1
|
Yang J, Zhan Z, Li X, Hu M, Zhu Y, Xiao Y, Xu X. Fullerol-reinforced antioxidantive 3D-printed bredigite scaffold for accelerating bone healing. Mater Today Bio 2024; 27:101120. [PMID: 38975240 PMCID: PMC11225861 DOI: 10.1016/j.mtbio.2024.101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Reactive oxygen species play a vital role in tissue repair, and nonequilibrium of redox homeostasis around bone defect can compromise osteogenesis. However, insufficient antioxidant capacity and weak osteogenic performance remain major obstacles for bone scaffold materials. Herein, integrating the mussel-inspired polydopamine (PDA) coating and 3D printing technologies, we utilized the merits of both osteogenic bredigite and antioxidative fullerol to construct 3D-printed porous, biodegradable acid-buffering, reactive oxygen species (ROS) -scavenging and robust osteogenic bio-scaffold (denoted "FPBS") for in situ bone defect restoration under oxidative stress microenvironment. Initially, fullerol nanoparticles were attached to the surface of the bredigite scaffold via covalently inter-crosslinking with PDA. Upon injury, extracellular ROS capturing triggered the oxidative degradation of PDA, releasing fullerol nanoparticles to enter into cells for further intracellular ROS scavenging. In vitro, FPBS had good biocompatibility and excellent antioxidative capability. Furthermore, FPBS promoted the osteogenesis of stem cells with significant elevation of osteogenic markers. Finally, in vivo implantation of FPBS remarkably enhanced new bone formation in a rat critical calvarial defect model. Overall, with amelioration of the ROS microenvironment of injured tissue and enhancement of osteogenic differentiation of stem cells simultaneously, FPBS may hold great potential towards bone defect repair.
Collapse
Affiliation(s)
- Jielai Yang
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Zihang Zhan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang Province, PR China
| | - Xingchen Li
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Mu Hu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yuan Zhu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yunchao Xiao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing, 314001, Zhejiang Province, PR China
| | - Xiangyang Xu
- Department of Orthopedics, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| |
Collapse
|
2
|
Wang S, Tan L, Yang Z, Zhao H, Guo L. A Strong, Tough, and Stable Composite with Nacre-Inspired Sandwich Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401883. [PMID: 38662873 DOI: 10.1002/adma.202401883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Improving the fracture resistance of nacre-inspired composites is crucial in addressing the strength-toughness trade-off. However, most previously proposed strategies for enhancing fracture resistance in these composites have been limited to interfacial modification by polymer, which restricts mechanical enhancement. Here, a composite material consisting of graphene oxide (GO) lamellae and nanocrystalline reinforced amorphous alumina nanowires (NAANs) has been developed. The structure of the composite is inspired by nacre and is composed of stacked GO nanosheets with NAANs in between, forming a sandwich-like structure. This design enhances the fracture resistance of the composite through the pull-out of GO nanosheets at the nanoscale and GO/NAANs sandwich-like coupling at the micro-scale, while also providing stiff ceramic support. This composite simultaneously possesses high strength (887.8 MPa), toughness (31.6 MJ m-3), superior cyclic stability (1600 cycles), and long-term (2 years) immersion stability, which outperform previously reported GO-based lamellar composites. The hierarchical fracture design provides a new path to design next-generation strong, tough, and stable materials for advanced engineering applications.
Collapse
Affiliation(s)
- Shaoxiong Wang
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lulu Tan
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Zhao Yang
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Hewei Zhao
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| | - Lin Guo
- School of Chemistry, Beihang University (BUAA), Beijing, 100191, P. R. China
| |
Collapse
|
3
|
Gao Q, Chu X, Yang J, Guo Y, Guo H, Qian S, Yang Y, Wang B. An Antibiotic Nanobomb Constructed from pH-Responsive Chemical Bonds in Metal-Phenolic Network Nanoparticles for Biofilm Eradication and Corneal Ulcer Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309086. [PMID: 38488341 PMCID: PMC11165475 DOI: 10.1002/advs.202309086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/13/2024] [Indexed: 06/12/2024]
Abstract
In the treatment of refractory corneal ulcers caused by Pseudomonas aeruginosa, antibacterial drugs delivery faces the drawbacks of low permeability and short ocular surface retention time. Hence, novel positively-charged modular nanoparticles (NPs) are developed to load tobramycin (TOB) through a one-step self-assembly method based on metal-phenolic network and Schiff base reaction using 3,4,5-trihydroxybenzaldehyde (THBA), ε-poly-ʟ-lysine (EPL), and Cu2+ as matrix components. In vitro antibacterial test demonstrates that THBA-Cu-TOB NPs exhibit efficient instantaneous sterilization owing to the rapid pH responsiveness to bacterial infections. Notably, only 2.6 µg mL-1 TOP is needed to eradicate P. aeruginosa biofilm in the nano-formed THBA-Cu-TOB owing to the greatly enhanced penetration, which is only 1.6% the concentration of free TOB (160 µg mL-1). In animal experiments, THBA-Cu-TOB NPs show significant advantages in ocular surface retention, corneal permeability, rapid sterilization, and inflammation elimination. Based on molecular biology analysis, the toll-like receptor 4 and nuclear factor kappa B signaling pathways are greatly downregulated as well as the reduction of inflammatory cytokines secretions. Such a simple and modular strategy in constructing nano-drug delivery platform offers a new idea for toxicity reduction, physiological barrier penetration, and intelligent drug delivery.
Collapse
Affiliation(s)
- Qiang Gao
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
| | - Xiaoying Chu
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Jie Yang
- School of Life SciencesJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Yishun Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Hanwen Guo
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Siyuan Qian
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
| | - Ying‐Wei Yang
- College of ChemistryJilin University2699 Qianjin StreetChangchun130012P. R. China
| | - Bailiang Wang
- National Engineering Research Center of Ophthalmology and OptometryEye HospitalWenzhou Medical UniversityWenzhou325000P. R. China
- State Key Laboratory of Ophthalmology, Optometry and Visual ScienceWenzhou Medical UniversityWenzhou325027P. R. China
- NMPA Key Laboratory for Clinical Research and Evaluation of Medical Devices and Drug for Ophthalmic DiseasesWenzhou325027P. R. China
| |
Collapse
|
4
|
Chen SM, Zhang ZB, Gao HL, Yu SH. Bottom-Up Film-to-Bulk Assembly Toward Bioinspired Bulk Structural Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313443. [PMID: 38414173 DOI: 10.1002/adma.202313443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Biological materials, although composed of meager minerals and biopolymers, often exhibit amazing mechanical properties far beyond their components due to hierarchically ordered structures. Understanding their structure-properties relationships and replicating them into artificial materials would boost the development of bulk structural nanocomposites. Layered microstructure widely exists in biological materials, serving as the fundamental structure in nanosheet-based nacres and nanofiber-based Bouligand tissues, and implying superior mechanical properties. High-efficient and scalable fabrication of bioinspired bulk structural nanocomposites with precise layered microstructure is therefore important yet remains difficult. Here, one straightforward bottom-up film-to-bulk assembly strategy is focused for fabricating bioinspired layered bulk structural nanocomposites. The bottom-up assembly strategy inherently offers a methodology for precise construction of bioinspired layered microstructure in bulk form, availability for fabrication of bioinspired bulk structural nanocomposites with large sizes and complex shapes, possibility for design of multiscale interfaces, feasibility for manipulation of diverse heterogeneities. Not limited to discussing what has been achieved by using the current bottom-up film-to-bulk assembly strategy, it is also envisioned how to promote such an assembly strategy to better benefit the development of bioinspired bulk structural nanocomposites. Compared to other assembly strategies, the highlighted strategy provides great opportunities for creating bioinspired bulk structural nanocomposites on demand.
