1
|
Zheng X, Wang X, Feng L, Chen Z, Zhang J, Zhang X, Liu P. In Situ Fabrication of 2D-2D Bi/BiOBr Ohmic Heterojunction for Enhanced Photocatalytic Nitrogen Fixation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62107-62120. [PMID: 39487778 DOI: 10.1021/acsami.4c14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The performance of BiOBr in photocatalytic nitrogen (N2) fixation is suboptimal, attributed to the weak chemisorption and activation of N2 by surface atoms. In our study, we achieved the formation of two-dimensional (2D) bismuth (Bi) on BiOBr nanosheets through in situ annealing in hydrogen atmosphere and successfully constructed a unique 2D-2D Bi/BiOBr ohmic heterojunction using a one-step method. Notably, the Bi/BiOBr heterojunction was utilized for photocatalytic N2 fixation under visible light (λ > 400 nm) in ultrapure water, demonstrating an exceptional N2 fixation rate of 376.16 μmol g-1 h-1. This rate is 7.7 and 4.1 times higher than those of BiOBr and BiOBr-OVs, respectively. The improved photocatalytic efficiency is attributed to the significantly enhanced N2 adsorption capability and more effective separation of photogenerated carriers, both stemming from the distinctive 2D/2D architecture of the Bi/BiOBr heterojunction. This work demonstrates that 2D Bi offers active sites that facilitate photocatalytic N2 fixation and introduces an approach to the design and construction of 2D/2D photocatalysts for applications spanning catalysis, optoelectronics, electronics, and beyond.
Collapse
Affiliation(s)
- Xiaoqi Zheng
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xitong Wang
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Liping Feng
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhilin Chen
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jiayang Zhang
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiaodong Zhang
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Pengfei Liu
- State Key Lab of Solidification Processing, College of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
2
|
Peng C, Chen Y, Gao X, Wei P, Lin Y, Fu L, Zhou B, Zhang M, Jia J, Luan T. Construction of 2D/2D ZnIn 2S 4/Nb 2CT x (MXene) hybrid with hole transport highway and active facet exposure boost photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 673:958-970. [PMID: 38917670 DOI: 10.1016/j.jcis.2024.06.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
In this study, leveraging the tunable surface groups of MXene, the two-dimensional (2D) Nb2CTx with OH terminal (NC) was synthesized. 2D ZnIn2S4 (ZIS) nanosheets were prepared with the aid of sodium citrate, enhancing the exposure ratio of active (110) facet. On this basis, 2D/2D ZnIn2S4/Nb2CTx heterojunctions were fabricated to improve photocatalytic hydrogen evolution reaction (HER) performance. The optimized 6 wt%Nb2CTx/ZnIn2S4-450 (6NC/ZIS-450) photocatalyt exhibits a remarkable HER rate of 3603 μmol g-1h-1, which is 10 times superior to that of the original ZnIn2S4. Its apparent quantum efficiency (AQE) at 380 nm reaches 14.9 %. Meanwhile, even after 5 rounds of HER, the activity of 2D/2D ZnIn2S4/Nb2CTx heterojunction remained at 90 %, far superior to that of pure ZnIn2S4 (34 % and 31 %). Energy band structure analysis and density functional theory (DFT) calculation indicate that Nb2CTx adsorbed with OH exhibit a low work function. By serving as a hole cocatalyst, it effectively boosts the photocatalytic HER rate of ZnIn2S4/Nb2CTx heterojunction and inhibits the photocorrosion of ZnIn2S4. This unique insight, via hole transport highways and increased exposure of active facets, effectively enhances the activity and stability of sulfides photocatalysts.
Collapse
Affiliation(s)
- Chao Peng
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China; Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, PR China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, PR China.
| | - Yiming Chen
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China
| | - Xingyue Gao
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China
| | - Ping Wei
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Yihao Lin
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China
| | - Li Fu
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China
| | - Bingpu Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR 999078, PR China
| | - Mengchen Zhang
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China; Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, PR China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, PR China
| | - Jianbo Jia
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China; Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, PR China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, PR China
| | - Tiangang Luan
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, PR China; Carbon Neutrality Innovation Center, Wuyi University, Jiangmen 529020, PR China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, PR China
| |
Collapse
|
3
|
Ali SA, Sarkar S, Patra AK. Solar Light-Driven Molecular Oxygen Activation by BiOCl Nanosheets: Synergy of Coexposed {001}, {110} Facets and Oxygen Vacancies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38061-38072. [PMID: 38984982 DOI: 10.1021/acsami.4c06647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Single-crystalline BiOCl nanosheets with coexposed {001} and {110} facets, as well as oxygen vacancies, were synthesized using a simple method. These nanosheets have the ability to activate molecular oxygen, producing reactive superoxide radicals (77.8%) and singlet oxygen (22.2%) when exposed to solar light. The BiOCl demonstrated excellent photocatalytic efficiency in producing H2O2 under simulated solar light and in oxidatively hydroxylating phenylboronic acid under blue LED light. Our research highlights the significance of constructing coexposed {001} and {110} facets, as well as oxygen vacancies, in enhancing photocatalytic performance. The BiOCl nanosheets have the capability to produce H2O2 with a solar-to-chemical energy conversion efficiency of 0.11%.
Collapse
Affiliation(s)
- Sk Afsar Ali
- Department of Chemistry, University of Kalyani, Kalyani ,West Bengal 741235, India
| | - Sunny Sarkar
- Department of Chemistry, University of Kalyani, Kalyani ,West Bengal 741235, India
| | - Astam K Patra
- Department of Chemistry, University of Kalyani, Kalyani ,West Bengal 741235, India
| |
Collapse
|
4
|
Lin J, He J, Huang Q, Zhang Y, Li W, Hu J, Zhou G, Yang Z. Rich Sulfur Vacancies and Reduced Schottky Barrier Height Synergistically Enable Au/ZnIn 2S 4 with Enhanced Photocatalytic CO 2 Reduction into CO. Inorg Chem 2024; 63:13117-13126. [PMID: 38946108 DOI: 10.1021/acs.inorgchem.4c02376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Constructing the plasmonic metal/semiconductor heterostructure with a suitable Schottky barrier height (SBH) and the sufficiently reliable active sites is of importance to achieve highly efficient and selective photocatalytic CO2 reduction into hydrocarbon fuels. Herein, we report Au/sulfur vacancy-rich ZnIn2S4 (Au/VSR-ZIS) hierarchical photocatalysts, fabricated via in situ photodepositing Au nanoparticles (NPs) onto the nanosheet self-assembled ZnIn2S4 (ZIS) micrometer flowers (MFs) with rich sulfur vacancies (VS). Density functional theory (DFT) calculations confirm that for the Au/VSR-ZIS system, the Au NPs serve as the reaction sites for H2O oxidation, and the VSR-ZIS MFs serve as those for CO2 reduction. The rich VS in the Au/VSR-ZIS hybrid can reduce its SBH so as to boost more hot electrons in the Au NPs across its Schottky barrier and then inject into the conduction band (CB) of the VSR-ZIS MFs. In addition, VS can also act as the electron sink to trap the photogenerated electrons, retarding the recombination of photogenerated carriers. The two merits effectively enhance the photogenerated electron density in the surface of VSR-ZIS MFs, availing CO2 photoreduction. In addition, the introduction of rich VS in the Au/VSR-ZIS hybrid can offer more active sites, benefiting the CO2 adsorption and accelerating the desorption of CO* from the surface of the photocatalyst. Therefore, under visible light illumination with no sacrificial reagent, the optimum photocatalyst (Au/VSR-ZIS-0.4) presents the enhanced and selective CO2 photoreduction into CO (8.15 μmol g-1h-1 and near 100%), which are superior to those of most of ZIS-based and plasmon-based photocatalysts. The photocatalytic activity is about 40.0-fold as high as that of the Vs-poor-ZIS (VSP-ZIS) MFs. This work contributes a viable strategy for designing highly efficient plasmonic photocatalysts by using the synergism of the anion vacancies and the optimized SBH induced by them.
