1
|
Kaium MG, Han SS, Lee CW, Jung Y. Calcium Alginate as an Active Device Component for Light-Triggered Degradation of 2D MoS 2-Based Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39673-39682. [PMID: 39022803 DOI: 10.1021/acsami.4c09275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Transient electronics technology has enabled the programmed disintegration of functional devices, paving the way for environmentally sustainable management of electronic wastes as well as facilitating the exploration of novel device concepts. While a variety of inorganic and/or organic materials have been employed as media to introduce transient characteristics in electronic devices, they have been mainly limited to function as passive device components. Herein, we report that calcium (Ca) alginate, a natural biopolymer, exhibits multifunctionalities of introducing light-triggered transient characteristics as well as constituting active components in electronic devices integrated with two-dimensional (2D) molybdenum disulfide (MoS2) layers. Ca2+ ions-based alginate electrolyte films are prepared through hydrolysis reactions and are subsequently incorporated with riboflavin, a natural photosensitizer, for the light-driven dissolution of 2D MoS2 layers. The alginate films exhibit strain-sensitive triboelectricity, confirming the presence of abundant mobile Ca2+ ions, which enables them to be active components of 2D MoS2 field-effect transistors (FETs) functioning as electrolyte top-gates. The alginate-integrated 2D MoS2 FETs display intriguing transient characteristics of spontaneous degradation upon ultraviolet-to-visible light illumination as well as water exposure. Such transient characteristics are demonstrated even in ambient conditions with natural sunlight, highlighting the versatility of the developed approach. This study emphasizes a relatively unexplored aspect of combining naturally abundant polymers with emerging near atom-thickness semiconductors toward realizing unconventional and transformative device functionalities.
Collapse
Affiliation(s)
- Md Golam Kaium
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Chung Won Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Yeonwoong Jung
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
2
|
Qi J, Yang S, Jiang Y, Cheng J, Wang S, Rao Q, Jiang X. Liquid Metal-Polymer Conductor-Based Conformal Cyborg Devices. Chem Rev 2024; 124:2081-2137. [PMID: 38393351 DOI: 10.1021/acs.chemrev.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Gallium-based liquid metal (LM) exhibits exceptional properties such as high conductivity and biocompatibility, rendering it highly valuable for the development of conformal bioelectronics. When combined with polymers, liquid metal-polymer conductors (MPC) offer a versatile platform for fabricating conformal cyborg devices, enabling functions such as sensing, restoration, and augmentation within the human body. This review focuses on the synthesis, fabrication, and application of MPC-based cyborg devices. The synthesis of functional materials based on LM and the fabrication techniques for MPC-based devices are elucidated. The review provides a comprehensive overview of MPC-based cyborg devices, encompassing their applications in sensing diverse signals, therapeutic interventions, and augmentation. The objective of this review is to serve as a valuable resource that bridges the gap between the fabrication of MPC-based conformal devices and their potential biomedical applications.
Collapse
Affiliation(s)
- Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China
| | - Shuaijian Yang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P. R. China
| | - Jinhao Cheng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qingyan Rao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering. Southern University of Science and Technology, No. 1088, Xueyuan Rd, Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
3
|
Istif E, Ali M, Ozuaciksoz EY, Morova Y, Beker L. Near-Infrared Triggered Degradation for Transient Electronics. ACS OMEGA 2024; 9:2528-2535. [PMID: 38250408 PMCID: PMC10795112 DOI: 10.1021/acsomega.3c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Electronics that disintegrate after stable operation present exciting opportunities for niche medical implant and consumer electronics applications. The disintegration of these devices can be initiated due to their medium conditions or triggered by external stimuli, which enables on-demand transition. An external stimulation method that can penetrate deep inside the body could revolutionize the use of transient electronics as implantable medical devices (IMDs), eliminating the need for secondary surgery to remove the IMDs. We report near-infrared (NIR) light-triggered transition of metastable cyclic poly(phthalaldehyde) (cPPA) polymers. The transition of the encapsulation layer is achieved through the conversion of NIR light to heat, facilitated by bioresorbable metals, such as molybdenum (Mo). We reported a rapid degradation of cPPA encapsulation layer about 1 min, and the rate of degradation can be controlled by laser power and exposure time. This study offers a new approach for light triggerable transient electronics for IMDs due to the deep penetration depth of NIR light through to organs and tissues.
Collapse
Affiliation(s)
- Emin Istif
- Department
of Molecular Biology and Genetics, Faculty of Engineering and Natural
Science, Kadir Has University, Istanbul 34083, Turkey
| | - Mohsin Ali
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Elif Yaren Ozuaciksoz
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Yagız Morova
- Koç
University Surface Science and Technology Center (KUYTAM), Rumelifeneri, Istanbul 34450, Turkey
| | - Levent Beker
- Department
of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
- Nanofabrication
and Nanocharacterization Centre for Scientific and Technological Advanced
Research, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| |
Collapse
|
4
|
Lu X, Zhang X, Zhang C, Zhang X. Cyclic Polyesters with Closed-Loop Recyclability from A New Chemically Reversible Alternating Copolymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306072. [PMID: 38037295 PMCID: PMC10811513 DOI: 10.1002/advs.202306072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Indexed: 12/02/2023]
Abstract
Polyesters with both cyclic topology and chemical recyclability are attractive. Here, the alternating copolymerization of cyclic anhydride and o-phthalaldehyde to synthesize a series of cyclic and recyclable polyesters are reported for the first time. Besides readily available monomers, the copolymerization is carried out at 25 °C, uses common Lewis/Brønsted acids as catalysts, and achieves high yields within 1 h. The resulting polyesters possess well-defined alternating sequences, high-purity cyclic topology, and tunable structures using distinct two monomer sets. Of interest, the copolymerization manifests obvious chemical reversibility as revealed by kinetic and thermodynamic studies, making the unprecedented polyesters easy to recycle to their distinct two monomers in a closed loop at high temperatures. This work furnishes a facile and efficient method to synthesize cyclic polyesters with closed-loop recyclability.
Collapse
Affiliation(s)
- Xiaoxian Lu
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xun Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel TechnologyInternational Research Center for X PolymersDepartment of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| |
Collapse
|
5
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Grolman E, Sirianni QEA, Dunmore-Buyze J, Cruje C, Drangova M, Gillies ER. Depolymerizing self-immolative polymeric lanthanide chelates for vascular imaging. Acta Biomater 2023; 169:530-541. [PMID: 37507034 DOI: 10.1016/j.actbio.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Medical imaging is widely used clinically and in research to understand disease progression and monitor responses to therapies. Vascular imaging enables the study of vascular disease and therapy, but exogenous contrast agents are generally needed to distinguish the vasculature from surrounding soft tissues. Lanthanide-based agents are commonly employed in MRI, but are also of growing interest for micro-CT, as the position of their k-edges allows them to provide enhanced contrast and also to be employed in dual-energy micro-CT, a technique that can distinguish contrast-enhanced blood vessels from tissues such as bone. Small molecule Gd3+ chelates are available, but are excreted too rapidly. At the same time, a lack of rapid clearance from the body for long-circulating agents presents toxicity concerns. To address these challenges, we describe here the use of self-immolative polymers for the development of new degradable chelates that depolymerize completely from end-to-end following the cleavage of a single end-cap from the polymer terminus. We demonstrate that tuning the end-cap allows the rate of depolymerization to be controlled, while tuning the polymer length enables the polymer to exhibit long circulation times in the blood of mice. After successfully providing one hour of blood contrast, depolymerization led to excretion of the resulting small molecule chelates into the bladder. Despite the high doses required for micro-CT, the agents were well tolerated in mice. Thus, these self-immolative polymeric chelates provide a new platform for the development of medical imaging contrast agents. STATEMENT OF SIGNIFICANCE: Vascular imaging is used clinically to diagnose and monitor vascular disease and in research to understand the progression of disease and study responses to new therapies. For techniques such as magnetic resonance imaging and x-ray computed tomography (CT), long circulating contrast agents are needed to differentiate the vasculature from surrounding tissues. However, if these agents are not rapidly excreted from the body, they can lead to toxicity. We present here a new polymeric system that can chelate hundreds of lanthanide ions for imaging contrast and can circulate for one hour in the blood, but then after end-cap cleavage breaks down completely into small molecules for excretion. The successful application of this system in micro-CT in mice is demonstrated.