Collapse
Affiliation(s)
- Si-Ming Chen
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Bang Zhang
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huai-Ling Gao
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
- Department of Chemistry, Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Sustainable Biomimetic Materials, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Huang W, Ma Z, Zhong L, Luo K, Li W, Zhong S, Yan D. Efficient Self-Assembly Preparation of 3D Carbon-Supported Ti 3 C 2 T x Hollow Spheres for High-Performance Potassium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304690. [PMID: 37794605 DOI: 10.1002/smll.202304690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Indexed: 10/06/2023]
Abstract
MXenes are considered a promising negative electrode material for potassium ion batteries (PIBs) in view of their low potassium ion diffusion barrier and excellent electrical conductivity. However, the stacking phenomenon in practical applications severely reduces their active surface and leads to slow K+ diffusion. Herein, a facile composite template method is proposed to construct stacking-resistance 3D carbon-supported Ti3 C2 Tx (3D-C@Ti3 C2 Tx ) hollow spheres. Due to the unique structure, when used as a negative electrode material, as-prepared 3D-C@Ti3 C2 Tx hollow spheres show not only improved rate capability with 160.4 mAh g-1 at 100 mA g-1 and 133.7 mAh g-1 at 500 mA g-1 , but also stable cycling performance with 142.5 mAh g-1 specific capacity remained at 2 A g-1 after 4200 cycles. Furthermore, the full cells with 3D-C@Ti3 C2 Tx anode can operate stably for 1000 cycles at 100 mA g-1 . Moreover, the linear fit analysis demonstrates that 3D-C@Ti3 C2 Tx hollow spheres have a fast and stable capacitive potassium storage mechanism. This method is simple and easy to implement, which provide a feasible path to solve the stacking problem of 2D materials.
Collapse
Affiliation(s)
- Wei Huang
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Zenghui Ma
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Lu Zhong
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, P. R. China
| | - Ketong Luo
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, P. R. China
| | - Wei Li
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical, Guilin, 541004, P. R. China
| | - Shengkui Zhong
- Yazhou Bay Innovation Research Institute, College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya, 572022, P. R. China
| | - Dongliang Yan
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and New Technology for Carbon Neutralization, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, P. R. China
| |
Collapse
|
6
|
Wu J, Wang P, Yin Y, Liang J, Fan Y, Zhang X, Han X, Sun Y. Cationic Biopolymeric Scaffold of Chelating Nanohydroxyapatite Self-Regulates Intraoral Microenvironment for Periodontal Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55409-55422. [PMID: 37942935 DOI: 10.1021/acsami.3c13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Periodontal bone defect is a common but longstanding healthcare issue since traditional bone grafts have limited functionalities in regulating complex intraoral microenvironments. Here, a porous cationic biopolymeric scaffold (CSC-g-nHAp) with microenvironment self-regulating ability was synthesized by chitosan-catechol chelating the Ca2+ of nanohydroxyapatite and bonding type I collagen. Chitosan-catechol's inherent antibacterial and antioxidant abilities endowed this scaffold with desirable abilities to eliminate periodontal pathogen infection and maintain homeostatic balances between free radical generation and elimination. Meanwhile, this scaffold promoted rat bone marrow stromal cells' osteogenic differentiation and achieved significant ectopic mineralization after 4 weeks of subcutaneous implantation in nude mice. Moreover, after 8 weeks of implantation in the rat critical-sized periodontal bone defect model, CSC-g-nHAp conferred 5.5-fold greater alveolar bone regeneration than the untreated group. This cationic biopolymeric scaffold could regulate the local microenvironment through the synergistic effects of its antibacterial, antioxidant, and osteoconductive activities to promote solid periodontal bone regeneration.
Collapse
Affiliation(s)
- Jingwen Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peilei Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Li X, Han F, Fan S, Liu Y, Zhang J, Li J. Recycling of discarded face masks for modification and use in SBS-modified bitumen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115152-115163. [PMID: 37880400 DOI: 10.1007/s11356-023-30570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, the discarded face masks have attracted widespread attention in society. In line with sustainable development, a physicochemical treatment method was used to recycle discarded face masks into styrene-butadiene-styrene (SBS) modified bitumen. Utilizing the highly adhesive polydopamine-polyethyleneimine (PDA-PEI) coating, it has improved the surface damage of the discarded face mask fibers (DFMF) caused by natural aging and mechanical fragmentation, simultaneously strengthening the connection between the fibers and bitumen. At 46 °C, the 2% embellish-face mask fiber (E-FMF)/SBS modified bitumen, compared to the 2%DFMF/SBS modified bitumen, exhibited improvements in complex modulus (G*), elastic modulus (G'), and loss modulus (G″) by 12.27%, 16.39%, and 13.35%, respectively. Furthermore, at 0.1 kPa and 3.2 kPa, the creep recovery rate (R) increased by 23.3% and 32%, and the average creep compliance (Jnr) decreased by 54.7% and 64%. It was demonstrated that DFMF adhered with the coating, were more effective in improving the mechanical properties, deformation resistance, and shear resistance of the bitumen. This approach enriches the application scenarios of discarded single-use face masks and supports environmental protection and road construction.
Collapse
Affiliation(s)
- Xinyu Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Fuhu Han
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Shencheng Fan
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yu Liu
- Guangxi Communications Investment Technology Co., Ltd., Nanning, China
| | - Jieyu Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Jing Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
8
|
Li Y, Yang Z, Sun Q, Xu R, Li R, Wu D, Huang R, Wang F, Li Y. Biocompatible Cryogel with Good Breathability, Exudate Management, Antibacterial and Immunomodulatory Properties for Infected Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304243. [PMID: 37661933 PMCID: PMC10625128 DOI: 10.1002/advs.202304243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Indexed: 09/05/2023]
Abstract
Due to the complex microenvironment and healing process of diabetic wounds, developing wound dressing with good biocompatibility, mechanical stability, breathability, exudate management, antibacterial ability, and immunomodulatory property is highly desired but remains a huge challenge. Herein, a multifunctional cryogel is designed and prepared with bio-friendly bacterial cellulose, gelatin, and dopamine under the condition of sodium periodate oxidation. Bacterial cellulose can enhance the mechanical stability of the cryogel by improving the skeleton supporting effect and crosslinking degree. The cryogel shows outstanding breathability and exudate management capability thanks to the interpenetrated porous structures. I2 and sodium iodides produced in situ by reduction of sodium periodate provide efficient antibacterial properties for the cryogel. The cryogel facilitates macrophage polarization from M1 to M2, thus regulating the immune microenvironment of infected diabetic wounds. With these advantages, the multifunctional cryogel effectively promotes collagen deposition and neovascularization, thus accelerating the healing of infected diabetic wounds.
Collapse
Affiliation(s)
- Yang Li
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Zifeng Yang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Qi Sun
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Ruijun Xu
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Renjie Li
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Dingcai Wu
- PCFM Lab, School of ChemistrySun Yat‐sen UniversityGuangzhou510006China
| | - Rongkang Huang
- Department of General Surgery (Colorectal Surgery)Guangdong Institute of GastroenterologyBiomedical Innovation CenterGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Feng Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Yong Li
- School of MedicineSouth China University of TechnologyGuangzhou510006China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| |
Collapse
|
9
|
Li W, Bei Y, Pan X, Zhu J, Zhang Z, Zhang T, Liu J, Wu D, Li M, Wu Y, Gao J. Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater Res 2023; 27:49. [PMID: 37202774 DOI: 10.1186/s40824-023-00367-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Multifunctional hydrogels with controllable degradation and drug release have attracted extensive attention in diabetic wound healing. This study focused on the acceleration of diabetic wound healing with selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release. METHODS Herein, selenium-containing hybrid hydrogels, defined as DSeP@PB, were fabricated via the reinforcement of selenol-end capping polyethylene glycol (PEG) hydrogels by polydopamine nanoparticles (PDANPs) and Prussian blue nanozymes in a one-pot approach in the absence of any other chemical additive or organic solvent based on diselenide and selenide bonding-guided crosslinking, making them accessible for large-scale mass production. RESULTS Reinforcement by PDANPs greatly increases the mechanical properties of the hydrogels, realizing excellent injectability and flexible mechanical properties for DSeP@PB. Dynamic diselenide introduction endowed the hydrogels with on-demand degradation under reducing or oxidizing conditions and light-triggered nanozyme release. The bioactivity of Prussian blue nanozymes afforded the hydrogels with efficient antibacterial, ROS-scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further animal studies indicated that DSeP@PB under red light irradiation showed the most efficient wound healing activity by stimulating angiogenesis and collagen deposition and inhibiting inflammation. CONCLUSION The combined merits of DSeP@PB (on-demand degradation, light-triggered release, flexible mechanical robustness, antibacterial, ROS-scavenging and immunomodulatory capacities) enable its high potential as a new hydrogel dressing that can be harnessed for safe and efficient therapeutics for diabetic wound healing.