Collapse
Affiliation(s)
- Jie Lin
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jiale He
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Qingling Huang
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yu Zhang
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Wei Li
- Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jianqiang Hu
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Guobing Zhou
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zhen Yang
- School of Chemical Engineering, Institute of Advanced Materials (IAM), College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, P. R. China
- State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
5
|
Wang H, Zhang X, Zhu H, Xiang G. Robust Bi-anchoring carbon dot/BiOCl sheet heterojunction photocatalysts toward superior photocatalytic activity. NANOSCALE 2024; 16:12670-12679. [PMID: 38888799 DOI: 10.1039/d4nr01304b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BiOCl has attracted much attention due to its robust layered structure, excellent photocatalytic activity and nontoxicity. However, its practical application is hindered by its narrowband UV photoresponse and rapid recombination of photocarriers. Herein, zero-dimensional Bi-anchoring carbon quantum dot (Bi-CD)/two-dimensional BiOCl heterojunction (Bi-CD/BiOCl) photocatalysts are designed and synthesized by a facile hydrothermal method. Under 190-1100 nm broadband light irradiation, the optimized Bi-CD/BiOCl sample exhibits a superb rhodamine B (RhB) degradation rate of nearly 100%, which is 2.3 (1.7) times that of pristine BiOCl (CD/BiOCl). Additionally, the optimized sample exhibits an RhB degradation rate of up to 88.1% even under direct outdoor light and robust durability in water solution. Experimental results combined with DFT calculations reveal that the superior photocatalytic activity arises from the synergetic effects of broader light absorption due to the incorporation of CD, extra hot electron excitation by the localized surface plasmon resonance (LSPR) effect of metallic Bi, and enhanced electron transfer across the heterojunction interface as well as the existence of more oxygen vacancy traps in BiOCl. This work gives insights into the structure and photocatalytic properties of Bi-CD/BiOCl and provides a new strategy for the design and fabrication of robust high-performance photocatalysts under wide spectrum light irradiation.
Collapse
Affiliation(s)
- Han Wang
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Xi Zhang
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Hongyu Zhu
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Gang Xiang
- College of Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
6
|
He X, Wu Y, Luo J, Dai X, Song J, Tang Y. First-Principles Study on Janus-Structured Sc 2CX 2/Sc 2CY 2 (X, Y = F, Cl, Br) Heterostructures for Solar Energy Conversion. Molecules 2024; 29:2898. [PMID: 38930962 PMCID: PMC11206758 DOI: 10.3390/molecules29122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Two-dimensional van der Waals heterostructures have good application prospects in solar energy conversion due to their excellent optoelectronic performance. In this work, the electronic structures of Sc2CF2/Sc2CCl2, Sc2CF2/Sc2CBr2, and Sc2CCl2/Sc2CBr2 heterostructures, as well as their properties in photocatalysis and photovoltaics, have been comprehensively studied using the first-principles method. Firstly, both of the three thermodynamically and dynamically stable heterostructures are found to have type-II band alignment with band gap values of 0.58 eV, 0.78 eV, and 1.35 eV. Meanwhile, the photogenerated carriers in Sc2CF2/Sc2CCl2 and Sc2CF2/Sc2CBr2 heterostructures are predicated to follow the direct Z-scheme path, enabling their abilities for water splitting. As for the Sc2CCl2/Sc2CBr2 heterostructure, its photovoltaic conversion efficiency is estimated to be 20.78%. Significantly, the light absorption coefficients of Sc2CF2/Sc2CCl2, Sc2CF2/Sc2CBr2, and Sc2CCl2/Sc2CBr2 heterostructures are enhanced more than those of the corresponding monolayers. Moreover, biaxial strains have been observed to considerably tune the aforementioned properties of heterostructures. All the theoretical results presented in this work demonstrate the application potential of Sc2CX2/Sc2CY2 (X, Y = F, Cl, Br) heterostructures in photocatalysis and photovoltaics.
Collapse
Affiliation(s)
- Xin He
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
- Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian 463000, China
| | - Yanan Wu
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
| | - Jia Luo
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
| | - Xianglin Dai
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
| | - Jun Song
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
- Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian 463000, China
| | - Yong Tang
- School of Energy Engineering, Huanghuai University, Zhumadian 463000, China; (X.H.); (Y.W.); (J.L.); (X.D.); (J.S.)
- Henan Key Laboratory of Smart Lighting, Huanghuai University, Zhumadian 463000, China
| |
Collapse
|
7
|
He L, Xu Y, Yang Z, Lu X, Yao X, Li C, Xu D, Wu C, Yao Z. Copper-decorated strategy based on defect-rich NH 2-MIL-125(Ti) boosts efficient photocatalytic degradation of methyl mercaptan under sunlight. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123341. [PMID: 38211878 DOI: 10.1016/j.envpol.2024.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Photocatalysis has received significant attention as a technology that can solve environmental problems. Metal-organic frameworks are currently being used as novel photocatalysts but are still limited by the rapid recombination of photogenerated carriers, low photogenerated electron migration efficiency and poor solar light utilization rate. In this work, a novel photocatalyst was successfully constructed by introducing Cu species into thermal activated mixed-ligand NH2-MIL-125 (Ti) via defect engineering strategy. The constructed defect structure not only provided 3D-interconnected gas transfer channels, but also offered suitable space to accommodate introduced Cu species. For the most effective photocatalyst 0.2Cu/80%NH2-MIL-125 (300 °C) with optimized Cu content, the photocatalytic degradation rate of CH3SH achieved 4.65 times higher than that of pristine NH2-MIL-125 under visible light (λ > 420 nm). At the same time, it showed great degradation efficiency under natural sunlight, 100 ppm CH3SH was completely removed within 25 min in full solar light illumination. The improved catalytic efficiency is mainly due to the synergistic effect of the integrated Schottky junction and rich-defective NH2-MIL-125, which improved the bandgap and band position, and thus facilitated the separation and transfer of the photo-generated carriers. This work provided a facile way to integrate Schottky junctions and rich-defective MOFs with high stability. Due to its excellent degradation performance under sunlight, it also offered a prospective strategy for rational design of high-efficiency catalysts applied in environmental technologies.
Collapse
Affiliation(s)
- Li He
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyao Xu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Zichang Yang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xingkai Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaolong Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Dong Xu
- CHN Energy New Energy Technology Research Institute Co., Ltd., Beijing 102209, China
| | - Chao Wu
- UKCRIC Advanced Infrastructure Materials Laboratory, Department of Civil and Environmental Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Sun J, Han S, Yao F, Li R, Fang C, Zhang X, Wang Y, Xu X, Wu D, Liu K, Xiong P, Zhu J. Gradient oxygen doping triggered a microscale built-in electric field in CdIn 2S 4 for photoelectrochemical water splitting. NANOSCALE 2024; 16:4620-4627. [PMID: 38323483 DOI: 10.1039/d3nr05609k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Construction of a built-in electric field has been identified as an attractive improvement strategy for photoelectrochemical (PEC) water splitting by facilitating the carrier extraction from the inside to the surface. However, the promotion effect of the electric field is still restrained by the confined built-in area. Herein, we construct a microscale built-in electric field via gradient oxygen doping. The octahedral configuration of the synthesized CdIn2S4 (CIS) provides a structural basis, which enables the subsequent oxygen doping to reach a depth of ∼100 nm. Accordingly, the oxygen-doped CIS (OCIS) photoanode exhibits a microscale built-in electric field with band bending. Excellent PEC catalytic activity with a photocurrent density of 3.69 mA cm-2 at 1.23 V vs. RHE is achieved by OCIS, which is 3.1 times higher than that of CIS. Combining the results of thorough characterization and theoretical calculations, accelerating migration and separation of charge carriers have been determined as the reasons for the improvement. Meanwhile, the recombination risk at the doping centers has also been reduced to the minimum via optimal experiments. This work provides a new-generation idea for constructing a built-in electric field from the view point of bulky configuration towards PEC water splitting.
