1
|
Xu K, Xiao X, Wang L, Lou M, Wang F, Li C, Ren H, Wang X, Chang K. Data-Driven Materials Research and Development for Functional Coatings. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405262. [PMID: 39297317 PMCID: PMC11558159 DOI: 10.1002/advs.202405262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 11/14/2024]
Abstract
Functional coatings, including organic and inorganic coatings, play a vital role in various industries by providing a protective layer and introducing unique functionalities. However, its design often involves time-consuming experimentation with multiple materials and processing parameters. To overcome these limitations, data-driven approaches are gaining traction in materials science. In this paper, recent advances in data-driven materials research and development (R&D) for functional coatings, highlighting the importance, data sources, working processes, and applications of this paradigm are summarized. It is begun by discussing the challenges of traditional methods, then introduce typical data-driven processes. It is demonstrated how data-driven approaches enable the identification of correlations between input parameters and coating performance, thus allowing for efficient prediction and design. Furthermore, carefully selected case studies are presented across diverse industries that exemplify the effectiveness of data-driven methods in accelerating the discovery of new functional coatings with tailored properties. Finally, the emerging research directions, involving integrating advanced techniques and data from different sources, are addressed. Overall, this review provides an overview of data-driven materials R&D for functional coatings, shedding light on its potential and future developments.
Collapse
Affiliation(s)
- Kai Xu
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
| | - Xuelian Xiao
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Linjing Wang
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
| | - Ming Lou
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
| | - Fangming Wang
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Changheng Li
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
| | - Hui Ren
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
| | - Xue Wang
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
| | - Keke Chang
- Key Laboratory of Advanced Marine MaterialsNingbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboZhejiang315201China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Asadi Tokmedash M, Min J. Designer Micro-/Nanocrumpled MXene Multilayer Coatings Accelerate Osteogenesis and Regulate Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21415-21426. [PMID: 38445580 DOI: 10.1021/acsami.3c18158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Effective tissue regeneration and immune responses are essential for the success of biomaterial implantation. Although the interaction between synthetic materials and biological systems is well-recognized, the role of surface topographical cues in regulating the local osteoimmune microenvironment─specifically, their impact on host tissue and immune cells, and their dynamic interactions─remains underexplored. This study addresses this gap by investigating the impact of surface topography on osteogenesis and immunomodulation. We fabricated MXene/hydroxyapatite (HAP)-coated surfaces with controlled 2.5D nano-, submicro-, and microscale topographical patterns using our custom bottom-up patterning method. These engineered surfaces were employed to assess the behavior of osteoblast precursor cells and macrophage polarization. Our results demonstrate that MXene/HAP-coated surfaces with microscale crumpled topography significantly influence osteogenic activity and macrophage polarization: these surfaces notably enhanced osteoblast precursor cell spreading, proliferation, and differentiation and facilitated a shift in macrophages toward an anti-inflammatory, prohealing M2 phenotype. The observed cell responses indicate that the physical cues from the crumpled topographies, combined with the chemical cues from the MXene/HAP coatings, synergistically create a favorable osteoimmune microenvironment. This study presents the first evidence of employing MXene/HAP-multilayer coated surfaces with finely crumpled topography to concurrently facilitate osteogenesis and immunomodulation for improved implant-to-tissue integration. The tunable topographic patterns of these coatings coupled with a facile and scalable fabrication process make them widely applicable for various biomedical purposes. Our results highlight the potential of these multilayer coatings with controlled topography to improve the in vivo performance and fate of implants by modulating the host response at the material interface.
Collapse
Affiliation(s)
- Mohammad Asadi Tokmedash
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Wang F, Gu Z, Yin Z, Zhang W, Bai L, Su J. Cell unit-inspired natural nano-based biomaterials as versatile building blocks for bone/cartilage regeneration. J Nanobiotechnology 2023; 21:293. [PMID: 37620914 PMCID: PMC10463900 DOI: 10.1186/s12951-023-02003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
The regeneration of weight-bearing bone defects and critical-sized cartilage defects remains a significant challenge. A wide range of nano-biomaterials are available for the treatment of bone/cartilage defects. However, their poor compatibility and biodegradability pose challenges to the practical applications of these nano-based biomaterials. Natural biomaterials inspired by the cell units (e.g., nucleic acids and proteins), have gained increasing attention in recent decades due to their versatile functionality, compatibility, biodegradability, and great potential for modification, combination, and hybridization. In the field of bone/cartilage regeneration, natural nano-based biomaterials have presented an unparalleled role in providing optimal cues and microenvironments for cell growth and differentiation. In this review, we systematically summarize the versatile building blocks inspired by the cell unit used as natural nano-based biomaterials in bone/cartilage regeneration, including nucleic acids, proteins, carbohydrates, lipids, and membranes. In addition, the opportunities and challenges of natural nano-based biomaterials for the future use of bone/cartilage regeneration are discussed.
Collapse
Affiliation(s)
- Fuxiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengrong Gu
- Department of Orthopedics, Shanghai Baoshan Luodian Hospital, Baoshan District, Shanghai, China
| | - Zhifeng Yin
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Wencai Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine (TCM), Guangzhou, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
4
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
5
|
Howard MT, Wang S, Berger AG, Martin JR, Jalili-Firoozinezhad S, Padera RF, Hammond PT. Sustained release of BMP-2 using self-assembled layer-by-layer film-coated implants enhances bone regeneration over burst release. Biomaterials 2022; 288:121721. [PMID: 35981926 PMCID: PMC10396073 DOI: 10.1016/j.biomaterials.2022.121721] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
Abstract
Current clinical products delivering the osteogenic growth factor bone morphogenetic protein 2 (BMP-2) for bone regeneration have been plagued by safety concerns due to a high incidence of off-target effects resulting from bolus release and supraphysiological doses. Layer-by-layer (LbL) film deposition offers the opportunity to coat bone defect-relevant substrates with thin films containing proteins and other therapeutics; however, control of release kinetics is often hampered by interlayer diffusion of drugs throughout the film during assembly, which causes burst drug release. In this work, we present the design of different laponite clay diffusional barrier layer architectures in self-assembled LbL films to modulate the release kinetics of BMP-2 from the surface of a biodegradable implant. Release kinetics were tuned by incorporating laponite in different film arrangements and with varying deposition techniques to achieve release of BMP-2 over 2 days, 4 days, 14 days, and 30 days. Delivery of a low dose (0.5 μg) of BMP-2 over 2 days and 30 days using these LbL film architectures was then compared in an in vivo rat critical size calvarial defect model to determine the effect of BMP-2 release kinetics on bone regeneration. After 6 weeks, sustained release of BMP-2 over 30 days induced 3.7 times higher bone volume and 7.4 times higher bone mineral density as compared with 2-day release of BMP-2, which did not induce more bone growth than the uncoated scaffold control. These findings represent a crucial step in the understanding of how BMP-2 release kinetics influence treatment efficacy and underscore the necessity to optimize protein delivery methods in clinical formulations for bone regeneration. This work could be applied to the delivery of other therapeutic proteins for which careful tuning of the release rate is a key optimization parameter.
