1
|
Fridrich P, Posel Z. Phase Behavior of Polydisperse Y-Shaped Polymer Brushes under Good Solvent Conditions. Polymers (Basel) 2024; 16:721. [PMID: 38475403 DOI: 10.3390/polym16050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Y-shaped polymer brushes represent a special class of binary mixed polymer brushes, in which a combination of different homopolymers leads to unique phase behavior. While most theoretical and simulation studies use monodisperse models, experimental systems are always polydisperse. This discrepancy hampers linking theoretical and experimental results. In this theoretical study, we employed dissipative particle dynamics to study the influence of polydispersity on the phase behavior of Y-shaped brushes grafted to flat surfaces under good solvent conditions. Polydispersity was kept within experimentally achievable values and was modeled via Schulz-Zimm distribution. In total, 10 systems were considered, thus covering the phase behavior of monodisperse, partially polydisperse and fully polydisperse systems. Using such generic representation of real polymers, we observed a rippled structure and aggregates in monodisperse systems. In addition, polydisperse brushes formed a stable perforated layer not observed previously in monodisperse studies, and influenced the stability of the remaining phases. Although the perforated layer was experimentally observed under good solvent conditions and in the melt state, further confirmation of its presence in systems under good solvent conditions required mapping real polymers onto mesoscale models that reflected, for example, different polymer rigidity, and excluded volume effects or direct influence of the surface, just to mention a few parameters. Finally, in this work, we show that mesoscale modeling successfully describes polydisperse models, which opens the way for rapid exploring of complex systems such as polydisperse Y-shaped brushes in selective or bad solvents or under non-equilibrium conditions.
Collapse
Affiliation(s)
- Petr Fridrich
- Department of Informatics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Zbyšek Posel
- Department of Informatics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
2
|
Hartmann S, Diekmann J, Greve D, Thiele U. Drops on Polymer Brushes: Advances in Thin-Film Modeling of Adaptive Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4001-4021. [PMID: 38358424 DOI: 10.1021/acs.langmuir.3c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We briefly review recent advances in the hydrodynamic modeling of the dynamics of droplets on adaptive substrates, in particular, solids that are covered by polymer brushes. Thereby, the focus is on long-wave and full-curvature variants of mesoscopic hydrodynamic models in gradient dynamics form. After introducing the approach for films/drops of nonvolatile simple liquids on a rigid smooth solid substrate, it is first expanded to an arbitrary number of coupled degrees of freedom before considering the specific case of drops of volatile liquids on brush-covered solids. After presenting the model, its usage is illustrated by briefly considering the natural and forced spreading of drops of nonvolatile liquids on a horizontal brush-covered substrate, stick-slip motion of advancing contact lines as well as drops sliding down a brush-covered incline. Finally, volatile liquids are also considered.