Collapse
Affiliation(s)
- Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shangling Han
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fanglei Yao
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ruixin Li
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Chenchen Fang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiaoyuan Zhang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yaya Wang
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xuefeng Xu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Di Wu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Kai Liu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Wang S, Song D, Liao L, Li M, Li Z, Zhou W. Surface and interface engineering of BiOCl nanomaterials and their photocatalytic applications. Adv Colloid Interface Sci 2024; 324:103088. [PMID: 38244532 DOI: 10.1016/j.cis.2024.103088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/29/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BiOCl materials have received much attention because of their unique optical and electrical properties. Still, their unsatisfactory catalytic performance has been troubling researchers, limiting the application of BiOCl-based photocatalysts. Therefore, many researchers have studied the adjustment of BiOCl-based materials to enhance photocatalytic efficiency. This review focuses on surface and interface engineering strategies for boosting the photocatalytic performance of BiOCl-based nanomaterials, including forming oxygen vacancy defects, constructing metal/BiOCl, and the fabrication of semiconductor/BiOCl nanocomposites. The photocatalytic applications of the above composites are also concluded in photodegradation of aqueous pollutants, photocatalytic NO removal, photo-induced H2 production, and CO2 reduction. Special emphasis has been given to the modification methods of BiOCl and photocatalytic mechanisms to provide a more detailed understanding for researchers in the fields of energy conversion and materials sciences.
Collapse
Affiliation(s)
- Shijie Wang
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Dongxue Song
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China
| | - Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Mingxia Li
- School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
10
|
Fan Q, Xiao Q, Zhang H, Heng J, Xie M, Wei Z, Jia X, Liu X, Kang Z, Li CZ, Li S, Zhang T, Zhou Y, Huang J, Li Z. Highly Efficient and Stable ITO-Free Organic Solar Cells Based on Squaraine N-Doped Quaternary Bulk Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307920. [PMID: 37823840 DOI: 10.1002/adma.202307920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Indexed: 10/13/2023]
Abstract
Simultaneously achieving high efficiency and robust device stability remains a significant challenge for organic solar cells (OSCs). Solving this challenge is highly dependent on the film morphology of the bulk heterojunction (BHJ) photoactive blends; however, there is a lack of rational control strategy. Herein, it is shown that the molecular crystallinity and nanomorphology of nonfullerene-based BHJ can be effectively controlled by a squaraine-based doping strategy, leading to an increase in device efficiency from 17.26% to 18.5% when doping 2 wt% squaraine into the PBDB-TF:BTP-eC9:PC71 BM ternary BHJ. The efficiency is further improved to 19.11% (certified 19.06%) using an indium-tin-oxide-free column-patterned microcavity (CPM) architecture. Combined with interfacial modification, CPM quaternary OSC excitingly shows an extrapolated lifetime of ≈23 years based on accelerated aging test, with the mechanism behind enhanced stability well studied. Furthermore, a flexible OSC module with a high and stable efficiency of 15.2% and an overall area of 5 cm2 is successfully fabricated, exhibiting a high average output power for wearable electronics. This work demonstrates that OSCs with new design of BHJ and device architecture are highly promising to be practical relevance with excellent performance and stability.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Qi Xiao
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hanqing Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Jinzi Heng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Meiling Xie
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zihao Wei
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaowei Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaodong Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Zhangli Kang
- National Institute of Measurement and Testing Technology, Chengdu, Sichuan, 610021, China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shibin Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Ting Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yu Zhou
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, 610072, China
| | - Jiang Huang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Institute of Electronic and Information Engineering of UESTC in Guangdong, Guangdong, 523808, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Yu J, Yang Y, Sun F, Chen J. Research status and prospect of nano silver (Ag)-modified photocatalytic materials for degradation of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:191-214. [PMID: 38049687 DOI: 10.1007/s11356-023-31166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023]
Abstract
Nano silver (Ag) was metallic Ag monomers with particle size to the nanoscale. Photocatalyst was a kind of semiconductor material with photocatalytic function. Loading precious metal Ag onto semiconductor surfaces by microwave, laser-induced, solvent-thermal and hydrothermal methods could capture photogenerated electrons, reduced the compounding rate of holes and photogenerated electrons during the photocatalytic process, thereby improving the electron transfer efficiency of photocatalysis and enhancing the absorption of visible light by silver nanoparticles through the plasma resonance effect. The highly reactive free radicals produced by photocatalysts were used in the organic degradation process to degrade organic matter into inorganic matter and was a faster, more efficient and less polluting method of pollutant degradation, which has attracted a lot of attention from researchers. This review discussed the modification of various types of photocatalysts by nano Ag through different methods. The photocatalytic degradation of dyes, antibiotics and persistent organic pollutants by different modified composites was also analyzed. This review covered the several ways and means in which nano Ag has modified diverse photocatalytic materials as well as the photocatalytic degradation of dyes, antibiotics and persistent organic pollutants. This review identified the drawbacks of the existing nano Ag-modified photocatalytic materials, including their low yield and lack of recyclability, and it also offered suggestions for potential future directions for their improvement. The purpose of this review was to further research on the technology of nano Ag-modified photocatalytic materials and to encourage the creation of new modified photocatalytic nanomaterials for the treatment of organic pollutant degradation.
Collapse
Affiliation(s)
- Jingjing Yu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Fengfei Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, People's Republic of China.
| |
Collapse
|
12
|
Zhu X, Xu H, Bi C, Song H, Zhou G, Zhong K, Yang J, Yi J, Xu H, Wang X. Piezo-photocatalysis for efficient charge separation to promote CO 2 photoreduction in nanoclusters. ULTRASONICS SONOCHEMISTRY 2023; 101:106653. [PMID: 37918293 PMCID: PMC10638044 DOI: 10.1016/j.ultsonch.2023.106653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
The substantial emissions of CO2 greenhouse gases have resulted in severe environmental problems, and research on the implementation of semiconductor materials to minimize CO2 is currently a highly discussed subject. Effective separation of interface charges is a major challenge for efficient piezo-photocatalytic systems. Meanwhile, the ultrasmall-sized metal nanoclusters can shorten the distance of electron transport. Herein, we synthesized Au25(p-MBA)18 nanoclusters (Au25 NCs) modified red graphitic carbon nitride (RCN) nanocatalysts with highly exposed Au active sites by in-situ seed growth method. The loading of Au25 NCs on the RCN surface provides more active sites and creates a long-range ordered electric field. It allows for the direct utilization of the piezoelectric field to separate photogenerated carriers during photo-piezoelectric excitation. Based on the above advantages, the rate of CO2 reduction to CO over Au25 NCs/RCN (111.95 μmol g-1 h-1) was more than triple compared to that of pristine RCN. This paper has positive implication for further application of metal clusters loaded semiconductor for piezo-photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Xingwang Zhu
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China.
| | - Hangmin Xu
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Chuanzhou Bi
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Hao Song
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Ganghua Zhou
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Kang Zhong
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Jinman Yang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Jianjian Yi
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| | - Xiaozhi Wang
- School of Environmental Science and Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
13
|
Yang J, Wang Q, Luo X, Han C, Liang Y, Yang G, Zhang X, Zeng Z, Wang G. Chemical bonding and facet modulating of p-n heterojunction enable vectorial charge transfer for enhanced photocatalysis. J Colloid Interface Sci 2023; 651:805-817. [PMID: 37572616 DOI: 10.1016/j.jcis.2023.08.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Heterojunctions have been proved to be the promising photocatalysts for hazardous contaminants removal, but the inferior interfacial contact, low carrier mobility and random carrier diffusion seriously hamper the photoactivity improvement of the conventional heterojunctions. Herein, SO chemically bonded p-n oriented heterostructure is fabricated via selectively anchoring of p-type Ag2S nanoparticles on the lateral facet of n-type Bi4TaO8Cl nanosheet. Such a p-n heterojunction engineering on specific facet of Bi4TaO8Cl semiconductor derives ingenious double internal electric field (IEF), which not only effectively creates the spatially separated oxidation and reduction sites, but also delivers the powerful driving forces for impactful spatial directed photocarrier transfer along the cascade path. Additionally, our experimental and theoretical analyses jointly signify that the interfacial SO bond could serve as an efficient atomic-level interfacial channel, which is conducive to encouraging the vectorial charge separation and migration kinetic. As a result, the Ag2S/Bi4TaO8Cl oriented heterojunction exhibits significantly enhanced visible light driven photocatalytic redox ability for tetracycline oxidation and hexavalent chromium reduction than those of single component and the traditional random/mixed heterojunctions. This study could provide a deeper insight into the synergistic effects of multi-IEF modulation and interfacial chemical bond bridging on optimizing the photogenerated carrier behaviors.