Collapse
Affiliation(s)
- Eric Grolman
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Quinton E A Sirianni
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Joy Dunmore-Buyze
- Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Charmainne Cruje
- Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada
| | - Maria Drangova
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5C1, Canada.
| | - Elizabeth R Gillies
- School of Biomedical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada; Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B9, Canada.
| |
Collapse
|
7
|
Tu M, Davydovich O, Mei B, Singh PK, Grest GS, Schweizer KS, O’Connor TC, Schroeder CM. Unexpected Slow Relaxation Dynamics in Pure Ring Polymers Arise from Intermolecular Interactions. ACS POLYMERS AU 2023; 3:307-317. [PMID: 37576713 PMCID: PMC10416323 DOI: 10.1021/acspolymersau.2c00069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023]
Abstract
Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring-ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring-ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring-ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.
Collapse
Affiliation(s)
- Michael
Q. Tu
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Oleg Davydovich
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Baicheng Mei
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Piyush K. Singh
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Gary S. Grest
- Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kenneth S. Schweizer
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Thomas C. O’Connor
- Department
of Materials Science and Engineering, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Charles M. Schroeder
- Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science
and Technology, Department of Chemistry, Department of Materials Science and Engineering and Materials Research
Laboratory, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Dutta A, Cheng H. Pathway of transient electronics towards connected biomedical applications. NANOSCALE 2023; 15:4236-4249. [PMID: 36688506 DOI: 10.1039/d2nr06068j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transient electronic devices have shown promising applications in hardware security and medical implants with diagnosing therapeutics capabilities since their inception. Control of the device transience allows the device to "dissolve at will" after its functional operation, leading to the development of on-demand transient electronics. This review discusses the recent developments and advantages of triggering strategies (e.g., electrical, thermal, ultrasound, and optical) for controlling the degradation of on-demand transient electronics. We also summarize bioresorbable sensors for medical diagnoses, including representative applications in electrophysiology and neurochemical sensing. Along with the profound advancements in medical diagnosis, the commencement of therapeutic systems such as electrical stimulation and drug delivery for the biomedical or medical implant community has also been discussed. However, implementing a transient electronic system in real healthcare infrastructure is still in its infancy. Many critical challenges still need to be addressed, including strategies to decouple multimodal sensing signals, dissolution selectivity in the presence of multiple stimuli, and a complete sensing-stimulation closed-loop system. Therefore, the review discusses future opportunities in transient decoupling sensors and robust transient devices, which are selective to a particular stimulus and act as hardware-based passwords. Recent advancements in closed-loop controller-enabled electronics have also been analyzed for future opportunities of using data-driven artificial intelligence-powered controllers in fully closed-loop transient systems.
Collapse
Affiliation(s)
- Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| |
Collapse
|
9
|
Yu I, Quyen VT, Ko J, Lee DS, Jeon DY, Joo Y. Stable water-floating transistor with recyclability. MATERIALS HORIZONS 2023; 10:491-498. [PMID: 36218055 DOI: 10.1039/d2mh00733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Electronic wastes from used devices containing environmentally hazardous materials are an immediate concern for the sustainable development of electronic and sensor industries. To address this, a highly controllable and dedicated electronic module should be devised, that allows systematic recollection of as many components from the original device for their reuse. Here, we report the total recycling of an electronic device, exploiting a water-floating system that is based on a water-compatible semiconductor as an active material. To do so, we developed a system for stable electronics on the water surface. The floating semiconductor features a tunable morphology on the water surface, and is constructed into a water-floating gated transistor (WFGT) and water floating sensor (WFS), exhibiting an on-current of 4.2 × 10-5 A and an on/off ratio of ∼103. The device showed high recyclability over 25 cycles, with an efficiency of 99 ± 0.9% within 1 cycle and 92 ± 0.7% within 30 cycles. Furthermore, the device was also found to be stable for over 10 days. Our system has the potential to be an eco-friendly, cost-effective, and scalable device that is fully recyclable, which can be applied in areas once thought of as being beyond the scope of current semiconductor technology.
Collapse
Affiliation(s)
- Ilhwan Yu
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea.
| | - Vu Thi Quyen
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea.
| | - Jaehyoung Ko
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea.
- Department of Chemical and Biomolecular Engineering and KAIST Institute for Nano Century, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Dong Su Lee
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea.
| | - Dae-Young Jeon
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea.
| | - Yongho Joo
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea.
- Division of Nanoscience and Technology, KIST School, Korea University of Science and Technology, Wanju-gun, Jeonbuk 55324, Republic of Korea
| |
Collapse
|
10
|
Shin YK, Shin Y, Lee JW, Seo MH. Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications. BIOSENSORS 2022; 12:952. [PMID: 36354461 PMCID: PMC9687959 DOI: 10.3390/bios12110952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The interest in biodegradable pressure sensors in the biomedical field is growing because of their temporary existence in wearable and implantable applications without any biocompatibility issues. In contrast to the limited sensing performance and biocompatibility of initially developed biodegradable pressure sensors, device performances and functionalities have drastically improved owing to the recent developments in micro-/nano-technologies including device structures and materials. Thus, there is greater possibility of their use in diagnosis and healthcare applications. This review article summarizes the recent advances in micro-/nano-structured biodegradable pressure sensor devices. In particular, we focus on the considerable improvement in performance and functionality at the device-level that has been achieved by adapting the geometrical design parameters in the micro- and nano-meter range. First, the material choices and sensing mechanisms available for fabricating micro-/nano-structured biodegradable pressure sensor devices are discussed. Then, this is followed by a historical development in the biodegradable pressure sensors. In particular, we highlight not only the fabrication methods and performances of the sensor device, but also their biocompatibility. Finally, we intoduce the recent examples of the micro/nano-structured biodegradable pressure sensor for biomedical applications.