Collapse
Affiliation(s)
- Simon Hartmann
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
| | - Jan Diekmann
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
| | - Daniel Greve
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
| | - Uwe Thiele
- Institut für Theoretische Physik, Universität Münster, Wilhelm Klemm Str. 9, D-48149 Münster, Germany
- Center of Nonlinear Science (CeNoS), Universität Münster, Corrensstr. 2, 48149 Münster, Germany
| |
Collapse
|
3
|
Krause DT, Krämer S, Siozios V, Butzelaar AJ, Dulle M, Förster B, Theato P, Mayer J, Winter M, Förster S, Wiemhöfer HD, Grünebaum M. Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chains. Polymers (Basel) 2023; 15:polym15092128. [PMID: 37177276 PMCID: PMC10180747 DOI: 10.3390/polym15092128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Poly(ethylene oxide) block copolymers (PEOz BCP) have been demonstrated to exhibit remarkably high lithium ion (Li+) conductivity for Li+ batteries applications. For linear poly(isoprene)-b-poly(styrene)-b-poly(ethylene oxide) triblock copolymers (PIxPSyPEOz), a pronounced maximum ion conductivity was reported for short PEOz molecular weights around 2 kg mol-1. To later enable a systematic exploration of the influence of the PIx and PSy block lengths and related morphologies on the ion conductivity, a synthetic method is needed where the short PEOz block length can be kept constant, while the PIx and PSy block lengths could be systematically and independently varied. Here, we introduce a glycidyl ether route that allows covalent attachment of pre-synthesized glycidyl-end functionalized PEOz chains to terminate PIxPSy BCPs. The attachment proceeds to full conversion in a simplified and reproducible one-pot polymerization such that PIxPSyPEOz with narrow chain length distribution and a fixed PEOz block length of z = 1.9 kg mol-1 and a Đ = 1.03 are obtained. The successful quantitative end group modification of the PEOz block was verified by nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). We demonstrate further that with a controlled casting process, ordered microphases with macroscopic long-range directional order can be fabricated, as demonstrated by small-angle X-ray scattering (SAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It has already been shown in a patent, published by us, that BCPs from the synthesis method presented here exhibit comparable or even higher ionic conductivities than those previously published. Therefore, this PEOz BCP system is ideally suitable to relate BCP morphology, order and orientation to macroscopic Li+ conductivity in Li+ batteries.
Collapse
Affiliation(s)
- Daniel T Krause
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| | - Susanna Krämer
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| | - Vassilios Siozios
- MEET Battery Research Center, University of Münster, Corrensstr. 46, 48149 Münster, Germany
| | - Andreas J Butzelaar
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Beate Förster
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Physics of Nanoscale Systems (ER-C-1), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Patrick Theato
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, 76131 Karlsruhe, Germany
- Soft Matter Synthesis Laboratory, Institute for Biological Interfaces 3 (IBG-3), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Materials Science and Technology (ER-C-2), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, Jülich 52425, Germany
- Jülich-Aachen Research Alliance, JARA, Fundamentals of Future Information Technology, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Martin Winter
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
- MEET Battery Research Center, University of Münster, Corrensstr. 46, 48149 Münster, Germany
| | - Stephan Förster
- Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany
| | - Hans-Dieter Wiemhöfer
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| | - Mariano Grünebaum
- Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstr. 46, 48149 Münster, Germany
| |
Collapse
|
4
|
Shi X, Bian T, Liu L, Zhao H. Surface Coassembly of Binary Mixed Polymer Brushes and Linear Block Copolymer Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14217-14226. [PMID: 36342322 DOI: 10.1021/acs.langmuir.2c02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Binary mixed polymer brushes (BMPBs) are two different homopolymer chains that are covalently anchored to the solid surfaces at high grafting densities. One feature of the BMPBs is the unique ability to make surface phase separation under external stimuli. In this research, we demonstrate that different surface nanostructures can be fabricated by surface coassembly of BMPBs and free block copolymer (BCP) chains. Polystyrene/poly(2-(dimethylamino)ethyl methacrylate) (PS/PDMAEMA) BMPBs on silica particles (PS-PDMAEMA-SiO2) are synthesized by a two-step "grafting to" approach. PDMAEMA-b-PS block copolymer (BCP) chains and PS-PDMAEMA-SiO2 make surface self-assembly and a variety of surface nanostructures are formed in methanol. The grafting densities of PS and PDMAEMA brushes, solvent, and the BCP structures all exert significant influences on the surface morphology. With an increase in PDMAEMA grafting density, the surface structures change from perforated layers, to rods, and to spherical surface micelles (s-micelles). The PS grafting density also exerts an effect on the formation of the surface nanostructures. At low PS grafting density, sparsely distributed s-micelles are produced, and at high density, densely distributed s-micelles are observed. Based on transmission electron microscopy and scanning electron microscopy results, a surface phase diagram is constructed, which provides a guide to the surface morphology control.
