR)-absorbing inorganic nanomaterials to ready-made ultrasound contrast agents (UCAs) for US imaging guided PTT. In this paper, NIR absorbing hollow microspheres were generated from polypyrrole merely using a facile one-step microemulsion method. It was found that the obtained polypyrrole hollow microspheres (PPyHMs) can act as an efficient theranostic agent not only to enhance US imaging greatly, but also exhibit excellent photohyperthermic effects. The contrast consistently sustained the echo signals for no less than 5 min and the NIR laser light ablated the tumor completely within two weeks in the presence of PPyHMs. More importantly, no use of additional NIR absorber substantially minimizes an onetime dose of the theranostic agent.
Collapse
Affiliation(s)
- Zhengbao Zha
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Pai JH, Liu T, Hsu HY, Wedding AB, Thierry B, Bagnaninchi PO. Molecular photo-thermal optical coherence phase microscopy using gold nanorods. RSC Adv 2014. [DOI: 10.1039/c4ra03041a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new evolution of OCT is termed molecular OCPM, which is capable of imaging the expression of molecular markers at the cellular level by using functionalized gold nanorods as imaging agents.
Collapse
Affiliation(s)
- Jing-Hong Pai
- School of Engineering
- University of South Australia
- Mawson Lakes, Australia
- Ian Wark Research Institute
- University of South Australia
| | - Tianqing Liu
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes, Australia
| | - Hung-Yao Hsu
- School of Engineering
- University of South Australia
- Mawson Lakes, Australia
| | - A. Bruce Wedding
- School of Engineering
- University of South Australia
- Mawson Lakes, Australia
| | - Benjamin Thierry
- Ian Wark Research Institute
- University of South Australia
- Mawson Lakes, Australia
| | | |
Collapse
|
47
|
Tao Y, Ju E, Ren J, Qu X. Polypyrrole nanoparticles as promising enzyme mimics for sensitive hydrogen peroxide detection. Chem Commun (Camb) 2014; 50:3030-2. [DOI: 10.1039/c4cc00328d] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polypyrrole nanoparticles possess intrinsic peroxidase-like activity, which can be employed to quantitatively monitor the H2O2 generated by macrophages.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Chemical Biology and
- State Key Laboratory of Rare Earth Resource Utilization
- Graduate School of the Chinese Academy of Sciences
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| | - Enguo Ju
- Laboratory of Chemical Biology and
- State Key Laboratory of Rare Earth Resource Utilization
- Graduate School of the Chinese Academy of Sciences
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| | - Jinsong Ren
- Laboratory of Chemical Biology and
- State Key Laboratory of Rare Earth Resource Utilization
- Graduate School of the Chinese Academy of Sciences
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| | - Xiaogang Qu
- Laboratory of Chemical Biology and
- State Key Laboratory of Rare Earth Resource Utilization
- Graduate School of the Chinese Academy of Sciences
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
48
|
Au KM, Lu Z, Matcher SJ, Armes SP. Anti-biofouling conducting polymer nanoparticles as a label-free optical contrast agent for high resolution subsurface biomedical imaging. Biomaterials 2013; 34:8925-40. [DOI: 10.1016/j.biomaterials.2013.07.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/29/2013] [Indexed: 02/02/2023]
|
49
|
Menon JU, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen KT. Nanomaterials for photo-based diagnostic and therapeutic applications. Am J Cancer Res 2013; 3:152-66. [PMID: 23471164 PMCID: PMC3590585 DOI: 10.7150/thno.5327] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/30/2013] [Indexed: 12/11/2022] Open
Abstract
Photo-based diagnosis and treatment methods are gaining prominence due to increased spatial imaging resolution, minimally invasive modalities involved as well as localized treatment. Recently, nanoparticles (NPs) have been developed and used in photo-based therapeutic applications. While some nanomaterials have inherent photo-based imaging capabilities, others including polymeric NPs act as nanocarriers to deliver various fluorescent dyes or photosensitizers for photoimaging and therapeutic applications. These applications can vary from Magnetic Resonance Imaging (MRI) and optical imaging to photothermal therapy (PTT) and chemotherapy. Materials commonly used for development of photo-based NPs ranges from metal-based (gold, silver and silica) to polymer-based (chitosan, dextran, poly ethylene glycol (PEG) and poly lactic-co-glycolic acid (PLGA)). Recent research has paved the way for multi-modal 'theranostic' (a combination of therapy and diagnosis) nano-carriers capable of active targeting using cell-specific ligands and carrying multiple therapeutic and imaging agents for accurate diagnosis and controlled drug delivery. This review summarizes the different materials used today to synthesize photo-based NPs, their diagnostic and therapeutic applications as well as the current challenges faced in bringing these novel nano-carriers into clinical practices.
Collapse
|
50
|
Zha Z, Yue X, Ren Q, Dai Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:777-82. [PMID: 23143782 DOI: 10.1002/adma.201202211] [Citation(s) in RCA: 517] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/04/2012] [Indexed: 05/18/2023]
Abstract
Uniform polypyrrole (PPy) nanoparticles are fabricated from a facile one-step aqueous dispersion polymerization. Owing to their high photothermal conversion efficiency and photostability compared with the well-known Au nanorods, as well as their good colloidal stability and biocompatibility, the resulting PPy nanoparticles can used as a novel promising photothermal ablation coupling agent for targeted treatment of cancer.
Collapse
Affiliation(s)
- Zhengbao Zha
- School of Life Science and Technology, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, China
| | | | | | | |
Collapse
|