Collapse
Affiliation(s)
- Yoo-Kyum Shin
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| | - Yujin Shin
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Jung Woo Lee
- Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Korea
| | - Min-Ho Seo
- Department of Information Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si 50612, Gyeongsangnam-do, Korea
| |
Collapse
|
11
|
Deng J, Bailey S, Jiang S, Ober CK. Modular Synthesis of Phthalaldehyde Derivatives Enabling Access to Photoacid Generator-Bound Self-Immolative Polymer Resists with Next-Generation Photolithographic Properties. J Am Chem Soc 2022; 144:19508-19520. [PMID: 36208192 DOI: 10.1021/jacs.2c08202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The resolution, line edge roughness, and sensitivity (RLS) trade-off has fundamentally limited the lithographic performance of chemically amplified resists. Production of next-generation transistors using extreme ultraviolet (EUV) lithography depends on a solution to this problem. A resist that simultaneously increases the effective reaction radius of its photogenerated acids while limiting their diffusion radius should provide an elegant solution to the RLS barrier. Here, we describe a generalized synthetic approach to phthalaldehyde derivatives using sulfur(VI) fluoride exchange click chemistry that dramatically expands usable chemical space by enabling virtually any non-ionic photoacid generator (PAG) to be tethered to phthalaldehyde. The resulting polymers represent the first ever PAG-tethered self-immolative resists in an architecture that simultaneously displays high contrast, extraordinary sensitivity, and low roughness under EUV exposure. We believe this class of resists will ultimately enable researchers to overcome the RLS trade-off.
Collapse
Affiliation(s)
- Jingyuan Deng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sean Bailey
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.,Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
12
|
Hansen-Felby M, Pedersen SU, Daasbjerg K. Electrocatalytic Depolymerization of Self-Immolative Poly(Dithiothreitol) Derivatives. Molecules 2022; 27:6292. [PMID: 36234828 PMCID: PMC9573698 DOI: 10.3390/molecules27196292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
We report the use of electrogenerated anthraquinone radical anion (AQ•-) to trigger fast catalytic depolymerization of polymers derived from poly(dithiothreitol) (pDTT)-a self-immolative polymer (SIP) with a backbone of dithiothreitols connected with disulfide bonds and end-capped via disulfide bonds to pyridyl groups. The pDTT derivatives studied include polymers with simple thiohexyl end-caps or modified with AQ or methyl groups by Steglich esterification. All polymers were shown to be depolymerized using catalytic amounts of electrons delivered by AQ•-. For pDTT, as little as 0.2 electrons per polymer chain was needed to achieve complete depolymerization. We hypothesize that the reaction proceeds with AQ•- as an electron carrier (either molecularly or as a pendant group), which transfers an electron to a disulfide bond in the polymer in a dissociative manner, generating a thiyl radical and a thiolate. The rapid and catalytic depolymerization is driven by thiyl radicals attacking other disulfide bonds internally or between pDTT chains in a chain reaction. Electrochemical triggering works as a general method for initiating depolymerization of pDTT derivatives and may likely also be used for depolymerization of other disulfide polymers.
Collapse
Affiliation(s)
- Magnus Hansen-Felby
- Department of Chemistry and Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Steen U. Pedersen
- Department of Chemistry and Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Department of Chemistry and Interdiciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Novo Nordisk Foundation CO2 Research Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Wang K, Liu J, El-Khouly ME, Cui X, Che Q, Zhang B, Chen Y. Water-Soluble Polythiophene-Conjugated Polyelectrolyte-Based Memristors for Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36987-36997. [PMID: 35943132 DOI: 10.1021/acsami.2c04752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The key to protect sensitive information stored in electronic memory devices from disclosure is to develop transient electronic devices that are capable of being destroyed quickly in an emergency. By using a highly water-soluble polythiophene-conjugated polyelectrolyte PTT-NMI+Br- as an active material, which was synthesized by the reaction of poly[thiophene-alt-4,4-bis(6-bromohexyl)-4H-cyclopenta(1,2-b:5,4-b')dithiophene] with N-methylimidazole, a flexible electronic device, Al/PTT-NMI+Br-/ITO-coated PET (ITO: indium tin oxide; PET: polyethylene terephthalate), is successfully fabricated. This device shows a typical nonvolatile rewritable resistive random access memory (RRAM) effect at a sweep voltage range of ±3 V and a history-dependent memristive switching performance at a small sweep voltage range of ±1 V. Both the learning/memorizing functions and the synaptic potentiation/depression of biological systems have been emulated. The switching mechanism for the PTT-NMI+Br--based electronic device may be highly associated with ion migration under bias. Once water is added to this device, it will be destructed rapidly within 20 s due to the dissolution of the active layer. This device is not only a typical transient device but can also be used for constructing conventional memristors with long-term stability after electronic packaging. Furthermore, the soluble active layer in the device can be easily recycled from its aqueous solution and reused for fabricating new transient memristors. This work offers a train of new thoughts for designing and constructing a neuromorphic computing system that can be quickly destroyed with water in the near future.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiaxuan Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Xiaosheng Cui
- Shanghai Institute of Space Propulsion, 801 Minhang Wanfang Road, Shanghai 201112, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
14
|
Wei Z, Ma X, Zhao H, Wu X, Guo Q. Accelerable Self-Sintering of Solvent-Free Molybdenum/Wax Biodegradable Composites for Multimodally Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33472-33481. [PMID: 35830227 DOI: 10.1021/acsami.2c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biodegradable conductive composites are key materials or components for printable transient electronics that can be fabricated in a low-cost and high-efficiency manner, thereby boosting their wide applications in biomedical engineering, hardware security, and environmental-friendly electronics. Continuous efforts in this area still lie in the development of strategies for highly conductive, safe, and reliable biodegradable conductive composite materials and devices. This paper introduces molybdenum/wax composites for multimodally printable transient electronics in which multiple transience modes including dissolution-induced degradation and thermally triggered degradation are available. Systematic experiments demonstrate several advantages and unique properties of this material system, including solvent-free fabrication, self-sintering behavior, and long-term and high conductivity via accelerable self-sintering treatment and rehealing capabilities. Notably, the immersion of molybdenum/wax composites in phosphate buffer solution can provide both positive effects (accelerated self-sintering-dominated) and negative effects (degradation-dominated) on their electrical conductivities. Mechanism analyses reveal the basis for balancing the degradation and accelerated self-sintering processes. The presented demonstrations foreshadow opportunities of the developed molybdenum/wax composites in rehealable electronics, on-demand smart transient electronics with multiple transience modes, and many other related unusual applications.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xiao Ma
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Haonan Zhao
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Xiaozhong Wu
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
15
|
Kwon J, DelRe C, Kang P, Hall A, Arnold D, Jayapurna I, Ma L, Michalek M, Ritchie RO, Xu T. Conductive Ink with Circular Life Cycle for Printed Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202177. [PMID: 35580071 DOI: 10.1002/adma.202202177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Electronic waste carries energetic costs and an environmental burden rivaling that of plastic waste due to the rarity and toxicity of the heavy-metal components. Recyclable conductive composites are introduced for printed circuits formulated with polycaprolactone (PCL), conductive fillers, and enzyme/protectant nanoclusters. Circuits can be printed with flexibility (breaking strain ≈80%) and conductivity (≈2.1 × 104 S m-1 ). These composites are degraded at the end of life by immersion in warm water with programmable latency. Approximately 94% of the functional fillers can be recycled and reused with similar device performance. The printed circuits remain functional and degradable after shelf storage for at least 7 months at room temperature and one month of continuous operation under electrical voltage. The present studies provide composite design toward recyclable and easily disposable printed electronics for applications such as wearable electronics, biosensors, and soft robotics.
