1
|
Wang Y, Wang S, Li R, Li W, Long T, Wang L, Kong L, Cao F, Wu Q, Jia G, Yang X. Quantum-Confined Perovskite Nanocrystals Enabled by Negative Catalyst Strategy for Efficient Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402825. [PMID: 38990086 DOI: 10.1002/smll.202402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 07/12/2024]
Abstract
The perovskite nanocrystals (PeNCs) are emerging as a promising emitter for light-emitting diodes (LEDs) due to their excellent optical and electrical properties. However, the ultrafast growth of PeNCs often results in large sizes exceeding the Bohr diameter, leading to low exciton binding energy and susceptibility to nonradiative recombination, while small-sized PeNCs exhibit a large specific surface area, contributing to an increased defect density. Herein, Zn2+ ions as a negative catalyst to realize quantum-confined FAPbBr3 PeNCs with high photoluminescence quantum yields (PL QY) over 90%. Zn2+ ions exhibit robust coordination with Br- ions is introduced, effectively retarding the participation of Br- ions in the perovskite crystallization process and thus facilitating PeNCs size control. Notably, Zn2+ ions neither incorporate into the perovskite lattice nor are absorbed on the surface of PeNCs. And the reduced growth rate also promotes sufficient octahedral coordination of PeNC that reduces defect density. The LEDs based on these optimized PeNCs exhibits an external quantum efficiency (EQE) of 21.7%, significantly surpassing that of the pristine PeNCs (15.2%). Furthermore, the device lifetime is also extended by twofold. This research presents a novel approach to achieving high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Yuankun Wang
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Sheng Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Rui Li
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Wenqiang Li
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Tengfei Long
- Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi, 830017, P. R. China
| | - Lin Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Fan Cao
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Qianqian Wu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, 6102, Australia
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, P. R. China
| |
Collapse
|
2
|
Fu C, Liu L, Wang Y, Wei Y, Huang W, Zhao G. Quantitative Spectroscopic Analysis of Surface-Reaching Photoexcited Holes in g-C 3N 4/TiO 2 Z-Scheme Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57927-57935. [PMID: 39404151 DOI: 10.1021/acsami.4c14255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The Z-scheme heterojunction has been demonstrated to be effective in tuning the photocatalytic performance of photocatalysts. However, there is still a lack of quantitative and in-depth research on how the Z-scheme heterojunction affects the concentration of surface-reaching photoexcited charges. Here, by combining time-resolved spectroscopies and kinetic analysis, the concentration of surface-reaching photoholes (Ch+(surf)) within g-C3N4/TiO2 Z-scheme heterojunctions was quantitatively analyzed for the first time. Quantitative measurements reveal that Ch+(surf) of the prepared Z-scheme photocatalysts is highly dependent on the g-C3N4 content and the induced Z-scheme heterojunctions at the g-C3N4/TiO2 interface. Encouragingly, we found that a properly engineered Z-scheme heterojunction with close coupling of g-C3N4 and TiO2 can significantly increase the Ch+(surf), leading to nearly a 1.7-fold increase compared with pristine TiO2 samples. Furthermore, a distinct hole trap state-mediated Z-scheme charge transfer mechanism was uncovered in which the intrinsic interface defects at the g-C3N4/TiO2 junction act as hole traps, accelerating interface electron-hole recombination, thereby boosting spatial charge separation and ultimately enriching the Ch+(surf). This work provides insights into understanding and controlling electron pathways and Ch+(surf) in Z-scheme photocatalysis, with implications for the screening of different types of direct Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Cong Fu
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lingfang Liu
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yu Wang
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guofeng Zhao
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
3
|
Lu H, Peng G, Zou J, Cao L, Xie Y, Zhang L, You S, Gao F. Complexes Based on Zinc and Cadmium for Visible Light-Driven Hydrogen Production. Inorg Chem 2024; 63:16243-16250. [PMID: 39159300 DOI: 10.1021/acs.inorgchem.4c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Photocatalytic water decomposition using solar energy is one of the most effective hydrogen production technologies. The development of a structurally stable photocatalyst for hydrogen production without cocatalysts and photosensitizers remains a great challenge. In this paper, complex photocatalyst compounds 1 and 2 with different crystal structures were designed and obtained by connecting the 4'-(2,4-disulfophenyl)-4,2':6',4″-terpyridine organic ligands with Zn(Ac)2·2H2O and CdCO3. These products were used for photocatalytic hydrogen production separately, and the hydrogen production rates of compounds 1 and 2 were 0.66 mol·mol-1·h-1 and 0.12 mol·mol-1·h-1, respectively, without the addition of any cocatalysts and photosensitizers, and their charge separation and transfer processes were verified by PL, time-resolved PL, and photocurrent. Compound 1 was tested in 6 cycles over 18 h and showed high stability and reproducibility.
Collapse
Affiliation(s)
- Hengliang Lu
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Guixiang Peng
- Yichun Lithium Industry Research Institute, Yichun 336000, PR China
| | - Jiyong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Lihua Cao
- School of Electical Engineering, Nanchang Institute of Technology, Nanchang 330099, PR China
| | - Yu Xie
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Shengyong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Fei Gao
- School of Physics and Materials, Nanchang University, Nanchang 330031, PR China
| |
Collapse
|
4
|
Li N, Ma Y, Sun W. Exploring the Dynamics of Charge Transfer in Photocatalysis: Applications of Femtosecond Transient Absorption Spectroscopy. Molecules 2024; 29:3995. [PMID: 39274845 PMCID: PMC11396338 DOI: 10.3390/molecules29173995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
Artificial photocatalytic energy conversion is a very interesting strategy to solve energy crises and environmental problems by directly collecting solar energy, but low photocatalytic conversion efficiency is a bottleneck that restricts the practical application of photocatalytic reactions. The key issue is that the photo-generated charge separation process spans a huge spatio-temporal scale from femtoseconds to seconds, and involves complex physical processes from microscopic atoms to macroscopic materials. Femtosecond transient absorption (fs-TA) spectroscopy is a powerful tool for studying electron transfer paths in photogenerated carrier dynamics of photocatalysts. By extracting the attenuation characteristics of the spectra, the quenching path and lifetimes of carriers can be simulated on femtosecond and picosecond time scales. This paper introduces the principle of transient absorption, typical dynamic processes and the application of femtosecond transient absorption spectroscopy in photocatalysis, and summarizes the bottlenecks faced by ultrafast spectroscopy in photocatalytic applications, as well as future research directions and solutions. This will provide inspiration for understanding the charge transfer mechanism of photocatalytic processes.