Collapse
Affiliation(s)
- MayLin T Howard
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sheryl Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Adam G Berger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - John R Martin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Sasan Jalili-Firoozinezhad
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| | - Robert F Padera
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02215, United States.
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
6
|
Huang B, Chen M, Tian J, Zhang Y, Dai Z, Li J, Zhang W. Oxygen-Carrying and Antibacterial Fluorinated Nano-Hydroxyapatite Incorporated Hydrogels for Enhanced Bone Regeneration. Adv Healthc Mater 2022; 11:e2102540. [PMID: 35166460 DOI: 10.1002/adhm.202102540] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/27/2022] [Indexed: 12/27/2022]
Abstract
Insufficient oxygen availability in tissue engineering is one of the major factors for the failure of clinical transplantation. One potential strategy to conquer this limitation is the fabrication of spontaneous and continuous oxygen supplying scaffolds for in situ tissue regeneration. In this work, a versatile fluorine-incorporating hydrogel is designed which can not only timely and continuously supply oxygen for mesenchymal stem cells (MSCs) to overcome deficient oxygen before vascularization in scaffolds, but can present a higher antibacterial capability to avoid bacterial infections. The HAp@PDA-F nanoparticles are first prepared and then incorporated with the quaternized and methacrylated chitosan forming CS/HAp@PDA-F by photo-crosslinking. In vitro results indicate that CS/HAp@PDA-F hydrogel has outstanding mechanical performance, moreover, it also has the oxygen-carrying ability to prolong survival ability, enhance proliferation activity, and preserve osteogenic differentiation potency and promote osteogenic-related genes expression of rat bone mesenchymal stem cells (rBMSCs) under hypoxic environment. Furthermore, the CS/HAp@PDA-F hydrogel can inhibit the growth of Staphylococcus aureus and Escherichia coli, providing a good antibacterial activity. Additionally, in vivo experiments demonstrate higher bone volume and bone mineral density, and more new bone tissue generation in CS/HAp@PDA-F group than in CS/HAp@PDA group. These results indicate that the rational design of fluorinated hydrogel possesses a good clinical application prospect for bone regeneration.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Mingjiao Chen
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Yuanhao Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Jin Li
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Zhizaoju Road No. 639 Shanghai 200011 P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. J Colloid Interface Sci 2021; 607:869-880. [PMID: 34536940 DOI: 10.1016/j.jcis.2021.08.199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/31/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Coatings with bioactive properties play a key role in the success of orthopaedic implants. Recent studies focused on composite coatings incorporating biocompatible elements that can increase the nucleation of hydroxyapatite (HA), the mineral component of bone, and have promising bioactive and biodegradable properties. Here we report a method of fabricating composite collagen, chitosan and copper-doped phosphate glass (PG) coatings for biomedical applications using electrophoretic deposition (EPD). The use of collagen and chitosan (CTS) allows for the co-deposition of PG particles at standard ambient temperature and pressure (1 kPa, 25 °C), and the addition of collagen led to the steric stabilization of PG in solution. The coating composition was varied by altering the collagen/CTS concentrations in the solutions, as well as depositing PG with 0, 5 and 10 mol% CuO dopant. A monolayer of collagen/CTS containing PG was obtained on stainless steel cathodes, showing that deposition of PG in conjunction with a polymer is feasible. The mass of the monolayer varied depending on the polymer (collagen, CTS and collagen/CTS) and combination of polymer + PG (collagen-PG, CTS-PG and collagen/CTS-PG), while the presence of copper led to agglomerates during deposition at higher concentrations. The deposition yield was studied at different time points and showed a profile typical of constant voltage deposition. Increasing the concentration of collagen in the PG solution allows for a higher deposition yield, while pure collagen solutions resulted in hydrogen gas evolution at the cathode. The ability to deposit polymer-PG coatings that can mimic native bone tissue allows for the potential to fabricate orthopaedic implants with tailored biological properties with lower risk of rejection from the host and exhibit increased bioactivity.
Collapse
|
8
|
Zhang F, Cheng Z, Ding C, Li J. Functional biomedical materials derived from proteins in the acquired salivary pellicle. J Mater Chem B 2021; 9:6507-6520. [PMID: 34304263 DOI: 10.1039/d1tb01121a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the oral environment, the acquired salivary pellicle (ASP) on the tooth surface comprises proteins, glycoproteins, carbohydrates, and lipids. The ASP can specifically and rapidly adsorb on the enamel surface to provide effective lubrication, protection, hydration, and remineralisation, as well as be recognised by various bacteria to form a microbial biofilm (plaque). The involved proteins, particularly various phosphoproteins such as statherins, histatins, and proline-rich proteins, are vital to their specific functions. This review first describes the relationship between the biological functions of these proteins and their structures. Subsequently, recent advances in functional biomedical materials derived from these proteins are reviewed in terms of dental/bone therapeutic materials, antibacterial materials, tissue engineering materials, and coatings for medical devices. Finally, perspectives and challenges regarding the rational design and biomedical applications of ASP-derived materials are discussed.
Collapse
Affiliation(s)
- Fan Zhang
- Physical Examination Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | | | | | | |
Collapse
|
9
|
Al Thaher Y. Tailored gentamicin release from silica nanocarriers coated with polyelectrolyte multilayers. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Colaço E, Lefèvre D, Maisonhaute E, Brouri D, Guibert C, Dupont-Gillain C, El Kirat K, Demoustier-Champagne S, Landoulsi J. Enzyme-assisted mineralization of calcium phosphate: exploring confinement for the design of highly crystalline nano-objects. NANOSCALE 2020; 12:10051-10064. [PMID: 32347883 DOI: 10.1039/d0nr01638a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In hard tissues of vertebrates, calcium phosphate (CaP) biomineralization is a fascinating process that combines specific physicochemical and biochemical reactions, resulting in the formation of extracellular matrices with elegant nanoarchitectures. Although several "biomimetic" strategies have been developed for the design of mineralized nanostructured biointerfaces, the control of the crystallization process remains complex. Herein, we report an innovative approach to overcome this challenge by generating, in situ, CaP precursors in a confined medium. For this purpose, we explore a combination of (i) the layer-by-layer assembly, (ii) the template-based method and (iii) the heterogeneous enzymatic catalysis. We show the possibility of embedding active alkaline phosphatase in a nanostructured multilayered film and inducing the nucleation and growth of CaP compounds under different conditions. Importantly, we demonstrate that the modulation of the crystal phase from spheroid-shaped amorphous CaP to crystalline platelet-shaped hydroxyapatite depends on the degree of confinement of active enzymes. This leads to the synthesis of highly anisotropic mineralized nanostructures that are mechanically stable and with controlled dimensions, composition and crystal phase. The present study provides a straightforward, yet powerful, way to design anisotropic nanostructured materials, including a self-supported framework, which may be used in broad biomedical applications.