Collapse
Affiliation(s)
- Xiaoyu Shi
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Tianshun Bian
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Li Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Glišić I, Ritsema van Eck GC, Smook LA, de Beer S. Enhanced vapor sorption in block and random copolymer brushes. SOFT MATTER 2022; 18:8398-8405. [PMID: 36259991 PMCID: PMC9667471 DOI: 10.1039/d2sm00868h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Polymer brushes in gaseous environments absorb and adsorb vapors of favorable solvents, which makes them potentially relevant for sensing applications and separation technologies. Though significant amounts of vapor are sorbed in homopolymer brushes at high vapor pressures, at low vapor pressures sorption remains limited. In this work, we vary the structure of two-component polymer brushes and investigate the enhancement in vapor sorption at different relative vapor pressures compared to homopolymer brushes. We perform molecular dynamics simulations on two-component block and random copolymer brushes and investigate the influence of monomer miscibility and formation of high-energy interfaces between immiscible monomers on vapor sorption. Additionally, we present absorption isotherms of pure homopolymer, mixed binary brush and 2-block, 4-block, and random copolymer brushes. Based on these isotherms, we finally show that random copolymer brushes absorb more vapor than any other architecture investigated thus far. Random brushes display enhanced sorption at both high and low vapor pressures, with the largest enhancement in sorption at low vapor pressures.
Collapse
Affiliation(s)
- Ivona Glišić
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
6
|
Wang C, Zhao H. Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. SOFT MATTER 2022; 18:5138-5152. [PMID: 35781482 DOI: 10.1039/d2sm00458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface structures play an important role in the practical applications of materials. The synthesis of polymer brushes on a solid surface has emerged as an effective tool for tuning surface properties. The fabrication of polymer brush-based surface nanostructures has greatly facilitated the development of materials with unique surface properties. In this review article, synthetic methods used in the synthesis of polymer brushes, and self-assembly approaches applied in the fabrication of surface nanostructures including self-assembly of polymer brushes, co-assembly of polymer brushes and "free" block copolymer chains, and polymerization induced surface self-assembly, are reviewed. It is demonstrated that polymer brush-based surface nanostructures, including spherical surface micelles, wormlike surface structures, layered structures and surface vesicles, can be fabricated. Meanwhile, the challenges in the synthesis and applications of the surface nanostructures are discussed. This review is expected to be helpful for understanding the principles, methods and applications of polymer brush-based surface nanostructures.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
7
|
Butt HJ, Liu J, Koynov K, Straub B, Hinduja C, Roismann I, Berger R, Li X, Vollmer D, Steffen W, Kappl M. Contact angle hysteresis. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Liu Y, Hou W, Zhao H. Synthesis of Y-Shaped Polymer Brushes on Silica Particles and Hierarchical Surface Structures Fabricated by the Coassembly Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yingze Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wangmeng Hou
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Hou W, Liu Y, Zhao H. Surface Nanostructures Based on Assemblies of Polymer Brushes. Chempluschem 2020; 85:998-1007. [DOI: 10.1002/cplu.202000112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Wangmeng Hou
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Yingze Liu