Collapse
Affiliation(s)
- Na Li
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanlong Ma
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wanjun Sun
- School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
5
|
Guan Q, Ran W, Zhang D, Li W, Li N, Huang B, Yan T. Non-Metal Sulfur Doping of Indium Hydroxide Nanocube for Selectively Photocatalytic Reduction of CO 2 to CH 4: A "One Stone Three Birds" Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401990. [PMID: 38868931 PMCID: PMC11321682 DOI: 10.1002/advs.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/12/2024] [Indexed: 06/14/2024]
Abstract
Photocatalytic CO2 reduction is considered as a promising strategy for CO2 utilization and producing renewable energy, however, it remains challenge in the improvement of photocatalytic performance for wide-band-gap photocatalyst with controllable product selectivity. Herein, the sulfur-doped In(OH)3 (In(OH)xSy-z) nanocubes are developed for selective photocatalytic reduction of CO2 to CH4 under simulated light irradiation. The CH4 yield of the optimal In(OH)xSy-1.0 can be enhanced up to 39 times and the CH4 selectivity can be regulated as high as 80.75% compared to that of pristine In(OH)3. The substitution of sulfur atoms for hydroxyl groups in In(OH)3 enhances the visible light absorption capability, and further improves the hydrophilicity behavior, which promotes the H2O dissociation into protons (H*) and accelerates the dynamic proton-feeding CO2 hydrogenation. In situ DRIFTs and DFT calculation confirm that the non-metal sulfur sites significantly weaken the over-potential of the H2O oxidation and prevent the formation of ·OH radicals, enabling the stabilization of *CHO intermediates and thus facilitating CH4 production. This work highlights the promotion effect of the non-metal doping engineering on wide-band-gap photocatalysts for tailoring the product selectivity in photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Qinhui Guan
- College of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
| | - Weiguang Ran
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong ProvinceSchool of Chemistry and Chemical EngineeringQufu Normal UniversityQufu273165P. R. China
| | - Dapeng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong ProvinceSchool of Chemistry and Chemical EngineeringQufu Normal UniversityQufu273165P. R. China
| | - Wenjuan Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong ProvinceSchool of Chemistry and Chemical EngineeringQufu Normal UniversityQufu273165P. R. China
| | - Na Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Baibiao Huang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Tingjiang Yan
- College of Chemistry and Chemical EngineeringShaanxi University of Science and TechnologyXi'an710021P. R. China
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong ProvinceSchool of Chemistry and Chemical EngineeringQufu Normal UniversityQufu273165P. R. China
| |
Collapse
|
6
|
Ibrahem MA, Waris M, Miah MR, Shabani F, Canimkurbey B, Unal E, Delikanli S, Demir HV. Orientation-Dependent Photoconductivity of Quasi-2D Nanocrystal Self-Assemblies: Face-Down, Edge-Up Versus Randomly Oriented Quantum Wells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401423. [PMID: 38770984 DOI: 10.1002/smll.202401423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Here, strongly orientation-dependent lateral photoconductivity of a CdSe monolayer colloidal quantum wells (CQWs) possessing short-chain ligands is reported. A controlled liquid-air self-assembly technique is utilized to deliberately engineer the alignments of CQWs into either face-down (FO) or edge-up (EO) orientation on the substrate as opposed to randomly oriented (RO) CQWs prepared by spin-coating. Adapting planar configuration metal-semiconductor-metal (MSM) photodetectors, it is found that lateral conductivity spans ≈2 orders of magnitude depending on the orientation of CQWs in the film in the case of utilizing short ligands. The long native ligands of oleic acid (OA) are exchanged with short-chain ligands of 2-ethylhexane-1-thiol (EHT) to reduce the inter-platelet distance, which significantly improved the photoresponsivity from 4.16, 0.58, and 4.79 mA W-1 to 528.7, 6.17, and 94.2 mA W-1, for the MSM devices prepared with RO, FO, and EO, before and after ligands exchange, respectively. Such CQW orientation control profoundly impacts the photodetector performance also in terms of the detection speed (0.061 s/0.074 s for the FO, 0.048 s/0.060 s for the EO compared to 0.10 s/0.16 s for the RO, for the rise and decay time constants, respectively) and the detectivity (1.7 × 1010, 2.3 × 1011, and 7.5 × 1011 Jones for the FO, EO, and RO devices, respectively) which can be further tailored for the desired optoelectronic device applications. Attributed to charge transportation in colloidal films being proportional to the number of hopping steps, these findings indicate that the solution-processed orientation of CQWs provides the ability to tune the photoconductivity of CQWs with short ligands as another degree of freedom to exploit and engineer their absorptive devices.
Collapse
Affiliation(s)
- Mohammed A Ibrahem
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Laser Science and Technology Branch, Applied Sciences Department, University of Technology, Baghdad, 10066, Iraq
| | - Mohsin Waris
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Md Rumon Miah
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Farzan Shabani
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Betul Canimkurbey
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Serefeddin Health Services Vocational School, Central Research Laboratory, Amasya University, Amasya, 05100, Turkey
| | - Emre Unal
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Hilmi Volkan Demir
- Department of Electrical and Electronics Engineering, Department of Physics, UNAM - Institute of Materials Science and Nanotechnology and The National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Luminous! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Fu C, Liu L, Wei Y, Huang W, Zhao G. Linking the Doping-Induced Trap States to the Concentration of Surface-Reaching Photoexcited Holes in Transition-Metal-Doped TiO 2 Nanoparticles. J Phys Chem Lett 2024; 15:6504-6511. [PMID: 38870318 DOI: 10.1021/acs.jpclett.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Transition-metal doping has been demonstrated to be effective for tuning the photocatalytic activity of semiconductors. Nonetheless, the impact of doping-induced trap states on the concentration of surface-reaching photoexcited charges remains a topic of debate. In this study, through time-resolved spectroscopies and kinetic analysis, we found that the concentration of surface-reaching photoholes (Ch+(surf)) in doped TiO2 nanoparticles sensitively relies on the type of dopants and their associated trap states. Among the studied dopants (Fe, Cu, and Co), Fe doping resulted in the most significant increase in Ch+(surf), nearly double that of Co or Cu doping. Fe-doping induced more effective hole trap states, acting as the mediator for interfacial charge transfer, thus accelerating charge separation and consequently enriching Ch+(surf). This work provides valuable insight into understanding and controlling Ch+(surf) in transition-metal-doped TiO2 materials.
Collapse
Affiliation(s)
- Cong Fu
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Lingfang Liu
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Yaxiong Wei
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China
| | - Weixin Huang
- Key Laboratory of Precision and Intelligent Chemistry, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guofeng Zhao
- Key Laboratory of Functional Molecular Solids Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
8
|
Qi S, Zhu K, Xu T, Zhang H, Guo X, Wang J, Zhang F, Zong X. Water-Stable High-Entropy Metal-Organic Framework Nanosheets for Photocatalytic Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403328. [PMID: 38586929 DOI: 10.1002/adma.202403328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising platforms for photocatalytic hydrogen evolution reaction (HER) due to their fascinating physiochemical properties. Rationally engineering the compositions and structures of MOFs can provide abundant opportunities for their optimization. In recent years, high-entropy materials (HEMs) have demonstrated great potential in the energy and environment fields. However, there is still no report on the development of high-entropy MOFs (HE-MOFs) for photocatalytic HER in aqueous solution. Herein, the authors report the synthesis of a novel p-type HE-MOFs single crystal (HE-MOF-SC) and the corresponding HE-MOFs nanosheets (HE-MOF-NS) capable of realizing visible-light-driven photocatalytic HER. Both HE-MOF-SC and HE-MOF-NS exhibit higher photocatalytic HER activity than all the single-metal MOFs, which are supposed to be ascribed to the interplay between the different metal nodes in the HE-MOFs that enables more efficient charge transfer. Moreover, impressively, the HE-MOF-NS demonstrates much higher photocatalytic activity than the HE-MOF-SC due to its thin thickness and enhanced surface area. At optimum conditions, the rate of H2 evolution on the HE-MOF-NS is ≈13.24 mmol h-1 g-1, which is among the highest values reported for water-stable MOF photocatalysts. This work highlights the importance of developing advanced high-entropy materials toward enhanced photocatalysis.
Collapse
Affiliation(s)
- Shengliang Qi
- Marine Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Kaixin Zhu
- Marine Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Ting Xu
- Marine Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Hefeng Zhang
- Marine Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xu Zong
- Marine Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, China
| |
Collapse
|
9
|
Li J, Yang R, Higashitarumizu N, Dai S, Wu J, Javey A, Grigoropoulos CP. Transient Nanoscopy of Exciton Dynamics in 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311568. [PMID: 38588584 DOI: 10.1002/adma.202311568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/18/2024] [Indexed: 04/10/2024]
Abstract
The electronic and optical properties of 2D transition metal dichalcogenides are dominated by strong excitonic resonances. Exciton dynamics plays a critical role in the functionality and performance of many miniaturized 2D optoelectronic devices; however, the measurement of nanoscale excitonic behaviors remains challenging. Here, a near-field transient nanoscopy is reported to probe exciton dynamics beyond the diffraction limit. Exciton recombination and exciton-exciton annihilation processes in monolayer and bilayer MoS2 are studied as the proof-of-concept demonstration. Moreover, with the capability to access local sites, intriguing exciton dynamics near the monolayer-bilayer interface and at the MoS2 nano-wrinkles are resolved. Such nanoscale resolution highlights the potential of this transient nanoscopy for fundamental investigation of exciton physics and further optimization of functional devices.
Collapse
Affiliation(s)
- Jingang Li
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Rundi Yang
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Naoki Higashitarumizu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Siyuan Dai
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Junqiao Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Costas P Grigoropoulos
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Jia Z, Shi C, Yang X, Zhang J, Sun X, Guo Y, Ying X. QD-based fluorescent nanosensors: Production methods, optoelectronic properties, and recent food applications. Compr Rev Food Sci Food Saf 2023; 22:4644-4669. [PMID: 37680064 DOI: 10.1111/1541-4337.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Food quality and safety are crucial public health concerns with global significance. In recent years, a series of fluorescence detection technologies have been widely used in the detection/monitoring of food quality and safety. Due to the advantages of wide detection range, high sensitivity, convenient and fast detection, and strong specificity, quantum dot (QD)-based fluorescent nanosensors have emerged as preferred candidates for food quality and safety analysis. In this comprehensive review, several common types of QD production methods are introduced, including colloidal synthesis, self-assembly, plasma synthesis, viral assembly, electrochemical assembly, and heavy-metal-free synthesis. The optoelectronic properties of QDs are described in detail at the electronic level, and the effect of food matrices on QDs was summarized. Recent advancements in the field of QD-based fluorescent nanosensors for trace level detection and monitoring of volatile components, heavy metal ions, food additives, pesticide residues, veterinary-drug residues, other chemical components, mycotoxins, foodborne pathogens, humidity, and temperature are also thoroughly summarized. Moreover, we discuss the limitations of the QD-based fluorescent nanosensors and present the challenges and future prospects for developing QD-based fluorescent nanosensors. As shown by numerous publications in the field, QD sensors have the advantages of strong anti-interference ability, convenient and quick operation, good linear response, and wide detection range. However, the reported assays are laboratory-focused and have not been industrialized and commercialized. Promising research needs to examine the potential applications of bionanotechnology in QD-based fluorescent nanosensors, and focus on the development of smart packaging films, labeled test strips, and portable kits-based sensors.