Collapse
Affiliation(s)
- Jian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qiangke Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xuefeng Luo
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Chuang Han
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yujun Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Gui Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaorui Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zikang Zeng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
14
|
Li JQ, Hu JY, Cheng J. Water effect on the band edges of anatase TiO 2 surfaces: A theoretical study on charge migration across surface heterojunctions and facet-dependent photoactivity. Phys Chem Chem Phys 2023; 25:29143-29154. [PMID: 37869989 DOI: 10.1039/d3cp03662f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The charge migration mechanism across the surface heterojunction constructed on an anatase TiO2 nanocrystal is still under debate. To solve this longstanding question, we present a systematic study of the band edges (vs. standard hydrogen electrode, SHE) of aqueous TiO2 interfaces with anatase (101), (100) and (001) surfaces, using a combination of density functional theory-based molecular dynamics (DFTMD) and efficient computational SHE (cSHE) methods. Our calculations show that the conduction band minimum (CBM) of the (101) surface is lower than that of (001) and (100) surfaces, which is thermodynamically favorable for electrons migrating to the (101) surface through the surface heterojunction, while the hole preferentially accumulates on the (100) surface due to its highest valence band minimum (VBM). In addition, we qualitatively explore the facet-dependent photocatalytic activity of anatase TiO2. Due to the possession of both the beneficial atomic structure (with 100% undercoordinated Ti5c atoms at the surface) and electronic structure (more strongly oxidizing holes in the VBM and efficient electron-hole spatial separation separation), the (001) surface exhibits the most efficient photocatalytic performance for water oxidation. Furthermore, it is confirmed that the use of simplified theoretical models neglecting the detailed atomic structures of water at the aqueous interface is inadequate to predict the band alignment of semiconductors relative to water redox potentials, so that it may result in substantial errors in evaluating the photocatalytic performance of materials to be used for water splitting.
Collapse
Affiliation(s)
- Jie-Qiong Li
- State Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jin-Yuan Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
15
|
Gao M, Tian F, Zhang X, Chen Z, Yang W, Yu Y. Improved Plasmonic Hot-Electron Capture in Au Nanoparticle/Polymeric Carbon Nitride by Pt Single Atoms for Broad-Spectrum Photocatalytic H 2 Evolution. NANO-MICRO LETTERS 2023; 15:129. [PMID: 37209296 PMCID: PMC10199823 DOI: 10.1007/s40820-023-01098-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/22/2023]
Abstract
Rationally designing broad-spectrum photocatalysts to harvest whole visible-light region photons and enhance solar energy conversion is a "holy grail" for researchers, but is still a challenging issue. Herein, based on the common polymeric carbon nitride (PCN), a hybrid co-catalysts system comprising plasmonic Au nanoparticles (NPs) and atomically dispersed Pt single atoms (PtSAs) with different functions was constructed to address this challenge. For the dual co-catalysts decorated PCN (PtSAs-Au2.5/PCN), the PCN is photoexcited to generate electrons under UV and short-wavelength visible light, and the synergetic Au NPs and PtSAs not only accelerate charge separation and transfer though Schottky junctions and metal-support bond but also act as the co-catalysts for H2 evolution. Furthermore, the Au NPs absorb long-wavelength visible light owing to its localized surface plasmon resonance, and the adjacent PtSAs trap the plasmonic hot-electrons for H2 evolution via direct electron transfer effect. Consequently, the PtSAs-Au2.5/PCN exhibits excellent broad-spectrum photocatalytic H2 evolution activity with the H2 evolution rate of 8.8 mmol g-1 h-1 at 420 nm and 264 μmol g-1 h-1 at 550 nm, much higher than that of Au2.5/PCN and PtSAs-PCN, respectively. This work provides a new strategy to design broad-spectrum photocatalysts for energy conversion reaction.
Collapse
Affiliation(s)
- Manyi Gao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Fenyang Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
16
|
Sun L, Li W, Ma C, Lv G, Feng H, Pu Y, Sun T, Chen S. Fabrication of direct Z-scheme Cu 2O@V-CN (octa) heterojunction with exposed (111) lattice planes and nitrogen-rich vacancies for rapid sterilization. J Colloid Interface Sci 2023; 645:251-265. [PMID: 37149999 DOI: 10.1016/j.jcis.2023.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
The Z-scheme heterojunction has demonstrated significant potential for promoting photogenerated carrier separation. However, the rational design of all-solid Z-scheme heterojunctions catalysts and the controversies about carrier transfer path of direct Z-scheme heterojunctions catalysts face various challenges. Herein, a novel heterojunction, Cu2O@V-CN (octa), was fabricated using V-CN (carbon nitride with nitrogen-rich vacancies) in-situ electrostatic self-wrapping Cu2O octahedra. Density functional theory (DFT) calculations revealed that the separation of carriers across the Cu2O@V-CN (octa) heterointerface was directly mapped to the Z-scheme mechanism compared to Cu2O/V-CN (sphere). This is because the Cu2O octahedra expose more highly active (111) lattice planes with more terminal Cu atoms and V-CN with abundant nitrogen vacancies to form delocalized electronic structures like electronic reservoirs. This facilitates the wrapping of Cu2O octahedra by V-CN and protects their stability via tighter interfacial contact, thus enhancing the tunneling of carriers for rapid photocatalytic sterilization. These findings provide novel approaches for designing high-efficiency Cu2O-based photocatalytic antifoulants for practical applications.
Collapse
Affiliation(s)
- Lifang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Wen Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Chengcheng Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Gaojian Lv
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Huimeng Feng
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Yanan Pu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Tianxiang Sun
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China
| | - Shougang Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266500, China.
| |
Collapse
|
17
|
Qin T, Wei J, Zhou C, Zeng X, Zhou J, Li YY. Directional crystal facets deposition constructed BiVO4/Ag/MnO2 with plasmon resonance for enhanced photocatalytic degradation of antibiotics in water. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
18
|
Ye Z, Xu Z, Yue W, Liu X, Wang L, Zhang J. Exploiting the LSPR effect for an enhanced photocatalytic hydrogen evolution reaction. Phys Chem Chem Phys 2023; 25:2706-2716. [PMID: 36629741 DOI: 10.1039/d2cp04582f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Incorporation of plasmonic metals is one of the most widely adopted strategies for improving the photocatalytic hydrogen evolution reaction (HER) activity of semiconductor photocatalysts. This article summarizes recent advances in the development of plasmonic metal-semiconductor photocatalysts and four localized surface plasmon resonance (LSPR) driven mechanisms by which plasmonic metal nanoparticles can contribute to enhancement of HER activity. In addition, principles for maximizing the contribution of these LSPR driven mechanisms are highlighted to provide insights for future design of plasmonic metal-semiconductor photocatalysts with enhanced HER activity.
