1
|
Zhou J, Wang L, Liu C, Guo C, Chen C, Sun Y, Yang Y, Cheng J, Gan Z, Chen Z, Sun W, Zhou J, Xia W, Liu D, Li W, Wang T. Tuning of the Polymeric Nanofibril Geometry via Side-Chain Interaction toward 20.1% Efficiency of Organic Solar Cells. J Am Chem Soc 2024; 146:34998-35006. [PMID: 39621877 DOI: 10.1021/jacs.4c15266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Constructing fibril morphology has been believed to be an effective method of achieving efficient exciton dissociation and charge transport in organic solar cells (OSCs). Despite emerging endeavors on the fibrillization of organic semiconductors via chemical structural design or physical manipulation, tuning of the fibril geometry, i.e., width and length, for tailored optoelectronic properties remains to be studied in depth. In this work, a series of alkoxythiophene additives featuring varied alkyl side chains connected to thiophene are designed to modulate the growth of fibril aggregates in cutting-edge polymer donors PM6 and D18. Molecular dynamics simulations and morphological characterizations reveal that these additives preferentially locate near and entangle with the side chains of polymer donors, which enhance the conjugated backbone stacking of polymer donors to form nanofibrils with the width expanding from 12.6 to 21.8 nm and the length increasing from 98.3 to 232.7 nm. This nanofibril structure is feasible to acquire efficient exciton dissociation and charge transport simultaneously. By integrating the fibril PM6 and L8-BO as the donor and acceptor layers in pseudo-bulk heterojunction (p-BHJ) OSCs via layer-by-layer deposition, an improvement of power conversion efficiency (PCE) from 18.7% to 19.8% is observed, contributed by enhanced light absorption, charge transport, and reduced charge recombination. The versatility of these additives is also verified in D18:L8-BO OSCs, with enhanced PCE from 19.3% to 20.1%, which is among the highest values reported for OSCs.
Collapse
Affiliation(s)
- Jing Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Liang Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chenhao Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chuanhang Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuandong Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yujie Yang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingchao Cheng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zirui Gan
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenghong Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jinpeng Zhou
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Weiyi Xia
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Dan Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Tao Wang
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
2
|
Liu X, Zhang Z, Wang C, Zhang C, Liang S, Fang H, Wang B, Tang Z, Xiao C, Li W. A Pyrene-Fused Dimerized Acceptor for Ternary Organic Solar Cells with 19% Efficiency and High Thermal Stability. Angew Chem Int Ed Engl 2024; 63:e202316039. [PMID: 37983686 DOI: 10.1002/anie.202316039] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
A pyrene-fused dimerized electron acceptor has been successfully synthesized and subsequently incorporated as the third component in ternary organic solar cells (OSCs). Diverging from the traditional dimerized acceptors with a linear configuration, this novel electron acceptor displays a distinctive "butterfly-like" structure, comprising two Y-acceptors as wings fused with a pyrene-based backbone. The extended π-conjugated backbone and the electron-donating nature of pyrene enable the new acceptor to show low solubility, elevated glass transition temperature (Tg ), and low-lying frontier energy levels. Consequently, the new dimerized acceptor seamlessly integrates as the third component into ternary OSCs, enhancing electron transporting properties, reducing non-radiative voltage loss, and elevating open-circuit voltage. These merits have enabled the ternary OSCs to show an exceptional efficiency of 19.07%, a marked improvement compared to the 17.6% attained in binary OSCs. More importantly, the high Tg exhibited by the pyrene-fused electron acceptor helps to stabilize the morphology of the photoactive layer thermal-treated at 70 °C, retaining 88.7% efficiency over 600 hours. For comparison, binary OSCs experience a decline to 73.7% efficiency after the same duration. These results indicate that the "butterfly-like" design and the incorporation of a pyrene unit is a promising strategy in the development of dimerized electron acceptors for OSCs.
Collapse
Affiliation(s)
- Xucong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chao Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Cuifen Zhang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bo Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Shen S, Mi Y, Ouyang Y, Lin Y, Deng J, Zhang W, Zhang J, Ma Z, Zhang C, Song J, Bo Z. Macrocyclic Encapsulation in a Non-fused Tetrathiophene Acceptor for Efficient Organic Solar Cells with High Short-Circuit Current Density. Angew Chem Int Ed Engl 2023; 62:e202316495. [PMID: 37948070 DOI: 10.1002/anie.202316495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Non-fullerene acceptors have shown great promise for organic solar cells (OSCs). However, challenges in achieving high efficiency molecular system with conformational unicity and effective molecular stacking remain. In this study, we present a new design of non-fused tetrathiophene acceptor R4T-1 via employing the encapsulation of tetrathiophene with macrocyclic ring. The single crystal structure analysis reveals that cyclic alkyl side chains can perfectly encapsulate the central part of molecule and generate a conformational stable and planar molecular backbone. Whereas, the control 4T-5 without the encapsulation restriction displays cis- and twisted conformation. As a result, R4T-1 based OSCs achieved an outstanding power conversion efficiency (PCE) exceeding 15.10 % with a high short-circuit current density (Jsc ) of 25.48 mA/cm2 , which is significantly improved by ≈30 % in relative to that of the control. Our findings demonstrate that the macrocyclic encapsulation strategy could assist fully non-fused electron acceptors (FNEAs) to achieve a high photovoltaic performance and pave a new way for FNEAs design.
Collapse
Affiliation(s)
- Shuaishuai Shen
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yu Mi
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yi Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jingjing Deng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Wenjun Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
4
|
Monteiro-de-Castro G, Borges I. A Hammett's analysis of the substituent effect in functionalized diketopyrrolopyrrole (DPP) systems: Optoelectronic properties and intramolecular charge transfer effects. J Comput Chem 2023; 44:2256-2273. [PMID: 37496237 DOI: 10.1002/jcc.27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Diketopyrrolopyrrole (DPP) systems have promising applications in different organic electronic devices. In this work, we investigated the effect of 20 different substituent groups on the optoelectronic properties of DPP-based derivatives as the donor ( D )-material in an organic photovoltaic (OPV) device. For this purpose, we employed Hammett's theory (HT), which quantifies the electron-donating or -withdrawing properties of a given substituent group. Machine learning (ML)-basedσ m ,σ p ,σ m 0 ,σ p 0 ,σ p + ,σ p - ,σ I , andσ R Hammett's constants previously determined were used. Mono- (DPP-X1 ) and di-functionalized (DPP-X2 ) DPPs, where X is a substituent group, were investigated using density functional theory (DFT), time-dependent DFT (TDDFT), and ab initio methods. Several properties were computed using CAM-B3LYP and the second-order algebraic diagrammatic construction, ADC(2), an ab initio wave function method, including the adiabatic ionization potential ( I P A ), the electron affinity ( E A A ), the HOMO-LUMO gaps (E g ), and the maximum absorption wavelengths (λ max ), the first excited state transition 1 S0 → 1 S1 energies ( ∆ E ) (the optical gap), and exciton binding energies. From the optoelectronic properties and employing typical acceptor systems, the power conversion efficiency ( PCE ), open-circuit voltage (V OC ), and fill factor ( FF ) were predicted for a DPP-based OPV device. These photovoltaic properties were also correlated with the machine learning (ML)-based Hammett's constants. Overall, good correlations between all properties and the different types of σ constants were obtained, except for theσ I constants, which are related to inductive effects. This scenario suggests that resonance is the main factor controlling electron donation and withdrawal effects. We found that substituent groups with large σ values can produce higher photovoltaic efficiencies. It was also found that electron-withdrawing groups (EWGs) reducedE g and ∆ E considerably compared to the unsubstituted DPP-H. Moreover, for every decrease (increase) in the values of a given optoelectronic property of DPP-X1 systems, a more significant decrease (increase) in the same values was observed for the DPP-X2 , thus showing that the addition of the second substituent results in a more extensive influence on all electronic properties. For the exciton binding energies, an unsupervised machine learning algorithm identified groups of substituents characterized by average values (centroids) of Hammett's constants that can drive the search for new DDP-derived materials. Our work presents a promising approach by applying HT on molecular engineering DPP-based molecules and other conjugated molecules for applications on organic optoelectronic devices.