Collapse
Affiliation(s)
- Wenjing Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ying Bei
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Dan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People?s Hospital, Shanghai Jiaotong University, Shanghai, 200010, China.
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
10
|
Noor U, Mughal MF, Ahmed T, Farid MF, Ammar M, Kulsum U, Saleem A, Naeem M, Khan A, Sharif A, Waqar K. Synthesis and applications of MXene-based composites: a review. NANOTECHNOLOGY 2023; 34:262001. [PMID: 36972572 DOI: 10.1088/1361-6528/acc7a8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
Recently, there has been considerable interest in a new family of transition metal carbides, carbonitrides, and nitrides referred to as MXenes (Ti3C2Tx) due to the variety of their elemental compositions and surface terminations that exhibit many fascinating physical and chemical properties. As a result of their easy formability, MXenes may be combined with other materials, such as polymers, oxides, and carbon nanotubes, which can be used to tune their properties for various applications. As is widely known, MXenes and MXene-based composites have gained considerable prominence as electrode materials in the energy storage field. In addition to their high conductivity, reducibility, and biocompatibility, they have also demonstrated outstanding potential for applications related to the environment, including electro/photocatalytic water splitting, photocatalytic carbon dioxide reduction, water purification, and sensors. This review discusses MXene-based composite used in anode materials, while the electrochemical performance of MXene-based anodes for Li-based batteries (LiBs) is discussed in addition to key findings, operating processes, and factors influencing electrochemical performance.
Collapse
Affiliation(s)
- Umar Noor
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Mughal
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University Islamabad, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Muhammad Fayyaz Farid
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ammar
- Department of Chemical Engineering Technology, Government College University, Faisalabad 38000, Pakistan
| | - Umme Kulsum
- Department of Chemistry, Aligarh Muslim University, 202002, Aligarh, India
| | - Amna Saleem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Mahnoor Naeem
- Institute of Chemical Engineering and Technology, University of Punjab, Lahore 54590, Pakistan
| | - Aqsa Khan
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Ammara Sharif
- Department of Applied Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Kashif Waqar
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Pakistan
| |
Collapse
|
11
|
Pedico A, Baudino L, Aixalà-Perelló A, Lamberti A. Green Methods for the Fabrication of Graphene Oxide Membranes: From Graphite to Membranes. MEMBRANES 2023; 13:429. [PMID: 37103856 PMCID: PMC10145855 DOI: 10.3390/membranes13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Graphene oxide (GO) has shown great potential as a membrane material due to its unique properties, including high mechanical strength, excellent thermal stability, versatility, tunability, and outperforming molecular sieving capabilities. GO membranes can be used in a wide range of applications, such as water treatment, gas separation, and biological applications. However, the large-scale production of GO membranes currently relies on energy-intensive chemical methods that use hazardous chemicals, leading to safety and environmental concerns. Therefore, more sustainable and greener approaches to GO membrane production are needed. In this review, several strategies proposed so far are analyzed, including a discussion on the use of eco-friendly solvents, green reducing agents, and alternative fabrication techniques, both for the preparation of the GO powders and their assembly in membrane form. The characteristics of these approaches aiming to reduce the environmental impact of GO membrane production while maintaining the performance, functionality, and scalability of the membrane are evaluated. In this context, the purpose of this work is to shed light on green and sustainable routes for GO membranes' production. Indeed, the development of green approaches for GO membrane production is crucial to ensure its sustainability and promote its widespread use in various industrial application fields.
Collapse
Affiliation(s)
- Alessandro Pedico
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, Italy
| | - Luisa Baudino
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Anna Aixalà-Perelló
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, Italy
| | - Andrea Lamberti
- Politecnico di Torino, Dipartimento di Scienza Applicata e Tecnologia (DISAT), Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, Italy
| |
Collapse
|
12
|
Saleem A, Chen J, Liu M, Liu N, Usman M, Wang K, Haris M, Zhang Y, Li P. Versatile Magnetic Mesoporous Carbon Derived Nano-Adsorbent for Synchronized Toxic Metal Removal and Bacterial Disinfection from Water Matrices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207348. [PMID: 36617518 DOI: 10.1002/smll.202207348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Contamination of water resources by toxic metals and opportunistic pathogens remains a serious challenge. The development of nano-adsorbents with desired features to tackle this problem is a continuously evolving field. Here, magnetic mesoporous carbon nanospheres grafted by antimicrobial polyhexamethylene biguanidine (PHMB) are reported. Detailed mechanistic investigations reveal that the electrostatic stabilizer modified magnetic nanocore interfaced mesoporous shell can be programmatically regulated to tune the size and related morphological properties. The core-shell nano-adsorbent shows tailorable shell thickness (≈20-55 nm), high surface area (363.47 m2 g-1 ), pore volume (0.426 cm3 g-1 ), radially gradient pores (11.26 nm), and abundant biguanidine functionality. Importantly, the nano-adsorbent has high adsorption capacity for toxic thallium (Tl(I) ions (≈559 mg g-1 ), excellent disinfection against Staphylococcus aureus and Escherichia coli (>99.99% at 2 and 2.5 µg mL-1 ), ultrafast disinfection kinetics rate (>99.99% within ≈4 min), and remarkable regeneration capability when exposed to polluted water matrices. The Tl(I) removal is attributed to surface complexation and physical adsorption owing to open ended mesopores, while disinfection relies on contact of terminal biguanidines with phospholipid head groups of membrane. The significance of this work lies in bringing up effective synchronic water purification technology to combat pathogenic microorganisms and toxic metal.
Collapse
Affiliation(s)
- Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Jingjie Chen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Meng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Nian Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Muhammad Usman
- École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Rennes, 35708, France
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China
| | - Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
13
|
Jiang Y, Guo F, Zhang J, Xu Z, Wang F, Cai S, Liu Y, Han Y, Chen C, Liu Y, Gao W, Gao C. Aligning curved stacking bands to simultaneously strengthen and toughen lamellar materials. MATERIALS HORIZONS 2023; 10:556-565. [PMID: 36458453 DOI: 10.1039/d2mh01023b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A layered architecture endows structural materials like nacre and biomimetic ceramics with enhanced mechanical performance because it introduces multiple strengthening and toughening mechanisms. Yet present studies predominantly involve enhancing the alignment in planar lamellar structures, and the effects of the stacking curvature have largely remained unexplored. Here we find that ordered curved stacking bands in lamellar structures act as a new structural mechanism to simultaneously improve strength and toughness. Aligned curved bands increase interlayer frictional resistance to show a strengthening effect and suppress the crack propagation to show an extrinsic toughening effect. In prototypical graphene oxide films, rational regulation of the intervals and orientations of curved bands bring a maximum 162% improvement in strength and 183% improvement in toughness simultaneously. Our results reveal the hidden effects of the stacking curvature on the mechanical behaviors of lamellar materials, opening an extra design dimension to fabricate stronger and tougher structural materials.
Collapse
Affiliation(s)
- Yanqiu Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
- State Key Lab of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fan Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
- National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, 1 Guanghua Road, Nanjing 210094, P. R. China
| | - Jiacheng Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049 Xi'an, P. R. China.
| | - Zhen Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| | - Fang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| | - Shengying Cai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| | - Yi Han
- Hangzhou Gaoxi Technology Co., Ltd, Hangzhou 310027, China
| | - Chen Chen
- Hangzhou Gaoxi Technology Co., Ltd, Hangzhou 310027, China
| | - Yilun Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, 710049 Xi'an, P. R. China.