Collapse
Affiliation(s)
- E Colaço
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France
| | - D Lefèvre
- Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 1 (L7.04.02), 1348, Louvain-la-Neuve, Belgium.
| | - E Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, LISE, F-75005 Paris, France
| | - D Brouri
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France.
| | - C Guibert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France.
| | - C Dupont-Gillain
- Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 1 (L7.04.02), 1348, Louvain-la-Neuve, Belgium.
| | - K El Kirat
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France
| | - S Demoustier-Champagne
- Institute of Condensed Matter and Nanosciences, Bio & Soft Matter, Université catholique de Louvain, Croix du Sud 1 (L7.04.02), 1348, Louvain-la-Neuve, Belgium.
| | - J Landoulsi
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France and Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, LRS, F-75005 Paris, France.
| |
Collapse
|
11
|
Xing H, Wang X, Xiao G, Zhao Z, Zou S, Li M, Richardson JJ, Tardy BL, Xie L, Komasa S, Okazaki J, Jiang Q, Yang G, Guo J. Hierarchical assembly of nanostructured coating for siRNA-based dual therapy of bone regeneration and revascularization. Biomaterials 2020; 235:119784. [PMID: 31981763 DOI: 10.1016/j.biomaterials.2020.119784] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 12/30/2022]
Abstract
Advancing bone implant engineering offers the opportunity to overcome crucial medical challenges and improve clinical outcomes. Although the establishment of a functional vascular network is crucial for bone development, its regeneration inside bone tissue has only received limited attention to date. Herein, we utilize siRNA-decorated particles to engineer a hierarchical nanostructured coating on clinically used titanium implants for the synergistic regeneration of skeletal and vascular tissues. Specifically, an siRNA was designed to target the regulation of cathepsin K and conjugated on nanoparticles. The functionalized nanoparticles were assembled onto the bone implant to form a hierarchical nanostructured coating. By regulating mRNA transcription, the coating significantly promotes cell viability and growth factor release related to vascularization. Moreover, microchip-based experiments demonstrate that the nanostructured coating facilitates macrophage-induced synergy in up-regulation of at least seven bone and vascular growth factors. Ovariectomized rat and comprehensive beagle dog models highlight that this siRNA-integrated nanostructured coating possesses all the key traits of a clinically promising candidate to address the myriad of challenges associated with bone regeneration.
Collapse
Affiliation(s)
- Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xing Wang
- Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Gao Xiao
- School of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, United States
| | - Zongmin Zhao
- Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, United States
| | - Shiquan Zou
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Man Li
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Joseph J Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, 00076, Finland
| | - Liangxia Xie
- Department of Pathology, Brigham and Women's Hospital, Harvard University, Boston, MA, 02115, United States
| | - Satoshi Komasa
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, Hirakata, Osaka, 540-8570, Japan
| | - Joji Okazaki
- Department of Removable Prosthodontics and Occlusion, Osaka Dental University, Hirakata, Osaka, 540-8570, Japan
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, 100050, China.
| | - Guodong Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Junling Guo
- School of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China; Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02115, United States.
| |
Collapse
|
12
|
Liang Z, Luo Y, Lv Y. Mesenchymal stem cell-derived microvesicles mediate BMP2 gene delivery and enhance bone regeneration. J Mater Chem B 2020; 8:6378-6389. [DOI: 10.1039/d0tb00422g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Microvesicles–polyethyleneimine/pDNA formed via layer-by-layer self-assembly increase the delivery of hBMP2 plasmids and enhance bone repair.
Collapse
Affiliation(s)
- Zhuo Liang
- Mechanobiology and Regenerative Medicine Laboratory
- Bioengineering College
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yue Luo
- Mechanobiology and Regenerative Medicine Laboratory
- Bioengineering College
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory
- Bioengineering College
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
13
|
Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. NANOMATERIALS 2019; 9:nano9111548. [PMID: 31683612 PMCID: PMC6915381 DOI: 10.3390/nano9111548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Biodegradable polymers are promising materials for use in medical applications such as stents. Their properties are comparable to commercially available resistant metal and polymeric stents, which have several major problems, such as stent migration and stent clogging due to microbial biofilm. Consequently, conventional stents have to be removed operatively from the patient's body, which presents a number of complications and can also endanger the patient's life. Biodegradable stents disintegrate into basic substances that decompose in the human body, and no surgery is required. This review focuses on the specific use of stents in the human body, the problems of microbial biofilm, and possibilities of preventing microbial growth by modifying polymers with antimicrobial agents.
Collapse
|
14
|
Lu N, Lu Y, Liu S, Jin C, Fang S, Zhou X, Li Z. Tailor-Engineered POSS-Based Hybrid Gels for Bone Regeneration. Biomacromolecules 2019; 20:3485-3493. [DOI: 10.1021/acs.biomac.9b00771] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | - Chuanyu Jin
- Qingdao Hao Biological Engineering Co. Ltd., Qingdao 266000, China
| | | | - Xianfeng Zhou
- College of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | |
Collapse
|
15
|
Hu C, Ashok D, Nisbet DR, Gautam V. Bioinspired surface modification of orthopedic implants for bone tissue engineering. Biomaterials 2019; 219:119366. [PMID: 31374482 DOI: 10.1016/j.biomaterials.2019.119366] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/27/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Biomedical implants have been widely used in various orthopedic treatments, including total hip arthroplasty, joint arthrodesis, fracture fixation, non-union, dental repair, etc. The modern research and development of orthopedic implants have gradually shifted from traditional mechanical support to a bioactive graft in order to endow them with better osteoinduction and osteoconduction. Inspired by structural and mechanical properties of natural bone, this review provides a panorama of current biological surface modifications for facilitating the interaction between medical implants and bone tissue and gives a future outlook for fabricating the next-generation multifunctional and smart implants by systematically biomimicking the physiological processes involved in formation and functioning of bones.
Collapse
Affiliation(s)
- Chao Hu
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Deepu Ashok
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - David R Nisbet
- Research School of Engineering, Australian National University, ACT, 2601, Australia
| | - Vini Gautam
- John Curtin School of Medical Research, Australian National University, ACT, 2601, Australia.
| |
Collapse
|
16
|
Yang S, Wang Y, Wu X, Sheng S, Wang T, Zan X. Multifunctional Tannic Acid (TA) and Lysozyme (Lys) Films Built Layer by Layer for Potential Application on Implant Coating. ACS Biomater Sci Eng 2019; 5:3582-3594. [PMID: 33405740 DOI: 10.1021/acsbiomaterials.9b00717] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multifunctional (TA/Lys)n film, featuring good antioxidant property, fast cell attachment at the initial stage, enhanced osteogenesis, and broad-spectrum antibacterial property, was constructed by the layer-by-layer (LBL) method. The building process was monitored by quartz crystal microbalance with dissipation (QCM-D); the physical properties, such as topography, stiffness in dry and liquid state, and conformation of Lys in the film, were thoroughly characterized. These physical properties were modulated by varying the salt concentration at which the film was constructed. The film not only allows for favorable cell attachment and proliferation of preosteoblasts Mc3t3-E1 but also provides antibacterial property against Gram-positive bacteria, S. aureus and M. lysodeikticus, and Gram-negative bacteria, E. coli. It also displays good antioxidant property, which plays a critical role on fast cell attachment at the initial stage.