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials Ministry of Education College of ChemistryNankai University Tianjin 300071 P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Hou W, Wang H, Cui Y, Liu Y, Ma X, Zhao H. Surface Nanostructures Fabricated by Polymerization-Induced Surface Self-Assembly. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Leibig D, Messerle M, Johann T, Moers C, Kaveh F, Butt H, Vollmer D, Müller AHE, Frey H. Tapered copolymers of styrene and 4‐vinylbenzocyclobutene via carbanionic polymerization for crosslinkable polymer films. JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1002/pola.29515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Daniel Leibig
- Johannes Gutenberg‐University MainzInstitute for Organic Chemistry D‐55128 Mainz Germany
- Graduate School Material Science in Mainz, Staudingerweg 9 D‐55128 Mainz Germany
| | - Margarita Messerle
- Max Planck Institute for Polymer Research, Ackermannweg 10 D‐55128 Mainz Germany
| | - Tobias Johann
- Johannes Gutenberg‐University MainzInstitute for Organic Chemistry D‐55128 Mainz Germany
| | - Christian Moers
- Johannes Gutenberg‐University MainzInstitute for Organic Chemistry D‐55128 Mainz Germany
- Graduate School Material Science in Mainz, Staudingerweg 9 D‐55128 Mainz Germany
| | - Farzaneh Kaveh
- Max Planck Institute for Polymer Research, Ackermannweg 10 D‐55128 Mainz Germany
| | - Hans‐Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10 D‐55128 Mainz Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10 D‐55128 Mainz Germany
| | - Axel H. E. Müller
- Johannes Gutenberg‐University MainzInstitute for Organic Chemistry D‐55128 Mainz Germany
| | - Holger Frey
- Johannes Gutenberg‐University MainzInstitute for Organic Chemistry D‐55128 Mainz Germany
- Graduate School Material Science in Mainz, Staudingerweg 9 D‐55128 Mainz Germany
| |
Collapse
|
12
|
Apebende EA, Dubois L, Bruns N. Light-responsive block copolymers with a spiropyran located at the block junction. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Zhang S, Liu W, Dong Y, Wei T, Wu Z, Chen H. Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3470-3478. [PMID: 30727730 DOI: 10.1021/acs.langmuir.8b04323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed homopolymer brushes have unique interfacial properties that can be exploited for both fundamental studies and applications in technology. Herein, the synthesis of a new catechol-based biomimetic Y-shaped binary photoinitiator (Y-photoinitiator) and its applications for surface modification with polymer brushes through both "grafting to" and "grafting from" strategies are reported. The "leg" of the Y consists of a catechol group as surface anchoring moiety. The arms are photoinitiator moieties that can be "addressed" independent of each other by radiation of different wavelengths. Using ultraviolet and visible light successively, each arm of the Y-photoinitiator was activated, thereby allowing the synthesis of Y-shaped block copolymer brushes with dissimilar polymer chains. The suitability of the Y-photoinitiator for surface modification was first investigated using N-vinylpyrrolidone and styrene as the model monomers for successive UV-photoiniferter-mediated polymerization and visible-light-induced polymerization, respectively. Switching of the wetting properties of the Y-shaped block copolymer brush poly( N-vinylpyrrolidone)- block-poly(styrene) (PVP- b-PS)-grafted surfaces by contact with different solvents was also investigated. To further exploit this novel Y-photoinitiator for the preparation of functional interfaces, Y-shaped block copolymer brushes poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide)- block-poly( N-vinylpyrrolidone- co-glycidyl methacrylate) (PIL(Br)- b-P(NVP- co-GMA)) were also prepared and subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups (PILPNG-RGD). The PILPNG-RGD grafted surfaces showed excellent cell-adhesive, bacteriostatic, and bactericidal properties. Thus, it can be concluded that further exploitation of this novel Y-photoinitiator for graft polymerization should allow the preparation of a wide range of functional interfaces with tailored properties.