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China.
| |
Collapse
|
14
|
Polydopamine functionalized graphene oxide membrane with the sandwich structure for osmotic energy conversion. J Colloid Interface Sci 2023; 630:795-803. [DOI: 10.1016/j.jcis.2022.10.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/05/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022]
|
15
|
Liu J, Poojary MM, Thygesen MB, Andersen ML, Lund MN. Temperature affects the kinetics but not the products of the reaction between 4-methylbenzoquinone and lysine. Food Res Int 2023; 163:112187. [PMID: 36596128 DOI: 10.1016/j.foodres.2022.112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Quinones are electrophilic compounds that can undergo Michael addition or Schiff base reaction with nucleophilic amines, but the effect of temperature has not been systematically studied. The aim of this study was to characterize how temperature affects the reaction mechanism and kinetics of 4-methylbenzoquinone (4MBQ) with lysine (Lys), Nα-acetyl Lys or Nε-acetyl Lys. The products were identified and characterized by LC-MS/MS, which revealed formation of Michael addition products, Schiff base, and a di-adduct in Lys and Nα-acetyl Lys-containing reaction mixtures. The product profiles were not affected by temperature in the range of 15-100 °C. NMR analysis proved that Michael addition of Nα-acetyl Lys occurred on the C5 position of 4MBQ. Rate constants for the reactions studied by stopped-flow UV-vis spectrophotometry under pseudo-first-order conditions where the amines were present in excess in the range 15 °C to 45 °C showed the α-amino groups of Lys are more reactive than the ε-groups. The kinetics results revealed that the temperature dependence of reaction rates followed the Arrhenius law, with activation energies in the order: Lys < Nε-acetyl Lys < Nα-acetyl Lys. Our results provide detailed knowledge about the temperature dependence of the reaction between Lys residues and quinones under conditions relevant for storage of foods.
Collapse
Affiliation(s)
- Jingyuan Liu
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mogens L Andersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Marianne N Lund
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark.
| |
Collapse
|
16
|
Zhang X, Chen Z, Lu L, Wang J. Molecular Dynamics Simulations of the Mechanical Properties of Cellulose Nanocrystals-Graphene Layered Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4170. [PMID: 36500792 PMCID: PMC9735571 DOI: 10.3390/nano12234170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Cellulose nanocrystals (CNCs) have received a significant amount of attention due to their excellent physiochemical properties. Herein, based on bioinspired layered materials with excellent mechanical properties, a CNCs-graphene layered structure with covalent linkages (C-C bond) is constructed. The mechanical properties are systematically studied by molecular dynamics (MD) simulations in terms of the effects of temperature, strain rate and the covalent bond content. Compared to pristine CNCs, the mechanical performance of the CNCs-graphene layered structure has significantly improved. The elastic modulus of the layered structure decreases with the increase of temperature and increases with the increase of strain rate and covalent bond coverage. The results show that the covalent bonding and van der Waals force interactions at the interfaces play an important role in the interfacial adhesion and load transfer capacity of composite materials. These findings can be useful in further modeling of other graphene-based polymers at the atomic scale, which will be critical for their potential applications as functional materials.
Collapse
Affiliation(s)
- Xingli Zhang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zhiyue Chen
- College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150009, China
| | - Liyan Lu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jiankai Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
17
|
Long W, Yang C, Wang G, Hu J. Effective adsorption of Hg(II) ions by new ethylene mimine polymer/β-cyclodextrin crosslinked functionalized magnetic composite. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Arshad Z, Ali SA. Synthesis and anticorrosive application of biomimetic dopamine-based cationic polyelectrolytes derived from diallylammonium salts. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Xv J, Zhang Z, Pang S, Jia J, Geng Z, Wang R, Li P, Bilal M, Cui J, Jia S. Accelerated CO2 capture using immobilized carbonic anhydrase on polyethyleneimine/dopamine co-deposited MOFsShort title: Accelerated CO2 capture using immobilized carbonic anhydrase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Wang W, Xin X, An K, Chen Y, Zhao Z, Tan J, Yang D, Jiang Z. Bioinspired construction of g-C3N4 isotype heterojunction on carbonized poly(tannic acid) nanorod surface with multistep electron transfer path. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Pandey RP, Kallem P, Hegab HM, Rasheed PA, Banat F, Hasan SW. Cross-linked laminar graphene oxide membranes for wastewater treatment and desalination: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115367. [PMID: 35636111 DOI: 10.1016/j.jenvman.2022.115367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) lamellar graphene oxide (GO) membranes are emerging as attractive materials for molecular separation in water treatment because of their single atomic thickness, excellent hydrophilicity, large specific surface areas, and controllable properties. To yet, commercialization of GO laminar membranes has been hindered by their propensity to swell in hydrated conditions. Thus, chemical crosslinking of GO sheets with the polymer matrix is used to improve GO membrane hydration stability. This review focuses on pertinent themes such as how chemical crosslinking improves the hydration stability, separation performance, and antifouling properties of GO membranes.
Collapse
Affiliation(s)
- Ravi P Pandey
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - P Abdul Rasheed
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, 678 557, Kerala, India
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
22
|
Xu Z, Ma Y, Dai H, Tan S, Han B. Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers (Basel) 2022; 14:polym14153110. [PMID: 35956625 PMCID: PMC9370577 DOI: 10.3390/polym14153110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Silk fibroin and three kinds of graphene-based materials (graphene, graphene oxide, and reduced graphene oxide) have been widely investigated in biomedical fields. Recently, the hybrid composites of silk fibroin and graphene-based materials have attracted much attention owing to their combined advantages, i.e., presenting outstanding biocompatibility, mechanical properties, and excellent electrical conductivity. However, maintaining bio-toxicity and biodegradability at a proper level remains a challenge for other applications. This report describes the first attempt to summarize the hybrid composites’ preparation methods, properties, and applications to the best of our knowledge. We strongly believe that this review will open new doors for coming researchers.
Collapse
|
23
|
Wang H, Wang S, Ren B, Hu C, Wang H. Light‐driven self‐healing castor oil based polyurethane film with enhanced mechanical properties. J Appl Polym Sci 2022. [DOI: 10.1002/app.52958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haoliang Wang
- College of Biomass Science and Engineering, Department of Critical Care Medicine, West China Hospital Sichuan University Chengdu People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Shiyu Wang
- College of Biomass Science and Engineering, Department of Critical Care Medicine, West China Hospital Sichuan University Chengdu People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Bibo Ren
- College of Biomass Science and Engineering, Department of Critical Care Medicine, West China Hospital Sichuan University Chengdu People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| | - Chenggong Hu
- College of Biomass Science and Engineering, Department of Critical Care Medicine, West China Hospital Sichuan University Chengdu People's Republic of China
| | - Haibo Wang
- College of Biomass Science and Engineering, Department of Critical Care Medicine, West China Hospital Sichuan University Chengdu People's Republic of China
- The Key Laboratory of Leather Chemistry and Engineering (Sichuan University) Ministry of Education Chengdu People's Republic of China
| |
Collapse
|
24
|
Liu S, Szkopek T, Barthelat F, Cerruti M. Layered Assembly of Graphene Oxide Paper for Mechanical Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8757-8765. [PMID: 35834350 DOI: 10.1021/acs.langmuir.2c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO) paper is an attractive material because of high stiffness and strength, light weight, and multiple functionalities. While these properties are now widely exploited in nanoinclusions or flat sheets, three-dimensional (3D) structures from GO paper are not widely studied because of a lack of suitable processing methods. In this study, we report a layered assembly method to make stiff and strong 3D GO structures with the aid of a sodium tetraborate (borax) solution. By comparing mechanical properties of assembled GO paper using water or borax solution, we found that the borax-assembled layers had the highest stiffness. To demonstrate the versatility of our assembly protocol, we then fabricated a variety of 3D structures including I-beams, cylindrical tubes, and bridge-like structures from GO paper. These GO structures were stiff and light weight, and the stiffness to mass ratio was around 2-4 times higher than other polymer samples including cellulose, fluorinated ethylene propylene, and poly(vinyl alcohol). The versatile processing method to make stiff and strong GO structures will enable new engineering applications where nonplanar GO structures are required.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada
| | - Thomas Szkopek
- Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, QC H3A 0E9, Canada
| | - Francois Barthelat
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC H3A 2K6, Canada
- Department of Mechanical Engineering, University of Colorado, 427 UCB, 1111 Engineering Dr., Boulder, Colorado 80309, United States
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
25
|
Simulation Analysis of Organic–Inorganic Interface Failure of Scallop under Ultra-High Pressure. COATINGS 2022. [DOI: 10.3390/coatings12070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shell is a typical biomineralized inorganic–organic composite material. The essence of scallop deshelling is caused by the fracture failure at the interface of the organic and inorganic–organic matter composites. The constitutive equations were solved so that the stress distributions of the adductor in the radial, circumferential, and axial directions were obtained as σr = σθ = P, σz = 2(2 − ν)P/(2ν − 1), and the shear stress was τzr = 0. Using the method of finite element simulation analysis, the stress distribution laws at different interface states were obtained. The experimental results show that when the amplitude is constant, the undulation period is smaller than the diameter of the adductor or the angle between the bus of the adductor, and the reference horizontal plane gradually decreases, so the interface is more likely to yield. After the analysis, the maximum stress for the yielding of the scallop interface was about 247 MPa, and the whole deshelling process was gradually spread from the outer edge of the interface to the center. The study analyzed the scallop organic–inorganic material interface from the perspective of mechanics, and the mechanical model and simulation analysis results were consistent with the parameter optimization results, which can provide some theoretical basis for the composite material interface failure and in-depth research.