Collapse
Affiliation(s)
| | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia (IME), Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Engenharia de Defesa, Instituto Militar de Engenharia (IME), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Liu Y, Zhang Q, Guan J, Xue J, Yu X, Wu F, Ma W, Han Y. Improving the Molecular Packing Order and Vertical Phase Separation of the P3HT:O-IDTBR Blend by Extending the Crystallization Period of O-IDTBR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44685-44696. [PMID: 36153967 DOI: 10.1021/acsami.2c12220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The morphology with strong molecular packing order and gradient vertical composition distribution associated with efficient charge transport and collection is critical to achieve high performance in nonfullerene solar cells. However, the rapid solidification process of the active layer upon the fast removal of solvent usually results in a kinetically trapped state with undesired morphology. Herein, we proposed a strategy to extend the crystal growth time of the acceptor via a high-boiling-point additive that selectively dissolved the acceptor. This was enabled by adding dibenzyl ether (DBE) to the poly(3-hexylthiophene) (P3HT):O-IDTBR blend in chlorobenzene (CB) solution. The combination of the kinetic study by time-resolved ultraviolet-visible (UV-vis) absorption spectra and detailed morphological characterization allows us to correlate the crystallization kinetics with the microstructural transition. The results show that the crystal growth time of O-IDTBR increases from 3 to 60 s upon the addition of 0.75% DBE, leading to further evolution of the molecular order of O-IDTBR during the DBE-dominated drying period. Meanwhile, O-IDTBR has more time to migrate toward the substrate owing to the larger surface energy. In addition, the onset of the crystallization process of P3HT is brought forward from 8 to 6 s due to the reduced solvent quality, which favors P3HT to crystallize into a fibril network. As a result, an optimized morphology that features the enhanced molecular packing order of P3HT and O-IDTBR as well as the vertical compositional gradient of O-IDTBR is obtained. Devices based on the optimized blend show more balanced charge transport and suppressed bimolecular recombination, giving rise to an improved power conversion efficiency (PCE) from 4.29 ± 0.04 to 7.30 ± 0.12%.
Collapse
Affiliation(s)
- Yadi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jian Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xinhong Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Fan Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
6
|
Keshtov ML, Konstantinov IO, Khokhlov AR, Ostapov IE, Godovsky DY, Alekseev VG, Zou Y, Singhal R, Singh MK, Sharma GD. New Wide Bandgap Conjugated D‐A Copolymers Based on BDT or NDT Donor Unit and Anthra[1,2‐b:4,3,bʹ:6,7‐cʺ]trithiophene‐8‐12‐dione Acceptor for Fullerene‐Free Polymer Solar Cells. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mukhamed L. Keshtov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Igor O. Konstantinov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Alexie R. Khokhlov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Ilya E. Ostapov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Dimitri Y. Godovsky
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences Vavilova St. 28 Moscow 119991 Russian Federation
| | - Vladimir G. Alekseev
- Analytical Chemistry Department Tver State University Sadovyi per. 35 Tver 170002 Russian Federation
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| | - Rahul Singhal
- Department of Physics Malviya National Institute of Technology JLN Marg Jaipur (Rajasthan) 302017 India
| | - Manish Kumar Singh
- Department of Physics and Electronics Engineering The LNM Institute for Information Technology Jamdoli Jaipur (Rajasthan) 302031 India
| | - Ganesh D. Sharma
- College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
| |
Collapse
|
7
|
Liu C, Xiao C, Wang J, Liu B, Hao Y, Guo J, Song J, Tang Z, Sun Y, Li W. Revisiting Conjugated Polymers with Long-Branched Alkyl Chains: High Molecular Weight, Excellent Mechanical Properties, and Low Voltage Losses. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Wang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yidi Hao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiayi Guo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiali Song
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
The structure-performance correlation of bulk-heterojunction organic solar cells with multi-length-scale morphology. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1268-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Li SW, Chen CT, Jeng RJ. Elucidating the Efficiency of Polymer Solar Cells Based on Dicyano-Substituted Vinylene–Thienothiophenylene–Vinylene–Benzodithiophenylene Copolymers: β-Isomers Outperform α-Isomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Syuan-Wei Li
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Chin-Ti Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Ru-Jong Jeng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, Republic of China
| |
Collapse
|
10
|
Wang X, Lu H, Zhou J, Xu X, Zhang C, Huang H, Song J, Liu Y, Xu X, Xie Z, Tang Z, Bo Z. High-Performance Simple Nonfused Ring Electron Acceptors with Diphenylamino Flanking Groups. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39652-39659. [PMID: 34382764 DOI: 10.1021/acsami.1c09597] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Four simple nonfused ring electron acceptors (H-2F, CH3-2F, OCH3-2F, and SCH3-2F) were designed and synthesized. The use of diphenylamine derivatives as the flanking group for the construction of nonfused ring electron acceptors can improve solubility, avoid the formation of oversized aggregates, and enhance the intramolecular charge-transfer effect to extend absorption spectra. The substituent group at the diphenylamine unit has a great impact on the absorption and energy level of acceptors, electron mobility and morphology of blend films. Unlike the other three acceptors, CH3-2F can form ordered molecular stacking and a face-on orientation in the donor/acceptor blend film. A single-crystal analysis demonstrates that CH3-2F can form a two-dimensional electron transport network. Among these four acceptors, CH3-2F-based organic solar cells provide the highest PCE of 12.28%. Our work has demonstrated that triarylamine is a helpful construction unit for low-cost and high efficiency nonfused ring electron acceptors.
Collapse
Affiliation(s)
- Xiaodong Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hao Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials and Devices and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaoyun Xu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Cai'e Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hao Huang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China
| | - Yahui Liu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Xiao M, Liu J, Liu C, Han G, Shi Y, Li C, Zhang X, Hu Y, Liu Z, Gao X, Cai Z, Liu J, Yi Y, Wang S, Wang D, Hu W, Liu Y, Sirringhaus H, Jiang L. Sub-5 nm single crystalline organic p-n heterojunctions. Nat Commun 2021; 12:2774. [PMID: 33986296 PMCID: PMC8119440 DOI: 10.1038/s41467-021-23066-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/08/2021] [Indexed: 12/16/2022] Open
Abstract
The cornerstones of emerging high-performance organic photovoltaic devices are bulk heterojunctions, which usually contain both structure disorders and bicontinuous interpenetrating grain boundaries with interfacial defects. This feature complicates fundamental understanding of their working mechanism. Highly-ordered crystalline organic p–n heterojunctions with well-defined interface and tailored layer thickness, are highly desirable to understand the nature of organic heterojunctions. However, direct growth of such a crystalline organic p–n heterojunction remains a huge challenge. In this work, we report a design rationale to fabricate monolayer molecular crystals based p–n heterojunctions. In an organic field-effect transistor configuration, we achieved a well-balanced ambipolar charge transport, comparable to single component monolayer molecular crystals devices, demonstrating the high-quality interface in the heterojunctions. In an organic solar cell device based on the p–n junction, we show the device exhibits gate-tunable open-circuit voltage up to 1.04 V, a record-high value in organic single crystalline photovoltaics. Realizing organic p–n junctions based on ordered crystalline materials with dimensions comparable to the exciton diffusion length of most organic semiconductors remains a challenge. Here, the authors report a strategy to form molecular monolayer crystal-based p–n junctions with thickness below 5 nm.
Collapse
Affiliation(s)
- Mingchao Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Yanjun Shi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Chunlei Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Xi Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Hu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, China
| | - Zitong Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Xike Gao
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.
| | - Shuai Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China.