Collapse
Affiliation(s)
- Shuoshuo Yang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China
| | - Yong Wang
- Institute for Energy Research, Jiangsu Uniersity, Zhenjiang 212013, PR China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China
| | - Tian Wang
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, PR China.,Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, Zhejiang Province 325001, PR China
| |
Collapse
|
17
|
Perni S, Caserta S, Pasquino R, Jones SA, Prokopovich P. Prolonged Antimicrobial Activity of PMMA Bone Cement with Embedded Gentamicin-Releasing Silica Nanocarriers. ACS APPLIED BIO MATERIALS 2019; 2:1850-1861. [DOI: 10.1021/acsabm.8b00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Rossana Pasquino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Napoli 80125, Italy
| | - Steve A. Jones
- University Hospital Llandough, Cardiff & Vale University Health Board, Penlan Road, Penarth, Vale of Glamorgan, Wales CF64 2XX, United Kingdom
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
18
|
Zlotnik S, Maltez-da Costa M, Barroca N, Hortigüela MJ, Singh MK, Fernandes MHV, Vilarinho PM. Functionalized-ferroelectric-coating-driven enhanced biomineralization and protein-conformation on metallic implants. J Mater Chem B 2019; 7:2177-2189. [DOI: 10.1039/c8tb02777c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the context of bone regeneration, it is important to have platforms that with appropriate stimuli can support the attachment and direct the growth, proliferation and differentiation of cells.
Collapse
Affiliation(s)
- Sebastian Zlotnik
- Department of Materials and Ceramic Engineering
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Marisa Maltez-da Costa
- Department of Materials and Ceramic Engineering
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Nathalie Barroca
- Department of Materials and Ceramic Engineering
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - María J. Hortigüela
- Center for Mechanical Technology and Automation (TEMA)
- Department of Mechanical Engineering
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Manoj Kumar Singh
- Center for Mechanical Technology and Automation (TEMA)
- Department of Mechanical Engineering
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Maria Helena V. Fernandes
- Department of Materials and Ceramic Engineering
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Paula Maria Vilarinho
- Department of Materials and Ceramic Engineering
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
19
|
Liu Y, Li Y, Keskin D, Shi L. Poly(β-Amino Esters): Synthesis, Formulations, and Their Biomedical Applications. Adv Healthc Mater 2019; 8:e1801359. [PMID: 30549448 DOI: 10.1002/adhm.201801359] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/04/2018] [Indexed: 12/12/2022]
Abstract
Poly(β-amino ester) (abbreviated as PBAE or PAE) refers to a polymer synthesized from an acrylate and an amine by Michael addition and has properties inherent to tertiary amines and esters, such as pH responsiveness and biodegradability. The versatility of building blocks provides a library of polymers with miscellaneous physicochemical and mechanical properties. When used alone or together with other materials, PBAEs can be fabricated into different formulations in order to fulfill various requirements in drug delivery (for instance, gene, anticancer drugs, and antimicrobials delivery) and natural complex mimicry (nanochaperones). This progress report discusses the recent developments in design, synthesis, formulations, and applications of PBAEs in biomedical fields and provides a perspective view for the future of the PBAEs.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Yuanfeng Li
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Damla Keskin
- Department of Biomedical EngineeringUniversity of Groningen and University Medical Center Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Functional Polymer MaterialsMinistry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| |
Collapse
|
20
|
Lin YJ, Chen CC, Chi NW, Nguyen T, Lu HY, Nguyen D, Lai PL, Sung HW. In Situ Self-Assembling Micellar Depots that Can Actively Trap and Passively Release NO with Long-Lasting Activity to Reverse Osteoporosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705605. [PMID: 29665153 DOI: 10.1002/adma.201705605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/31/2018] [Indexed: 05/13/2023]
Abstract
Treatment with exogenous nitric oxide (NO) donors is regarded as being effective against osteoporosis. However, NO has a short half-life, limiting its clinical usefulness. To overcome this limitation, an injectable microparticle (MP) system is developed that consists of phase-change materials capric acid (CA) and octadecane, and encapsulates a NO donor. The therapeutic efficacy of the MPs is evaluated in ovariectomized (OVX) rats with osteoporosis. Upon subcutaneous administration, the MPs undergo a phase transition, leaching out the NO donor and generating NO bubbles that are instantly covered by a layer of tightly packed CA surfactant molecules, forming micellar depots. The in situ self-assembling micellar depots can actively protect the NO bubbles, prolonging their half-life, while the entrapped NO may passively diffuse through the micellar depots over time, performing a long-lasting therapeutic function, reversing the OVX-induced osteoporosis. It is possible to use the concept of in situ self-assembling micellar depots developed herein to expand the therapeutic effect of NO in its diverse range of clinical applications.
Collapse
Affiliation(s)
- Yu-Jung Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Chun-Chieh Chen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
- Department of Orthopaedic Surgery and Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan, (ROC)
| | - Nai-Wen Chi
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Trang Nguyen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Hung-Yun Lu
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Dang Nguyen
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| | - Po-Liang Lai
- Department of Orthopaedic Surgery and Bone and Joint Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan, (ROC)
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan, (ROC)
| |
Collapse
|
21
|
Al Thaher Y, Latanza S, Perni S, Prokopovich P. Role of poly-beta-amino-esters hydrolysis and electrostatic attraction in gentamicin release from layer-by-layer coatings. J Colloid Interface Sci 2018; 526:35-42. [PMID: 29715613 DOI: 10.1016/j.jcis.2018.04.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
Layer-by-layer (LbL) deposition is a versatile technique that has been employed in numerous industrial applications i.e. biomaterials, drug delivery and electronics to confer peculiar properties to the system. When LbL is employed for drug delivery, the active molecule is sandwiched between layers of polyelectrolytes and the release is controlled by the diffusion of the drug through the layers and the possible hydrolysis of the coating (delamination). Poly-beta-amino-esters (PBAEs) are a class of hydrolysable polyelectrolytes that have been widely used in DNA delivery and for LbL on medical devices. Their use allowed the controlled release of antibiotics and other bioactive compounds from the surface of medical devices without cytotoxic effects. The general accepted consensus is that drug released from LbL coating assembled using PBAEs is the results of the polymer hydrolysis; however, no attention has been paid to the role of the electrostatic attraction between PBAE and the other polyelectrolyte utilised in the LbL assembly. In this work, we prepared LbL coatings on the surface of silica nanoparticles entrapping gentamicin as model drug and demonstrated that the drug release from PBAEs containing LbL coatings is predominantly controlled by the electrostatic attraction between opposite charged electrolytes. The positive charge of PBAE decreased from pH = 5 to pH = 7.4 while alginate negative charges remained unchanged in this pH range while PBAE hydrolysis kinetics was faster, as determined with Gel Permeation Chromatography (GPC), in acidic conditions. When PBAE were employed in the LbL construct higher levels of drug were released at pH = 7.4 than at pH = 5; additionally, replacing PBAE with chitosan (the charge of chitosan is not influenced in this pH range) resulted in comparable gentamicin release kinetics at pH = 5.