Collapse
|
26
|
Zhang Y, Wang S, Tang P, Zhao Z, Xu Z, Yu ZZ, Zhang HB. Realizing Spontaneously Regular Stacking of Pristine Graphene Oxide by a Chemical-Structure-Engineering Strategy for Mechanically Strong Macroscopic Films. ACS NANO 2022; 16:8869-8880. [PMID: 35604787 DOI: 10.1021/acsnano.1c10561] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mechanical-electrical properties of macroscopic graphene films derived from graphene oxide (GO) sheets are substantially restricted by their surface wrinkles and structural misalignment. Herein, we propose a chemical-structure-engineering strategy to realize the spontaneously regular stacking of modified GO (GO-m) with trace carboxyl. The highly aligned GO-m film delivers a fracture strength and modulus of nearly 3- and 5-fold higher than a wrinkled film with conventional Hummer's method derived GO (GO-c). The favorable assembly pattern of GO-m sheets is attributed to their decreased interfacial friction on the atomic scale, which weakens their local gelation capability for freer configuration adjustment during the assembly process. The chemical structure of GO-m can be further engineered by an epoxide-to-hydroxyl reaction, achieving a record high tensile strength of up to 631 MPa for the pristine GO film. By exploring the relationship between the surface terminations of GO and its stacking mode, this work proves the feasibility to realize high-performance macroscopic materials with optimized microstructure through the chemical modulation of nanosheet assembly.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Shijun Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, 100084 Beijing, China
| | - Pingping Tang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhenfang Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Zhiping Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, 100084 Beijing, China
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
27
|
Du L, Liao R, Zhang H, Qu X, Hu X. Redox-activity of polydopamine for ultrafast preparation of self-healing and adhesive hydrogels. Colloids Surf B Biointerfaces 2022; 214:112469. [PMID: 35339902 DOI: 10.1016/j.colsurfb.2022.112469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The high adhesive property of polydopamine (PDA) has spurred various hydrogels for biological and medical applications. Herein, a dual-catalytic redox system was constructed by using the inner dynamic redox-activity of PDA and free radical initiator ammonium persulfate (APS) to initiate the polymerization of acrylic acid (AA) monomer to obtain Fe-PDA hydrogels within 2 h at room temperature. Fe-PDA NPs functions as both initiator to activate APS to generate free radicals and promotes the formation of the hydrogel and dynamic cross-linking mediator between the polymer chains. The tensile strength and ductility of the obtained hydrogels vary with the content of Fe-PDA NPs. Hydrogel with 0.15 wt% of Fe-PDA NPs has the highest tensile strength (~0.62 MPa) and hydrogel with 0.6 wt% of Fe-PDA NPs has the highest elongation, about ~650%. The introduction of PDA NPs imparts PAA hydrogel with reproducible adhesive properties and self-healing ability. The doped iron ion further endows hydrogel enhanced photothermal properties (up to 160 ℃ with 808 nm laser irradiation for 120 s) and conductivity.
Collapse
Affiliation(s)
- Lulu Du
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Rixin Liao
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Huijuan Zhang
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Xiongwei Qu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| | - Xiuli Hu
- Institute of Polymer Science and Engineering, School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
28
|
Insights on Shear Transfer Efficiency in "Brick-and-Mortar" Composites Made of 2D Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12081359. [PMID: 35458067 PMCID: PMC9027589 DOI: 10.3390/nano12081359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023]
Abstract
Achieving high mechanical performances in nanocomposites reinforced with lamellar fillers has been a great challenge in the last decade. Many efforts have been made to fabricate synthetic materials whose properties resemble those of the reinforcement. To achieve this, special architectures have been considered mimicking existing materials, such as nacre. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. The purpose of this review is to give insight into the stress transfer mechanism in high filler content composites reinforced with 2D carbon nanoparticles and to describe the parameters that influence the efficiency of stress transfer and the strategies to improve it.
Collapse
|
29
|
Wang Q, Zhu S, Xi C, Jiang B, Zhang F. Adsorption and Removal of Mercury(II) by a Crosslinked Hyperbranched Polymer Modified via Sulfhydryl. ACS OMEGA 2022; 7:12231-12241. [PMID: 35449935 PMCID: PMC9016889 DOI: 10.1021/acsomega.2c00622] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 05/26/2023]
Abstract
In this study, the highly crosslinked hyperbranched polyamide-amines (H-PAMAMs) were first prepared via one-pot methods and then modified with thiourea to synthesize a novel adsorbent containing sulfhydryl groups (CHAP-SH), which was used to adsorb Hg(II) ions from aqueous solutions. The adsorption characteristics and mechanism of CHAP-SH for Hg(II) ions were systematically studied. As expected, CHAP-SH exhibited a rapid removal performance toward Hg(II), and the maximum adsorption capacity was 282.74 mg/g at 318 K and pH = 4.5. The whole adsorption behavior could be well described by the pseudo-second-order kinetic model and Langmuir and Redlich-Peterson adsorption isotherm models, which reflected that the adsorption process was mainly monolayer chemisorption. Meanwhile, CHAP-SH had strong selectivity for Hg(II) in the presence of multimetal ions, and it had excellent recoverability after five cycles. In order to further elucidate the adsorption mechanism, the adsorbents before and after adsorption were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and energy-dispersive X-ray spectroscopy, and the results showed that the nitrogen-containing, oxygen-containing, and sulfur-containing groups in the adsorbent molecule had synergistic complexation with Hg(II). These results indicated that the adsorbents had great potential in the future treatment of aqueous solutions containing Hg(II).
Collapse
|
30
|
Jiang S, Xi J, Dai H, Wu W, Xiao H. Multifunctional cellulose paper-based materials and their application in complex wastewater treatment. Int J Biol Macromol 2022; 207:414-423. [PMID: 35276292 DOI: 10.1016/j.ijbiomac.2022.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 11/05/2022]
Abstract
The rapid and efficient treatment of complex wastewater remains challenging. Herein, green paper-based materials with high wet strength, good oil-water separation property and high heavy metal ion adsorption capacity were prepared via a facile, cost-effective process. The introduction of amphoteric functional groups not only met the requirements for heavy metal ion adsorption, but also maintained the stable underwater superoleophobic properties of materials a wide pH range. The covalent crosslinking between cellulose fibers induced by polyethyleneimine and citric acid significantly improved the wet strength (up to 26.0 Nm/g) and the porosity. The membrane flux was increased up to 3515 L/(m2·h) and the separation efficiencies were higher than 98%. Moreover, the theoretical maximum adsorption capacities for Cd(II) and Pb(II) reached 73.29 and 93.75 mg/g, respectively. Combined with filtration technology, the materials can realize the continuous and efficient purification of complex wastewater.