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | - Wenping Hu
- College of Science, Tianjin University, Tianjin, China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China
| | | | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China. .,University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Cao X, Hu Y, Wang R, Lu Y, Ou B, Liao B, Fan H, Guo Y, Liu Q. Understanding the crystallization process of a diketopyrrolopyrrole‐based conjugated polymer in blend films. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinxiu Cao
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Yibo Hu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
| | - Ruiyuan Wang
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
| | - Yi Lu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
| | - Baoli Ou
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Bo Liao
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Hui Fan
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Yan Guo
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| | - Qingquan Liu
- School of Materials Science and Engineering Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Hunan University of Science and Technology Xiangtan China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers Hunan University of Science and Technology Xiangtan China
| |
Collapse
|
13
|
Saes BWH, Wienk MM, Janssen RAJ. The Effect of α-Branched Side Chains on the Structural and Opto-Electronic Properties of Poly(Diketopyrrolopyrrole-alt-Terthiophene). Chemistry 2020; 26:14221-14228. [PMID: 32452575 PMCID: PMC7702133 DOI: 10.1002/chem.202001722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Indexed: 11/17/2022]
Abstract
Introducing solubilizing α‐branched alkyl chains on a poly(diketopyrrolopyrrole‐alt‐terthiophene) results in a dramatic change of the structural, optical, and electronic properties compared to the isomeric polymer carrying β‐branched alkyl side chains. When branched at the α‐position the alkyl substituent creates a steric hindrance that reduces the tendency of the polymer to π–π stack and endows the material with a much higher solubility in common organic solvents. The wider π–π stacking and reduced tendency to crystallize, evidenced from grazing‐incidence wide‐angle X‐ray scattering, result in a wider optical band gap in the solid state. In solar cells with a fullerene acceptor, the α‐branched isomer affords a higher open‐circuit voltage, but an overall lower power conversion efficiency as a result of a too well‐mixed nanomorphology. Due its reduced π–π stacking, the α‐branched isomer fluoresces and affords near‐infrared light‐emitting diodes emitting at 820 nm.
Collapse
Affiliation(s)
- Bart W H Saes
- Molecular Materials and Nanosystems and Institute for, Complex Molecular Systems, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
| | - Martijn M Wienk
- Molecular Materials and Nanosystems and Institute for, Complex Molecular Systems, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands
| | - René A J Janssen
- Molecular Materials and Nanosystems and Institute for, Complex Molecular Systems, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands.,Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612, AJ, Eindhoven, The Netherlands
| |
Collapse
|
14
|
Ding Y, Zhao F, Kim S, Wang X, Lu H, Zhang G, Cho K, Qiu L. Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41832-41841. [PMID: 32865385 DOI: 10.1021/acsami.0c11436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing nonchlorinated solvent-processed polymeric semiconductors to avoid environmental concerns and health hazards caused by chlorinated solvents is especially urgent. Here, a molecular design strategy, composed of backbone fluorination and side chain optimization, is used for preparing high-solubility and high-performance azaisoindigo-based polymers. The effects of different backbones and side chains on the solubility, film crystallinity, molecular stacking, and charge transport properties are mainly investigated. A long linear hybrid siloxane-based chain (C6-Si7) is chosen to improve the solubility, while the incorporation of fluorine (F) is used to enhance the film crystallinity and charge mobility. By optimizing the backbone and side chain, both solubility and charge mobility of the azaisoindigo-based polymer are significantly improved. As a result, PAIIDBFT-Si films processed with toluene, tetrahydrofuran, ether, and alkanes, achieved charge mobilities of 4.14, 3.78, 2.14, and 2.34 cm2 V-1 s-1, respectively. The current study provides an effective strategy for the design and synthesis of high-performance polymeric semiconductors processed with nonchlorinated solvents.
Collapse
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Fengsheng Zhao
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Sanghyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Fenta AD, Liao SF, Li SW, Lu CF, Chen CT. Increasing the Fluorine Substituent of Thieno[3,4- c]pyrrole-4,6-dione Terthiophene Copolymers Progressively Narrows the Nanofibrils and Enhances the Efficiency of Fullerene-Based Polymer Photovoltaics. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adane Desta Fenta
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC
- Molecular Science and Technology, Taiwan International Graduate Program (TIGP), Taipei, 10617, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Song-Fu Liao
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Syuan-Wei Li
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Chun-Fu Lu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chin-Ti Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
16
|
Pelse I, Hernandez JL, Engmann S, Herzing AA, Richter LJ, Reynolds JR. Cosolvent Effects When Blade-Coating a Low-Solubility Conjugated Polymer for Bulk Heterojunction Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27416-27424. [PMID: 32484686 DOI: 10.1021/acsami.0c04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The adoption of solution-processed active layers in the production of thin-film photovoltaics is hampered by the transition from research fabrication techniques to scalable processing. We report a detailed study of the role of processing in determining the morphology and performance of organic photovoltaic devices using a commercially available, low-solubility, high-molar mass diketopyrrolopyrrole-based polymer donor. Ambient blade coating of thick layers in an inverted architecture was performed to best model scalable processing. Device performance was strongly dependent on the introduction of either o-dichlorobenzene (DCB), 1,8-diiodooctane, or diphenyl ether cosolvent into the chloroform (CHCl3) solution, which were all shown to drastically improve the morphology. To understand the origin of these morphological changes as a result of the addition of the cosolvent, in situ studies with grazing-incidence X-ray scattering and optical reflection interferometry were performed. Use of any of the cosolvents decreases the domain size relative to the single solvent system and moved the drying mechanism away from what is likely liquid-liquid phase separation to solid-liquid phase separation driven by polymer aggregation. Comparing the CHCl3 + DCB cast films to the CHCl3-only cast films, we observed both the formation of small domains and an increase in crystallinity during the evaporation of DCB due to a high nucleation rate from supersaturation. This resulted in percolated bulk heterojunction networks that performed similarly well with a wide range of film thicknesses from 180 to 440 nm, making this system amenable to continuous roll-to-roll processing methods.
Collapse
Affiliation(s)
- Ian Pelse
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeff L Hernandez
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Sebastian Engmann
- Nanoscale Device Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrew A Herzing
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
17
|
Mohan M, John R, Nagarajan SM, Trivedi DR. Design, Synthesis and Characterization of N‐Substituted Heteroaromatics: DFT‐Studies and Organic Light Emitting Device Application. ChemistrySelect 2020. [DOI: 10.1002/slct.201903409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Makesh Mohan
- Optoelectronics Laboratory Department of Physics National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| | - Raganjali John
- Supramolecular Chemistry Laboratory Department of Chemistry National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| | - Satyanarayan M. Nagarajan
- Optoelectronics Laboratory Department of Physics National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| | - Darshak R. Trivedi
- Supramolecular Chemistry Laboratory Department of Chemistry National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| |
Collapse
|
18
|
Synthesis of random copolymer using Zig-Zag Naphthodithiophene for bulk Heterojunction polymer solar cell applications. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02161-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Li X, Huang G, Chen W, Jiang H, Qiao S, Yang R. Size Effect of Two-Dimensional Conjugated Space in Photovoltaic Polymers' Side Chain: Balancing Phase Separation and Charge Transport. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16670-16678. [PMID: 32126757 DOI: 10.1021/acsami.9b23499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various two-dimensional (2D) side-chain-substituted benzo(1,2-b:4,5-b')dithiophene (BDT) blocks have been used to construct donor polymers, whereas the size effect of the side chains on the photovoltaic performance was overlooked in the past few years. In this work, three size-varied conjugated spaces (benzene, naphthalene, and biphenyl) were introduced into the corresponding polymers PBDB-Ph, PBDB-Na, and PBDB-BPh. This space engineering has a significant impact on the extent of phase separation in the active layer which blended with the polymer and the acceptor ITCPTC and preserved the desired morphology. The varied space size in the side chains lead to distinct balance mobility ratios of holes to electrons (benzene, 0.21; naphthalene, 0.75; and biphenyl, 0.57). Finally, PBDB-Na-based polymer solar cells (PSCs) delivered the highest power conversion efficiency of 12.52% when compared to the PSC performances of PBDB-Ph (8.48%) and PBDB-BPh (11.35%). The method in tailoring the side chain structures could fabricate a balance between phase separation and charge transport, providing an enlightenment for the development of photovoltaic devices.