Collapse
Affiliation(s)
- Yazan Al Thaher
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK
| | - Silvia Latanza
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK
| | - Stefano Perni
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Science, Cardiff University, Cardiff, UK.
| |
Collapse
|
22
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
23
|
Choi M, Choi D, Han U, Hong J. Inkjet-based multilayered growth factor-releasing nanofilms for enhancing proliferation of mesenchymal stem cells in vitro. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Tan H, Wang H, Chai Y, Yu Y, Hong H, Yang F, Qu X, Liu C. Engineering a favourable osteogenic microenvironment by heparin mediated hybrid coating assembly and rhBMP-2 loading. RSC Adv 2017. [DOI: 10.1039/c6ra27308d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(1) HApNPs are conferred with negative charges by surface modification with heparin. (2) Heparinized HApNPs and polycation CS are assembled to form a hybrid coating. (3) RhBMP-2 is introduced into the coating via the intermolecular binding with heparin.
Collapse
Affiliation(s)
- Haoqi Tan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Honglei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yanjun Chai
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Yuanman Yu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Fei Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- China
- The State Key Laboratory of Bioreactor Engineering
| |
Collapse
|
25
|
Li C, Hotz B, Ling S, Guo J, Haas DS, Marelli B, Omenetto F, Lin SJ, Kaplan DL. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials 2016. [PMID: 27697669 DOI: 10.1016/i.biomaterials.2016,09,014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Blake Hotz
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Dylan S Haas
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Benedetto Marelli
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Fiorenzo Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA.
| |
Collapse
|
26
|
Li C, Hotz B, Ling S, Guo J, Haas DS, Marelli B, Omenetto F, Lin SJ, Kaplan DL. Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials 2016; 110:24-33. [PMID: 27697669 DOI: 10.1016/j.biomaterials.2016.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 11/27/2022]
Abstract
Silk fibers spun by silkworms and spiders exhibit exceptional mechanical properties with a unique combination of strength, extensibility and toughness. In contrast, the mechanical properties of regenerated silk materials can be tuned through control of the fabrication process. Here we introduce a biomimetic, all-aqueous process, to obtain bulk regenerated silk-based materials for the fabrication of functionalized orthopedic devices. The silk materials generated in the process replicate the nano-scale structure of natural silk fibers and possess excellent mechanical properties. The biomimetic materials demonstrate excellent machinability, providing a path towards the fabrication of a new family of resorbable orthopedic devices where organic solvents are avoided, thus allowing functionalization with bioactive molecules to promote bone remodeling and integration.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Blake Hotz
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Shengjie Ling
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Dylan S Haas
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Benedetto Marelli
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue Cambridge, MA 02139, USA
| | - Fiorenzo Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA
| | - Samuel J Lin
- Divisions of Plastic Surgery and Otolaryngology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St. Medford, MA 02155, USA.
| |
Collapse
|
27
|
|
28
|
Functionally graded materials for orthopedic applications – an update on design and manufacturing. Biotechnol Adv 2016; 34:504-531. [DOI: 10.1016/j.biotechadv.2015.12.013] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/26/2022]
|
29
|
Wagner Q, Offner D, Idoux-Gillet Y, Saleem I, Somavarapu S, Schwinté P, Benkirane-Jessel N, Keller L. Advanced nanostructured medical device combining mesenchymal cells and VEGF nanoparticles for enhanced engineered tissue vascularization. Nanomedicine (Lond) 2016; 11:2419-30. [PMID: 27529130 DOI: 10.2217/nnm-2016-0189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Success of functional vascularized tissue repair depends on vascular support system supply and still remains challenging. Our objective was to develop a nanoactive implant enhancing endothelial cell activity, particularly for bone tissue engineering in the regenerative medicine field. MATERIALS & METHODS We developed a new strategy of tridimensional implant based on cell-dependent sustained release of VEGF nanoparticles. These nanoparticles were homogeneously distributed within nanoreservoirs onto the porous scaffold, with quicker reorganization of endothelial cells. Moreover, the activity of this active smart implant on cells was also modulated by addition of osteoblastic cells. RESULTS & CONCLUSION This sophisticated active strategy should potentiate efficiency of current therapeutic implants for bone repair, avoiding the need for bone substitutes.
Collapse
Affiliation(s)
- Quentin Wagner
- INSERM (French National Institute of Health & Medical Research), "Osteoarticular & Dental Regenerative Nanomedicine" Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg Cedex. FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Damien Offner
- INSERM (French National Institute of Health & Medical Research), "Osteoarticular & Dental Regenerative Nanomedicine" Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg Cedex. FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM (French National Institute of Health & Medical Research), "Osteoarticular & Dental Regenerative Nanomedicine" Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg Cedex. FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Imran Saleem
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Satyanarayana Somavarapu
- Department of Pharmaceutics, School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Pascale Schwinté
- INSERM (French National Institute of Health & Medical Research), "Osteoarticular & Dental Regenerative Nanomedicine" Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg Cedex. FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health & Medical Research), "Osteoarticular & Dental Regenerative Nanomedicine" Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg Cedex. FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| | - Laetitia Keller
- INSERM (French National Institute of Health & Medical Research), "Osteoarticular & Dental Regenerative Nanomedicine" Laboratory, UMR 1109, Faculté de Médecine, F-67085 Strasbourg Cedex. FMTS, France.,Université de Strasbourg, Faculté de Chirurgie Dentaire, 1 place de l'Hôpital, F-67000 Strasbourg, France
| |
Collapse
|
30
|
Surface delivery of tunable doses of BMP-2 from an adaptable polymeric scaffold induces volumetric bone regeneration. Biomaterials 2016; 104:168-81. [PMID: 27454063 DOI: 10.1016/j.biomaterials.2016.06.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/17/2016] [Accepted: 06/01/2016] [Indexed: 12/28/2022]
Abstract
The rapid and effective bone regeneration of large non-healing defects remains challenging. Bioactive proteins, such as bone morphogenetic protein (BMP)-2, are proved their osteoinductivity, but their clinical use is currently limited to collagen as biomaterial. Being able to deliver BMP-2 from any other biomaterial would broaden its clinical use. This work presents a novel means for repairing a critical size volumetric bone femoral defect in the rat by combining a osteoinductive surface coating (2D) to a polymeric scaffold (3D hollow tube) made of commercially-available PLGA. Using a polyelectrolyte film as BMP-2 carrier, we tune the amount of BMP-2 loaded in and released from the polyelectrolyte film coating over a large extent by controlling the film crosslinking level and initial concentration of BMP-2 in solution. Using microcomputed tomography and quantitative analysis of the regenerated bone growth kinetics, we show that the amount of newly formed bone and kinetics can be modulated: an effective and fast repair was obtained in 1-2 weeks in the best conditions, including complete defect bridging, formation of vascularized and mineralized bone tissue. Histological staining and high-resolution computed tomography revealed the presence of bone regeneration inside and around the tube with spatially distinct organization for trabecular-like and cortical bones. The amount of cortical bone and its thickness increased with the BMP-2 dose. In view of the recent developments in additive manufacturing techniques, this surface-coating technology may be applied in combination with various types of polymeric or metallic scaffolds to offer new perspectives of bone regeneration in personalized medicine.