Collapse
Affiliation(s)
- Shan Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
31
|
Chen W, Miao H, Meng G, Huang K, Kong L, Lin Z, Wang X, Li X, Li J, Liu XY, Lin N. Polydopamine-Induced Multilevel Engineering of Regenerated Silk Fibroin Fiber for Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107196. [PMID: 35060331 DOI: 10.1002/smll.202107196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Solid photothermal materials with favorable biocompatibility and modifiable mechanical properties demonstrate obvious superiority and growing demand. In this work, polydopamine (PDA) induced functionalization of regenerated silk fibroin (RSF) fibers has satisfactory photothermal conversion ability and flexibility. Based on multilevel engineering, RSF solution containing PDA nanoparticles is wet spun to PDA-incorporating RSF (PDA@RSF) fibers, and then the fibers are coated with PDA via oxidative self-polymerization of dopamine to form PDA@RSF-PDA (PRP) fibers. During the wet spinning process, PDA is to adjust the mechanical properties of RSF by affecting its hierarchical structure. Meanwhile, coated PDA gives the PRP fibers extensive absorption of near-infrared light and sunlight, which is further fabricated into PRP fibrous membranes. The temperature of PRP fibrous membranes can be adjusted and increases to about 50 °C within 360 s under 808 nm laser irradiation with a power density of 0.6 W cm-2 , and PRP fibrous membranes exhibit effective photothermal cytotoxicity both in vitro and in vivo. Under the simulated sunlight, the temperature of PRP fiber increases to more than 200 °C from room temperature and the material can generate 4.5 V voltage when assembled with a differential thermal battery, which means that the material also has the potential for flexible wearable electronic devices.
Collapse
Affiliation(s)
- Wei Chen
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Hao Miao
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Guoqing Meng
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Kailun Huang
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Lingqing Kong
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Zaifu Lin
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xudong Wang
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xiaobao Li
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Jinghan Li
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| | - Xiang-Yang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Republic of Singapore
| | - Naibo Lin
- College of Materials, Research Institution for Biomimetics and Soft Matter, Fujian Key Provincial Laboratory for Soft Functional Materials Research, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, P. R. China
| |
Collapse
|
32
|
Li Z, Chen Z, Chen H, Chen K, Tao W, Ouyang XK, Mei L, Zeng X. Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioact Mater 2022; 17:49-70. [PMID: 35386465 PMCID: PMC8958331 DOI: 10.1016/j.bioactmat.2022.01.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/07/2023] Open
Abstract
As a kind of nature-derived bioactive materials, polyphenol-based hydrogels possess many unique and outstanding properties such as adhesion, toughness, and self-healing due to their specific crosslinking structures, which have been widely used in biomedical fields including wound healing, antitumor, treatment of motor system injury, digestive system disease, oculopathy, and bioelectronics. In this review, starting with the classification of common polyphenol-based hydrogels, the pyramid evolution process of polyphenol-based hydrogels from crosslinking structures to derived properties and then to biomedical applications is elaborated, as well as the efficient reverse design considerations of polyphenol-based hydrogel systems are proposed. Finally, the existing problems and development prospects of these hydrogel materials are discussed. It is hoped that the unique perspective of the review can promote further innovation and breakthroughs of polyphenol-based hydrogels in the future. Polyphenol-based hydrogels combine advantages of polyphenols with common hydrogels. Cognition of such hydrogels underwent from structures to properties to applications. Various crosslinked structures of such hydrogels can derive outstanding properties. Such hydrogels can be widely used in biomedicine due to the outstanding properties. Reverse design thought from applications to properties to structures is promising.
Collapse
Affiliation(s)
- Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhidong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Kebing Chen
- Department of Spine Surgery, Center for Orthopaedic Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Corresponding author.
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Xiao-kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Corresponding author.
| |
Collapse
|
33
|
Wang M, Yang T, Bao Q, Yang M, Mao C. Binding Peptide-Promoted Biofunctionalization of Graphene Paper with Hydroxyapatite for Stimulating Osteogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:350-360. [PMID: 34962367 DOI: 10.1021/acsami.1c20740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene paper (GP), a macroscopic self-supporting material, has exceptional flexibility and preserves the excellent physical and chemical properties of graphene nanomaterials. But its applications in regenerative medicine remain to be further explored. Here, we biologically functionalized GP with hydroxyapatite (HA) nanorods by the use of GP-binding peptides as an affinity linker. This strategy solved two daunting challenges for regenerative medicine applications of GP: the lack of good hydrophilicity for supporting cell growth and the difficulty in forming composites by binding with nanobiomaterials. Briefly, we first screened a high-affinity GP-binding peptide (TWWNPRLVYFDY) by the phage display technique. Then we chemically conjugated the GP-binding peptide to the synthetic HA nanorods. The GP-binding peptide on the resultant HA nanorods enabled them to be bound and assembled onto the GP substrate with high affinity, forming a GP-peptide-HA composite with significantly improved hydrophilicity of GP. The composite promoted the attachment and proliferation of mesenchymal stem cells (MSCs), demonstrating its outstanding biocompatibility. Due to the unique compositions of the composite, it was also found to induce osteogenic differentiation of MSCs in vitro in the absence of other inducers in the medium, by verifying the expression of the osteogenic markers including collagen-1, bone morphogenetic proteins 2, runx-related transcription factor 2, osteocalcin, and alkaline phosphatase. Our work suggests that the GP-binding peptide can be used to link inorganic nanoparticles onto GP to facilitate the biomedical applications of GP.
Collapse
Affiliation(s)
- Mengjia Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
34
|
Zhou B, Huang F, Gao C, Xue L. The role of ring opening reaction chemistry of sultones/lactones in the direct zwitterionization of polyamide nano-filtration membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Sun M, Zheng J, Liu X, Yu T, Zhang H, Yang W, Wang R, Jia X. Controlled release fertilizers coated by alkylamine-poly (tannic acid) building block with tunable wettability via spraying co-deposition. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Yu T, Wu C, Chen Z, Zhang M, Hong Z, Guo H, Shao W, Xie Q. A Facile Co-Deposition Approach to Construct Functionalized Graphene Quantum Dots Self-Cleaning Nanofiltration Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:41. [PMID: 35009990 PMCID: PMC8746962 DOI: 10.3390/nano12010041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
In this study, a novel photocatalytic self-cleaning nanofiltration (NF) membrane was fabricated by constructing aspartic acid-functionalized graphene quantum dots (AGQDs) into the polydopamine/polyethyleneimine (PDA/PEI) selective layer via the co-deposition method. The chemical composition, microstructure, and hydrophilicity of the prepared membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), attenuated total reflection (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and water contact angle (WCA). Meanwhile, the effects of PEI molecular weight and AGQDs concentration on NF membrane structures and separation performance were systematically investigated. The photocatalytic self-cleaning performance of the PDA/PEI/AGQDs membrane was evaluated in terms of flux recovery rate. For constructing high-performance NF membranes, it is found that the optimal molecular weight of PEI is 10,000 Da, and the optimal concentration of AGQDs is 2000 ppm. The introduction of hydrophilic AGQDs formed a more hydrophilic and dense selective layer during the co-deposition process. Compared with the PDA/PEI membrane, the engineered PDA/PEI/AGQDs NF membrane has enhanced water flux (55.5 LMH·bar-1) and higher rejection (99.7 ± 0.3% for MB). In addition, the PDA/PEI/AGQDs membrane exhibits better photocatalytic self-cleaning performance over the PDA/PEI membrane (83% vs. 69%). Therefore, this study provides a facile approach to construct a self-cleaning NF membrane.
Collapse
Affiliation(s)
- Tong Yu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (T.Y.); (C.W.); (Z.C.); (M.Z.); (Z.H.); (H.G.)
| | - Chenpu Wu
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (T.Y.); (C.W.); (Z.C.); (M.Z.); (Z.H.); (H.G.)
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhongyan Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (T.Y.); (C.W.); (Z.C.); (M.Z.); (Z.H.); (H.G.)
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingen Zhang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (T.Y.); (C.W.); (Z.C.); (M.Z.); (Z.H.); (H.G.)
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Zhuan Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (T.Y.); (C.W.); (Z.C.); (M.Z.); (Z.H.); (H.G.)
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Honghui Guo
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (T.Y.); (C.W.); (Z.C.); (M.Z.); (Z.H.); (H.G.)
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| | - Wenyao Shao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Quanling Xie
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (T.Y.); (C.W.); (Z.C.); (M.Z.); (Z.H.); (H.G.)