Collapse
Affiliation(s)
- Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Zehong Xu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Wenhui Yue
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyu Liu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China. .,Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Xu D, Zhang SN, Chen JS, Li XH. Design of the Synergistic Rectifying Interfaces in Mott-Schottky Catalysts. Chem Rev 2023; 123:1-30. [PMID: 36342422 DOI: 10.1021/acs.chemrev.2c00426] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functions of interfacial synergy in heterojunction catalysts are diverse and powerful, providing a route to solve many difficulties in energy conversion and organic synthesis. Among heterojunction-based catalysts, the Mott-Schottky catalysts composed of a metal-semiconductor heterojunction with predictable and designable interfacial synergy are rising stars of next-generation catalysts. We review the concept of Mott-Schottky catalysts and discuss their applications in various realms of catalysis. In particular, the design of a Mott-Schottky catalyst provides a feasible strategy to boost energy conversion and chemical synthesis processes, even allowing realization of novel catalytic functions such as enhanced redox activity, Lewis acid-base pairs, and electron donor-acceptor couples for dealing with the current problems in catalysis for energy conversion and storage. This review focuses on the synthesis, assembly, and characterization of Schottky heterojunctions for photocatalysis, electrocatalysis, and organic synthesis. The proposed design principles, including the importance of constructing stable and clean interfaces, tuning work function differences, and preparing exposable interfacial structures for designing electronic interfaces, will provide a reference for the development of all heterojunction-type catalysts, electrodes, energy conversion/storage devices, and even super absorbers, which are currently topics of interest in fields such as electrocatalysis, fuel cells, CO2 reduction, and wastewater treatment.
Collapse
Affiliation(s)
- Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
20
|
Strategy for reducing the carriers transfer antagonistic effect between heterojunction and plasmonic effect and weakening photocorrosion of Cu2O for excellent photocatalytic bacteriostasis. J Colloid Interface Sci 2023; 630:556-572. [DOI: 10.1016/j.jcis.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|
21
|
Wang S, Zhang Y, Zheng Y, Xu Y, Yang G, Zhong S, Zhao Y, Bai S. Plasmonic Metal Mediated Charge Transfer in Stacked Core-Shell Semiconductor Heterojunction for Significantly Enhanced CO 2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204774. [PMID: 36394158 DOI: 10.1002/smll.202204774] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Construction of core-shell semiconductor heterojunctions and plasmonic metal/semiconductor heterostructures represents two promising routes to improved light harvesting and promoted charge separation, but their photocatalytic activities are respectively limited by sluggish consumption of charge carriers confined in the cores, and contradictory migration directions of plasmon-induced hot electrons and semiconductor-generated electrons. Herein, a semiconductor/metal/semiconductor stacked core-shell design is demonstrated to overcome these limitations and significantly boost the photoactivity in CO2 reduction. In this smart design, sandwiched Au serves as a "stone", which "kills two birds" by inducing localized surface plasmon resonance for hot electron generation and mediating unidirectional transmission of conduction band electrons and hot electrons from TiO2 core to MoS2 shell. Meanwhile, upward band bending of TiO2 drives core-to-shell migration of holes through TiO2 -MoS2 interface. The co-existence of TiO2 → Au → MoS2 electron flow and TiO2 → MoS2 hole flow contributes to spatial charge separation on different locations of MoS2 outer layer for overall redox reactions. Additionally, reduction potential of photoelectrons participating in the CO2 reduction is elaborately adjusted by tuning the thickness of MoS2 shell, and thus the product selectivity is delicately regulated. This work provides fresh hints for rationally controlling the charge transfer pathways toward high-efficiency CO2 photoreduction.
Collapse
Affiliation(s)
- Shihong Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yan Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yiyi Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yanbo Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Guodong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Shuxian Zhong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Yuling Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| | - Song Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, P. R. China
| |
Collapse
|
22
|
Enhancement of photocatalytic ammonia production over BiOBr nanosheets with photo-assembled Au cocatalysts. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Prabhakar Vattikuti SV, Zeng J, Ramaraghavulu R, Shim J, Mauger A, Julien CM. High-Throughput Strategies for the Design, Discovery, and Analysis of Bismuth-Based Photocatalysts. Int J Mol Sci 2022; 24:663. [PMID: 36614112 PMCID: PMC9820977 DOI: 10.3390/ijms24010663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Bismuth-based nanostructures (BBNs) have attracted extensive research attention due to their tremendous development in the fields of photocatalysis and electro-catalysis. BBNs are considered potential photocatalysts because of their easily tuned electronic properties by changing their chemical composition, surface morphology, crystal structure, and band energies. However, their photocatalytic performance is not satisfactory yet, which limits their use in practical applications. To date, the charge carrier behavior of surface-engineered bismuth-based nanostructured photocatalysts has been under study to harness abundant solar energy for pollutant degradation and water splitting. Therefore, in this review, photocatalytic concepts and surface engineering for improving charge transport and the separation of available photocatalysts are first introduced. Afterward, the different strategies mainly implemented for the improvement of the photocatalytic activity are considered, including different synthetic approaches, the engineering of nanostructures, the influence of phase structure, and the active species produced from heterojunctions. Photocatalytic enhancement via the surface plasmon resonance effect is also examined and the photocatalytic performance of the bismuth-based photocatalytic mechanism is elucidated and discussed in detail, considering the different semiconductor junctions. Based on recent reports, current challenges and future directions for designing and developing bismuth-based nanostructured photocatalysts for enhanced photoactivity and stability are summarized.
Collapse
Affiliation(s)
| | - Jie Zeng
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 Place Jussieu, 75252 Paris, France
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS-UMR 7590, 4 Place Jussieu, 75252 Paris, France
| |
Collapse
|
24
|
Guan C, Hou T, Nie W, Zhang Q, Duan L, Zhao X. Facet synergy dominant Z-scheme transition in BiOCl with enhanced 1O 2 generation. CHEMOSPHERE 2022; 307:135663. [PMID: 35835240 DOI: 10.1016/j.chemosphere.2022.135663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BiOCl powders with different morphology were obtained through self-assembling. Their photocatalytic performance was tested through degradation of organic dye and mechanism of photocatalytic for obtained samples were investigated. Relevant characterization demonstrated that facet synergy was a main reason of photocatalytic performance promotion due to changed facet exposure and proportion under self-assembling. Theory and experimental analysis manifested that synergistic facet stimulated Z scheme transition in samples with lower (001) facet proportion, which provided favorable condition of 1O2 generation and simultaneously generated prominent charge separation. This work unveiled the facet synergy dominant photocatalytic performance improvement in self-assembling system of BiOCl and verified decisive role of facet proportion in constructing Z-scheme facet junction, which also prompted possibility of improving 1O2 generation through facet engineering under self-assembling.
Collapse
Affiliation(s)
- Chongshang Guan
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Tian Hou
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Wuyang Nie
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Qian Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Libing Duan
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xiaoru Zhao
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
25
|
Sharma S, Kumar R, Raizada P, Ahamad T, Alshehri SM, Nguyen VH, Thakur S, Nguyen CC, Kim SY, Le QV, Singh P. An overview on recent progress in photocatalytic air purification: Metal-based and metal-free photocatalysis. ENVIRONMENTAL RESEARCH 2022; 214:113995. [PMID: 35932830 DOI: 10.1016/j.envres.2022.113995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Air pollution is becoming a distinctly growing concern and the most pressing universal problem as a result of increased energy consumption, with the multiplication of the human population and industrial enterprises, resulting in the generation of hazardous pollutants. Among these, carbon monoxide, nitrogen oxides, Volatile organic compounds, Semi volatile organic compounds, and other inorganic gases not only have an adverse impact on human health both outdoors and indoors, but have also substantially altered the global climate, resulting in several calamities around the world. Thus, the purification of air is a crucial matter to deal with. Photocatalytic oxidation is one of the most recent and promising technologies, and it has been the subject of numerous studies over the past two decades. Hence, the photocatalyst is the most reassuring aspirant due to its adequate bandgap and exquisite stability. The process of photocatalysis has provided many benefits to the atmosphere by removing pollutants. In this review, our work focuses on four main themes. Firstly, we briefly elaborated on the general mechanism of air pollutant degradation, followed by an overview of the typical TiO2 photocatalyst, which is the most researched photocatalyst for photocatalytic destruction of gaseous VOCs. The influence of operating parameters influencing the process of photocatalytic oxidation (such as mass transfer, light source and intensity, pollutant concentration, and relative humidity) was then summarized. Afterwards, the progress and drawbacks of some typical photoreactors (including monolithic reactors, microreactors, optical fiber reactors, and packed bed reactors) were described and differentiated. Lastly, the most noteworthy coverage is dedicated to different types of modification strategies aimed at ameliorating the performance of photocatalysts for degradation of air pollutants, which were proposed and addressed. In addition, the review winds up with a brief deliberation for more exploration into air purification photocatalysis.