Collapse
Affiliation(s)
- Zhixin Jia
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xinting Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs, Beijing, China
- National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Jiaran Zhang
- School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Daxing District, Beijing, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Xiaoguo Ying
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| |
Collapse
|
11
|
Li H, Wang J, Ruan Z, Nan P, Ge B, Cheng M, Yang L, Li X, Liu Q, Pan B, Zhang Q, Xiao C, Xie Y. Electron transfer bridge inducing polarization of nitrogen molecules for enhanced photocatalytic nitrogen fixation. MATERIALS HORIZONS 2023; 10:5053-5059. [PMID: 37655791 DOI: 10.1039/d3mh01041d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Ammonia (NH3) plays a crucial role in the production of fertilizers, medicines, fibers, etc., which are closely relevant to the development of human society. However, the inert and nonpolar properties of NN seriously hinder artificial nitrogen fixation under mild conditions. Herein, we introduce a novel strategy to enhance the photocatalytic efficiency of N2 fixation through the directional polarization of N2 by rare earth metal atoms, which act as a local "electron transfer bridge." This bridge facilitates the transfer of delocalized electrons to the distal N atom and redirects the polarization of adsorbed N2 molecules. Taking cerium doped BiOCl (Ce-BiOCl) as an example, our results reveal that the electrons transfer to the distal N atom through the cerium atom, resulting in absorbed nitrogen molecular polarization. Consequently, the polarized nitrogen molecules exhibit an easier trend for NN cleavage and the subsequent hydrogenation process, and exhibit a greatly enhanced photocatalytic ammonia production rate of 46.7 μmol g-1 h-1 in cerium doped BiOCl, nearly 4 times higher than that of pure BiOCl. The original concept of directional polarization of N2 presented in this work not only deepens our understanding of the N2 molecular activation mechanism but also broadens our horizons for designing highly efficient catalysts for N2 fixation.
Collapse
Affiliation(s)
- Huiyi Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiongrong Wang
- Key laboratory of Strongy-Coupled Quantum Matter Physics, Department of Physics University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhoushilin Ruan
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Nan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Binghui Ge
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ming Cheng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaohong Li
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qilong Liu
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, China
| | - Bicai Pan
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chong Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui, 230031, China
| |
Collapse
|
12
|
Duan J, Wang J, Hou L, Ji P, Zhang W, Liu J, Zhu X, Sun Z, Ma Y, Ma L. Application of Scanning Tunneling Microscopy and Spectroscopy in the Studies of Colloidal Quantum Qots. CHEM REC 2023; 23:e202300120. [PMID: 37255365 DOI: 10.1002/tcr.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Colloidal quantum dots display remarkable optical and electrical characteristics with the potential for extensive applications in contemporary nanotechnology. As an ideal instrument for examining surface topography and local density of states (LDOS) at an atomic scale, scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) has become indispensable approaches to gain better understanding of their physical properties. This article presents a comprehensive review of the research advancements in measuring the electronic orbits and corresponding energy levels of colloidal quantum dots in various systems using STM and STS. The first three sections introduce the basic principles of colloidal quantum dots synthesis and the fundamental methodology of STM research on quantum dots. The fourth section explores the latest progress in the application of STM for colloidal quantum dot studies. Finally, a summary and prospective is presented.
Collapse
Affiliation(s)
- Jiaying Duan
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Jiapeng Wang
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Liangpeng Hou
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Peixuan Ji
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Wusheng Zhang
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Jin Liu
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Xiaodong Zhu
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Zhixiang Sun
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin, China, 300072
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| | - Lei Ma
- Tianjin International Center for Nanoparticles and NanoSystems, Tianjin University, Tianjin, China, 300072
| |
Collapse
|
13
|
Zhang H, Zeitz DC, Zhang JZ. Ultrafast Study of Excited State Dynamics of Amino Metal Halide Molecular Clusters. J Phys Chem Lett 2023; 14:8095-8099. [PMID: 37656919 DOI: 10.1021/acs.jpclett.3c01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The excited state dynamics of ligand-passivated PbBr2 molecular clusters (MCs) in solution have been investigated for the first time using femtosecond transient absorption spectroscopy. The results uncover a transient bleach (TB) feature peaked around 404 nm, matching the ground state electronic absorption band peaked at 404 nm. The TB recovery signal can be fitted with a triple exponential with fast (10 ps), medium (350 ps), and long (1.8 ns) time constants. The medium and long time constants are very similar to those observed in the time-resolved photoluminescence (TRPL) decay monitored at 412 nm. The TB fast component is attributed to vibrational relaxation in the excited electronic state while the medium component with dominant amplitude is attributed to recombination between the relaxed electron and hole. The small amplitude slow component is assigned to electrons in a relatively long-lived excited electronic state, e.g., triplet state, or shallow trap state due to defects. This study provides new insights into the excited state dynamics of metal halide MCs.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - David C Zeitz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
14
|
Fang X, Lei S, Feng Z, Ou J. Conductive Polymers‐Confined Metal‐Organic Frameworks with Enhanced Activity for Highly Efficient Photocatalytic CO
2
Reduction. ChemElectroChem 2023. [DOI: 10.1002/celc.202201147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Xinzuo Fang
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Sheng Lei
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Zhiwei Feng
- Jiangsu University of Technology Changzhou 213001 P. R. China
| | - Junfei Ou
- Jiangsu University of Technology Changzhou 213001 P. R. China
| |
Collapse
|
15
|
Zhai Z, Zhang H, Niu F, Liu P, Zhang J, Lu H. Mesoporous Carbon Nitride with π-Electron-Rich Domains and Polarizable Hydroxyls Fabricated via Solution Thermal Shock for Visible-Light Photocatalysis. ACS NANO 2022; 16:21002-21012. [PMID: 36448781 DOI: 10.1021/acsnano.2c08643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nitride semiconductors are competitive candidates for visible-light-responsive photocatalysts, but encounter weakened exciton dissociation arising from the elevated Coulomb force of singlet Frenkel excitons with narrowing bandgaps. We overcome this contradiction by co-infusing π-electron-rich domains and polarizable hydroxyl units into mesoporous carbon nitride, realized by solution thermal shock. The embedded delocalized π-conjugated aromatic domains derived from nonconjugated macromolecules downshift the conduction band edge and contribute to spatial separation of photogenerated electrons in the lowest unoccupied molecular orbital and holes in the highest occupied molecular orbital. Meanwhile, polarizable hydroxyls induce distinct electron flow from heptazine-based skeletons to periphery sites and enhance water adsorption as well as proton reduction capacity. Consequently, the polymeric carbon nitride delivers an enhanced hydrogen evolution rate that is 17.5 times larger than thermally treated counterparts derived from urea fabricated via conventional strategies. These results show that our strategy can infuse different functional motifs into carbon nitride and thus improve photocatalytic activity.