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, China
| |
Collapse
|
37
|
Modification of Silica Xerogels with Polydopamine for Lipase B from Candida antarctica Immobilization. Catalysts 2021. [DOI: 10.3390/catal11121463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Silica xerogels have been proposed as a potential support to immobilize enzymes. Improving xerogels’ interactions with such enzymes and their mechanical strengths is critical to their practical applications. Herein, based on the mussel-inspired chemistry, we demonstrated a simple and highly effective strategy for stabilizing enzymes embedded inside silica xerogels by a polydopamine (PDA) coating through in-situ polymerization. The modified silica xerogels were characterized by scanning and transmission electron microscopy, Fourier tranform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and pore structure analyses. When the PDA-modified silica xerogels were used to immobilize enzymes of Candida antarctica lipase B (CALB), they exhibited a high loading ability of 45.6 mg/gsupport, which was higher than that of immobilized CALB in silica xerogels (28.5 mg/gsupport). The immobilized CALB of the PDA-modified silica xerogels retained 71.4% of their initial activities after 90 days of storage, whereas the free CALB retained only 30.2%. Moreover, compared with the immobilization of enzymes in silica xerogels, the mechanical properties, thermal stability and reusability of enzymes immobilized in PDA-modified silica xerogels were also improved significantly. These advantages indicate that the new hybrid material can be used as a low-cost and effective immobilized-enzyme support.
Collapse
|
38
|
Li R, Zhao L, Yao A, Si D, Shang Y, Ding X, An H, Ye H, Zhang Y, Li H. Design of Lubricant-Infused Surfaces Based on Mussel-Inspired Nanosilica Coatings: Solving Adhesion by Pre-Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10708-10719. [PMID: 34450019 DOI: 10.1021/acs.langmuir.1c01305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) have attracted wide interest with regard to their excellent liquid repellency properties and broad applications in various fields associated with anti-adhesion. However, the preparation processes depending on the chemical properties of the substrate and the poor stability of the lubricant layer hinder the practical applications. In this work, a facile method to fabricate SLIPSs based on the mussel-inspired polydopamine (PDA)-mediated nanosilica structures is demonstrated. A variety of substrates can be decorated with SLIPSs by successive treatment of PDA-assisted sol-gel process, fluorination, and lubricant filling. The robust uniform and nanotextured silica coating, mediated by the pre-adhered PDA layer, shows enhanced lubricant-locking ability even when subjected to increased evaporation and high shear from flowing water or spinning compared with hierarchical silica rough structures. The obtained SLIPSs exhibit high transparency and excellent resistance against adhesion of liquid/solid contaminants and biofoulings through this pre-adhesion of PDA strategy. The well-defined nanosilica coating of high decoration covering micron-scaled pore walls enables improved durability of the slippery surfaces for antifouling of the porous membrane under pressure-driven filtration and this may be employed as a potential candidate for fouling resistance of porous materials.
Collapse
Affiliation(s)
- Rishun Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Anfeng Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Didi Si
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yanlong Shang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xiaoli Ding
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Huiqin An
- School of Chemistry, Tiangong University, Tianjin 300387, P. R. China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Hong Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
39
|
Wang X, Wang R, Wu F, Yue H, Cui Z, Zhou X, Lu Y. Mussel-inspired layer-by-layer assembled polymeric films with fast growing and NIR light triggered healing capabilities. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Liu J, Qin H, Liu Y. Multi-Scale Structure-Mechanical Property Relations of Graphene-Based Layer Materials. MATERIALS 2021; 14:ma14164757. [PMID: 34443279 PMCID: PMC8399220 DOI: 10.3390/ma14164757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Pristine graphene is one of the strongest materials known in the world, and may play important roles in structural and functional materials. In order to utilize the extraordinary mechanical properties in practical engineering structures, graphene should be assembled into macroscopic structures such as graphene-based papers, fibers, foams, etc. However, the mechanical properties of graphene-based materials such as Young’s modulus and strength are 1–2 orders lower than those of pristine monolayer graphene. Many efforts have been made to unveil the multi-scale structure–property relations of graphene-based materials with hierarchical structures spanning the nanoscale to macroscale, and significant achievements have been obtained to improve the mechanical performance of graphene-based materials through composition and structure optimization across multi-scale. This review aims at summarizing the currently theoretical, simulation, and experimental efforts devoted to the multi-scale structure–property relation of graphene-based layer materials including defective monolayer graphene, nacre-like and laminar nanostructures of multilayer graphene, graphene-based papers, fibers, aerogels, and graphene/polymer composites. The mechanisms of mechanical property degradation across the multi-scale are discussed, based on which some multi-scale optimization strategies are presented to further improve the mechanical properties of graphene-based layer materials. We expect that this review can provide useful insights into the continuous improvement of mechanical properties of graphene-based layer materials.
Collapse
Affiliation(s)
- Jingran Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Huasong Qin
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Correspondence: (H.Q.); (Y.L.)
| | - Yilun Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Correspondence: (H.Q.); (Y.L.)
| |
Collapse
|
41
|
Wen X, He C, Hai Y, Liu X, Ma R, Sun J, Yang X, Qi Y, Chen J, Wei H. Fabrication of a hybrid ultrafiltration membrane based on MoS 2 modified with dopamine and polyethyleneimine. RSC Adv 2021; 11:26391-26402. [PMID: 35479471 PMCID: PMC9037359 DOI: 10.1039/d1ra03697a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023] Open
Abstract
The hydrophobicity of ultrafiltration membranes is the main cause of membrane fouling and reduced permeability, so it is necessary to improve the hydrophilicity and anti-fouling performance of ultrafiltration membrane materials. MoS2 nanoparticles that were modified with polydopamine (PDA) and polyethyleneimine (PEI), named MoS2-PDA-PEI, were added to fabricate a polyethersulfone ultrafiltration membrane (PES/MoS2-PDA-PEI) for the first time. The effects of modified MoS2 nanoparticles on membrane performance were clarified. The results indicated that the permeability, rejection, and anti-fouling capability of the hybrid PES/MoS2-PDA-PEI membrane have been improved compared with the pristine PES membrane. When the content of MoS2-PDA-PEI nanoparticles in the membrane is 0.5%, the pure water flux of the hybrid membrane reaches 364.03 L m−2 h−1, and the rejection rate of bovine serum albumin (BSA) and humic acid (HA) is 96.5% and 93.2% respectively. The flux recovery rate of HA reached 97.06%. As expected, the addition of MoS2-PDA-PEI nanoparticles promotes the formation of the porous structure and improves the hydrophilicity of the membrane, thereby improving its antifouling performance. The hydrophobicity of ultrafiltration membranes is the main cause of membrane fouling and reduced permeability, so it is necessary to improve the hydrophilicity and anti-fouling performance of ultrafiltration membrane materials.![]()
Collapse
Affiliation(s)
- Xin Wen
- College of Geology and Environment, Xi'an University of Science and Technology Xi'an 710054 China
| | - Can He
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yuyan Hai
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xiaofan Liu
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Rui Ma
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jianyu Sun
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Xue Yang
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Yunlong Qi
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Jingyun Chen
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| | - Hui Wei
- National Institute of Clean-and-Low-Carbon Energy Beijing 102211 China
| |
Collapse
|
42
|
Sun Y, Wu Y, Fu Y, Yang C, Jiang J, Yan G, Hu J. Rapid and high selective removal of Hg(II) ions using tannic acid cross-linking cellulose/polyethyleneimine functionalized magnetic composite. Int J Biol Macromol 2021; 182:1120-1129. [PMID: 33892041 DOI: 10.1016/j.ijbiomac.2021.04.091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
In this study, a new tannic acid cross-linking cellulose/polyethyleneimine functionalized magnetic composite (MCP) as a biomass adsorbent of Hg(II) ions was prepared. The morphology and structure of MCP were characterized with FT-IR, TG, XRD, SEM and TEM. The effect of the different factors such as pH, contact time, initial Hg(II) ion concentration, and adsorption temperature on the adsorption behavior was investigated. The results showed that MCP exhibited an excellent selectivity and reutilization, fast removal rate, and very high adsorption capacity. The corresponding adsorption capacity and removal rate of could reach 99.00% and 247.51 mg/g when the pH value, adsorption time, Hg(II) ion concentration were 5, 180 min and 100 mg/L at 293 K. The kinetics followed the pseudo-second-order, which indicated that the adsorption behavior of MCP for Hg(II) ion belonged to the chemical adsorption process and external diffusion. The thermodynamic study showed that the adsorption process was a spontaneous and exothermic process. After the fifth adsorption-desorption experiment, it still had better adsorption performance and reutilization. All in all, MCP with highly stable and efficient, as well as excellent reusability will be a candidate for industry-level applications from wastewater with Hg(II) ions.