Collapse
Affiliation(s)
- Xiaoming Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Gongyue Huang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, People's Republic of China
| | - Huanxiang Jiang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People's Republic of China
| |
Collapse
|
20
|
Liu F, Xiao C, Feng G, Li C, Wu Y, Zhou E, Li W. End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6151-6158. [PMID: 31918543 DOI: 10.1021/acsami.9b22275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Side chains properties of conjugated polymers, such as the length, branching point, and heteroatom, have been widely studied for application in organic solar cells (OSCs), but the end groups of side chains have been rarely reported. In this work, we systematically explored a series of new conjugated polymers with distinct side-chain end groups for high performance non-fullerene OSCs. The key components for the polymers contained functionalized units as the end groups of side chains, such as Br, alkyloxy (OMe), and alkylthienyl (T) groups. We found that the new conjugated polymers have similar absorption spectra and crystallinity with the polymer without substitution, but they showed distinct photovoltaic performance in solar cells. When the polymer without functionalized units had a power conversion efficiency (PCE) of 9.94%, the modified conjugated polymers provided high PCEs of over 13% with significantly enhanced photocurrent and fill factors. In addition, they also show additive-free and highly stable characteristics. These results demonstrate that end group engineering on side chains is a promising strategy to design new conjugated polymers toward efficient OSCs.
Collapse
Affiliation(s)
- Feng Liu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Guitao Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science , Hebei University , Baoding 071002 , P. R. China
| | - Erjun Zhou
- Henan Institutes of Advanced Technology , Zhengzhou University , Zhengzhou 450003 , P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
21
|
Liu Q, Bottle SE, Sonar P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903882. [PMID: 31797456 DOI: 10.1002/adma.201903882] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable improvements in the performance of both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices due to the favorable features of the DPP unit, such as excellent planarity and better electron-withdrawing ability. Driven by this success, DPP-based materials are now being exploited in various other electronic devices including complementary circuits, memory devices, chemical sensors, photodetectors, perovskite solar cells, organic light-emitting diodes, and more. Recent developments in the use of DPP-based materials for a wide range of electronic devices are summarized, focusing on OFET, OPV, and newly developed devices with a discussion of device performance in terms of molecular engineering. Useful guidance for the design of future DPP-based materials and the exploration of more advanced applications is provided.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven E Bottle
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
22
|
An L, Tong J, Yang C, Zhao X, Wang X, Xia Y. Impact of alkyl side chain on the photostability and optoelectronic properties of indacenodithieno[3,2‐
b
]thiophene‐
alt
‐naphtho[1,2‐
c
:5,6‐
c
′]bis[1,2,5]thiadiazole medium bandgap copolymers. POLYM INT 2019. [DOI: 10.1002/pi.5936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lili An
- School of Chemical Engineering, Northwest Minzu UniversityKey Laboratory for Utility of Environment‐Friendly Composite Materials and Biomass in University of Gansu Province Lanzhou P. R. China
| | - Junfeng Tong
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| | - Chunyan Yang
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| | - Xu Zhao
- Institute of Soil, Fertilizer and Water‐saving AgricultureGansu Academy of Agricultural Sciences Lanzhou P. R. China
| | - Xunchang Wang
- CAS Key Laboratory of Bio‐based Materials, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences Qingdao P. R. China
| | - Yangjun Xia
- School of Materials Science and EngineeringLanzhou Jiaotong University Lanzhou P. R. China
| |
Collapse
|
23
|
Wang G, Swick SM, Matta M, Mukherjee S, Strzalka JW, Logsdon JL, Fabiano S, Huang W, Aldrich TJ, Yang T, Timalsina A, Powers-Riggs N, Alzola JM, Young RM, DeLongchamp DM, Wasielewski MR, Kohlstedt KL, Schatz GC, Melkonyan FS, Facchetti A, Marks TJ. Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt? J Am Chem Soc 2019; 141:13410-13420. [PMID: 31379156 DOI: 10.1021/jacs.9b03770] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Achieving efficient polymer solar cells (PSCs) requires a structurally optimal donor-acceptor heterojunction morphology. Here we report the combined experimental and theoretical characterization of a benzodithiophene-benzothiadiazole donor polymer series (PBTZF4-R; R = alkyl substituent) blended with the non-fullerene acceptor ITIC-Th and analyze the effects of substituent dimensions on blend morphology, charge transport, carrier dynamics, and PSC metrics. Varying substituent dimensions has a pronounced effect on the blend morphology with a direct link between domain purity, to some extent domain dimensions, and charge generation and collection. The polymer with the smallest alkyl substituent yields the highest PSC power conversion efficiency (PCE, 11%), reflecting relatively small, high-purity domains and possibly benefiting from "matched" donor polymer-small molecule acceptor orientations. The distinctive morphologies arising from the substituents are investigated using molecular dynamics (MD) simulations which reveal that substituent dimensions dictate a well-defined set of polymer conformations, in turn driving chain aggregation and, ultimately, the various film morphologies and mixing with acceptor small molecules. A straightforward energetic parameter explains the experimental polymer domain morphological trends, hence PCE, and suggests strategies for substituent selection to optimize PSC materials morphologies.
Collapse
Affiliation(s)
| | | | | | - Subhrangsu Mukherjee
- Material Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Joseph W Strzalka
- X-ray Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | | | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-60174 Norrköping , Sweden
| | | | | | | | | | | | | | | | - Dean M DeLongchamp
- Material Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | | | | | | | | | - Antonio Facchetti
- Flexterra Corporation , 8025 Lamon Avenue , Skokie , Illinois 60077 , United States
| | | |
Collapse
|
24
|
Zhang C, Liu Y, Tu J, Ming S, Xu X, Bo Z. Fluoro-Modulated Molecular Geometry in Diketopyrrolopyrrole-Based Low-Bandgap Copolymers for Tuning the Photovoltaic Performance. Front Chem 2019; 7:333. [PMID: 31157206 PMCID: PMC6530256 DOI: 10.3389/fchem.2019.00333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Fluorination of conjugated polymers is an effective strategy to tune the energy levels for obtaining high power conversion efficiency (PCE) in organic solar cells. In this work, we have developed fluoro-modulated molecular geometries in diketopyrrolopyrrole based low-bandgap copolymers. In these polymers, planar conformation can be locked by intramolecular non-covalent interaction (intramolecular supramolecular interaction) between the sulfur atoms and the introduced F atoms (F···S interaction). By varying the fluorinated moieties, such a planarity can be disturbed and the molecular geometry is tuned. As a result, the polymer' properties can be modulated, including the ultraviolet-visible absorption spectrum to become broaden, charge mobility to be enhanced, open-circuit voltage (V oc) and short-circuited current (J sc) to be elevated, and thus photovoltaic performance to be improved. The photovoltaic device based on PCFB, one of the fluorinated terpolymers, exhibited a high PCE near 8.5% with simultaneously enhanced V oc and J sc relative to the non-fluorinated one (PCB).