Collapse
Affiliation(s)
- Junpyo Kwon
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher DelRe
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Philjun Kang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Aaron Hall
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Daniel Arnold
- Department of Chemical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ivan Jayapurna
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Le Ma
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew Michalek
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Robert O Ritchie
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Ting Xu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
16
|
Wei S, Jiang J, Sun L, Li J, Tao TH, Zhou Z. A Hierarchically Encoded Data Storage Device with Controlled Transiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201035. [PMID: 35293037 DOI: 10.1002/adma.202201035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In the era of information explosion, high-security and high-capacity data storage technology attracts more and more attention. Physically transient electronics, a form of electronics that can physically disappear with precisely controlled degradation behaviors, paves the way for secure data storage. Herein, the authors report a silk-based hierarchically encoded data storage device (HEDSD) with controlled transiency. The HEDSD can store electronic, photonic, and optical information simultaneously by synergistically integrating a resistive switching memory (ReRAM), a terahertz metamaterial device, and a diffractive optical element, respectively. These three data storage units have shared materials and structures but diverse encoding mechanisms, which increases the degree of complexity and capacity of stored information. Silk plays an important role as a building material in the HEDSD thanks to its excellent mechanical, optical, and electrical properties and controlled transiency as a naturally extracted protein. By controlling the degradation rate of storage units of the silk-based HEDSD, different degradation modes of the HEDSD, and multilevel information encryption/decryption have been realized. Compared with the conventional memory devices, as-reported silk-based HEDSD can store multilevel complex information and realize multilevel information encryption and decryption, which is highly desirable to fulfill the future demands of secure memory systems and implantable storage devices.
Collapse
Affiliation(s)
- Shuai Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjuan Jiang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Long Sun
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jianxing Li
- School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
17
|
Pandey S, Mastrangelo C. Towards Transient Electronics through Heat Triggered Shattering of Off-the-Shelf Electronic Chips. MICROMACHINES 2022; 13:mi13020242. [PMID: 35208366 PMCID: PMC8877697 DOI: 10.3390/mi13020242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/04/2022]
Abstract
With most of the critical data being stored in silicon (Si) based electronic devices, there is a need to develop such devices with a transient nature. Here, we have focused on developing a programmable and controllable heat triggered shattering transience mechanism for any off-the-shelf (OTS) Si microchip as a means to develop transient electronics which can then be safely and rapidly disabled on trigger when desired. This transience mechanism is based on irreversible and spontaneous propagation of cracks that are patterned on the back of the OTS chip in the form of grooves and then filled with thermally expandable (TE) material. Two types of TE materials were used in this study, commercially available microsphere particles and a developed elastomeric material. These materials expand >100 times their original volume on the application of heat which applies wedging stress of the groove boundaries and induces crack propagation resulting in the complete shattering of the OTS Si chip into tiny silicon pieces. Transience was controlled by temperature and can be triggered at ~160–190 °C. We also demonstrated the programmability of critical parameters such as transience time (0.35–12 s) and transience efficiency (5–60%) without the knowledge of material properties by modeling the swelling behavior using linear viscoelastic models.
Collapse
|
18
|
Gavriel A, Sambrook M, Russell AT, Hayes W. Recent advances in self-immolative linkers and their applications in polymeric reporting systems. Polym Chem 2022. [DOI: 10.1039/d2py00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interest in self-immolative chemistry has grown over the past decade with more research groups harnessing the versatility to control the release of a compound from a larger chemical entity, given...
Collapse
|
19
|
Shin JW, Chan Choe J, Lee JH, Han WB, Jang TM, Ko GJ, Yang SM, Kim YG, Joo J, Lim BH, Park E, Hwang SW. Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. ACS NANO 2021; 15:19310-19320. [PMID: 34843199 DOI: 10.1021/acsnano.1c05463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The lifetime of transient electronic components can be programmed via the use of encapsulation/passivation layers or of on-demand, stimuli-responsive polymers (heat, light, or chemicals), but yet most research is limited to slow dissolution rate, hazardous constituents, or byproducts, or complicated synthesis of reactants. Here we present a physicochemical destruction system with dissolvable, nontoxic materials as an efficient, multipurpose platform, where chemically produced bubbles rapidly collapse device structures and acidic molecules accelerate dissolution of functional traces. Extensive studies of composites based on biodegradable polymers (gelatin and poly(lactic-co-glycolic acid)) and harmless blowing agents (organic acid and bicarbonate salt) validate the capability for the desired system. Integration with wearable/recyclable electronic components, fast-degradable device layouts, and wireless microfluidic devices highlights potential applicability toward versatile/multifunctional transient systems. In vivo toxicity tests demonstrate biological safety of the proposed system.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong Chan Choe
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yu-Gyeong Kim
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jaesun Joo
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Bong Hee Lim
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Eunkyoung Park
- Department of Medical and Mechatronics Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si, Chungcheongnam-do 31538, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
20
|
Blelloch ND, Yarbrough HJ, Mirica KA. Stimuli-responsive temporary adhesives: enabling debonding on demand through strategic molecular design. Chem Sci 2021; 12:15183-15205. [PMID: 34976340 PMCID: PMC8635214 DOI: 10.1039/d1sc03426j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Stimuli-responsive temporary adhesives constitute a rapidly developing class of materials defined by the modulation of adhesion upon exposure to an external stimulus or stimuli. Engineering these materials to shift between two characteristic properties, strong adhesion and facile debonding, can be achieved through design strategies that target molecular functionalities. This perspective reviews the recent design and development of these materials, with a focus on the different stimuli that may initiate debonding. These stimuli include UV light, thermal energy, chemical triggers, and other potential triggers, such as mechanical force, sublimation, electromagnetism. The conclusion discusses the fundamental value of systematic investigations of the structure-property relationships within these materials and opportunities for unlocking novel functionalities in future versions of adhesives.
Collapse
Affiliation(s)
- Nicholas D Blelloch
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| | - Hana J Yarbrough
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| | - Katherine A Mirica
- Burke Laboratory, Department of Chemistry, Dartmouth College Hanover New Hampshire 03755 USA http://www.miricagroup.com
| |
Collapse
|
21
|
Sirianni QEA, Liang X, Such GK, Gillies ER. Polyglyoxylamides with a pH-Mediated Solubility and Depolymerization Switch. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Quinton E. A. Sirianni
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Xiaoli Liang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Georgina K. Such
- The School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- The Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, London, Ontario, Canada N6A 5B7
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada N6A 5B9
| |
Collapse
|
22
|
Martin BY, Schutz L, Claverie JP. Mechanistic Insights on the Anionic Polymerization of Aliphatic Aldehydes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Barbara Y. Martin
- Département De Chimie, Université de Sherbrooke, 2500 Blvd de l’Université, Sherbrooke J1K 2R1, QC, Canada
| | - Louis Schutz
- Département De Chimie, Université de Sherbrooke, 2500 Blvd de l’Université, Sherbrooke J1K 2R1, QC, Canada
| | - Jerome P. Claverie
- Département De Chimie, Université de Sherbrooke, 2500 Blvd de l’Université, Sherbrooke J1K 2R1, QC, Canada
| |
Collapse
|
23
|
Chiong JA, Tran H, Lin Y, Zheng Y, Bao Z. Integrating Emerging Polymer Chemistries for the Advancement of Recyclable, Biodegradable, and Biocompatible Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101233. [PMID: 34014619 PMCID: PMC8292855 DOI: 10.1002/advs.202101233] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 05/02/2023]
Abstract
Through advances in molecular design, understanding of processing parameters, and development of non-traditional device fabrication techniques, the field of wearable and implantable skin-inspired devices is rapidly growing interest in the consumer market. Like previous technological advances, economic growth and efficiency is anticipated, as these devices will enable an augmented level of interaction between humans and the environment. However, the parallel growing electronic waste that is yet to be addressed has already left an adverse impact on the environment and human health. Looking forward, it is imperative to develop both human- and environmentally-friendly electronics, which are contingent on emerging recyclable, biodegradable, and biocompatible polymer technologies. This review provides definitions for recyclable, biodegradable, and biocompatible polymers based on reported literature, an overview of the analytical techniques used to characterize mechanical and chemical property changes, and standard policies for real-life applications. Then, various strategies in designing the next-generation of polymers to be recyclable, biodegradable, or biocompatible with enhanced functionalities relative to traditional or commercial polymers are discussed. Finally, electronics that exhibit an element of recyclability, biodegradability, or biocompatibility with new molecular design are highlighted with the anticipation of integrating emerging polymer chemistries into future electronic devices.