Collapse
Affiliation(s)
- Zhimin Zhai
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers & Polymer Composites, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, 200438, Shanghai, China
| | - Huihui Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438, Shanghai, China
| | - Fushuang Niu
- Department of Chemistry, Fudan University, 2005 Songhu Road, 200438, Shanghai, China
| | - Peiying Liu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers & Polymer Composites, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, 200438, Shanghai, China
| | - Jiajia Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers & Polymer Composites, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, 200438, Shanghai, China
| | - Hongbin Lu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers & Polymer Composites, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, 200438, Shanghai, China
- Yiwu Research Institute of Fudan University, Chengbei Road, 322000Yiwu, Zhejiang, China
| |
Collapse
|
16
|
Ren G, Wei Z, Liu S, Shi M, Li Z, Meng X. Recent review of Bi xMO y (M=V, Mo, W) for photocatalytic CO 2 reduction into solar fuels. CHEMOSPHERE 2022; 307:136026. [PMID: 35973486 DOI: 10.1016/j.chemosphere.2022.136026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The utilization of solar energy for CO2 conversion not only enables a green and low-carbon recycling of CO2 with renewable energy, but also solves ecological problems. BixMOy (M = V, Mo, W) materials have typical layered structures and unique electronic properties that provide suitable band gaps and potential to meet the basic conditions for CO2 reduction. However, pristine BixMOy faces with problems such as small specific surface area, insufficient active sites, low charge carriers' separation and utilization efficiency. This review comprehensively described the basic principles and reaction pathways of photocatalytic CO2 reduction, and further presented the research progress of BixMOy catalysts in CO2 conversion reactions. In this perspective, we further focus on the design concepts and modification strategies to improve the photocatalytic CO2 reduction activity of BixMOy, such as morphology control, constructing surface vacancies and heterojunction fabrication. Finally, based on representative researches, the present review will be expected to provide updated information and insights for developing advanced BixMOy materials to further improve CO2 reduction activity and selectivity.
Collapse
Affiliation(s)
- Guangmin Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zixuan Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Sitong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Meng Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zizhen Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
17
|
Sun W, Liu Q, Da X, Hong R, Tao C, Wang Q, Lin H, Han Z, Zhang D. A FRET-based dual fluorescent probe with nitrogen doped carbon dots as the energy donor for selective detection of Fe3+. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Zhang G, Xu Y, Rauf M, Zhu J, Li Y, He C, Ren X, Zhang P, Mi H. Breaking the Limitation of Elevated Coulomb Interaction in Crystalline Carbon Nitride for Visible and Near-Infrared Light Photoactivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201677. [PMID: 35652268 PMCID: PMC9313543 DOI: 10.1002/advs.202201677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Most near-infrared (NIR) light-responsive photocatalysts inevitably suffer from low charge separation due to the elevated Coulomb interaction between electrons and holes. Here, an n-type doping strategy of alkaline earth metal ions is proposed in crystalline K+ implanted polymeric carbon nitride (KCN) for visible and NIR photoactivity. The n-type doping significantly increases the electron densities and activates the n→π* electron transitions, producing NIR light absorption. In addition, the more localized valence band (VB) and the regulation of carrier effective mass and band decomposed charge density, as well as the improved conductivity by 1-2 orders of magnitude facilitate the charge transfer and separation. The proposed n-type doping strategy improves the carrier mobility and conductivity, activates the n→π* electron transitions for NIR light absorption, and breaks the limitation of poor charge separation caused by the elevated Coulomb interaction.
Collapse
Affiliation(s)
- Guoqiang Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Yangsen Xu
- Institute of Information TechnologyShenzhen Institute of Information TechnologyShenzhenGuangdong518172P. R. China
| | - Muhammad Rauf
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Jinyu Zhu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Yongliang Li
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Chuanxin He
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Xiangzhong Ren
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Peixin Zhang
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| | - Hongwei Mi
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518060P. R. China
| |
Collapse
|
20
|
Fang H, Wilhelm MJ, Ma J, Kuhn DL, Zander Z, Dai HL. Quantitative Modeling of Electron Dynamics and the Effect of Diffusion in Photosensitized Semiconductor Nanocomposites. Acc Chem Res 2022; 55:1879-1888. [PMID: 35642792 DOI: 10.1021/acs.accounts.2c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusPhotosensitized semiconducting nanomaterials have received considerable attention because of their applications in photocatalytic and photoelectronic devices. In such systems, photoexcited electrons with sufficiently high energies can be injected into the conduction band (CB) of an adjacent semiconductor. These excited electrons are subjected to various physical processes that can lead to their annihilation before exercising their catalytic/electric functions, and the efficiency of the photosensitized functions depends on the quantity of CB electrons produced and how long they remain near the surface region of the semiconductor. The rise and decay of photoexcited electrons in the semiconductor CB can be probed with transient IR absorption (TA), which was first demonstrated by Lian and co-workers. Results from various laboratories have since revealed that electrons appear in the CB following the excitation of the photosensitizer in tens to hundreds of femtoseconds and that the decay of the CB electrons typically exhibits multiple exponentials on varying ultrafast time scales. The size of the semiconductor nanoparticle appears to influence the diffusion of the CB electrons and thus their lifetimes. In all studies reported, the observed multiexponential decays have been analyzed and interpreted using purely phenomenological models, in which the individual decays were intuitively assigned to one specific relaxation or loss process. In reality, however, each exponential decay can be a convolution of multiple physical processes. In this Account, we report a universally applicable physical model, constructed by including all known electron dynamic processes, to quantitatively account for the multiexponential decays. We characterize the model as universal, as it can be used to analyze our own TA measurements, as well as data acquired in other laboratories. In our study of TiO2 nanorods photosensitized by Ag platelets, we demonstrate that each of the observed triple-exponential decays corresponds to a convolution of several physical decay processes occurring on similar time scales. The rate of each of the processes can be deconvoluted and determined to construct a complete, physically based model to assess the most important question: How many CB electrons are near the semiconductor surface region and what is their lifetime?The size of the semiconductor is an important consideration. Intuitively, as the semiconductor volume increases, there is more room for CB electrons to diffuse around, which increases their lifetime as annihilation occurs primarily at the surface. Indeed, Tachiya and co-workers previously reported that this lifetime increases with particle size. Nevertheless, while CB electrons live longer in the bulk of the particle, they are only useful when they are at the surface. Overall, what really matters is the CB electrons near the surface region, where the photosensitized functions actually occur. In applying our model to analyze the previously reported size-dependent Au/TiO2 results, we successfully reproduced the observation that larger semiconductor nanoparticles lengthen the lifetime of CB electrons because of diffusion into the bulk. More importantly, however, our model reveals that the size of the semiconductor has almost no influence on the retention of CB electrons near the semiconductor surface. This information is only revealed when all physical processes are quantitatively taken into account for the observed electron dynamics, which is not feasible with a phenomenological approach.
Collapse
Affiliation(s)
- Hui Fang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Wilhelm
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Jianqiang Ma
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Danielle L. Kuhn
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Zachary Zander
- U.S. Army Combat Capabilities Development Command Chemical Biological Center, Aberdeen Proving Ground, Maryland 21010, United States
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
21
|
Roy D, De CK, Ghosh S, Mukherjee S, Mandal S, Mandal PK. Ultrafast dynamics and ultrasensitive single particle spectroscopy of optically robust core/alloy shell semiconductor quantum dots. Phys Chem Chem Phys 2022; 24:8578-8590. [PMID: 35355030 DOI: 10.1039/d1cp05780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A "one-pot one-step" synthesis method of Core/Alloy Shell (CAS) quantum dots (QDs) offers the scope of large scale synthesis in a less time consuming, more economical, highly reproducible and high-throughput manner in comparison to "multi-pot multi-step" synthesis for Core/Shell (CS) QDs. Rapid initial nucleation, and smooth & uniform shell growth lead to the formation of a compositionally-gradient alloyed hetero-structure with very significantly reduced interfacial trap density in CAS QDs. Thus, interfacial strain gets reduced in a much smoother manner leading to enhanced confinement for the photo-generated charge carriers in CAS QDs. Convincing proof of alloy-shelling for a CAS QD has been provided from HRTEM images at the single particle level. The band gap could be tuned as a function of composition, temperature, reactivity difference of precursors, etc. and a high PLQY and improved photochemical stability could be achieved for a small sized CAS QD. From the ultrafast exciton dynamics in CdSe and InP CAS QDs, it has been shown that (a) the hot exciton thermalization/relaxation happens in <500 fs, (b) hot electron trapping dynamics occurs within a ∼1 ps time scale, (c) band edge exciton trapping occurs within a 10-25 ps timescale and (d) for CdSe CAS QDs the hot hole gets trapped in about 35 ps. From fast PL decay dynamics, it has been shown that the amplitude of the intermediate time constant can be correlated with the PLQY. A model has been provided to understand these ultrafast to fast exciton dynamical processes. At the ultrasensitive single particle level, unlike CS QDs, CdSe CAS QDs have been shown to exhibit (a) constancy of PLmax (i.e. no bluing) and (b) constancy of PL intensity (i.e. no bleaching) of the single CAS QDs for continuous irradiation for one hour under an air atmosphere. Thus, CAS QDs hold the promise of being a superior optical probe in comparison to CS QDs both at the ensemble and at the single particle level, leading to enhanced flexibility of the CAS QDs towards designing and developing next generation application devices.