Collapse
|
31
|
Qu X, He F, Tan H, Yu Y, Axrap A, Wang M, Dai K, Zhang Z, Yang F, Wang S, Kohn J, Liu C. Self-assembly of dual drug-delivery coating for synergistic bone regeneration. J Mater Chem B 2016; 4:4901-4912. [DOI: 10.1039/c6tb01262k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone regeneration for the treatment of bone diseases represents a major clinical need.
Collapse
|
32
|
Kajiyama S, Sakamoto T, Inoue M, Nishimura T, Yokoi T, Ohtsuki C, Kato T. Rapid and topotactic transformation from octacalcium phosphate to hydroxyapatite (HAP): a new approach to self-organization of free-standing thin-film HAP-based nanohybrids. CrystEngComm 2016. [DOI: 10.1039/c6ce01336h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Choi M, Kim KG, Heo J, Jeong H, Kim SY, Hong J. Multilayered Graphene Nano-Film for Controlled Protein Delivery by Desired Electro-Stimuli. Sci Rep 2015; 5:17631. [PMID: 26621344 PMCID: PMC4664934 DOI: 10.1038/srep17631] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 11/03/2015] [Indexed: 01/22/2023] Open
Abstract
Recent research has highlighted the potential use of "smart" films, such as graphene sheets, that would allow for the controlled release of a variety of therapeutic drugs. Taking full advantage of these versatile conducting sheets, we investigated the novel concept of applying graphene oxide (GO) and reduced graphene oxide (rGO) materials as both barrier and conducting layers that afford controlled entrapment and release of any molecules of interest. We fabricated multilayered nanofilm architectures using a hydrolytically degradable cationic poly(β-amino ester) (PAE), a model protein antigen, ovalbumin (OVA) as a building block along with the GO and rGO. We successfully showed that these multilayer films are capable of blocking the initial burst release of OVA, and they can be triggered to precisely control the release upon the application of electrochemical potential. This new drug delivery platform will find its usefulness in various transdermal drug delivery devices where on-demand control of drug release from the surface is necessary.
Collapse
Affiliation(s)
- Moonhyun Choi
- School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kyung-Geun Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jiwoong Heo
- School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hyejoong Jeong
- School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sung Yeol Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jinkee Hong
- School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
34
|
Chen Q, Garcia RP, Munoz J, Pérez de Larraya U, Garmendia N, Yao Q, Boccaccini AR. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24715-24725. [PMID: 26460819 DOI: 10.1021/acsami.5b07294] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface functionalization of orthopedic implants is being intensively investigated to strengthen bone-to-implant contact and accelerate bone healing process. A hybrid coating, consisting of 45S5 bioactive glass (BG) individually wrapped and interconnected with fibrous cellulose nanocrystals (CNCs), is deposited on 316L stainless steel from aqueous suspension by a one-step electrophoretic deposition (EPD) process. Apart from the codeposition mechanism elucidated by means of zeta-potential and scanning electron microscopy measurements, in vitro characterization of the deposited CNCs-BG coating in simulated body fluid reveals an extremely rapid mineralization of BG particles on the coating (e.g., the formation of hydroxyapatite crystals layer after 0.5 day). A series of comparative trials and characterization methods were carried out to comprehensively understand the mineralization process of BG interacting with CNCs. Furthermore, key factors for satisfying the applicability of an implant coating such as coating composition, surface topography, and adhesion strength were quantitatively investigated as a function of mineralization time. Cell culture studies (using MC3T3-E1) indicate that the presence of CNCs-BG coating substantially accelerated cell attachment, spreading, proliferation, differentiation, and mineralization of extracellular matrix. This study has confirmed the capability of CNCs to enhance and regulate the bioactivity of BG particles, leading to mineralized CNCs-BG hybrids for improved bone implant coatings.
Collapse
Affiliation(s)
- Qiang Chen
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Cauerstrasse 6, 91058 Erlangen, Germany
| | - Rosalina Pérez Garcia
- CIDETEC, Parque Tecnológico de Miramón , Paseo Miramón 196, 20009 San Sebastian, Spain
| | - Josemari Munoz
- CIDETEC, Parque Tecnológico de Miramón , Paseo Miramón 196, 20009 San Sebastian, Spain
| | - Uxua Pérez de Larraya
- CEMITEC, Materials Department, Polígono Mocholí , Plaza Cein 4, 31110 Noain, Navarra, Spain
| | - Nere Garmendia
- CEMITEC, Materials Department, Polígono Mocholí , Plaza Cein 4, 31110 Noain, Navarra, Spain
| | - Qingqing Yao
- Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Wenzhou Medical University , Wenzhou, 270 Xueyuan Xi Road, Zhejiang 325027, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg , Cauerstrasse 6, 91058 Erlangen, Germany
| |
Collapse
|
35
|
Pacelli S, Manoharan V, Desalvo A, Lomis N, Jodha KS, Prakash S, Paul A. Tailoring biomaterial surface properties to modulate host-implant interactions: implication in cardiovascular and bone therapy. J Mater Chem B 2015; 4:1586-1599. [PMID: 27630769 PMCID: PMC5019489 DOI: 10.1039/c5tb01686j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Host body response to a foreign medical device plays a critical role in defining its fate post implantation. It is thus important to control host-material interactions by designing innovative implant surfaces. In the recent years, biochemical and topographical features have been explored as main target to produce this new type of bioinert or bioresponsive implants. The review discusses specific biofunctional materials and strategies to achieve a precise control over implant surface properties and presents possible solutions to develop next generation of implants, particularly in the fields of bone and cardiovascular therapy.
Collapse
Affiliation(s)
- Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Vijayan Manoharan
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Anna Desalvo
- University of Southampton, School of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Nikita Lomis
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, Duff Medical Building, 3775 University Street, McGill University, QC, Canada H3A 2B4
| | - Kartikeya Singh Jodha
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, Duff Medical Building, 3775 University Street, McGill University, QC, Canada H3A 2B4
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
36
|
Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y, Lu A, Zhang L. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules 2015; 16:3499-507. [PMID: 26393272 DOI: 10.1021/acs.biomac.5b00928] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yao Huang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengyu Yao
- Department
of Orthopedics, General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou 510010, China
| | - Xing Zheng
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xichao Liang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Su
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Zhang
- Department
of Orthopedics, General Hospital of Guangzhou Military Area Command of Chinese PLA, Guangzhou 510010, China
| | - Ang Lu
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lina Zhang
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
37
|
Gand A, Hindié M, Chacon D, Van Tassel PR, Pauthe E. Nanotemplated polyelectrolyte films as porous biomolecular delivery systems. Application to the growth factor BMP-2. BIOMATTER 2015; 4:e28823. [PMID: 25482416 PMCID: PMC4122565 DOI: 10.4161/biom.28823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials capable of delivering controlled quantities of bioactive agents, while maintaining mechanical integrity, are needed for a variety of cell contacting applications. We describe here a nanotemplating strategy toward porous, polyelectrolyte-based thin films capable of controlled biomolecular loading and release. Films are formed via the layer-by-layer assembly of charged polymers and nanoparticles (NP), then chemically cross-linked to increase mechanical rigidity and stability, and finally exposed to tetrahydrofuran to dissolve the NP and create an intra-film porous network. We report here on the loading and release of the growth factor bone morphogenetic protein 2 (BMP-2), and the influence of BMP-2 loaded films on contacting murine C2C12 myoblasts. We observe nanotemplating to enable stable BMP-2 loading throughout the thickness of the film, and find the nanotemplated film to exhibit comparable cell adhesion, and enhanced cell differentiation, compared with a non-porous cross-linked film (where BMP-2 loading is mainly confined to the film surface).