Collapse
Affiliation(s)
- Jerika A. Chiong
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Helen Tran
- Department of ChemistryUniversity of TorontoTorontoONM5S 3H6Canada
| | - Yangju Lin
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| | - Yu Zheng
- Department of ChemistryStanford UniversityStanfordCA94305‐5025USA
| | - Zhenan Bao
- Department of Chemical EngineeringStanford UniversityStanfordCA94305‐5025USA
| |
Collapse
|
24
|
Shieh P, Hill MR, Zhang W, Kristufek SL, Johnson JA. Clip Chemistry: Diverse (Bio)(macro)molecular and Material Function through Breaking Covalent Bonds. Chem Rev 2021; 121:7059-7121. [PMID: 33823111 DOI: 10.1021/acs.chemrev.0c01282] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the two decades since the introduction of the "click chemistry" concept, the toolbox of "click reactions" has continually expanded, enabling chemists, materials scientists, and biologists to rapidly and selectively build complexity for their applications of interest. Similarly, selective and efficient covalent bond breaking reactions have provided and will continue to provide transformative advances. Here, we review key examples and applications of efficient, selective covalent bond cleavage reactions, which we refer to herein as "clip reactions." The strategic application of clip reactions offers opportunities to tailor the compositions and structures of complex (bio)(macro)molecular systems with exquisite control. Working in concert, click chemistry and clip chemistry offer scientists and engineers powerful methods to address next-generation challenges across the chemical sciences.
Collapse
Affiliation(s)
- Peyton Shieh
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Megan R Hill
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Wenxu Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Samantha L Kristufek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Deng J, Kaefer F, Bailey S, Otsubo Y, Meng Z, Segalman R, Ober CK. New Approaches to EUV Photoresists: Studies of Polyacetals and Polypeptoids to Expand the Photopolymer Toolbox. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jingyuan Deng
- Materials Science and Engineering, Cornell University
| | | | - Sean Bailey
- Materials Science and Engineering, Cornell University
| | - Yusuke Otsubo
- Materials Science and Engineering, Cornell University
| | | | | | | |
Collapse
|
26
|
Mittal N, Ojanguren A, Niederberger M, Lizundia E. Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004814. [PMID: 34194934 PMCID: PMC8224425 DOI: 10.1002/advs.202004814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Indexed: 05/08/2023]
Abstract
Transient technology seeks the development of materials, devices, or systems that undergo controlled degradation processes after a stable operation period, leaving behind harmless residues. To enable externally powered fully transient devices operating for longer periods compared to passive devices, transient batteries are needed. Albeit transient batteries are initially intended for biomedical applications, they represent an effective solution to circumvent the current contaminant leakage into the environment. Transient technology enables a more efficient recycling as it enhances material retrieval rates, limiting both human and environmental exposures to the hazardous pollutants present in conventional batteries. Little efforts are focused to catalog and understand the degradation characteristics of transient batteries. As the energy field is a property-driven science, not only electrochemical performance but also their degradation behavior plays a pivotal role in defining the specific end-use applications. The state-of-the-art transient batteries are critically reviewed with special emphasis on the degradation mechanisms, transiency time, and biocompatibility of the released degradation products. The potential of transient batteries to change the current paradigm that considers batteries as harmful waste is highlighted. Overall, transient batteries are ready for takeoff and hold a promising future to be a frontrunner in the uptake of circular economy concepts.
Collapse
Affiliation(s)
- Neeru Mittal
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Alazne Ojanguren
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Markus Niederberger
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Erlantz Lizundia
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
- Life Cycle Thinking GroupDepartment of Graphic Design and Engineering ProjectsFaculty of Engineering in BilbaoUniversity of the Basque Country (UPV/EHU)Bilbao48013Spain
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
| |
Collapse
|
27
|
Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. MICROMACHINES 2021; 12:mi12060600. [PMID: 34067419 PMCID: PMC8224698 DOI: 10.3390/mi12060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, China;
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Z.X.); (Q.G.)
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China;
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Correspondence: (Z.X.); (Q.G.)
| |
Collapse
|
28
|
Bae J, Gwak E, Hwang G, Hwang HW, Lee D, Lee J, Joo Y, Sun J, Jun SH, Ok M, Kim J, Kang S. Biodegradable Metallic Glass for Stretchable Transient Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004029. [PMID: 34026449 PMCID: PMC8132068 DOI: 10.1002/advs.202004029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (≈2.6% in the nano-tensile test) and offers enhanced stretchability (≈115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use.
Collapse
Affiliation(s)
- Jae‐Young Bae
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Eun‐Ji Gwak
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery & Materials (KIMM)Daejeon34103Republic of Korea
| | - Gyeong‐Seok Hwang
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Hae Won Hwang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Biomaterials Research Center, Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Dong‐Ju Lee
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Jong‐Sung Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Young‐Chang Joo
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Jeong‐Yun Sun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Sang Ho Jun
- Department of Oral and Maxillofacial SurgeryKorea University Anam HospitalSeoul02841Republic of Korea
| | - Myoung‐Ryul Ok
- Biomaterials Research Center, Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Ju‐Young Kim
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
29
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
30
|
Zhong S, Wong HC, Low HY, Zhao R. Phototriggerable Transient Electronics via Fullerene-Mediated Degradation of Polymer:Fullerene Encapsulation Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:904-911. [PMID: 33356097 DOI: 10.1021/acsami.0c18795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transient electronics is an emerging class of electronics that has attracted a lot of attention because of its potential as an environmental-friendly alternative to the existing end-of-life product disposal or treatments. However, the controlled degradation of transient electronics under environmentally benign conditions remains a challenge. In this work, the tunable degradation of transient electronics including passive resistor devices and active memory devices was realized by photodegradable thin polymer films comprising fullerene derivatives, [6,6]-phenyl-C61-butyric acid methyl esters (PCBM). The photodegradation of polymer:PCBM under an aqueous environment is triggered by ultraviolet (UV) light. Experimental results demonstrate that the addition of PCBM in commodity polymers, including but not limited to polystyrene, results in a catalytic effect on polymer photodegradation when triggered by UV light. The degradation mechanism of transient electronics is ascribed to the photodegradation of polymer:PCBM encapsulation layers caused by the synergistic effect between UV and water exposure. The polymer:PCBM encapsulation system presented herein offers a simple way to achieve the realization of light-triggered device degradation for bioapplication and expands the material options for tailorable degradation of transient electronics.