Collapse
Affiliation(s)
- Cai'e Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yahui Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jia Tu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shouli Ming
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
25
|
Cao X, Zhao K, Chen L, Liu J, Han Y. Conjugated polymer single crystals and nanowires. POLYMER CRYSTALLIZATION 2019. [DOI: 10.1002/pcr2.10064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and EngineeringHunan University of Science and Technology Xiangtan P. R. China
| | - Kefeng Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Jiangang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of Sciences Changchun P. R. China
| |
Collapse
|
26
|
Dang D, Yu D, Wang E. Conjugated Donor-Acceptor Terpolymers Toward High-Efficiency Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807019. [PMID: 30701605 DOI: 10.1002/adma.201807019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The development of conjugated alternating donor-acceptor (D-A) copolymers with various electron-rich and electron-deficient units in polymer backbones has boosted the power conversion efficiency (PCE) over 17% for polymer solar cells (PSCs) over the past two decades. However, further enhancements in PCEs for PSCs are still imperative to compensate their imperfect stability for fulfilling practical applications. Meanwhile development of these alternating D-A copolymers is highly demanding in creative design and syntheses of novel D and/or A monomers. In this regard, when being possible to adopt an existing monomer unit as a third component from its libraries, either a D' unit or an A' moiety, to the parent D-A type polymer backbones to afford conjugated D-A terpolymers, it will give a facile and cost-effective method to improve their light absorption and tune energy levels and also interchain packing synergistically. Moreover, the rationally controlled stoichiometry for these components in such terpolymers also provides access for further fine-tuning these factors, thus resulting in high-performance PSCs. Herein, based on their unique features, the recent progress of conjugated D-A terpolymers for efficient PSCs is reviewed and it is discussed how these factors influence their photovoltaic performance, for providing useful guidelines to design new terpolymers toward high-efficiency PSCs.
Collapse
Affiliation(s)
- Dongfeng Dang
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
- Sino-Danish Center for Education and Research (SDC), Aarhus, DK-8000, Denmark
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
27
|
Ma J, Zhao Z, Guo Y, Geng H, Sun Y, Tian J, He Q, Cai Z, Zhang X, Zhang G, Liu Z, Zhang D, Liu Y. Improving the Electronic Transporting Property for Flexible Field-Effect Transistors with Naphthalene Diimide-Based Conjugated Polymer through Branching/Linear Side-Chain Engineering Strategy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15837-15844. [PMID: 30964258 DOI: 10.1021/acsami.9b00531] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
n-Type organic/polymeric semiconductors with high electron mobilities are highly demanded for future flexible organic circuits. Except for developing a new conjugated backbone, recent studies show that side-chain engineering also plays an indispensable role in boosting the charge-transporting property. In this paper, we report a new polymer PNDI2T-DTD with a representative n-type naphthalene diimide (NDI)-bithiophene backbone for high-performance n-type flexible thin-film transistors through branching/linear side-chain engineering strategy. Serving as the flexible side chains, the linear/branching side-chain pattern is found to be effective in tuning the preaggregation behavior in solution and the packing ordering of polymeric chains, resulting in the improvement of thin-film crystallinity. The electron mobility of the thin film of PNDI2T-DTD on flexible substrates can reach 1.52 cm2 V-1 s-1, which is approximately five times higher than that of PNDI2T-DT with the same conjugated backbone and only branching alkyl chains.
Collapse
Affiliation(s)
- Jing Ma
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhiyuan Zhao
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yunlong Guo
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Hua Geng
- Department of Chemistry , Capital Normal University , Beijing 100048 , P. R. China
| | - Yanan Sun
- Department of Chemistry , Capital Normal University , Beijing 100048 , P. R. China
| | - Jianwu Tian
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Qiming He
- Institute for Molecular Engineering , The University of Chicago , 5640 South Ellis Avenue , Chicago , Illinois 60637 , United States
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Material Science & Engineering , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - Xisha Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Guanxin Zhang
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Zitong Liu
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Deqing Zhang
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yunqi Liu
- Beijing National Laboratories for Molecular Sciences, CAS Key Laboratories of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
28
|
Heintges GHL, Hendriks KH, Colberts FJM, Li M, Li J, Janssen RAJ. The influence of siloxane side-chains on the photovoltaic performance of a conjugated polymer. RSC Adv 2019; 9:8740-8747. [PMID: 35517690 PMCID: PMC9061709 DOI: 10.1039/c9ra00816k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022] Open
Abstract
The effect of gradually replacing the branched alkyl side chains of a diketopyrrolopyrrole (DPP) conjugated polymer by linear side chains containing branched siloxane end groups on the photovoltaic performance of blends of these polymers with a common fullerene acceptor is investigated. With an increasing proportion of siloxane side chains, the molecular weight and solubility of the polymers decreases. While the siloxane containing polymers exhibit a higher hole mobility in field-effect transistors, their performance in solar cells is less than the polymer with only alkyl sides chains. Using grazing-incidence wide-angle X-ray scattering, transmission electron microscopy, and fluorescence spectroscopy we identify two main reasons for the reduced performance of siloxane containing polymers in solar cells. The first one is a somewhat coarser phase-separated morphology with slightly wider polymer fibers. This is unexpected as often the fiber width is inversely correlated with polymer solubility. The second one is stronger non-radiative decay of the pristine polymers containing siloxane side chains.
Collapse
Affiliation(s)
- Gaël H L Heintges
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Institute for Materials Research (IMO-IMOMEC), Design & Synthesis of Organic Semiconductors (DSOS), Hasselt University Agoralaan, 3590 Diepenbeek Belgium
| | - Koen H Hendriks
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Dutch Institute for Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| | - Fallon J M Colberts
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Mengmeng Li
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Junyu Li
- DSM DMSC R&D Solutions P. O. Box 18 6160 MD Geleen The Netherlands
| | - René A J Janssen
- Molecular Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Dutch Institute for Fundamental Energy Research De Zaale 20 5612 AJ Eindhoven The Netherlands
| |
Collapse
|
29
|
Jeon SJ, Yu JE, Han YW, Suh IS, Moon DK. Structural optimization in the same polymer backbones for efficient polymer solar cells: Relationship between steric hindrance and molecular weight. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Wan C, Chen X, Lv F, Chen X, Meng L, Li L. Biaxial stretch-induced structural evolution of polyethylene gel films: Crystal melting recrystallization and tilting. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Shimizu S. aza-BODIPY synthesis towards vis/NIR functional chromophores based on a Schiff base forming reaction protocol using lactams and heteroaromatic amines. Chem Commun (Camb) 2019; 55:8722-8743. [DOI: 10.1039/c9cc03365c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Schiff base forming reaction of lactams and heteroaromatic amines led to creation of a new class of aza-BODIPY analogues as visible and near infrared functional chromophores.
Collapse
Affiliation(s)
- Soji Shimizu
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
32
|
Kang JS, Kang JG, Sohn Y, Leung KT. Blue-Light-Emitting Photostable Hybrid Films for High-Efficiency Large-Area Light Converter and Photonic Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44768-44775. [PMID: 30485064 DOI: 10.1021/acsami.8b17256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A blue fluorophore of Schiff base zinc complex is prepared by a hydrolysis-free solution-based synthetic method. Under ultraviolet (UV) excitation, the complex produces blue emission with a quantum yield ( Q) of 42.6% in methylene chloride and 24.0% in standalone powder form. Quantum mechanical calculations show that the blue emission is generated by the change in the chemical state of the ligand associated with the complexation with Zn cations. Thin films of Zn complexes incorporated in polymethylmethacrylate (PMMA) and cellulose acetate butyrate (CAB) polymers are also prepared by dispersing the complexes into the polymer matrices. These hybrid polymer films exhibit several notable features, particularly enhanced luminescence efficiency (with maximum Q of 85.8% for PMMA and 30.0% for CAB) and scalability for fabrication over a large area while retaining the original properties of the host polymers. Light-emitting diodes are also fabricated using the CAB hybrid thin films, and they show a Q of 43.2% with excellent photostability. The complex and its hybrid films demonstrate their great potential for such applications as UV-to-blue conversion devices in photoelectronics, solar-cell concentrators, solid-state lighting and display, and greenhouse agriculture.