Collapse
Affiliation(s)
- Sarika Sharma
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Rohit Kumar
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram district-603103, Tamil Nadu, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Chinh Chien Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Faculty of Basic Sciences, Shoolini University, Solan (HP), 173229, India.
| |
Collapse
|
26
|
Boosting visible light driven gas-solid phase photocatalytic reduction of CO2 on BiOCl microspheres by enhanced carrier transportation through lattice structure modification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Liu J, Wang H, Chang MJ, Sun M, He ZW, Zhang CM, Zhu WY, Chen JL, Du HL, Peng LG, Luo ZM, Zhang L. Magnetically separatable CoFe2O4/BiOCl: Controllable synthesis, superior photocatalytic performance and mechanism towards decomposing RhB, NOR and Cr(VI) under visible light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W, Wang X. Advanced photocatalysts for uranium extraction: Elaborate design and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214615] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Yuan Y, Pan WG, Guo RT, Hong LF, Lin ZD, Ji XY. Flower spherical-like Bi7O9I3/AgI S-scheme heterojunction for phenol photodegradation: The synergetic effect of dual surface plasmon resonance and photothermal property. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Zhang Y, Liu J, Kang YS, Zhang XL. Silver based photocatalysts in emerging applications. NANOSCALE 2022; 14:11909-11922. [PMID: 35959864 DOI: 10.1039/d2nr02665a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The infinite availability of solar energy grants the potential of fulfilling the energy demands and environmental sustainability requirements with more feasible and reliant renewable energy forms through photocatalysis. In the past decade, the intensive plasmonic effect, suitable work function, superior electrical conductivity and physiochemical properties have made Ag-based photocatalysts attractive components for emerging applications. The local surface plasmon resonance effect (LSPR) provides extra hot-carriers to participate in the photocatalytic process, and Schottky/Ohmic contacts would facilitate charge transfer. Here, recent studies focused on Ag-based photocatalysts for emerging applications are reviewed. Notably, the mechanisms of LSPR, the Schottky barrier and ohmic contacts are introduced together with urgent issues in CO2 reduction, antibacterial application, H2 generation, and environmental hazard removal. Additionally, some perspectives and directions on more comprehensive designs on material system, band alignment and functionalization are given to further the exploration in this research area.
Collapse
Affiliation(s)
- Yan Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, P.R. China.
| | - Jian Liu
- Department of Chemical and Process Engineering, University of Surrey, GU2 7XH, UK
| | - Young Soo Kang
- Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju City, Jeollanamdo 58330, Korea
| | - Xiao Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, P.R. China.
| |
Collapse
|
31
|
Su C, Cheng M, Tian F, Chen F, Chen R. Anti-oil-fouling Au/BiOCl coating for visible light-driven photocatalytic inactivation of bacteria. J Colloid Interface Sci 2022; 628:955-967. [PMID: 36037717 DOI: 10.1016/j.jcis.2022.08.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/18/2022]
Abstract
In this work, gold/bismuth oxychloride (Au/BiOCl) nanocomposites with different morphologies were successfully prepared by simple solvothermal method and sodium borohydride reduction method, which exhibited significantly efficient visible-light-driven photocatalytic disinfection for Staphylococcus aureus (S.aureus). Particularly, the flower-like Au/BiOCl nanocomposite showed the highest photocatalytic bactericidal performance among the prepared Au/BiOCl samples. The radical trapping experiments revealed that the hole was the main reactive species responsible for the inactivation of S.aureus over Au/BiOCl composite. The enhanced photocatalytic bactericidal effect could be attributed to the enhanced adsorption intensity of visible light that originated from the surface plasmon resonance (SPR) effect of Au, rapid transfer and space transport of hot electrons caused by the hierarchical structure of BiOCl layered compound. Furthermore, the Au/BiOCl coating prepared on stainless steel wire mesh via in-situ synthesis method exhibited excellent superhydrophilic/underwater superoleophobic performance, which endowed the coating with anti-oil-fouling in water. More importantly, compared with Au/BiOCl powder catalyst, the prepared Au/BiOCl coating with anti-oil-fouling also possessed high photocatalytic bactericidal activity and stable recycling performance.
Collapse
Affiliation(s)
- Chunping Su
- School of Chemistry and Environmental Engineering and Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Mengxi Cheng
- School of Chemistry and Environmental Engineering and Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Fan Tian
- School of Chemistry and Environmental Engineering and Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China
| | - Fengxi Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Rong Chen
- School of Chemistry and Environmental Engineering and Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Donghu New & High Technology Development Zone, Wuhan 430205, PR China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China.
| |
Collapse
|
32
|
Ma X, Chen Q, Chen J, Liao Y, Cai L, Chen L, Wang N, Zhu Y, Huang Z. Construction and in-situ thermodynamics/kinetics studies on Ag-bridged g-C3N4-{002}/BiOBr-{001} facet Z–scheme heterojunction with crystal plane synergistic effect based on photocalorimetry - spectroscopy technology. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Cruz-Cruz A, Gallareta-Olivares G, Rivas-Sanchez A, González-González RB, Ahmed I, Parra-Saldívar R, Iqbal HMN. Recent Advances in Carbon Dots Based Biocatalysts for Degrading Organic Pollutants. CURRENT POLLUTION REPORTS 2022; 8:384-394. [DOI: 10.1007/s40726-022-00228-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2022] [Indexed: 12/17/2024]
|
34
|
Zhang Q, Nie W, Hou T, Shen H, Li Q, Guan C, Duan L, Zhao X. Optical and Photocatalytic Properties of Br-Doped BiOCl Nanosheets with Rich Oxygen Vacancies and Dominating {001} Facets. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2423. [PMID: 35889647 PMCID: PMC9318533 DOI: 10.3390/nano12142423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
Crystal facet engineering and nonmetal doping are regarded as effective strategies for improving the separation of charge carriers and photocatalytic activity of semiconductor photocatalysts. In this paper, we developed a facial method for fabricating oxygen-deficient Br-doped BiOCl nanosheets with dominating {001} facets through a traditional hydrothermal reaction and explored the impact of the Br doping and specific facets on carrier separation and photocatalytic performance. The morphologies, structures, and optical and photocatalytic properties of the obtained products were characterized systematically. The BiOCl samples prepared by the hydrothermal reaction exhibited square-like shapes with dominating {001} facets. Photodeposition results indicated that photoinduced electrons preferred to transfer to {001} facets because of the strong internal static electric fields in BiOCl nanosheets with dominating {001} facets. Br doping not only contributed to the formation of impurity energy levels that could promote light absorption but introduced a large number of surface oxygen vacancies (VO) in BiOCl photocatalysts, which was beneficial for photocatalytic performance. Moreover, the photocatalytic activities of these products under visible light were tested by degradation of rhodamine B (RhB). Because of the synergistic effect of the dominating {001} facets, Br doping, and rich VO, oxygen-deficient Br-doped BiOCl nanosheets exhibited improved carrier separation, visible light absorption, and photocatalytic efficiency.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China; (Q.Z.); (W.N.); (T.H.); (Q.L.); (C.G.); (L.D.)
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wuyang Nie
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China; (Q.Z.); (W.N.); (T.H.); (Q.L.); (C.G.); (L.D.)
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tian Hou
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China; (Q.Z.); (W.N.); (T.H.); (Q.L.); (C.G.); (L.D.)