Collapse
Affiliation(s)
- Shuai Zhong
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Him Cheng Wong
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- SUTD-MIT International Design Centre (IDC), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Hong Yee Low
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- SUTD-MIT International Design Centre (IDC), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Rong Zhao
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- Center for Brain-Inspired Computing Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
31
|
Li S, Rizvi MH, Lynch BB, Tracy JB, Ford E. Flexible Cyclic-Poly(phthalaldehyde)/Poly(ε-caprolactone) Blend Fibers with Fast Daylight-Triggered Transience. Macromol Rapid Commun 2020; 42:e2000657. [PMID: 33368746 DOI: 10.1002/marc.202000657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 11/06/2022]
Abstract
Cyclic-poly(phthalaldehyde) (cPPHA) exhibits photo-triggerable depolymerization on-demand for applications like the photolithography of microfabricated electronics. However, cPPHA is inherently brittle and thermally sensitive; both of these properties limit its usefulness as an engineering plastic. Prior to this report, small molecule plasticizers are added to cPPHA-based films to make the polymer more flexible. But plasticizers can eventually leach out of cPPHA, then leaving it increasingly more brittle throughout product lifetime. In this research, a new approach to fabricating flexible cPPHA blends for use as spun fibers is achieved through the incorporation of poly (ε-caprolactone) (PCL) by a modified wet spinning method. Among blend compositions, the 50/50 cPPHA/PCL fiber shows fast transience (<50 s) in response to daylight while retaining the flexibility of PCL and mechanical properties of an elastomer (i.e., tensile strength of ≈8 MPa, Young's modulus of ≈118 MPa, and elongation at break of ≈190%). Embedding 2 wt% gold nanoparticles to cPPHA can further improve the transience rate of fibers comprising less than 50% cPPHA. These flexible, daylight-triggerable cPPHA/PCL fibers can be applied to an extensive range of applications, such as wearable electronics, intelligent textiles, and zero waste packaging for which modest mechanical performance and fast transience are desired.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
| | - Mehedi H Rizvi
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Brian B Lynch
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Joseph B Tracy
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Ericka Ford
- Department of Textile Engineering, Chemistry and Science, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
| |
Collapse
|
32
|
Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Indexed: 05/23/2023]
Abstract
Transient electronics refers to an emerging class of advanced technology, defined by an ability to chemically or physically dissolve, disintegrate, and degrade in actively or passively controlled fashions to leave environmentally and physiologically harmless by-products in environments, particularly in bio-fluids or aqueous solutions. The unusual properties that are opposite to operational modes in conventional electronics for a nearly infinite time frame offer unprecedented opportunities in research areas of eco-friendly electronics, temporary biomedical implants, data-secure hardware systems, and others. This review highlights the developments of transient electronics, including materials, manufacturing strategies, electronic components, and transient kinetics, along with various potential applications.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
33
|
Piro B, Tran HV, Thu VT. Sensors Made of Natural Renewable Materials: Efficiency, Recyclability or Biodegradability-The Green Electronics. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5898. [PMID: 33086552 PMCID: PMC7594081 DOI: 10.3390/s20205898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 01/24/2023]
Abstract
Nowadays, sensor devices are developing fast. It is therefore critical, at a time when the availability and recyclability of materials are, along with acceptability from the consumers, among the most important criteria used by industrials before pushing a device to market, to review the most recent advances related to functional electronic materials, substrates or packaging materials with natural origins and/or presenting good recyclability. This review proposes, in the first section, passive materials used as substrates, supporting matrixes or packaging, whether organic or inorganic, then active materials such as conductors or semiconductors. The last section is dedicated to the review of pertinent sensors and devices integrated in sensors, along with their fabrication methods.
Collapse
Affiliation(s)
- Benoît Piro
- ITODYS, CNRS, Université de Paris, F-75006 Paris, France
| | - Hoang Vinh Tran
- School of Chemical Engineering, Hanoi University of Science and Technology (HUST), 1st Dai Co Viet Road, 10000 Hanoi, Vietnam;
| | - Vu Thi Thu
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi, Vietnam;
| |
Collapse
|
34
|
Yardley RE, Rabiee Kenaree A, Liang X, Gillies ER. Transesterification of Poly(ethyl glyoxylate): A Route to Structurally Diverse Polyglyoxylates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca E. Yardley
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Amir Rabiee Kenaree
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Xiaoli Liang
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R. Gillies
- Department of Chemistry and Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
35
|
Mai DJ, Schroeder CM. 100th Anniversary of Macromolecular Science Viewpoint: Single-Molecule Studies of Synthetic Polymers. ACS Macro Lett 2020; 9:1332-1341. [PMID: 35638639 DOI: 10.1021/acsmacrolett.0c00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single polymer studies have revealed unexpected and heterogeneous dynamics among identical or seemingly similar macromolecules. In recent years, direct observation of single polymers has uncovered broad distributions in molecular behavior that play a key role in determining bulk properties. Early single polymer experiments focused primarily on biological macromolecules such as DNA, but recent advances in synthesis, imaging, and force spectroscopy have enabled broad exploration of chemically diverse polymer systems. In this Viewpoint, we discuss the recent study of synthetic polymers using single-molecule methods. In terms of polymer synthesis, direct observation of single chain polymerization has revealed heterogeneity in monomer insertion events at catalytic centers and decoupling of local and global growth kinetics. In terms of single polymer visualization, recent advances in super-resolution imaging, atomic force microscopy (AFM), and liquid-cell transmission electron microscopy (LC-TEM) can resolve structure and dynamics in single synthetic chains. Moreover, single synthetic polymers can be probed in the context of bulk material environments, including hydrogels, nanostructured polymers, and crystalline polymers. In each area, we highlight key challenges and exciting opportunities in using single polymer techniques to enhance our understanding of polymer science. Overall, the expanding versatility of single polymer methods will enable the molecular-scale design and fundamental understanding of a broad range of chemically diverse and functional polymeric materials.
Collapse
Affiliation(s)
- Danielle J. Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Charles M. Schroeder
- Department of Materials Science and Engineering, Department of Chemical and Biomolecular Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
36
|
Singh R, Bathaei MJ, Istif E, Beker L. A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Adv Healthc Mater 2020; 9:e2000790. [PMID: 32790033 DOI: 10.1002/adhm.202000790] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Implantable medical devices (IMDs) are designed to sense specific parameters or stimulate organs and have been actively used for treatment and diagnosis of various diseases. IMDs are used for long-term disease screening or treatments and cannot be considered for short-term applications since patients need to go through a surgery for retrieval of the IMD. Advances in bioresorbable materials has led to the development of transient IMDs that can be resorbed by bodily fluids and disappear after a certain period. These devices are designed to be implanted in the adjacent of the targeted tissue for predetermined times with the aim of measurement of pressure, strain, or temperature, while the bioelectronic devices stimulate certain tissues. They enable opportunities for monitoring and treatment of acute diseases. To realize such transient and miniaturized devices, researchers utilize a variety of materials, novel fabrication methods, and device design strategies. This review discusses potential bioresorbable materials for each component in an IMD followed by programmable degradation and safety standards. Then, common fabrication methods for bioresorbable materials are introduced, along with challenges. The final section provides representative examples of bioresorbable IMDs for various applications with an emphasis on materials, device functionality, and fabrication methods.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Emin Istif
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Levent Beker
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| |
Collapse
|
37
|
Chen Y, Duan L, Ma Y, Han Q, Li X, Li J, Wang A, Bai S, Yin J. Preparation of transient electronic devices with silk fibroin film as a flexible substrate. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Warner M, Engler A, Kohl PA. Improvement in the transience and mechanical performance of flexible Poly(phthalaldehyde) substrates. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
|
40
|
Kim H, Brooks AD, DiLauro AM, Phillips ST. Poly(carboxypyrrole)s That Depolymerize from Head to Tail in the Solid State in Response to Specific Applied Signals. J Am Chem Soc 2020; 142:9447-9452. [PMID: 32330033 DOI: 10.1021/jacs.0c02774] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This Article describes the design, synthesis, and analysis of a new class of polymer that is capable of depolymerizing continuously, completely, and cleanly from head to tail when a detection unit on the head of the polymer is exposed to a specific applied signal. The backbone of this polymer consists of 1,3-disubstituted pyrroles and carboxy linkages similar to polyurethanes. Diverse side chains or reactive end-groups can be introduced readily, which provides modular design of polymer structure. The designed depolymerization mechanism proceeds through spontaneous release of carbon dioxide and azafulvene in response to a single triggering reaction with the detection unit. These poly(carboxypyrrole)s depolymerize readily in nonpolar environments, and even in the bulk as solid-state plastics.