Collapse
Affiliation(s)
- Jung-Soo Kang
- WATLab and Department of Chemistry , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Jun-Gill Kang
- Department of Chemistry , Chungnam National University , Daejeon 34134 , Republic of Korea
- ReSEAT Program , Korea Institute Science and Technology Information , Daejeon 34141 , Republic of Korea
| | - Youngku Sohn
- Department of Chemistry , Chungnam National University , Daejeon 34134 , Republic of Korea
| | - Kam Tong Leung
- WATLab and Department of Chemistry , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
33
|
Xia D, Li C, Li W. Crystalline Conjugated Polymers for Organic Solar Cells: From Donor, Acceptor to Single‐Component. CHEM REC 2018; 19:962-972. [DOI: 10.1002/tcr.201800131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/02/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Dongdong Xia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
34
|
Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Optimized Fibril Network Morphology by Precise Side-Chain Engineering to Achieve High-Performance Bulk-Heterojunction Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707353. [PMID: 29775511 DOI: 10.1002/adma.201707353] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/24/2018] [Indexed: 06/08/2023]
Abstract
A polymer fibril assembly can dictate the morphology framework, in forming a network structure, which is highly advantageous in bulk heterojunction (BHJ) organic solar cells (OSCs). A fundamental understanding of how to manipulate such a fibril assembly and its influence on the BHJ morphology and device performance is crucially important. Here, a series of donor-acceptor polymers, PBT1-O, PBT1-S, and PBT1-C, is used to systematically investigate the relationship between molecular structure, morphology, and photovoltaic performance. The subtle atom change in side chains is found to have profound effect on regulating electronic structure and self-assembly of conjugated polymers. Compared with PBT1-O and PBT1-S, PBT1-C-based OSCs show much higher photovoltaic performance with a record fill factor (FF) of 80.5%, due to the formation of optimal interpenetrating network morphology. Such a fibril network strategy is further extended to nonfullerene OSCs using a small-molecular acceptor, which shows a high efficiency of 12.7% and an FF of 78.5%. The results indicate the formation of well-defined fibrillar structure is a promising approach to achieving a favorable morphology in BHJ OSCs.
Collapse
Affiliation(s)
- Tao Liu
- Heeger Beijing Research and Development Center, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Lijun Huo
- Heeger Beijing Research and Development Center, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Sreelakshmi Chandrabose
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Kai Chen
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Guangchao Han
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Qi
- Heeger Beijing Research and Development Center, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xiangyi Meng
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dongjun Xie
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Justin M Hodgkiss
- MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6010, New Zealand
| | - Feng Liu
- School of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jing Wang
- School of Physics and Astronomy and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chuluo Yang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanming Sun
- Heeger Beijing Research and Development Center, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
35
|
Huang L, Wang G, Zhou W, Fu B, Cheng X, Zhang L, Yuan Z, Xiong S, Zhang L, Xie Y, Zhang A, Zhang Y, Ma W, Li W, Zhou Y, Reichmanis E, Chen Y. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices. ACS NANO 2018; 12:4440-4452. [PMID: 29678114 DOI: 10.1021/acsnano.8b00439] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.
Collapse
Affiliation(s)
- Liqiang Huang
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang 330031 , China
| | - Gang Wang
- School of Chemical and Biomolecular Engineering, School of Chemistry and Biochemistry, School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Weihua Zhou
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang 330031 , China
| | - Boyi Fu
- School of Chemical and Biomolecular Engineering, School of Chemistry and Biochemistry, School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Xiaofang Cheng
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang 330031 , China
| | - Lifu Zhang
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang 330031 , China
| | - Zhibo Yuan
- School of Chemical and Biomolecular Engineering, School of Chemistry and Biochemistry, School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Sixing Xiong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Lin Zhang
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Yuanpeng Xie
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang 330031 , China
| | - Andong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Youdi Zhang
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang 330031 , China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Weiwei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Elsa Reichmanis
- School of Chemical and Biomolecular Engineering, School of Chemistry and Biochemistry, School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Yiwang Chen
- College of Chemistry , Nanchang University , 999 Xuefu Avenue , Nanchang 330031 , China
| |
Collapse
|
36
|
Li Z, Yang D, Zhang T, Zhang J, Zhao X, Yang X. High-Performance Additive-/Post-Treatment-Free Nonfullerene Polymer Solar Cells via Tuning Molecular Weight of Conjugated Polymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1704491. [PMID: 29571214 DOI: 10.1002/smll.201704491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/03/2018] [Indexed: 06/08/2023]
Abstract
In recent years, rapid advances are achieved in polymer solar cells (PSCs) using nonfullerene small molecular acceptors. However, no research disclosing the influence of molecular weight (Mn ) of conjugated polymer on the nonfullerene device performance is reported. In this work, a series of polymers with different Mn s are synthesized to systematically investigate the connection between Mn and performance of nonfullerene devices for the first time. It is found that the device performance improves substantially as the Mn increases from 12 to 38 kDa and a power conversion efficiency (PCE) as high as 10.5% is realized. It has to be noted this PCE is achieved without using any additives and post-treatments, which is among the top efficiencies of additive- and post-treatment-free PSCs. Most importantly, the variation trend of the optimal active layer thickness and morphology is significantly different from the device with fullerene as acceptor. The findings clarify the effect of Mn on the performance of nonfullerene PSCs, which would benefit further efficiency improvement of nonfullerene PSCs.
Collapse
Affiliation(s)
- Zelin Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dalei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
| | - Tong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
| | - Xiaoli Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun, 130022, P. R. China
| |
Collapse
|
37
|
Song X, Fan M, Zhang K, Ding D, Chen W, Li Y, Yu L, Sun M, Yang R. Fusing Benzo[c][1,2,5]oxadiazole Unit with Thiophene for Constructing Wide-bandgap High-performance IDT-based Polymer Solar Cell Donor Material. Macromol Rapid Commun 2018; 39:e1700782. [PMID: 29436043 DOI: 10.1002/marc.201700782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/20/2018] [Indexed: 11/09/2022]
Abstract
Benzo[c][1,2,5]oxadiazole (BO) moiety is a strong electron-withdrawing unit compared to benzo[c][1,2,5]thiadiazole (BT). It is usually introduced as an acceptor to construct narrow band-gap donor-acceptor (D-A) materials. Herein, the π-extended conjugated moiety dithieno[3',2':3,4″;2,3″:5,6]benzo[1,2-c][1,2,5]oxadiazole (BOT) was adopted as the acceptor moiety to design D-A polymers. Considering the more extended π-conjugated molecular system of BOT compared to the BO unit, a narrower optical band-gap is expected for BOT-based IDT polymer (PIDT-BOT). Unexpectedly, the UV-vis absorption spectra of PIDT-BOT films display a great hypochromatic shift of about 60 nm compared to a BO-based analog (PIDT-BO). The optical band-gaps of the materials are broadened from 1.63 eV (PIDT-BO) to 2.00 eV (PIDT-BOT) accordingly. Although the range of external quantum efficiency (EQE) of PIDT-BOT-based polymer solar cell (PSC) devices is not as wide as for PIDT-BO-based devices, the EQE response intensities of the PIDT-BOT based device are evidently high. As a result, PSC devices based on PIDT-BOT reveal the best power conversion efficiency at 6.08%.