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hao Shen
- Department of Applied Physics, Chang’an University, Xi’an 710064, China;
| | - Qiang Li
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China; (Q.Z.); (W.N.); (T.H.); (Q.L.); (C.G.); (L.D.)
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chongshang Guan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China; (Q.Z.); (W.N.); (T.H.); (Q.L.); (C.G.); (L.D.)
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Libing Duan
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China; (Q.Z.); (W.N.); (T.H.); (Q.L.); (C.G.); (L.D.)
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaoru Zhao
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Northwestern Polytechnical University, Xi’an 710072, China; (Q.Z.); (W.N.); (T.H.); (Q.L.); (C.G.); (L.D.)
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, Northwestern Polytechnical University, Xi’an 710072, China
- Department of Applied Physics, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
35
|
Castillo-Cabrera GX, Espinoza-Montero PJ, Alulema-Pullupaxi P, Mora JR, Villacís-García MH. Bismuth Oxyhalide-Based Materials (BiOX: X = Cl, Br, I) and Their Application in Photoelectrocatalytic Degradation of Organic Pollutants in Water: A Review. Front Chem 2022; 10:900622. [PMID: 35898970 PMCID: PMC9309798 DOI: 10.3389/fchem.2022.900622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
An important target of photoelectrocatalysis (PEC) technology is the development of semiconductor-based photoelectrodes capable of absorbing solar energy (visible light) and promoting oxidation and reduction reactions. Bismuth oxyhalide-based materials BiOX (X = Cl, Br, and I) meet these requirements. Their crystalline structure, optical and electronic properties, and photocatalytic activity under visible light mean that these materials can be coupled to other semiconductors to develop novel heterostructures for photoelectrochemical degradation systems. This review provides a general overview of controlled BiOX powder synthesis methods, and discusses the optical and structural features of BiOX-based materials, focusing on heterojunction photoanodes. In addition, it summarizes the most recent applications in this field, particularly photoelectrochemical performance, experimental conditions and degradation efficiencies reported for some organic pollutants (e.g., pharmaceuticals, organic dyes, phenolic derivatives, etc.). Finally, as this review seeks to serve as a guide for the characteristics and various properties of these interesting semiconductors, it discusses future PEC-related challenges to explore.
Collapse
Affiliation(s)
- G. Xavier Castillo-Cabrera
- Escuela de Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central Del Ecuador, Quito, Ecuador
| | | | | | | | | |
Collapse
|
36
|
Ma ZP, Zhang L, Ma X, Shi FN. A dual strategy for synthesizing crystal plane/defect co-modified BiOCl microsphere and photodegradation mechanism insights. J Colloid Interface Sci 2022; 617:73-83. [DOI: 10.1016/j.jcis.2022.02.082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/16/2022] [Accepted: 02/19/2022] [Indexed: 12/26/2022]
|
37
|
|
38
|
Chen Z, Chong B, Wells N, Yang G, Wang L. Constructing a coplanar heterojunction through enhanced π-π conjugation in g-C3N4 for efficient solar-driven water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Luo Z, Ye X, Zhang S, Xue S, Yang C, Hou Y, Xing W, Yu R, Sun J, Yu Z, Wang X. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat Commun 2022; 13:2230. [PMID: 35468890 PMCID: PMC9038904 DOI: 10.1038/s41467-022-29825-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Construction of internal electric fields (IEFs) is crucial to realize efficient charge separation for charge-induced redox reactions, such as water splitting and CO2 reduction. However, a quantitative understanding of the charge transfer dynamics modulated by IEFs remains elusive. Here, electron microscopy study unveils that the non-equilibrium photo-excited electrons are collectively steered by two contiguous IEFs within binary (001)/(200) facet junctions of BiOBr platelets, and they exhibit characteristic Gaussian distribution profiles on reduction facets by using metal co-catalysts as probes. An analytical model justifies the Gaussian curve and allows us to measure the diffusion length and drift distance of electrons. The charge separation efficiency, as well as photocatalytic performances, are maximized when the platelet size is about twice the drift distance, either by tailoring particle dimensions or tuning IEF-dependent drift distances. The work offers great flexibility for precisely constructing high-performance particulate photocatalysts by understanding charge transfer dynamics.
Collapse
Affiliation(s)
- Zhishan Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiaoyuan Ye
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shijia Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wandong Xing
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Jie Sun
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China and College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350100, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
40
|
Tao X, Zhao Y, Wang S, Li C, Li R. Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts. Chem Soc Rev 2022; 51:3561-3608. [PMID: 35403632 DOI: 10.1039/d1cs01182k] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The conversion and storage of solar energy to chemical energy via artificial photosynthesis holds significant potential for optimizing the energy situation and mitigating the global warming effect. Photocatalytic water splitting utilizing particulate semiconductors offers great potential for the production of renewable hydrogen, while this cross-road among biology, chemistry, and physics features a topic with fascinating interdisciplinary challenges. Progress in photocatalytic water splitting has been achieved in recent years, ranging from fundamental scientific research to pioneering scalable practical applications. In this review, we focus mainly on the recent advancements in terms of the development of new light-absorption materials, insights and strategies for photogenerated charge separation, and studies towards surface catalytic reactions and mechanisms. In particular, we emphasize several efficient charge separation strategies such as surface-phase junction, spatial charge separation between facets, and polarity-induced charge separation, and also discuss their unique properties including ferroelectric and photo-Dember effects on spatial charge separation. By integrating time- and space-resolved characterization techniques, critical issues in photocatalytic water splitting including photoinduced charge generation, separation and transfer, and catalytic reactions are analyzed and reviewed. In addition, photocatalysts with state-of-art efficiencies in the laboratory stage and pioneering scalable solar water splitting systems for hydrogen production using particulate photocatalysts are presented. Finally, some perspectives and outlooks on the future development of photocatalytic water splitting using particulate photocatalysts are proposed.
Collapse
Affiliation(s)
- Xiaoping Tao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Shengyang Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China. .,University of Chinese Academy of Sciences, China
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Zhongshan Road 457, Dalian, 116023, China.
| |
Collapse
|
41
|
Subhiksha V, Kokilavani S, Sudheer Khan S. Recent advances in degradation of organic pollutant in aqueous solutions using bismuth based photocatalysts: A review. CHEMOSPHERE 2022; 290:133228. [PMID: 34896424 DOI: 10.1016/j.chemosphere.2021.133228] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/25/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Today, a major concern associated with the environment is the water pollution occurred due to the introduction of variety of persistent organic pollutants and residual dyes from different sources (e.g., dye and dye intermediates industries, paper and pulp industries, textile industries, tannery and craft bleaching industries, pharmaceutical industries, etc.) into our natural water resources. Recently, advanced oxidation processes (AOPs) by photocatalyst have garnered great attention as a new frontier promising eco-friendly and sustainable wastewater treatment technology. Utilization of the photocatalytic technology efficiently is significant for cleaner environment. Bismuth based photocatalyst have aroused widespread attention as a visible light responsive photocatalyst for waste water treatment due to their non-toxicity, low cost, modifiable morphology, and outstanding optical and chemical properties. In this review, we have dealt with the research progress on bismuth-based photocatalysts for waste water treatment. However, it seems to give limitation over pristine photocatalysts such as slow migration of charge carriers, charge carrier recombination, low visible light absorption, etc., Various bismuth based photocatalyst and its modifications via doping, heterojunction, Z-scheme etc., are discussed in detail. Further, the strategies adopted to improve the photocatalytic activity of bismuth based photocatalyst to improve the waste water treatment (mostly drugs and dyes) are critically reviewed. Also, we have discussed the bacterial inactivation by bismuth based photocatalyst. Finally, the challenges and future aspects against bismuth based photocatalyst are explored for further research.