Collapse
Affiliation(s)
- Hyungwoo Kim
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Adam D Brooks
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, United States
| | - Anthony M DiLauro
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, United States
| | - Scott T Phillips
- Micron School of Materials Science and Engineering, Boise State University, 1910 University Drive, Boise, Idaho 83725-2090, United States
| |
Collapse
|
41
|
Jamshidi R, Chen Y, Montazami R. Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. MATERIALS 2020; 13:ma13071514. [PMID: 32224921 PMCID: PMC7177843 DOI: 10.3390/ma13071514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Transient materials/electronics is an emerging class of technology concerned with materials and devices that are designed to operate over a pre-defined period of time, then undergo controlled degradation when exposed to stimuli. Degradation/transiency rate in solvent-triggered devices is strongly dependent on the chemical composition of the constituents, as well as their interactions with the solvent upon exposure. Such interactions are typically slow, passive, and diffusion-driven. In this study, we are introducing and exploring the integration of gas-forming reactions into transient materials/electronics to achieve expedited and active transiency. The integration of more complex chemical reaction paths to transiency not only expedites the dissolution mechanism but also maintains the pre-transiency stability of the system while under operation. A proof-of-concept transient electronic device, utilizing sodium-bicarbonate/citric-acid pair as gas-forming agents, is demonstrated and studied vs. control devices in the absence of gas-forming agents. While exhibiting enhanced transiency behavior, substrates with gas-forming agents also demonstrated sufficient mechanical properties and physical stability to be used as platforms for electronics.
Collapse
Affiliation(s)
- Reihaneh Jamshidi
- Department of Mechanical Engineering, University of Hartford, West Hartford, CT 06117, USA
- Correspondence:
| | - Yuanfen Chen
- College of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
42
|
Feinberg AM, Davydovich O, Lloyd EM, Ivanoff DG, Shiang B, Sottos NR, Moore JS. Triggered Transience of Plastic Materials by a Single Electron Transfer Mechanism. ACS CENTRAL SCIENCE 2020; 6:266-273. [PMID: 32123745 PMCID: PMC7047432 DOI: 10.1021/acscentsci.9b01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Indexed: 05/10/2023]
Abstract
Transient polymers rapidly and controllably depolymerize in response to a specific trigger, typically by a chain-end unzipping mechanism. Triggers, such as heat, light, and chemical stimuli, are generally dependent on the chemistry of the polymer backbone or end groups. Single electron transfer (SET), in contrast to other triggering mechanisms, is achievable by various means including chemical, electrochemical, and photochemical oxidation or reduction. Here, we identify SET and subsequent mesolytic cleavage as the major thermal triggering mechanism of cyclic poly(phthalaldehyde) (cPPA) depolymerization. Multimodal SET triggering is demonstrated by both chemical and photoredox-triggered depolymerization of cPPA. Redox-active small molecules (p-chloranil and 1,3,5-trimethoxybenzene) were used to tune the depolymerization onset temperature of cPPA over the range 105-135 °C. Extending this mechanism to photoredox catalysis, N-methylacridinium hexafluorophosphate (NMAPF6) was used to photochemically degrade cPPA in solution and thin films. Finally, we fabricated photodegradable cPPA monoliths with a storage modulus of 1.8 GPa and demonstrated complete depolymerization within 25 min of sunlight exposure. Sunlight-triggered depolymerization of cPPA is demonstrated and potentially useful for the manufacture of transient devices that vanish leaving little or no trace. Most importantly, this new mechanism is likely to inspire other SET-triggered transient polymers, whose development may address the ongoing crisis of plastic pollution.
Collapse
Affiliation(s)
- Adam M. Feinberg
- Beckman
Institute for Advanced Science and Technology, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Oleg Davydovich
- Beckman
Institute for Advanced Science and Technology, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Evan M. Lloyd
- Beckman
Institute for Advanced Science and Technology, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Douglas G. Ivanoff
- Beckman
Institute for Advanced Science and Technology, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Bethany Shiang
- Beckman
Institute for Advanced Science and Technology, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Nancy R. Sottos
- Beckman
Institute for Advanced Science and Technology, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S. Moore
- Beckman
Institute for Advanced Science and Technology, Department of Chemistry, Department of Chemical
and Biomolecular Engineering, and Department of
Materials Science and Engineering, University
of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
La Mattina AA, Mariani S, Barillaro G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902872. [PMID: 32099766 PMCID: PMC7029671 DOI: 10.1002/advs.201902872] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Over the last decade, scientists have dreamed about the development of a bioresorbable technology that exploits a new class of electrical, optical, and sensing components able to operate in physiological conditions for a prescribed time and then disappear, being made of materials that fully dissolve in vivo with biologically benign byproducts upon external stimulation. The final goal is to engineer these components into transient implantable systems that directly interact with organs, tissues, and biofluids in real-time, retrieve clinical parameters, and provide therapeutic actions tailored to the disease and patient clinical evolution, and then biodegrade without the need for device-retrieving surgery that may cause tissue lesion or infection. Here, the major results achieved in bioresorbable technology are critically reviewed, with a bottom-up approach that starts from a rational analysis of dissolution chemistry and kinetics, and biocompatibility of bioresorbable materials, then moves to in vivo performance and stability of electrical and optical bioresorbable components, and eventually focuses on the integration of such components into bioresorbable systems for clinically relevant applications. Finally, the technology readiness levels (TRLs) achieved for the different bioresorbable devices and systems are assessed, hence the open challenges are analyzed and future directions for advancing the technology are envisaged.
Collapse
Affiliation(s)
- Antonino A. La Mattina
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| |
Collapse
|
44
|
Abstract
Degradable polymers are desirable for the replacement of conventional organic polymers that persist in the environment, but they often suffer from the unintentional scission of the degradable functionalities on the polymer backbone, which diminishes polymer properties during storage and regular use. Herein, we report a strategy that combats unintended degradation in polymers by combining two common degradation stimuli-mechanical and acid triggers-in an "AND gate" fashion. A cyclobutane (CB) mechanophore is used as a mechanical gate to regulate an acid-sensitive ketal that has been widely employed in acid degradable polymers. This gated ketal is further incorporated into the polymer backbone. In the presence of an acid trigger alone, the pristine polymer retains its backbone integrity, and delivering high mechanical forces alone by ultrasonication degrades the polymer to an apparent limiting molecular weight of 28 kDa. The sequential treatment of ultrasonication followed by acid, however, leads to a further 11-fold decrease in molecular weight to 2.5 kDa. Experimental and computational evidence further indicate that the ungated ketal possesses mechanical strength that is commensurate with the conventional polymer backbones. Single molecule force spectroscopy (SMFS) reveals that the force necessary to activate the CB molecular gate on the time scale of 100 ms is approximately 2 nN.