Collapse
Affiliation(s)
- Xin Song
- School of Material Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Meijie Fan
- School of Material Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Kaili Zhang
- School of Material Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Dakang Ding
- School of Material Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Weiye Chen
- School of Material Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Yonghai Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Mingliang Sun
- School of Material Science and Engineering, Ocean University of China, Qingdao, 266100, People's Republic of China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| |
Collapse
|
38
|
Liu D, Wang J, Gu C, Li Y, Bao X, Yang R. Stirring Up Acceptor Phase and Controlling Morphology via Choosing Appropriate Rigid Aryl Rings as Lever Arms in Symmetry-Breaking Benzodithiophene for High-Performance Fullerene and Fullerene-Free Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705870. [PMID: 29315853 DOI: 10.1002/adma.201705870] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Two series of new polymers with medium and wide bandgaps to match fullerene (PC71 BM) and fullerene-free 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC) acceptors are designed and synthesized, respectively. For constructing the key donor building blocks, the effective symmetry-breaking strategy is employed. Two common aromatic rings (thiophene and benzene) are chosen as one side substituted groups in the asymmetric benzodithiophene (BDT) monomers. In addition, another rigid benzene ring is inserted between aryl and thioether in the side chains, which results in larger twisting and destroying the aggregation and forming longer lever arms. As a result, highly ordered polymers (PBDTsTh-FBT and PBDTsPh-FBT) with strong aggregation properties can blend well with roughly spherical PC71 BM, while amorphous polymers (PBDTsThPh-BDD and PBDTsPhPh-BDD) with long and rigid aryl rings show good miscibility with elongated ITIC, and finally, both devices exhibit excellent power conversion efficiencies over 10%. Thus, it clearly shows that the asymmetric BDT unit is an excellent donor building block to construct highly efficient photovoltaic polymers. Meanwhile, this work demonstrates that it is not necessary that high-performance fullerene-free polymer solar cells (PSCs) require highly ordered microstructures in the blending films, different from the fullerene-based PSCs.
Collapse
Affiliation(s)
- Deyu Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyi Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Chunyang Gu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yonghai Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xichang Bao
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| |
Collapse
|
39
|
Feng G, Li J, Colberts FJM, Li M, Zhang J, Yang F, Jin Y, Zhang F, Janssen RAJ, Li C, Li W. “Double-Cable” Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells. J Am Chem Soc 2017; 139:18647-18656. [DOI: 10.1021/jacs.7b10499] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guitao Feng
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Junyu Li
- DSM DMSC R&D Solutions, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | - Fallon J. M. Colberts
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Mengmeng Li
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jianqi Zhang
- National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Fan Yang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Yingzhi Jin
- Biomolecular
and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - Fengling Zhang
- Biomolecular
and Organic Electronics, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
| | - René A. J. Janssen
- Molecular Materials and Nanosystems & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Cheng Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weiwei Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
40
|
Roy P, Jha A, Yasarapudi VB, Ram T, Puttaraju B, Patil S, Dasgupta J. Ultrafast bridge planarization in donor-π-acceptor copolymers drives intramolecular charge transfer. Nat Commun 2017; 8:1716. [PMID: 29170455 PMCID: PMC5700982 DOI: 10.1038/s41467-017-01928-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 10/24/2017] [Indexed: 11/09/2022] Open
Abstract
Donor-π-acceptor conjugated polymers form the material basis for high power conversion efficiencies in organic solar cells. Large dipole moment change upon photoexcitation via intramolecular charge transfer in donor-π-acceptor backbone is conjectured to facilitate efficient charge-carrier generation. However, the primary structural changes that drive ultrafast charge transfer step have remained elusive thereby limiting a rational structure-function correlation for such copolymers. Here we use structure-sensitive femtosecond stimulated Raman spectroscopy to demonstrate that π-bridge torsion forms the primary reaction coordinate for intramolecular charge transfer in donor-π-acceptor copolymers. Resonance-selective Raman snapshots of exciton relaxation reveal rich vibrational dynamics of the bridge modes associated with backbone planarization within 400 fs, leading to hot intramolecular charge transfer state formation while subsequent cooling dynamics of backbone-centric modes probe the charge transfer relaxation. Our work establishes a phenomenological gating role of bridge torsions in determining the fundamental timescale and energy of photogenerated carriers, and therefore opens up dynamics-based guidelines for fabricating energy-efficient organic photovoltaics.
Collapse
Affiliation(s)
- Palas Roy
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Ajay Jha
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Vineeth B Yasarapudi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Thulasi Ram
- Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Boregowda Puttaraju
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Jyotishman Dasgupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, India.
| |
Collapse
|
41
|
Chochos CL, Katsouras A, Drakopoulou S, Miskaki C, Krassas M, Tzourmpakis P, Kakavelakis G, Sprau C, Colsmann A, Squeo BM, Gregoriou VG, Kymakis E, Avgeropoulos A. Effects of alkyl side chains positioning and presence of fused aromatic units in the backbone of low-bandgap diketopyrrolopyrrole copolymers on the optoelectronic properties of organic solar cells. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christos L. Chochos
- Department of Materials Science Engineering; University of Ioannina; 45110 Greece
- Advent Technologies SA, Patras Science Park, Stadiou Street; Platani-Rio Patra Greece
| | - Athanasios Katsouras
- Department of Materials Science Engineering; University of Ioannina; 45110 Greece
| | - Sofia Drakopoulou
- Department of Materials Science Engineering; University of Ioannina; 45110 Greece
| | - Christina Miskaki
- Department of Materials Science Engineering; University of Ioannina; 45110 Greece
| | - Miron Krassas
- Center of Materials Technology and Photonics and Electrical Engineering Department, School of Applied Technology; Technological Educational Institute (TEI) of Crete; Heraklion 71004 Greece
| | - Pavlos Tzourmpakis
- Center of Materials Technology and Photonics and Electrical Engineering Department, School of Applied Technology; Technological Educational Institute (TEI) of Crete; Heraklion 71004 Greece
| | - George Kakavelakis
- Center of Materials Technology and Photonics and Electrical Engineering Department, School of Applied Technology; Technological Educational Institute (TEI) of Crete; Heraklion 71004 Greece
| | - Christian Sprau
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
| | - Alexander Colsmann
- Light Technology Institute, Karlsruhe Institute of Technology (KIT), Engesserstrasse 13; Karlsruhe 76131 Germany
| | - Benedetta M. Squeo
- Advent Technologies SA, Patras Science Park, Stadiou Street; Platani-Rio Patra Greece
| | - Vasilis G. Gregoriou
- Advent Technologies SA, Patras Science Park, Stadiou Street; Platani-Rio Patra Greece
- National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue; Athens 11635 Greece
| | - Emmanuel Kymakis
- Center of Materials Technology and Photonics and Electrical Engineering Department, School of Applied Technology; Technological Educational Institute (TEI) of Crete; Heraklion 71004 Greece
| | | |
Collapse
|
42
|
Zhong W, Li K, Cui J, Gu T, Ying L, Huang F, Cao Y. Efficient All-Polymer Solar Cells Based on Conjugated Polymer Containing an Alkoxylated Imide-Functionalized Benzotriazole Unit. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Wenkai Zhong
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kang Li
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jing Cui
- Sinopec Shanghai
Research Institute of Petrochemical Technology, Shanghai 201208, China
| | - Tianyi Gu
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Lei Ying
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Fei Huang
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yong Cao
- Institute
of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials
and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
43
|
Ekiz S, Gobalasingham NS, Thompson BC. Exploring the influence of acceptor content on semi-random conjugated polymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Seyma Ekiz
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; Los Angeles California 90089-1661
| | - Nemal S. Gobalasingham
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; Los Angeles California 90089-1661
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; Los Angeles California 90089-1661
| |
Collapse
|
44
|
Liu G, Weng C, Yin P, Tan S, Shen P. Impact of the number of fluorine atoms on crystalline, physicochemical and photovoltaic properties of low bandgap copolymers based on 1,4-dithienylphenylene and diketopyrrolopyrrole. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Heintges GHL, Leenaers PJ, Janssen RAJ. The effect of side-chain substitution and hot processing on diketopyrrolopyrrole-based polymers for organic solar cells. JOURNAL OF MATERIALS CHEMISTRY. A 2017; 5:13748-13756. [PMID: 29308201 PMCID: PMC5735362 DOI: 10.1039/c7ta01740e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.