Collapse
Affiliation(s)
- Yu Sun
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Ying Wu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Yong Fu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Chengyue Yang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Jinwen Jiang
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian 352100, PR China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
43
|
Chang J, Zhang M, Zhao Q, Qu L, Yuan J. Ultratough and ultrastrong graphene oxide hybrid films via a polycationitrile approach. NANOSCALE HORIZONS 2021; 6:341-347. [PMID: 33660723 DOI: 10.1039/d1nh00073j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) is a classic two dimensional (2D) building block that can be used to develop high-performance materials for numerous applications, particularly in the energy and environmental fields. Currently, the precise assembly of GO nanosheets into macroscopic nanohybrids of superior strength and toughness is desirable, and faces challenges and trade-offs. Herein, we exploited the freshly established polycationitrile method as a powerful molecular crosslinking strategy to engineer ultratough and ultrastrong GO/polymer hybrid films, in which a covalent triazine-based network was constructed in a mild condition to reinforce the interface between GO nanosheets. The tensile strength and toughness reached 585 ± 25 MPa and 14.93 ± 1.09 MJ m-3, respectively, which, to the best of our knowledge, are the current world records in all GO-based hybrid films. As an added merit of the tailor-made polymer crosslinker, the high mechanical performance can be maintained in large part at an extremely high relative humidity of 98%. This emerging interface-engineering approach paves a new avenue to produce integrated strong-and-tough 2D nanohybrid materials that are useful in aerospace, artificial muscle, energy harvesting, tissue engineering and more.
Collapse
Affiliation(s)
- Jian Chang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Castilho CJ, Li D, Xie Y, Gao H, Hurt RH. Shear Failure in Supported Two-Dimensional Nanosheet Van der Waals Thin Films. CARBON 2021; 173:410-418. [PMID: 33223559 PMCID: PMC7678926 DOI: 10.1016/j.carbon.2020.10.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid-phase deposition of exfoliated 2D nanosheets is the basis for emerging technologies that include writable electronic inks, molecular barriers, selective membranes, and protective coatings against fouling or corrosion. These nanosheet thin films have complex internal structures that are discontinuous assemblies of irregularly tiled micron-scale sheets held together by van der Waals (vdW) forces. On stiff substrates, nanosheet vdW films are stable to many common stresses, but can fail by internal delamination under shear stress associated with handling or abrasion. This "re-exfoliation" pathway is an intrinsic feature of stacked vdW films and can limit nanosheet-based technologies. Here we investigate the shear stability of graphene oxide and MoSe2 nanosheet vdW films through lap shear experiments on polymer-nanosheet-polymer laminates. These sandwich laminate structures fail in mixed cohesive and interfacial mode with critical shear forces from 40 - 140 kPa and fracture energies ranging from 0.2 - 6 J/m2. Surprisingly these energies are higher than delamination energies reported for smooth peeling of ordered stacks of continuous 2D sheets, which we propose is due to energy dissipation and chaotic crack motion during nanosheet film disassembly at the crack tip. Experiment results also show that film thickness plays a key role in determining critical shear force (maximum load before failure) and dissipated energy for different nanosheet vdW films. Using a mechanical model with an edge crack in the thin nanosheet film, we propose a shear-to-tensile failure mode transition to explain a maximum in critical shear force for graphene oxide films but not MoSe2 films. This transition reflects a weakening of the substrate confinement effect and increasing rotational deformation near the film edge as the film thickness increases. For graphene oxide, the critical shear force can be increased by electrostatic cross-linking achieved through interlayer incorporation of metal cations. These results have important implications for the stability of functional devices that employ 2D nanosheet coatings.
Collapse
Affiliation(s)
| | - Dong Li
- School of Engineering, Brown University, Providence, RI, USA
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yiheng Xie
- School of Engineering, Brown University, Providence, RI, USA
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Robert H. Hurt
- School of Engineering, Brown University, Providence, RI, USA
| |
Collapse
|
45
|
New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118112] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Dopamine-polyethyleneimine co-deposition cellulose filter paper for α-Glucosidase immobilization and enzyme inhibitor screening. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1167:122582. [DOI: 10.1016/j.jchromb.2021.122582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
|
47
|
Zha J, Mao X, Hu S, Shang K, Yin J. Acid- and Thiol-Cleavable Multifunctional Codelivery Hydrogel: Fabrication and Investigation of Antimicrobial and Anticancer Properties. ACS APPLIED BIO MATERIALS 2021; 4:1515-1523. [PMID: 35014501 DOI: 10.1021/acsabm.0c01396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogels serving as a drug carrier was realized by entrapping small-sized drug molecules within their cross-linked interstitial networks. After covering the targeted location, hydrogels interact with the physiological fluids and swell, resulting in an increased interspace between networks for the outside diffusion of drugs. However, inevitable in vivo inflammatory responses or bacterial infection on the implant materials and persistent cargo release are still challenging. Herein, we report the fabrication of dual-responsive hydrogels based on acid-sensitive poly(ethylenimine) (PEI) derivative (PEI(-COOH/-vinyl)), thiol-responsive camptothecin prodrug monomer (CPTM), and hydrophilic oligo(ethylene glycol) methyl ether acrylate (OEGMA) by a conventional radical polymerization. Curcumin was then solubilized into the hydrogels to endow them with antimicrobial and cancer resistance properties. The in vitro experiments exhibited sustained hydrogel dissolution and CPT release in a simulated physiological environment. The antimicrobial and cytotoxicity tests of drug-loaded hydrogels using methicillin-resistant Staphylococcus aureus (MRSA) strains and HeLa cancer cell lines, respectively, indicated that the hydrogels possessed efficient antimicrobial effects and could successfully inhibit the growth of cancer cells.
Collapse
Affiliation(s)
- Jiecheng Zha
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Xiaoxu Mao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Shoukui Hu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Ke Shang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| | - Jun Yin
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei 230009, P. R. China
| |
Collapse
|
48
|
Shu Y, You T, Xing C, Liang B, Chen H, Yin P. Artificial Nacre Nanocomposites Based on All-Inorganic Nanoarchitectures with High Mechanical Properties and Dye Separation Performance. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yingqi Shu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, BeihangUniversity, Beijing 100191, China
| | - Tingting You
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, BeihangUniversity, Beijing 100191, China
| | - Cheng Xing
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Benliang Liang
- School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Huaxiang Chen
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, BeihangUniversity, Beijing 100191, China
| | - Penggang Yin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, BeihangUniversity, Beijing 100191, China
| |
Collapse
|
49
|
Li M, Wang X, Zhao R, Miao Y, Liu Z. A novel graphene-based micro/nano architecture with high strength and conductivity inspired by multiple creatures. Sci Rep 2021; 11:1387. [PMID: 33446847 PMCID: PMC7809102 DOI: 10.1038/s41598-021-80972-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
In the long history of development and elimination, the creatures have derived a variety of exquisite structures and unique properties, typically natural nacre, marine mussel and Glycera to adapt to the environment and resist the predation of the enemy. Hence, inspired by the combination of special structures and properties of multiple creatures, a novel type of graphene-based micro/nano architecture was proposed, and the related bioinspired nanocomposites were fabricated, Polydopamine coated Graphene oxide/Nanocellulose/Polydopamine (P-GCP). Apart from replicating the layered structure of natural nacre, P-GCP also introduced copper ions and polydopamine to simulate the hardening mechanism of the Glycera's jaw and the composition of adhesive proteins in mussels to further improve the tensile strength and conductivity of nanocomposites, respectively. The test results showed that the tensile strength of P-GCP reached 712.9 MPa, which was 5.3 times that of natural nacre. The conductivity of artificial nacre was as high as 207.6 S/cm, which was equivalent to that of reduced graphene oxide (rGO). Furthermore, the material exhibited outstanding electrical conductivity when it connected as wires in a circuit, demonstrating the practical application prospects in aerospace, supercapacitors, biomaterials, artificial bones and tissue engineering.
Collapse
Affiliation(s)
- Muzhi Li
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiuya Wang
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Ru Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yuanyuan Miao
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Zhenbo Liu
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China.
| |
Collapse
|
50
|
Robust siloxane/graphene oxide thin film membranes: Siloxane size adjustment for improved separation performance and flux recovery. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0641-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|