Collapse
Affiliation(s)
- Debjit Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Chayan K De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Swarnali Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Soumen Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Saptarshi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India.
| | - Prasun K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India. .,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
22
|
Pyrimidine donor induced built-in electric field between melon chains in crystalline carbon nitride to facilitate excitons dissociation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Jha A, Shankar H, Kumar S, Sankar M, Kar P. Efficient charge transfer from organometal lead halide perovskite nanocrystals to free base meso-tetraphenylporphyrins. NANOSCALE ADVANCES 2022; 4:1779-1785. [PMID: 36132160 PMCID: PMC9419024 DOI: 10.1039/d1na00835h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/18/2022] [Indexed: 06/15/2023]
Abstract
The efficient charge transfer from methylammonium lead halide, MAPbX3 (X = Br, I), perovskite nanocrystals (PNCs) to 5,10,15,20-tetraphenylporphyrin (TPP) molecules has been investigated in detail. The hydrophobically-capped MAPbX3 PNCs exhibited bright fluorescence in the solution state. However, in the presence of TPP, the fluorescence intensity was quenched, which is ascribed to the electron transfer from the PNCs to TPP. Photoluminescence (PL) spectroscopy and absolute quantum yield measurements were used to evaluate the fluorescence quenching. This efficient fluorescence quenching leads to an increase in the quenching efficiency value. The quenching of fluorescence intensity is not attributed to the change in lifetime, as evidenced by time-correlated single-photon counting (TCSPC) measurements, suggesting a static electron transfer from the PNCs to TPP molecules. Such a static fluorescence quenching corresponds to the adsorption of TPP onto the surface of hydrophobic PNCs, and has been examined via transmission electron microscopy (TEM). Cyclic voltammetry (CV) studies were used to compare the PNCs and PNCs@TPP nanocomposites, revealing that the electron transfer process takes place from the PNCs to the organic acceptor TPP molecules.
Collapse
Affiliation(s)
- Abha Jha
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Hari Shankar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Sandeep Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| | - Prasenjit Kar
- Department of Chemistry, Indian Institute of Technology Roorkee Haridwar Uttarakhand- 247667 India
| |
Collapse
|
24
|
Keene JD, Freymeyer NJ, McBride JR, Rosenthal SJ. Ultrafast spectroscopy studies of carrier dynamics in semiconductor nanocrystals. iScience 2022; 25:103831. [PMID: 35198890 PMCID: PMC8844678 DOI: 10.1016/j.isci.2022.103831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Semiconductor nanocrystals have become ubiquitous both in scientific research and in applied technologies related to light. When a nanocrystal absorbs a photon an electron-hole pair is created whose fate dictates whether the nanocrystal will be suitable for a particular application. Ultrafast spectroscopy provides a real-time window to monitor the evolution of the electron-hole pair. In this review, we focus on CdSe nanocrystals, the most-studied nanocrystal system to date, and also highlight ultrasmall nanocrystals, "standard nanocrystals" of different binary composition, alloyed nanocrystals, and core/shell nanocrystals and nanorods. We focus on four time-resolved spectroscopies used to interrogate nanocrystals: pump-probe, fluorescence upconversion, time-correlated single photon counting, and non-linear spectroscopies. The basics of the nanocrystals and the spectroscopies are presented, followed by a detailed synopsis of ultrafast spectroscopy studies performed on the various semiconductor nanocrystal systems.
Collapse
Affiliation(s)
- Joseph D. Keene
- Department of Chemistry, Mercer University, Macon, GA 31207, USA
| | - Nathaniel J. Freymeyer
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - James R. McBride
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37240, USA
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37240, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37240, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Department of Materials Science, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37240, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
25
|
Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nat Commun 2022; 13:928. [PMID: 35177599 PMCID: PMC8854557 DOI: 10.1038/s41467-022-28474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
Palladium catalyst turnover by reoxidation of a low-valent Pd species dominates the proceeding of an efficient oxidative transformation, but the state-of-the-art catalysis approaches still have great challenges from the perspectives of high efficiency, atom-economy and environmental-friendliness. Herein, we report a new strategy for addressing Pd reoxidation problem by the fabrication of spatially proximate IrIII photocatalyst and PdII catalyst into metal-organic framework (MOF), affording MOFs based Pd/photoredox catalysts UiO-67-Ir-PdX2 (X = OAc, TFA), which are systematically evaluated using three representative Pd-catalyzed oxidation reactions. Owing to the stabilization of single-site Pd and Ir catalysts by MOFs framework as well as the proximity of them favoring fast electron transfer, UiO-67-Ir-PdX2, under visible light, exhibits up to 25 times of Pd catalyst turnover number than the existing catalysis systems. Mechanism investigations theoretically corroborate the capability of MOFs based Pd/photoredox catalysis to regulate the competitive processes of Pd0 aggregation and reoxidation in Pd-catalyzed oxidation reactions.
Collapse
|
26
|
Zhang J, Zhang L, Zhang Q. Element doping-induced effects in Zn-doped CdTe quantum-dot system: Insights from an ultrafast dynamics perspective. J Chem Phys 2022; 156:034701. [DOI: 10.1063/5.0078477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Rahman MZ, Maity P, Mohammed OF, Gascon J. Insight into the role of reduced graphene oxide for enhancing photocatalytic hydrogen evolution in disordered carbon nitride. Phys Chem Chem Phys 2022; 24:11213-11221. [DOI: 10.1039/d2cp00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared to crystalline carbon nitride, the performance of disordered carbon nitride (d-CN) as a hydrogen production photocatalyst is extremely poor. Owing to disordered atomic orientation, it is prone to numerous...
Collapse
|
28
|
Yang J, Ruan Z, Jiang S, Xia P, Yang Q, Zhang Q, Xiao C, Xie Y. Ce-Doped W 18O 49 Nanowires for Tuning N 2 Activation toward Direct Nitrate Photosynthesis. J Phys Chem Lett 2021; 12:11295-11302. [PMID: 34779639 DOI: 10.1021/acs.jpclett.1c03207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nitrate acts as a fundamental raw material in modern industrial and agricultural fields. Recently, photocatalytic nitrogen oxidation into nitrate has been expected to be an alternative method to replace the industrial nitrate synthesis process, which encounters many challenges, i.e., huge energy consumption and greenhouse gas emission. We synthesized Ce-doped W18O49 nanowires (Ce-W18O49) to realize photocatalytic nitrogen oxidation into nitrate under mild conditions. The defect state generated by coupling of Ce3+ introduction and surface plasma state acts as an "electron trap" to restrain photogenerated electrons, so as to facilitate the separation of photogenerated electron-hole pairs and prolong their lifetime. W18O49 doped with 5 mol % Ce exhibited the highest yield of nitrate (319.97 μg g-1 h-1) without any sacrificial agent, which is about 5 times higher than that of pristine W18O49. This work provides new insight into achieving high-efficiency photocatalytic nitrate evolution activity from direct N2 oxidation by controlling the energy band structure of photocatalysts.
Collapse
Affiliation(s)
- Jingjing Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhoushilin Ruan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shenlong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pengfei Xia
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qinghua Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chong Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
29
|
Zhu H, Xiao S, Tu W, Yan S, He T, Zhu X, Yao Y, Zhou Y, Zou Z. In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO 2 Nanorod Photoanodes. J Phys Chem Lett 2021; 12:10815-10822. [PMID: 34726410 DOI: 10.1021/acs.jpclett.1c03113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanistic understanding of the photogenerated charge carrier dynamics in modified semiconductor photoanodes is vital for the efficient enhancement of photoelectrochemical (PEC) water splitting. Here, an in situ femtosecond (fs)-transient absorption spectroscopy (TAS) assisted spectroelectrochemistry technique is used to probe the behavior of charge carriers in rutile TiO2 nanorod photoanodes under the different applied potentials and different density of surface polaron states that can be tuned via direct electrochemical protonation. We interpreted the background absorption with long-time decay in terms of polaron-mediated ultrafast electron trapping. The depleted surface polaron states on rutile TiO2 nanorods can trap photogenerated electrons and endow them with a long lifetime; thus, increasing the polaron state density can enhance the charge separation efficiency and the photocurrent density of the TiO2 nanorod electrode.