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Tatiana B Kouznetsova
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Stephen L Craig
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
45
|
Lin R, Yan X, Hao H, Gao W, Liu R. Introducing Temperature-Controlled Phase Transition Elastin-like Polypeptides to Transient Electronics: Realization of Proactive Biotriggered Electronics with Local Transience. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46490-46496. [PMID: 31808331 DOI: 10.1021/acsami.9b14798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transient electronics have dramatically changed inner-body therapy in health care. They stand out because of their harmless dissolution in the human body with no lingering electronic trash. However, high-precision biomedical implants require programmable and serial remedy operations, and controlling the whole-device destruction is not proactive and precise. Thus, a novel biotriggered and temperature-controlled transient electronics fabrication method using elastin-like polypeptides (ELPs) as triggers is proposed. Biocompatible ELPs simply mixed with trace silver nanowire (AgNW) can serve as the "switch" for the electronics to respond to local temperature changes in deionized water, exhibiting an agile response time. A ratio gradient experiment of the ELPs and AgNW shows that more programmable and precise transience properties (initial resistance, ready time, response time, and stable resistance) can be achieved by using a designated proportion. Further, we validated that the 3D-printing-based ELP-triggering transient electronics fabrication method is very simple yet effective for preparing transient wireless charging LEDs. Transient devices comprising ELPs-AgNW and PLGA-Ag respond within 160 s below 10 °C and degrade within a certain period.
Collapse
Affiliation(s)
- Rongzan Lin
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Xinghui Yan
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Hanjun Hao
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Weiping Gao
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| | - Ran Liu
- Department of Biomedical Engineering, School of Medicine , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
46
|
Garg M, White SR, Sottos NR. Rapid Degradation of Poly(lactic acid) with Organometallic Catalysts. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46226-46232. [PMID: 31774644 DOI: 10.1021/acsami.9b17599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly(lactic acid) (PLA) is an effective sacrificial material for the creation of vascular networks in thermoset polymers and composites. The high thermal stability of PLA limits its applications as an embedded sacrificial template in high-temperature-resistant thermoset matrices. Here, we demonstrate faster and more efficient PLA degradation at temperatures lower than previously reported using two organometallic catalysts: tin(II) oxalate (Sn(Oxa)) and tin(II) acetate (Sn(Ac)2). We process Sn(Oxa) by two separate methods to obtain a significant difference in the specific surface area (SSA) of the catalyst particles and compare PLA degradation performance in a thermogravimetric analysis (TGA) instrument. Changing the SSA of Sn(Oxa) by a factor of ∼20 reduces the PLA degradation onset temperature by 37 °C. The total degradation time of PLA films also decreases after blending with Sn(Oxa) having a higher SSA. We also find Sn(Ac)2 lowers the degradation onset of PLA by 53 °C compared to Sn(Oxa) with a similar SSA. In addition, Sn(Ac)2 decreases the time for complete degradation of PLA films by an order of magnitude compared to Sn(Oxa) at 200 °C. Films with a significantly lower Sn(Ac)2 concentration compared to Sn(Oxa) degrade much faster at lower temperatures up to 160 °C. Finally, PLA films with different loadings of Sn(Ac)2 are embedded in an epoxy thermoset matrix and subsequently vascularized at elevated temperatures in a vacuum oven. Microchannel formation is observed at 170 °C using Sn(Ac)2, reducing the temperature required for vaporization of embedded sacrificial polymer compared to Sn(Oxa) catalyst. Sn(Ac)2 can potentially reduce the energy, time, and amount of catalyst required for degrading PLA into volatile products for sacrificial applications.
Collapse
|
47
|
Liu D, Zhang S, Cheng H, Peng R, Luo Z. Thermally Triggered Vanishing Bulk Polyoxymethylene for Transient Electronics. Sci Rep 2019; 9:18107. [PMID: 31792303 PMCID: PMC6888842 DOI: 10.1038/s41598-019-54565-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/10/2019] [Indexed: 01/19/2023] Open
Abstract
Transient materials capable of disappearing rapidly and completely are critical for transient electronics. End-capped polyoxymethylene (POM) has excellent mechanical properties and thermal stability. However, research concerning the inherent thermal instability of POM without end-capping to obtain transient rather than stable materials, has never been reported. Here, POM without end-capping is proposed as a novel thermally triggered transient solid material that can vanish rapidly by undergoing conversion to a volatile gas, and a chemical vapor deposition method is developed to obtain a smooth POM substrate from the synthesized POM powder. Experimental and theoretical analysis was employed to reveal the mechanism whereby the POM substrate formed and vanished. A Cr/Au/SiO2/Cu memristor device, which was successfully deposited on the POM substrate by physical vapor deposition, exhibits bipolar resistive switching, suggesting that the POM substrate is suitable for use in electrical devices. Thermal triggering causes the POM substrate to vanish as the memristor disintegrates, confirming excellent transient performance. The deposited bulk POM material can completely vanish by thermally triggered depolymerization, and is suitable for physically transient substrates and packaging materials, demonstrating great prospects for application in transient electronics for information security.
Collapse
Affiliation(s)
- Dongqing Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China.
| | - Songhe Zhang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Haifeng Cheng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Renfu Peng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Zhijian Luo
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, 410073, P.R. China
| |
Collapse
|
48
|
Chen Y, Wang H, Zhang Y, Li R, Chen C, Zhang H, Tang S, Liu S, Chen X, Wu H, Lv R, Sheng X, Zhang P, Wang S, Yin L. Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices. NANOTECHNOLOGY 2019; 30:394002. [PMID: 31181541 DOI: 10.1088/1361-6528/ab2853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transient electronics is an emerging technology that enables unique functional transformation or the physical disappearance of electronic devices, and is attracting increasing attention for potential applications in data secured hardware as an ultimate solution against data breaches. Developing smart triggered degradation modalities of silicon (Si) remain the key challenge to achieve advanced non-recoverable on-demand transient electronics. Here, we present a novel electrochemically triggered transience mechanism of Si by lithiation, allowing complete and controllable destruction of Si devices. The depth and microstructure of the lithiation-affected zone over time is investigated in detail and the results suggest a few hours of lithiation is sufficient to create microcracks and significantly promote lithium penetration. Finite element models are proposed to confirm the mechanism. Electrochemically triggered degradation of thin film Si ribbons and Si integrated circuit chips with metal-oxide-semiconductor field-effect transistors from a commercial 0.35 micrometer complementary metal-oxide-semiconductor technology node is performed to demonstrate the potential applications for commercial electronics. This work opens new opportunities for versatile triggered transience of Si-based devices for critical secured information systems and green consumer electronics.
Collapse
Affiliation(s)
- Yaoxu Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yardley RE, Kenaree AR, Gillies ER. Triggering Depolymerization: Progress and Opportunities for Self-Immolative Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00965] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Jiang J, Warner M, Phillips O, Engler A, Kohl PA. Tunable transient and mechanical properties of photodegradable Poly(phthalaldehyde). POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|