Collapse
Affiliation(s)
- Adeline Gand
- a Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules; Institut des Matériaux; Université de Cergy-Pontoise; Cergy-Pontoise, France
| | | | | | | | | |
Collapse
|
38
|
Chen G, Dong C, Yang L, Lv Y. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15790-15802. [PMID: 26151287 DOI: 10.1021/acsami.5b02662] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A growing body of evidence has shown that extracellular matrix (ECM) stiffness can modulate stem cell adhesion, proliferation, migration, differentiation, and signaling. Stem cells can feel and respond sensitively to the mechanical microenvironment of the ECM. However, most studies have focused on classical two-dimensional (2D) or quasi-three-dimensional environments, which cannot represent the real situation in vivo. Furthermore, most of the current methods used to generate different mechanical properties invariably change the fundamental structural properties of the scaffolds (such as morphology, porosity, pore size, and pore interconnectivity). In this study, we have developed novel three-dimensional (3D) scaffolds with different degrees of stiffness but the same 3D microstructure that was maintained by using decellularized cancellous bone. Mixtures of collagen and hydroxyapatite [HA: Ca10(PO4)6(OH)2] with different proportions were coated on decellularized cancellous bone to vary the stiffness (local stiffness, 13.00 ± 5.55 kPa, 13.87 ± 1.51 kPa, and 37.7 ± 19.6 kPa; bulk stiffness, 6.74 ± 1.16 kPa, 8.82 ± 2.12 kPa, and 23.61 ± 8.06 kPa). Microcomputed tomography (μ-CT) assay proved that there was no statistically significant difference in the architecture of the scaffolds before or after coating. Cell viability, osteogenic differentiation, cell recruitment, and angiogenesis were determined to characterize the scaffolds and evaluate their biological responses in vitro and in vivo. The in vitro results indicate that the scaffolds developed in this study could sustain adhesion and growth of rat mesenchymal stem cells (MSCs) and promote their osteogenic differentiation. The in vivo results further demonstrated that these scaffolds could help to recruit MSCs from subcutaneous tissue, induce them to differentiate into osteoblasts, and provide the 3D environment for angiogenesis. These findings showed that the method we developed can build scaffolds with tunable mechanical properties almost without variation in 3D microstructure. These preparations not only can provide a cell-free scaffold with optimal matrix stiffness to enhance osteogenic differentiation, cell recruitment, and angiogenesis in bone tissue engineering but also have significant implications for studies on the effects of matrix stiffness on stem cell differentiation in 3D environments.
Collapse
Affiliation(s)
- Guobao Chen
- †Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and ‡'111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Chanjuan Dong
- †Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and ‡'111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Li Yang
- †Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and ‡'111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| | - Yonggang Lv
- †Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, and ‡'111' Project Laboratory of Biomechanics and Tissue Repair, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
39
|
Wu D, Chen X, Chen T, Ding C, Wu W, Li J. Substrate-anchored and degradation-sensitive anti-inflammatory coatings for implant materials. Sci Rep 2015; 5:11105. [PMID: 26077243 PMCID: PMC4650647 DOI: 10.1038/srep11105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/24/2015] [Indexed: 12/27/2022] Open
Abstract
Implant materials need to be highly biocompatible to avoid inflammation in clinical practice. Although biodegradable polymeric implants can eliminate the need for a second surgical intervention to remove the implant materials, they may produce acidic degradation products in vivo and cause non-bacterial inflammation. Here we show the strategy of “substrate-anchored and degradation-sensitive coatings” for biodegradable implants. Using poly(lactic acid)/hydroxyapatite as an implant material model, we constructed a layer-by-layer coating using pH-sensitive star polymers and dendrimers loaded with an anti-inflammatory drug, which was immobilised through a hydroxyapatite-anchored layer. The multifunctional coating can effectively suppress the local inflammation caused by the degradation of implant materials for at least 8 weeks in vivo. Moreover, the substrate-anchored coating is able to modulate the degradation of the substrate in a more homogeneous manner. The “substrate-anchored and degradation-sensitive coating” strategy therefore exhibits potential for the design of various self-anti-inflammatory biodegradable implant materials.
Collapse
Affiliation(s)
- Duo Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xingyu Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Tianchan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
40
|
Layer-by-layer assembled cell instructive nanocoatings containing platelet lysate. Biomaterials 2015; 48:56-65. [DOI: 10.1016/j.biomaterials.2015.01.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/23/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022]
|
41
|
Affiliation(s)
- Paula T. Hammond
- Dept. of Chemical Engineering and Koch Institute of Integrative Cancer Research; Massachusetts Institute of Technology; Cambridge MA 02139
| |
Collapse
|
42
|
Caridade SG, Monge C, Almodóvar J, Guillot R, Lavaud J, Josserand V, Coll JL, Mano JF, Picart C. Myoconductive and osteoinductive free-standing polysaccharide membranes. Acta Biomater 2015; 15:139-49. [PMID: 25575853 DOI: 10.1016/j.actbio.2014.12.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 12/26/2014] [Accepted: 12/30/2014] [Indexed: 01/18/2023]
Abstract
Free-standing (FS) membranes have increasing applications in the biomedical field as drug delivery systems for wound healing and tissue engineering. Here, we studied the potential of free-standing membranes made by the layer-by-layer assembly of chitosan and alginate to be used as a simple biomimetic system of the periosteum. The design of a periosteum-like membrane implies the elaboration of a thick membrane suitable for both muscle and bone formation. Our aim was to produce well-defined ∼50 μm thick polysaccharide membranes that could be easily manipulated, were mechanically resistant, and would enable both myogenesis and osteogenesis in vitro and in vivo. The membranes were chemically crosslinked to improve their mechanical properties. Crosslinking chemistry was followed via Fourier transform infrared spectroscopy and the mechanical properties of the membranes were assessed using dynamic mechanical analysis. The loading and release of the potent osteoinductive growth factor bone morphogenetic protein 2 (BMP-2) inside and outside of the FS membrane was followed by fluorescence spectroscopy in a physiological buffer over 1 month. The myogenic and osteogenic potentials of the membranes in vitro were assessed using BMP-2-responsive skeletal myoblasts. Finally, their osteoinductive properties in vivo were studied in a preliminary experiment using a mouse ectopic model. Our results showed that the more crosslinked FS membranes enabled a more efficient myoblast differentiation in myotubes. In addition, we showed that a tunable amount of BMP-2 can be loaded into and subsequently released from the membranes, depending on the crosslinking degree and the initial BMP-2 concentration in solution. Only the more crosslinked membranes were found to be osteoinductive in vivo. These polysaccharide-based membranes have strong potential as a periosteum-mimetic scaffold for bone tissue regeneration.