Collapse
Affiliation(s)
- Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
14
|
Messerschmidt M, Janke A, Simon F, Hanzelmann C, Riske T, Stamm M, Raether B, da Costa E Silva O, Uhlmann P. Fluorocarbon-Free Dual-Action Textile Finishes Based on Covalently Attached Thermoresponsive Block Copolymer Brush Coatings. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40088-40099. [PMID: 30375859 DOI: 10.1021/acsami.8b11448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present fluorocarbon-free block copolymer brushes as potential systems for dual-action, i.e., soil-repellent and soil-releasing textile finishes. Polymer brushes were prepared by employing specifically engineered triblock copolymers consisting of a hydrophobic, a hydrophilic, and either a central or a terminal anchor block bearing several anchoring groups for sustainable immobilization using the "grafting to" approach on both flat Si wafers and rough cotton fabrics. The switching characteristics of both types of block copolymer brushes were investigated by exposing the brushes to conditions and stimuli that are similar to those applied during laundering in a washing machine and drying in a laundry dryer, respectively. Contact angle measurements were performed to evaluate the polarity and wettability of the block copolymer brushes after treatment in hot water and in air, or in a vacuum at elevated temperatures simulating the washing and the drying procedure of a textile fabric. While the block copolymer brush with the terminal anchor showed only minor changes in terms of the wetting characteristics and the brush morphology upon the applied stimuli, the block copolymer brush with the central anchoring block exhibited a significant change from a hydrophilic (soil-releasing) to a hydrophobic (stain-repellent) surface. This switching behavior was reversible and could be achieved on both, flat Si wafers, and much more pronounced on rough cotton fabrics. Atomic force microscopy and angle-resolved X-ray photoelectron spectroscopy investigations further indicated a complete rearrangement of the brush morphology. Accordingly, we regard this type of block copolymer brushes as a system that fully meets the basic requirements for an application as a dual-action textile finish, which can be reversibly switched with respect to water repulsion.
Collapse
Affiliation(s)
- Martin Messerschmidt
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Andreas Janke
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Frank Simon
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Christian Hanzelmann
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Tino Riske
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Faculty of Science, Department of Chemistry , Technische Universität Dresden , Bergstr. 66 , D-01069 Dresden , Germany
| | | | | | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Department of Chemistry, Hamilton Hall , University of Nebraska-Lincoln , 639 North 12th Street , Lincoln , Nebraska 68588 , United States
| |
Collapse
|
15
|
Butt HJ, Berger R, Steffen W, Vollmer D, Weber SAL. Adaptive Wetting-Adaptation in Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11292-11304. [PMID: 30110544 DOI: 10.1021/acs.langmuir.8b01783] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Many surfaces reversibly change their structure and interfacial energy upon being in contact with a liquid. Such surfaces adapt to a specific liquid. We propose the first order kinetic model to describe dynamic contact angles of such adaptive surfaces. The model is general and does not refer to a particular adaptation process. The aim of the proposed model is to provide a quantitative description of adaptive wetting and to link changes in contact angles to microscopic adaptation processes. By introducing exponentially relaxing interfacial energies and applying Young's equation locally, we predict a change of advancing and receding contact angles depending on the velocity of the contact line. Even for perfectly homogeneous and smooth surfaces, a dynamic contact angle hysteresis is obtained. As possible adaptations, we discuss changes and reconstruction of polymer surfaces or monolayers, diffusion and swelling, adsorption of surfactants, replacement of contaminants, reorientation of liquid molecules, or formation of an electric double layer.
Collapse
Affiliation(s)
- Hans-Jürgen Butt
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Werner Steffen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Stefan A L Weber
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
- Department of Physics , Johannes Gutenberg University , Staudingerweg 10 , 55128 Mainz , Germany
| |
Collapse
|
16
|
Grimm O, Wendler F, Schacher FH. Micellization of Photo-Responsive Block Copolymers. Polymers (Basel) 2017; 9:E396. [PMID: 30965699 PMCID: PMC6418654 DOI: 10.3390/polym9090396] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/10/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022] Open
Abstract
This review focuses on block copolymers featuring different photo-responsive building blocks and self-assembly of such materials in different selective solvents. We have subdivided the specific examples we selected: (1) according to the wavelength at which the irradiation has to be carried out to achieve photo-response; and (2) according to whether irradiation with light of a suitable wavelength leads to reversible or irreversible changes in material properties (e.g., solubility, charge, or polarity). Exemplarily, an irreversible change could be the photo-cleavage of a nitrobenzyl, pyrenyl or coumarinyl ester, whereas the photo-mediated transition between spiropyran and merocyanin form as well as the isomerization of azobenzenes would represent reversible response to light. The examples presented cover applications including drug delivery (controllable release rates), controlled aggregation/disaggregation, sensing, and the preparation of photochromic hybrid materials.