Collapse
Affiliation(s)
- Gaël H L Heintges
- Molecular Materials and Nanosystems , Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands .
- Institute for Materials Research (IMO-IMOMEC) , Design & Synthesis of Organic Semiconductors (DSOS) , Hasselt University , Agoralaan, 3590 Diepenbeek , Belgium
| | - Pieter J Leenaers
- Molecular Materials and Nanosystems , Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands .
| | - René A J Janssen
- Molecular Materials and Nanosystems , Institute for Complex Molecular Systems , Eindhoven University of Technology , P.O. Box 513 , 5600 MB Eindhoven , The Netherlands .
- Dutch Institute for Fundamental Energy Research , De Zaale 20 , 5612 AJ Eindhoven , The Netherlands
| |
Collapse
|
46
|
Lee SM, Lee HR, Han AR, Lee J, Oh JH, Yang C. High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15652-15661. [PMID: 28429591 DOI: 10.1021/acsami.7b04014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing semiconducting polymers that exhibit both strong charge transport capability via highly ordered structures and good processability in environmentally benign solvents remains a challenge. Given that furan-based materials have better solubility in various solvents than analogous thiophene-based materials, we have synthesized and characterized furanyl-diketopyrrolopyrrole polymer (PFDPPTT-Si) together with its thienyl-diketopyrrolopyrrole-based analogue (PTDPPTT-Si) to understand subtle changes induced by the use of furan instead of thiophene units. PTDPPTT-Si films processed in common chlorinated solvent exhibit a higher hole mobility (3.57 cm2 V-1 s-1) than PFDPPTT-Si films (2.40 cm2 V-1 s-1) under the same conditions; this greater hole mobility is a result of tightly aggregated π-stacking structures in PTDPPTT-Si. By contrast, because of its enhanced solubility, PFDPPTT-Si using chlorine-free solution processing results in a device with higher mobility (as high as 1.87 cm2 V-1 s-1) compared to that of the corresponding device fabricated using PTDPPTT-Si. This mobility of 1.87 cm2 V-1 s-1 represents the highest performances among furan-containing polymers reported to the best of our knowledge for nonchlorinated solvents. Our study demonstrates an important step toward environmentally compatible electronics, and we expect the results of our study to reinvigorate the furan-containing semiconductors field.
Collapse
Affiliation(s)
- Sang Myeon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Hae Rang Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - A-Reum Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Junghoon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Joon Hak Oh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| |
Collapse
|
47
|
Grand C, Zajaczkowski W, Deb N, Lo CK, Hernandez JL, Bucknall DG, Müllen K, Pisula W, Reynolds JR. Morphology Control in Films of Isoindigo Polymers by Side-Chain and Molecular Weight Effects. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13357-13368. [PMID: 28379681 DOI: 10.1021/acsami.6b16502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The performance of devices relying on organic electronic materials, such as organic field-effect transistors (OFET) and organic photovoltaics (OPV), is strongly correlated to the morphology of the conjugated material in thin films. For instance, several factors such as polymer solubility, weak intermolecular forces between polymers and fullerene derivatives, and film drying time impact phase separation in the active layer of a bulk heterojunction OPV device. In an effort to probe the influence of polymer assembly on morphology of polymer thin films and phase separation with fullerene derivatives, five terthiophene-alt-isoindigo copolymers were synthesized with alkyl side-chains of varying lengths and branching on the terthiophene unit. These P[T3(R)-iI] polymers were designed to have similar optoelectronic properties but different solubilities in o-dichlorobenzene and were predicted to have different tendencies for crystallization. All polymers with linear alkyl chains exhibit similar thin film morphologies as investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM). The main differences in electronic and morphological properties arise when P[T3(R)-iI] is substituted with branched 2-ethylhexyl (2EH) side-chains. The bulky 2EH substituents lead to a blue-shifted absorption, a lower ionization potential, and reduced ordering in polymer thin films. The five P[T3-iI] derivatives span hole mobilities from 1.5 × 10-3 to 2.8 × 10-2 cm2 V-1 s-1 in OFET devices. In OPV devices, the 2EH-substituted polymers yield open-circuit voltages of 0.88 V in BHJ devices yet low short-circuit currents of 0.8 mA cm-2, which is explained by the large phase separation observed by AFM in blends of P[T3(2EH)-iI] with PC71BM. In these P[T3(R)-iI] systems, the propensity for the polymers to self-assemble prior to aggregation of PC71BM molecules was key to achieving fine phase separation and increased short-circuit currents, eventually resulting in power conversion efficiencies of 5% in devices processed using a single solvent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Klaus Müllen
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
| | - Wojciech Pisula
- Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology , Zeromskiego 116, 90-924 Lodz, Poland
| | | |
Collapse
|
48
|
Kini GP, Oh S, Abbas Z, Rasool S, Jahandar M, Song CE, Lee SK, Shin WS, So WW, Lee JC. Effects on Photovoltaic Performance of Dialkyloxy-benzothiadiazole Copolymers by Varying the Thienoacene Donor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12617-12628. [PMID: 28317382 DOI: 10.1021/acsami.6b12670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of four donor-acceptor alternating copolymers based on dialkyloxy-benzothiadiazole (ROBT) as an acceptor and thienoacenes as donor units were synthesized and tested for polymer solar cells (PSCs). These new polymers had different donor units with varied electron-donating ability (thieno[3,2-b]thiophene (TT), dithieno[3,2-b:2',3'-d]thiophene (DTT), benzo[1,2-b:4,5-b']dithiophene (BDT), and naphtha[1,2-b:5,6-b']dithiophene (NDT)) in the polymer backbone. To understand the effect of these thienoacenes on the optoelectronic and photovoltaic properties of the copolymers, we systematically analyzed and compared the energy levels, crystallinity, morphology, charge recombination, and charge carrier mobility in the resulting polymers. In this series, optimized photovoltaic cells yielded power conversion efficiency (PCE) values of 6.25% (TT), 9.02% (DTT), 6.34% (BDT), and 2.29% (NDT) with different thienoacene donors. The introduction of DTT into the thienoacene-ROBT polymer enabled the generation of well-ordered molecular packings with a π-π stacking distance of 3.72 Å, high charge mobilities, and an interconnected nanofibrillar morphology in blend films. As a result, the PSC employing the polymer with DTT exhibited the highest PCE of 9.02%. Thus, our structure-property relationship studies of thienoacene-ROBT-based polymers emphasize that the molecular design of the polymers must be carefully optimized to develop high efficient PSCs. These findings will help us to understand the impact of the donor thienoacene on the optoelectronic and photovoltaic performance of polymers.
Collapse
Affiliation(s)
- Gururaj P Kini
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Sora Oh
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Zaheer Abbas
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Shafket Rasool
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Muhammad Jahandar
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Chang Eun Song
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Sang Kyu Lee
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Won Suk Shin
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Won-Wook So
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| | - Jong-Cheol Lee
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST) , Daejeon 305-350, Republic of Korea
| |
Collapse
|
49
|
Li Y, Song S, Park SY, Kim JY, Woo HY. Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains. Sci China Chem 2017. [DOI: 10.1007/s11426-016-0520-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Gao W, Luo Q, Wang J, Lin Y, Tang C, Dou J, Tan H, Zheng Q, Ma CQ, Cui Z. Peripherally diketopyrrolopyrrole-functionalized dendritic oligothiophenes – synthesis, molecular structure, properties and applications. Polym Chem 2017. [DOI: 10.1039/c6py02161a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Structure defined DPP functionalized conjugated thiophene dendrimers with a narrow optical band gap and a high TPA cross section are reported.
Collapse
|