Collapse
Affiliation(s)
- Heng Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shuyu Xiao
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060, P.R. China
| | - Wenguang Tu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Shicheng Yan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Tingchao He
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060, P.R. China
| | - Xi Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
| | - Yingfang Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yong Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P.R. China
- Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| |
Collapse
|
30
|
Pu YC, Fan HC, Chang JC, Chen YH, Tseng SW. Effects of Interfacial Oxidative Layer Removal on Charge Carrier Recombination Dynamics in InP/ZnSe xS 1-x Core/Shell Quantum Dots. J Phys Chem Lett 2021; 12:7194-7200. [PMID: 34309384 DOI: 10.1021/acs.jpclett.1c02125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Red-light-emitting InP/ZnSexS1-x core/shell quantum dots (QDs) were prepared by one-pot synthesis with optimal hydrogen fluoride (HF) treatment. Most of the surficial oxidative species could be removed, and the dangling bonds would be passivated by Zn ions for the InP cores during HF treatment, which would be beneficial to the subsequent ZnSexS1-x shell coating. Three-dimensional time-resolved photoluminescence spectra of the QD samples were analyzed by singular value decomposition global fitting to determine the radiative and nonradiative lifetimes of charge carriers. A proposed model illustrated that the charge carriers in the InP/ZnSexS1-x QDs with interfacial oxidative layer removal would evidently recombine through radiative pathways, mainly from the conduction band to the valence band (lifetime, 33 ns) and partially from the trap states (lifetime, 150 ns). This work offers the important physical insight into the charge carrier dynamics of low-toxicity QDs which have the desired optical properties for optoelectronic applications.
Collapse
Affiliation(s)
- Ying-Chih Pu
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Hsiao-Chuan Fan
- Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan
| | - Jui-Cheng Chang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
- Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Douliu, Yunlin 64002, Taiwan
| | - Yu-Hung Chen
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shih-Wen Tseng
- Core Facility Center of National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
31
|
Kabachii YA, Kochev SY, Antonova OY, Abramchuk SS, Golub AS, Astafiev AA, Kostrov AN, Nadtochenko VA. Mn2+-doped ZnS–CdS alloy nanocrystals for the photocatalytic hydrogen evolution reaction. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Kabachii YA, Kochev SY, Antonova OY, Abramchuk SS, Golub AS, Astafiev AA, Kostrov AN, Nadtochenko VA. Mn2+-doped ZnS–CdS alloy nanocrystals for the photocatalytic hydrogen evolution reaction. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Xue J, Fujitsuka M, Majima T. Defect-mediated electron transfer in photocatalysts. Chem Commun (Camb) 2021; 57:3532-3542. [PMID: 33729263 DOI: 10.1039/d1cc00204j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Photocatalysis holds great potential in alleviating the growing energy crisis and environmental issues. Defect engineering has been demonstrated as an effective method to modulate the electronic structure of semiconductor photocatalysts for enhanced visible light absorption. However, the effect of defects on photocatalytic activity is still under debate because of the elusive charge transfer process mediated by defects. In this feature article, we summarize our recent progress in unraveling the defect-mediated electron transfer of the widely studied TiO2 and polymeric carbon nitride photocatalysts by combining ultrafast time-resolved spectroscopy and theoretical simulations. We find that the photogenerated electron transfer is greatly dependent on the type and concentration of defects. The location and occupation of defect states, and the dispersion degree of the energy band should be carefully tuned to maximize the advantages of defects for photocatalytic reactions.
Collapse
Affiliation(s)
- Jiawei Xue
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | | | | |
Collapse
|
34
|
Lv SY, Liu QY, Zhao YX, He SG. Photooxidation of Isoprene by Titanium Oxide Cluster Anions with Dimensions up to a Nanosize. J Am Chem Soc 2021; 143:3951-3958. [PMID: 33656327 DOI: 10.1021/jacs.1c00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Titania (TiO2) nanoparticles are active photocatalysts, and isoprene (C5H8) is a biogenic volatile organic compound that contributes crucially to global particulate matter generation. Herein, the direct photooxidation of isoprene by titanium oxide cluster anions with dimensions up to a nanosize by both ultraviolet (UV) and visible (Vis) light excitations has been successfully identified through mass spectrometric experiments combined with quantum chemistry calculations. The potential role of "dry" titania in atmospheric isoprene oxidation has been revealed, and a clear picture of the photooxidation mechanism on titanium oxide nanoparticles has been provided explicitly at the molecular level. The adsorption of isoprene on the atomic oxygen radicals (O•-) of titanium oxide clusters leads to the formation of the crucial interfacial state (IS) within the band gap of titanium oxides. This IS is demonstrated to be the significant factor in delivering the electron from the π orbital of C5H8 to the Ti3d orbital in the photooxidation process (C5H8 + Ti4+-O•- → C5H8O + Ti3+) and creating photoactivity in the Vis region. It is revealed that after the photogeneration of the O•- radicals by UV excitation on the TiO2 particle surface, the subsequent reactions can be induced by Vis excitation through the IS. This multicolor strategy in both the UV and Vis regions can enhance the efficiency of solar energy harvesting and improve the product yield of the photocatalysis on TiO2 nanoparticles. New insights have been provided into both the atmospheric chemistry of isoprene and the photochemistry of TiO2 nanoparticles.
Collapse
Affiliation(s)
- Shi-Ying Lv
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Qing-Yu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
35
|
Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Tang J, Fan F, Zhang Q, Gong XQ, Huang W. Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO 2 Nanocrystals. Angew Chem Int Ed Engl 2021; 60:6160-6169. [PMID: 33289198 DOI: 10.1002/anie.202014037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 11/10/2022]
Abstract
Photocatalytic oxidation of methanol on various anatase TiO2 nanocrystals was studied by in situ and time-resolved characterizations and DFT calculations. Surface site and resulting surface adsorbates affect the surface band bending/bulk-to-surface charge migration processes and interfacial electronic structure/interfacial charge transfer processes. TiO2 nanocrystals predominantly enclosed by the {001} facets expose a high density of reactive fourfold-coordinated Ti sites (Ti4c ) at which CH3 OH molecules dissociate to form the CH3 O adsorbate (CH3 O(a)Ti4c ). CH3 O(a)Ti4c localized density of states are almost at the valence band maximum of TiO2 surface, facilitating the interfacial hole transfer process; CH3 O(a)Ti4c with a high coverage promotes upward surface band bending, facilitating bulk-to-surface hole migration. CH3 O(a)Ti4c exhibits the highest photocatalytic oxidation rate constant. TiO2 nanocrystals enclosed by the {001} facets are most active in photocatalytic methanol oxidation.
Collapse
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Junwang Tang
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of, Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Heifei, 230026, P. R. China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Heifei, 230026, P. R. China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, P. R. China
| |
Collapse
|
36
|
Fu C, Li F, Zhang J, Li D, Qian K, Liu Y, Tang J, Fan F, Zhang Q, Gong X, Huang W. Site Sensitivity of Interfacial Charge Transfer and Photocatalytic Efficiency in Photocatalysis: Methanol Oxidation on Anatase TiO
2
Nanocrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cong Fu
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Fei Li
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiachen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Dan Li
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Kun Qian
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis Dalian Institute of, Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Junwang Tang
- Department of Chemical Engineering University College London London WC1E 7JE UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian Institute of, Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale Department of Chemical Physics Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Heifei 230026 P. R. China
| | - Xue‐Qing Gong
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis East China University of Science and Technology Shanghai 200237 P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics University of Science and Technology of China Heifei 230026 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| |
Collapse
|
37
|
Li X, Song Z, Zhao H, Zhang W, Sun Z, Liang H, Zhu H, Pei J, Li L, Ruan S. SnSe Nanosheets: From Facile Synthesis to Applications in Broadband Photodetections. NANOMATERIALS 2020; 11:nano11010049. [PMID: 33375522 PMCID: PMC7824353 DOI: 10.3390/nano11010049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023]
Abstract
In recent years, using two-dimensional (2D) materials to realize broadband photodetection has become a promising area in optoelectronic devices. Here, we successfully synthesized SnSe nanosheets (NSs) by a facile tip ultra-sonication method in water-ethanol solvent which was eco-friendly. The carrier dynamics of SnSe NSs was systematically investigated via a femtosecond transient absorption spectroscopy in the visible wavelength regime and three decay components were clarified with delay time of τ1 = 0.77 ps, τ2 = 8.3 ps, and τ3 = 316.5 ps, respectively, indicating their potential applications in ultrafast optics and optoelectronics. As a proof-of-concept, the photodetectors, which integrated SnSe NSs with monolayer graphene, show high photoresponsivities and excellent response speeds for different incident lasers. The maximum photo-responsivities for 405, 532, and 785 nm were 1.75 × 104 A/W, 4.63 × 103 A/W, and 1.52 × 103 A/W, respectively. The photoresponse times were ~22.6 ms, 11.6 ms, and 9.7 ms. This behavior was due to the broadband light response of SnSe NSs and fast transportation of photocarriers between the monolayer graphene and SnSe NSs.