Collapse
Affiliation(s)
- Oliver Grimm
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix Wendler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| |
Collapse
|
17
|
Kim MJ, Yu YG, Kang NG, Kang BG, Lee JS. Precise Synthesis of Functional Block Copolymers by Living Anionic Polymerization of Vinyl Monomers Bearing Nitrogen Atoms in the Side Chain. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Myung-Jin Kim
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology (GIST); 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Korea
| | - Yong-Guen Yu
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology (GIST); 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Korea
| | - Nam-Goo Kang
- Department of Chemistry; University of Tennessee; Buehler Hall 1420 Circle Dr. Knoxville TN 37996 USA
| | - Beom-Goo Kang
- Department of Chemical and Biological Engineering; Princeton University; Princeton NJ 08544 USA
| | - Jae-Suk Lee
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology (GIST); 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Korea
| |
Collapse
|
18
|
Li GL, Hu J, Wang H, Pilz-Allen C, Wang J, Qi T, Möhwald H, Shchukin DG. Polymer-decorated anisotropic silica nanotubes with combined shape and surface properties for guest delivery. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Rudolph T, Schacher FH. Selective crosslinking or addressing of individual domains within block copolymer nanostructures. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.03.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Barner-Kowollik C, Goldmann AS, Schacher FH. Polymer Interfaces: Synthetic Strategies Enabling Functionality, Adaptivity, and Spatial Control. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00650] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Christopher Barner-Kowollik
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- School
of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Anja S. Goldmann
- Preparative
Macromolecular Chemistry, Institut für Technische Chemie und
Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany
- Institut
für Biologische Grenzflächen, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix H. Schacher
- Institute
of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
21
|
Cao ZQ, Wang GJ. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels. CHEM REC 2016; 16:1398-435. [DOI: 10.1002/tcr.201500281] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Zi-Quan Cao
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| | - Guo-Jie Wang
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P. R. China
| |
Collapse
|
22
|
Morsbach J, Elbert J, Rüttiger C, Winzen S, Frey H, Gallei M. Polyvinylferrocene-Based Amphiphilic Block Copolymers Featuring Functional Junction Points for Cross-Linked Micelles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jan Morsbach
- Institute
of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Johannes Elbert
- Ernst-Berl-Institut
für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl-Institut
für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| | - Svenja Winzen
- Max Planck Institute
for Polymer Research, Ackermannweg
10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University (JGU), Duesbergweg 10-14, D-55099 Mainz, Germany
| | - Markus Gallei
- Ernst-Berl-Institut
für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, D-64287 Darmstadt, Germany
| |
Collapse
|
23
|
Abstract
This review summarizes recent developments in the field of surfaces functionalized with branched polymers, including the fabrication methods, morphologies, properties and applications.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| |
Collapse
|
24
|
Christ EM, Hobernik D, Bros M, Wagner M, Frey H. Cationic Copolymerization of 3,3-Bis(hydroxymethyl)oxetane and Glycidol: Biocompatible Hyperbranched Polyether Polyols with High Content of Primary Hydroxyl Groups. Biomacromolecules 2015; 16:3297-307. [DOI: 10.1021/acs.biomac.5b00951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva-Maria Christ
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| | - Dominika Hobernik
- Department
of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, D-55131 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
- Graduate School
Materials Science in Mainz (MAINZ), Staudingerweg 9, D-55128 Mainz, Germany
| |
Collapse
|
25
|