Collapse
Affiliation(s)
- Sofia G Caridade
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Claire Monge
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Jorge Almodóvar
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Raphael Guillot
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France
| | - Jonathan Lavaud
- Institute Albert Bonniot, INSERM U823, ERL CNRS3148, Grenoble, France
| | | | - Jean-Luc Coll
- Institute Albert Bonniot, INSERM U823, ERL CNRS3148, Grenoble, France
| | - João F Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Catherine Picart
- CNRS, UMR 5628, LMGP, 3 parvis Louis Néel, F-38016 Grenoble, France; Université de Grenoble Alpes, Grenoble Institute of Technology, 3 parvis Louis Néel, F-38016 Grenoble, France.
| |
Collapse
|
43
|
Zhou X, Sahai N, Qi L, Mankoci S, Zhao W. Biomimetic and nanostructured hybrid bioactive glass. Biomaterials 2015; 50:1-9. [PMID: 25736490 DOI: 10.1016/j.biomaterials.2015.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
Inspired by nature's toughening mechanisms, we designed a new polyhedral oligomeric silsesquioxane (POSS)-derived hybrid glass (PHG) that has covalent interactions on the molecular scale between the inorganic POSS cage and organic phase. These features allow "elastic deformation" of the inorganic POSS cage in limited scale. The final product is a bulk hybrid material with toughness (3.56 ± 0.25 MPa·m(1/2)) similar to natural bone (2.4-5.3 MPa·m(1/2)). PHG exhibited excellent bioactivity by promoting the formation of plate-like hydroxyapatite on its surface in simulated body fluid and showed good cell adhesion. PHG also can be a platform to guide adipose tissue-derived mesenchymal stem cells differentiation and mineralization. The key structural features of this material can be used to guide the design of bio-inspired composites with unique toughness, which would be of great benefit to hard tissue engineering.
Collapse
Affiliation(s)
- Xianfeng Zhou
- Goodyear Polymer Center, Department of Polymer Science, The University of Akron, Akron, OH 44325, USA.
| | - Nita Sahai
- Goodyear Polymer Center, Department of Polymer Science, The University of Akron, Akron, OH 44325, USA.
| | - Lin Qi
- Goodyear Polymer Center, Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - Steven Mankoci
- Goodyear Polymer Center, Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - Weilong Zhao
- Goodyear Polymer Center, Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
44
|
Eap S, Keller L, Schiavi J, Huck O, Jacomine L, Fioretti F, Gauthier C, Sebastian V, Schwinté P, Benkirane-Jessel N. A living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration. Int J Nanomedicine 2015; 10:1061-75. [PMID: 25709432 PMCID: PMC4327569 DOI: 10.2147/ijn.s72670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
New-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(ε-caprolactone) nanofibrous implant (from 700 μm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days' implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days' implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.
Collapse
Affiliation(s)
- Sandy Eap
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Laetitia Keller
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
- Department of Chemical Engineering, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain
| | - Jessica Schiavi
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Olivier Huck
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Leandro Jacomine
- CNRS (National Center for Scientific Research), ICS (Charles Sadron Institute), Strasbourg, France
| | - Florence Fioretti
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Christian Gauthier
- CNRS (National Center for Scientific Research), ICS (Charles Sadron Institute), Strasbourg, France
| | - Victor Sebastian
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Department of Chemical Engineering, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain
- Networking Research Center of Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Pascale Schwinté
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM, UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, FMTS, Faculté de Médecine, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
45
|
Pauthe E, Van Tassel PR. Nanofilm Biomaterials: Dual Control of Mechanical and Bioactive Properties. LAYER‐BY‐LAYER FILMS FOR BIOMEDICAL APPLICATIONS 2015:65-78. [DOI: 10.1002/9783527675869.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2. Biomolecules 2015; 5:3-19. [PMID: 25581889 PMCID: PMC4384108 DOI: 10.3390/biom5010003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/31/2014] [Indexed: 11/17/2022] Open
Abstract
A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.
Collapse
|
47
|
Cao FY, Yin WN, Fan JX, Zhuo RX, Zhang XZ. A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells. Biomater Sci 2015. [DOI: 10.1039/c4bm00300d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BMHP1 or cBMHP1 peptide is found to induce MSCs towards the osteogenic lineage when tethered to modified quartz substrates.
Collapse
Affiliation(s)
- Feng-Yi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Wei-Na Yin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| |
Collapse
|
48
|
Huang Y, Zhang X, Mao H, Li T, Zhao R, Yan Y, Pang X. Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv 2015. [DOI: 10.1039/c4ra12118j] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Effective physiological bone integration and absence of bacterial infection are essential for a successful orthopaedic or dental implant.
Collapse
Affiliation(s)
- Yong Huang
- College of Lab Medicine
- Hebei North University
- Zhangjiakou 075000
- China
- Institute of Life Science and Technology
| | - Xuejiao Zhang
- College of Lab Medicine
- Hebei North University
- Zhangjiakou 075000
- China
| | - Huanhuan Mao
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Tingting Li
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Ranlin Zhao
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Yajing Yan
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Xiaofeng Pang
- Institute of Life Science and Technology
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- International Centre for Materials Physics
| |
Collapse
|
49
|
Guan JJ, Tian B, Tang S, Ke QF, Zhang CQ, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility. J Mater Chem B 2015; 3:1655-1666. [DOI: 10.1039/c4tb02085e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy has been developed to fabricate hydroxyapatite coatings with oriented nanoplate arrays for implants of human hard tissues.
Collapse
Affiliation(s)
- Jun-Jie Guan
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
- Department of Orthopedics Surgery
| | - Bo Tian
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Sha Tang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| | - Chang-Qing Zhang
- Department of Orthopedics Surgery
- Shanghai Sixth People's Hospital
- Shanghai Jiaotong University
- Shanghai 20200233
- China
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implant
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials
- Shanghai Normal University
- Shanghai 200234
- China
| |
Collapse
|
50
|
Oliveira SM, Reis RL, Mano JF. Assembling Human Platelet Lysate into Multiscale 3D Scaffolds for Bone Tissue Engineering. ACS Biomater Sci Eng 2014; 1:2-6. [DOI: 10.1021/ab500006x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sara M. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Department of Polymer Engineering, University of Minho, AvePark Taipas, Guimarães 4806-909, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| | - Rui L. Reis
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Department of Polymer Engineering, University of Minho, AvePark Taipas, Guimarães 4806-909, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| | - João F. Mano
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Department of Polymer Engineering, University of Minho, AvePark Taipas, Guimarães 4806-909, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| |
Collapse
|