Collapse
Affiliation(s)
- Xiangyang Li
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.L.); (H.Z.); (W.Z.); (Z.S.); (H.L.)
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.S.); (H.Z.)
| | - Zongpeng Song
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.S.); (H.Z.)
| | - Huancheng Zhao
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.L.); (H.Z.); (W.Z.); (Z.S.); (H.L.)
| | - Wenfei Zhang
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.L.); (H.Z.); (W.Z.); (Z.S.); (H.L.)
| | - Zhenhua Sun
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.L.); (H.Z.); (W.Z.); (Z.S.); (H.L.)
| | - Huawei Liang
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.L.); (H.Z.); (W.Z.); (Z.S.); (H.L.)
| | - Haiou Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.S.); (H.Z.)
| | - Jihong Pei
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Ling Li
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.L.); (H.Z.); (W.Z.); (Z.S.); (H.L.)
- Correspondence: author: (L.L.); (S.R.)
| | - Shuangchen Ruan
- Shenzhen Key Laboratory of Laser Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (X.L.); (H.Z.); (W.Z.); (Z.S.); (H.L.)
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.S.); (H.Z.)
- Correspondence: author: (L.L.); (S.R.)
| |
Collapse
|
38
|
Zhang S, Zhao Y, Shi R, Zhou C, Waterhouse GIN, Wang Z, Weng Y, Zhang T. Sub‐3 nm Ultrafine Cu
2
O for Visible Light Driven Nitrogen Fixation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013594] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | | | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics Laboratory of Soft Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics Laboratory of Soft Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
39
|
Zhang S, Zhao Y, Shi R, Zhou C, Waterhouse GIN, Wang Z, Weng Y, Zhang T. Sub‐3 nm Ultrafine Cu
2
O for Visible Light Driven Nitrogen Fixation. Angew Chem Int Ed Engl 2020; 60:2554-2560. [DOI: 10.1002/anie.202013594] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Shuai Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | | | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics Laboratory of Soft Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics Laboratory of Soft Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China
- School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
40
|
Harvey SM, Houck DW, Kirschner MS, Flanders NC, Brumberg A, Leonard AA, Watkins NE, Chen LX, Dichtel WR, Zhang X, Korgel BA, Wasielewski MR, Schaller RD. Transient Lattice Response upon Photoexcitation in CuInSe 2 Nanocrystals with Organic or Inorganic Surface Passivation. ACS NANO 2020; 14:13548-13556. [PMID: 32915540 DOI: 10.1021/acsnano.0c05553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CuInSe2 nanocrystals offer promise for optoelectronics including thin-film photovoltaics and printed electronics. Additive manufacturing methods such as photonic curing controllably sinter particles into quasi-continuous films and offer improved device performance. To gain understanding of nanocrystal response under such processing conditions, we investigate impacts of photoexcitation on colloidal nanocrystal lattices via time-resolved X-ray diffraction. We probe three sizes of particles and two capping ligands (oleylamine and inorganic S2-) to evaluate resultant crystal lattice temperature, phase stability, and thermal dissipation. Elevated fluences produce heating and loss of crystallinity, the onset of which exhibits particle size dependence. We find size-dependent recrystallization and cooling lifetimes ranging from 90 to 200 ps with additional slower cooling on the nanosecond time scale. Sulfide-capped nanocrystals show faster recrystallization and cooling compared to oleylamine-capped nanocrystals. Using these lifetimes, we find interfacial thermal conductivities from 3 to 28 MW/(m2 K), demonstrating that ligand identity strongly influences thermal dissipation.
Collapse
Affiliation(s)
- Samantha M Harvey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel W Houck
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Matthew S Kirschner
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Nathan C Flanders
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ariel A Leonard
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Science and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicolas E Watkins
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Science and Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
41
|
Kaur G, Ghosh HN. Hot Carrier Relaxation in CsPbBr 3-Based Perovskites: A Polaron Perspective. J Phys Chem Lett 2020; 11:8765-8776. [PMID: 32961059 DOI: 10.1021/acs.jpclett.0c02339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Long-standing interpretations for the exceptional photovoltaic and optoelectronic properties showcased by the perovskite family pertain to the underlying complicated interplay of polaron formation and hot carrier cooling. This Perspective primarily focuses on reassessing the existing status of polaron studies conducted on CsPbBr3-based systems in particular, in the framework of transient absorption investigations. The role of the key aspect that is ultimately accountable for deciding the fate of polaron formation, i.e., the carrier-longitudinal optical phonon coupling, has been comprehensively evaluated in terms of diverse factors which affect this Fröhlich interaction-mediated coupling. The study provides a detailed discussion regarding the alterations in lattice polarity, surrounding dielectric medium, lattice temperature, and system dimensionality which can influence the charge screening extent and thereby the polaron formation. Such studies concerning strategies for achieving easily attainable modulations in polaron formation in CsPbBr3-based systems are highly relevant for technological advancement.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
42
|
Li X, Lian X, Pang J, Luo B, Xiao Y, Li MD, Huang XC, Zhang JZ. Defect-Related Broadband Emission in Two-Dimensional Lead Bromide Perovskite Microsheets. J Phys Chem Lett 2020; 11:8157-8163. [PMID: 32902289 DOI: 10.1021/acs.jpclett.0c02355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Low-dimensional hybrid lead halide perovskites (LHPs) with broadband emission (BE) have been developed as promising candidates for single-source white-light-emitting diodes. However, the underlying origin of such BE is poorly understood. Herein, dual-emissive [NH3(CH2)8NH3]PbBr4 perovskite microsheets (PMSs) with good dispersibility are successfully prepared. Besides the general narrowband emission (NE) originating from free excitons, BE (∼522 nm) is generated under a Br-poor condition, which is not observed in the single-crystal sample. Unlike self-trapped exciton emission, the BE observed in PMSs is experimentally determined to be related to bromide vacancies (VBr), thereby exhibiting quasisaturation under high excitation intensity. Femtosecond transient absorption spectroscopy first shows that the trapping time of the photogenerated electrons by acceptor-like VBr- is ∼15 ps, slower than that by surface defects (<1 ps). This study provides new insight into the underlying mechanism of BE and an effective approach to manipulating the optical properties of 2D perovskites.
Collapse
Affiliation(s)
- Xianli Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Xin Lian
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Junhong Pang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Binbin Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, China
| | - Yonghong Xiao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, China
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
43
|
Benazzi E, Coni VC, Boni M, Mazzaro R, Morandi V, Natali M. The role of the capping agent and nanocrystal size in photoinduced hydrogen evolution using CdTe/CdS quantum dot sensitizers. Dalton Trans 2020; 49:10212-10223. [PMID: 32666964 DOI: 10.1039/d0dt01195a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrogen production via light-driven water splitting is a key process in the context of solar energy conversion. In this respect, the choice of suitable light-harvesting units appears as a major challenge, particularly as far as stability issues are concerned. In this work, we report on the use of CdTe/CdS QDs as photosensitizers for light-assisted hydrogen evolution in combination with a nickel bis(diphosphine) catalyst (1) and ascorbate as the sacrificial electron donor. QDs of different sizes (1.7-3.4 nm) and with different capping agents (MPA, MAA, and MSA) have been prepared and their performance assessed in the above-mentioned photocatalytic reaction. Detailed photophysical studies have been also accomplished to highlight the charge transfer processes relevant to the photocatalytic reaction. Hydrogen evolution is observed with remarkable efficiencies when compared to common coordination compounds like Ru(bpy)32+ (where bpy = 2,2'-bipyridine) as light-harvesting units. Furthermore, the hydrogen evolution performance under irradiation is strongly determined by the nature of the capping agent and the QD size and can be related to the concentration of the surface defects within the semiconducting nanocrystal. Overall, the present results outline how QDs featuring large quantum yields and long lifetimes are desirable to achieve sustained hydrogen evolution upon irradiation and that a precise control of the structural and photophysical properties thus appears as a major requirement towards profitable photocatalytic applications.