Moers C, Wrazidlo R, Natalello A, Netz I, Mondeshki M, Frey H. (1-Adamantyl)methyl Glycidyl Ether: A Versatile Building Block for Living Polymerization. Macromol Rapid Commun 2014; 35:1075-80. [DOI: 10.1002/marc.201400017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/17/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Moers
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz (JGU); Duesbergweg 10-14 D-55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ); Staudinger Weg 9 D-55128 Mainz Germany
| | - Robert Wrazidlo
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz (JGU); Duesbergweg 10-14 D-55128 Mainz Germany
| | - Adrian Natalello
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz (JGU); Duesbergweg 10-14 D-55128 Mainz Germany
- Graduate School Materials Science in Mainz (MAINZ); Staudinger Weg 9 D-55128 Mainz Germany
| | - Isabelle Netz
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz (JGU); Duesbergweg 10-14 D-55128 Mainz Germany
| | - Mihail Mondeshki
- Institute of Inorganic Chemistry and Analytical Chemistry; Johannes Gutenberg-Universität Mainz (JGU); Duesbergweg 10-14 D-55128 Mainz Germany
| | - Holger Frey
- Institute of Organic Chemistry; Johannes Gutenberg-Universität Mainz (JGU); Duesbergweg 10-14 D-55128 Mainz Germany
| |
Collapse
|
26
|
Rudolph T, Barthel MJ, Kretschmer F, Mansfeld U, Hoeppener S, Hager MD, Schubert US, Schacher FH. Poly(2-vinyl pyridine)-block-Poly(ethylene oxide) Featuring a Furan Group at the Block Junction-Synthesis and Functionalization. Macromol Rapid Commun 2014; 35:916-21. [DOI: 10.1002/marc.201300875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/30/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Tobias Rudolph
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Markus J. Barthel
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Dutch Polymer Institute; P.O. Box 902 Eindhoven 5600 AX The Netherlands
| | - Florian Kretschmer
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich Mansfeld
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Martin D. Hager
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Dutch Polymer Institute; P.O. Box 902 Eindhoven 5600 AX The Netherlands
| | - Felix H. Schacher
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
27
|
Synthesis and adsorption behaviors of poly(2-(dimethylamino)ethyl methacrylate) brushes on silica particles by surface-initiated atom transfer radical polymerization. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2013.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Sun W, Zhou S, You B, Wu L. Polymer Brush-Functionalized Surfaces with Reversible, Precisely Controllable Two-Way Responsive Wettability. Macromolecules 2013. [DOI: 10.1021/ma401416k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Sun
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| | - Shouxue Zhou
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| | - Bo You
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Yan J, Li B, Yu B, Huck WTS, Liu W, Zhou F. Controlled Polymer-Brush Growth from Microliter Volumes using Sacrificial-Anode Atom-Transfer Radical Polymerization. Angew Chem Int Ed Engl 2013; 52:9125-9. [DOI: 10.1002/anie.201304449] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Indexed: 12/31/2022]
|
30
|
Yan J, Li B, Yu B, Huck WTS, Liu W, Zhou F. Controlled Polymer‐Brush Growth from Microliter Volumes using Sacrificial‐Anode Atom‐Transfer Radical Polymerization. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304449] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Junfeng Yan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| | - Wilhelm T. S. Huck
- Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen (The Netherlands)
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)
| |
Collapse
|
31
|
Chen P, Li YP, Wang SW, Meng XL, Zhu M, Wang JY. Chemoenzymatic Synthesis of Dual-responsive Amphiphilic Block Copolymers and Drug Release Studies. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.6.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Binder K, Butt HJ, Floudas G, Frey H, Hsu HP, Landfester K, Kolb U, Kühnle A, Maskos M, Müllen K, Paul W, Schmidt M, Spiess HW, Virnau P. Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. FROM SINGLE MOLECULES TO NANOSCOPICALLY STRUCTURED MATERIALS 2013. [DOI: 10.1007/12_2013_230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
33
|
Yan Q, Han D, Zhao Y. Main-chain photoresponsive polymers with controlled location of light-cleavable units: from synthetic strategies to structural engineering. Polym Chem 2013. [DOI: 10.1039/c3py00804e] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|