Collapse
Affiliation(s)
- Elisabetta Benazzi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Liu YH, Chen HY, Fan HF, Chen YH, Wang F. Unique Growth Pathway in Solution-Solid-Solid Nanowires: Cubic to Hexagonal Phase Transformation. ACS OMEGA 2020; 5:18441-18448. [PMID: 32743221 PMCID: PMC7391935 DOI: 10.1021/acsomega.0c02302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Solution-solid-solid (SSS) nanowires can be catalyzed by superionic Ag2S via ion diffusion. Here, we synthesize ZnS nanowires of the wurtzite crystal structure and heterostructures via a low-temperature growth pathway. Single-crystalline ZnS nanowires were produced by varying reaction time and temperature (120-200 °C) via thermal decomposition of a single-source precursor, Zn(DDTC)2. A phase transformation (zinc blende → wurtzite) was observed during the synthesis with a three-step growth pathway proposed. Temperature-controlled phase transformation facilitates oriented attachment into a 1D nanowire, followed by helical epitaxial and lateral growths during ripening. Additionally, the CdS-ZnS heterostructured nanowires can be obtained after introducing the Cd(DDTC)2 precursor. ZnS nanowires of defined diameters (5-10 nm) are served as backbones to grow heterostructures of ternary semiconductors with multicolor photoluminescence (450-800 nm). Structural and optical characterizations (PL, 2D PLE, and TCSPC) are investigated to confirm origins of broadband emission from multiple lifetimes (0.5-12 ns) for exciton recombination in heterostructures. Our study demonstrates this unique growth pathway for SSS nanowire synthesis under mild, facile, and atmospheric conditions.
Collapse
Affiliation(s)
- Yi-Hsin Liu
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ho-Ying Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsiu-Fang Fan
- Institute
of Medical Science and Technology, National
Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Yu-Hsien Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Fudong Wang
- Department
of Chemistry, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
45
|
Jia H, Wang F, Tan Z. Material and device engineering for high-performance blue quantum dot light-emitting diodes. NANOSCALE 2020; 12:13186-13224. [PMID: 32614007 DOI: 10.1039/d0nr02074e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal quantum dots (QDs) have attracted extensive attention due to their excellent optoelectronic properties, such as high quantum efficiency, narrow emission peaks, high color saturation, high stability and solution processability. Compared with the traditional display technology, QD based light-emitting diodes (QLEDs) show broad application prospects in the field of flat-panel displays and solid-state lighting. However, for full-color displays, the efficiency and lifetime of blue QLEDs are inferior to those of their green and red counterparts. Therefore, it is urgent for us to deeply understand the device physics and improve the performance of blue QLEDs through material and device engineering. An in-depth understanding of the optoelectronic properties (such as the structure of electronic states, electron-phonon interactions, Auger processes, etc.) and material engineering (such as size distribution control, composition control, and surface engineering) of blue emission QDs is greatly helpful for their applications in other fields. Herein, we review the key progress in the area of blue QLEDs, including the compositions and nanostructures of blue quantum dots, advances in the device architectures and the improvement of the device lifetime of blue QLEDs. The key factors that influence the blue device performance, including the nanostructure design and surface modification of QDs, interface engineering and architecture design of devices are discussed, aiming to propose possible solutions for these challenges, which will help to promote the commercialization process of QLEDs.
Collapse
Affiliation(s)
- Haoran Jia
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fuzhi Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
46
|
Roy P, Devatha G, Roy S, Rao A, Pillai PP. Electrostatically Driven Resonance Energy Transfer in an All-Quantum Dot Based Donor-Acceptor System. J Phys Chem Lett 2020; 11:5354-5360. [PMID: 32539403 DOI: 10.1021/acs.jpclett.0c01360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Demonstration of fundamental photophysical properties in environmentally friendly quantum dots (QDs) is essential to realize their practical use in various light harvesting applications. We accomplish here an efficient light induced resonance energy transfer in all-QD based donor-acceptor system in water, deprived of any commonly used organic dye component. Our nanohybrid system comprises surface engineered indium phosphide/zinc sulfide (InP/ZnS) QD as the donor, and copper indium sulfide/zinc sulfide (CIS/ZnS) QD as the acceptor. The electrostatic attraction between oppositely charged QDs is vital in achieving a strong ground state complexation in the [-] InP/ZnS:::[+] CIS/ZnS QD nanohybrid. A nonlinear Stern-Volmer plot confirms the involvement of both static and dynamic components in the PL quenching of InP/ZnS QD by CIS/ZnS QD. Moreover, a temporal evolution of resonance energy transfer is realized in the solid state as well, which can improve the potential of such "all-green QD" based nanohybrid systems for device level studies.
Collapse
Affiliation(s)
- Pradyut Roy
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Gayathri Devatha
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Soumendu Roy
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Anish Rao
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry and Center for Energy Sciences, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
47
|
Zhao C, Chen Z, Shi R, Yang X, Zhang T. Recent Advances in Conjugated Polymers for Visible-Light-Driven Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907296. [PMID: 32483883 DOI: 10.1002/adma.201907296] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 05/24/2023]
Abstract
With the ambition of solving the challenges of the shortage of fossil fuels and their associated environmental pollution, visible-light-driven splitting of water into hydrogen and oxygen using semiconductor photocatalysts has emerged as a promising technology to provide environmentally friendly energy vectors. Among the current library of developed photocatalysts, organic conjugated polymers present unique advantages of sufficient light-absorption efficiency, excellent stability, tunable electronic properties, and economic applicability. As a class of rising photocatalysts, organic conjugated polymers offer high flexibility in tuning the framework of the backbone and porosity to fulfill the requirements for photocatalytic applications. In the past decade, significant progress has been made in visible-light-driven water splitting employing organic conjugated polymers. The recent development of the structural design principles of organic conjugated polymers (including linear, crosslinked, and supramolecular self-assembled polymers) toward efficient photocatalytic hydrogen evolution, oxygen evolution, and overall water splitting is described, thus providing a comprehensive reference for the field. Finally, current challenges and perspectives are also discussed.
Collapse
Affiliation(s)
- Chengxiao Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Zupeng Chen
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofei Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
48
|
Devatha G, Roy P, Rao A, Roy S, Pillai PP. Multicolor Luminescent Patterning via Photoregulation of Electron and Energy Transfer Processes in Quantum Dots. J Phys Chem Lett 2020; 11:4099-4106. [PMID: 32357301 DOI: 10.1021/acs.jpclett.0c01121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ability to create high-contrast multicolor luminescent patterns is essential to realize the full potential of quantum dots (QDs) in display technologies. The idea of using a nonemissive state is adopted in the present work to enhance the color-contrast of QD-based photopatterns. This is achieved at a multicolor level by the photoregulation of electron and energy transfer processes in a single QD nanohybrid film, composed of one QD donor and two dye acceptors. The dominance of photoinduced electron transfer over the energy transfer process generates a nonluminescent QD nanohybrid film, which provides the black background for multicolor patterning. The superior photostability of QDs over dyes is used for the photoregulation of electron and energy transfer processes. Selective photodegradation of electron acceptor dye triggered the onset of the energy transfer process, thereby imparting a luminescent color to the QD nanohybrid film. Further, a controlled photoregulation of energy transfer process paved the way for multicolor patterning.
Collapse
Affiliation(s)
- Gayathri Devatha
- Department of Chemistry and Centre for Energy Sciences, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pradyut Roy
- Department of Chemistry and Centre for Energy Sciences, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Anish Rao
- Department of Chemistry and Centre for Energy Sciences, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Soumendu Roy
- Department of Chemistry and Centre for Energy Sciences, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Pramod P Pillai
- Department of Chemistry and Centre for Energy Sciences, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| |
Collapse
|
49
|
Pan H, Chu H, Li Y, Qi N, Zhao S, Li G, Li D. Nonlinear optical properties of colloidal CdSe/ZnS quantum dots in PMMA. NANOTECHNOLOGY 2020; 31:195703. [PMID: 32081839 DOI: 10.1088/1361-6528/ab7045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The colloidal CdSe/ZnS quantum dots (QDs) in the PMMA polymer film with different QDs concentrations were fabricated. The influence of QDs concentration and excitation pump energy on nonlinear optical (NLO) properties of PMMA capped CdSe/ZnS QDs was investigated by the Z-scan technique with nanosecond laser pulses in the near-infrared spectral band. A large effective nonlinear absorption coefficient (β eff ∼ -10-13 esu) due to the saturable absorption was observed. It was found that the appropriate concentration could lead to the reinforcement of NLO effect. In addition, the impact of the excitation energy on the nonlinear refractive index n 2, real and imaginary parts of the third-order nonlinear optical susceptibility was also performed. This study involving the light-matter interactions in the colloidal quantum dots will benefit potential NLO-based applications of optoelectronics, optical modulation and photonics.
Collapse
Affiliation(s)
- Han Pan
- School of Information Science and Engineering, Shandong University, Qingdao 266237, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Wei K, Zhang L, Jiang SL, Zhang Q. Energy transfer and electron transfer in composite system of carbon quantum dots/rhodamine B molecules. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1905105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kang Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shen-long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Qun Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|