Collapse
Affiliation(s)
- V Subhiksha
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - S Kokilavani
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
42
|
Abstract
Energy storage and conversion in a clean, efficient, and safe way is the core appeal of a modern sustainable society, which is built on the development of multifunctional materials. Superlattice structures can integrate the advantage of their sublayers while new phenomena may arise from the interface, which play key roles in modern semiconductor technology; however, additional concerns such as stability and yield challenge their large-scale applications in industrial products. In this Perspective we focus our interest on a distinctive category of easily available multilayered inorganic materials that have well-defined subunit structures and can be regarded as bulk superlattice analogues. We illustrate several specific combining forms of subunits in bulk superlattice analogues, including soft/rigid sublayers, electron/phonon transport sublayers, quasi-two-dimensional layers, and intercalated metal layers. We hope to provide insights into material design and broaden the application scope in the field of energy conversion by integrating the versatility of subunits into these bulk superlattice analogues.
Collapse
Affiliation(s)
- Wei Bai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chong Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Science, Dalian, Liaoning 116023, People's Republic of China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
43
|
Constructing Schottky junctions via Pd nanosheets on DUT-67 surfaces to accelerate charge transfer. J Colloid Interface Sci 2022; 608:3022-3029. [PMID: 34815078 DOI: 10.1016/j.jcis.2021.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
The separation, transfer and recombination of charge often affect the rate of photocatalytic reduction of CO2. Schottky junctions can promote the rapid separation of space charge. Therefore, in this paper, Pd nanosheets were grown on the surface of DUT-67 by a hydrothermal method, and a Schottky junction was constructed between DUT-67 and Pd. Under the action of the Schottky junction, the CO yield of 0.3-Pd/DUT-67 reached 12.15 μmol/g/h, which was 17 times higher than that of DUT-67. Efficient charge transfer was demonstrated in photochemical experiments. The large specific surface area and the increased light utilization rate also contributed to the increase in the CO2 reduction efficiency. In addition, the mechanism of Pd/DUT-67 photocatalytic reduction of CO2 was proposed.
Collapse
|
44
|
Seifner MS, Snellman M, Makgae OA, Kumar K, Jacobsson D, Ek M, Deppert K, Messing ME, Dick KA. Interface Dynamics in Ag-Cu 3P Nanoparticle Heterostructures. J Am Chem Soc 2022; 144:248-258. [PMID: 34949090 PMCID: PMC8759066 DOI: 10.1021/jacs.1c09179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Earth-abundant transition metal phosphides are promising materials for energy-related applications. Specifically, copper(I) phosphide is such a material and shows excellent photocatalytic activity. Currently, there are substantial research efforts to synthesize well-defined metal-semiconductor nanoparticle heterostructures to enhance the photocatalytic performance by an efficient separation of charge carriers. The involved crystal facets and heterointerfaces have a major impact on the efficiency of a heterostructured photocatalyst, which points out the importance of synthesizing potential photocatalysts in a controlled manner and characterizing their structural and morphological properties in detail. In this study, we investigated the interface dynamics occurring around the synthesis of Ag-Cu3P nanoparticle heterostructures by a chemical reaction between Ag-Cu nanoparticle heterostructures and phosphine in an environmental transmission electron microscope. The major product of the Cu-Cu3P phase transformation using Ag-Cu nanoparticle heterostructures with a defined interface as a template preserved the initially present Ag{111} facet of the heterointerface. After the complete transformation, corner truncation of the faceted Cu3P phase led to a physical transformation of the nanoparticle heterostructure. In some cases, the structural rearrangement toward an energetically more favorable heterointerface has been observed and analyzed in detail at the atomic level. The herein-reported results will help better understand dynamic processes in Ag-Cu3P nanoparticle heterostructures and enable facet-engineered surface and heterointerface design to tailor their physical properties.
Collapse
Affiliation(s)
- Michael S. Seifner
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Markus Snellman
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Ofentse A. Makgae
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Krishna Kumar
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Daniel Jacobsson
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- National
Center for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Martin Ek
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Knut Deppert
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Maria E. Messing
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Solid
State Physics, Lund University, Box 118, 22100 Lund, Sweden
| | - Kimberly A. Dick
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
45
|
Wang X, Chen T, Yu K, Dong C, Yuan X, Gong X, Lian J, Cao X, Li M, Zhou L, Hu B, He R, Zhu W. Advanced Photocatalysts for Uranium Extraction: Elaborate Design and Future Perspectives. SSRN ELECTRONIC JOURNAL 2022. [DOI: doi.org/10.2139/ssrn.4048706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
46
|
Li Z, Chen H, Li Y, Wang H, Liu Y, Li X, Lin H, Li S, Wang L. Porous direct Z-scheme heterostructures of S-deficient CoS/CdS hexagonal nanoplates for robust photocatalytic H2 generation. CrystEngComm 2022. [DOI: 10.1039/d1ce01453f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Unique porous S-deficient CoS/CdS hexagonal nanoplates exhibited an outstanding photocatalytic capability for H2 production, due to excellent visible-light response, efficient Z-scheme charge separation, and abundant H2-evolving active sites.
Collapse
Affiliation(s)
- Zhihui Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hanchu Chen
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanyan Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Hui Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanru Liu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xia Li
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006, P. R. China
| | - Haifeng Lin
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
47
|
Huang Z, Wu J, Ma M, Wang J, Wu S, Hu X, Yuan C, Zhou Y. The selective production of CH 4via photocatalytic CO 2 reduction over Pd-modified BiOCl. NEW J CHEM 2022. [DOI: 10.1039/d2nj02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective production of CH4via photocatalytic CO2 reduction was achieved over Pd-modified BiOCl.
Collapse
Affiliation(s)
- Zeai Huang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Jundao Wu
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Minzhi Ma
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Junbu Wang
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Shuqi Wu
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Xiaoyun Hu
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chengdong Yuan
- Department of Petroleum Engineering, Kazan Federal University, Kazan, 420008, Russia
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
48
|
Lee MG, Yang JW, Kwon HR, Jang HW. Crystal facet and phase engineering for advanced water splitting. CrystEngComm 2022. [DOI: 10.1039/d2ce00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the principles and recent advances in facet and phase engineering of catalysts for photocatalytic, photoelectrochemical, and electrochemical water splitting. It suggests the basis of catalyst design for advanced water splitting.
Collapse
Affiliation(s)
- Mi Gyoung Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, M5S 1A4, Canada
| | - Jin Wook Yang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Ryeong Kwon
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
49
|
Sun X, Zhao H, Li H, Cai T, Li M, Wang Y. BiOI With High Intensity Ratio of (110)/(102) Facets and Iodine Vacancies: Facile Synthesis, Strong Adsorption and Visible‐Light Photocatalytic Performance. ChemistrySelect 2021. [DOI: 10.1002/slct.202102301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xinyu Sun
- Liaoning Petrochemical University School of Petrochemical Engineering No. 1 West Section of Dandong Road, Wanghua District Fushun City Liaoning Province
| | - Hua Zhao
- Liaoning Petrochemical University School of Petrochemical Engineering No. 1 West Section of Dandong Road, Wanghua District Fushun City Liaoning Province
| | - Huipeng Li
- Liaoning Petrochemical University School of Petrochemical Engineering No. 1 West Section of Dandong Road, Wanghua District Fushun City Liaoning Province
| | - Tianfeng Cai
- Liaoning Petrochemical University School of Petrochemical Engineering No. 1 West Section of Dandong Road, Wanghua District Fushun City Liaoning Province
| | - Mingyue Li
- Liaoning Petrochemical University School of Petrochemical Engineering No. 1 West Section of Dandong Road, Wanghua District Fushun City Liaoning Province
| | - Yucheng Wang
- Liaoning Petrochemical University School of Petrochemical Engineering No. 1 West Section of Dandong Road, Wanghua District Fushun City Liaoning Province
| |
Collapse
|
50
|
Wang Y, Chen X, Xiu H, Zhuang H, Li J, Zhou Y, Liu D, Kuang Y. General In Situ Photoactivation Route with IPCE over 80% toward CdS Photoanodes for Photoelectrochemical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104307. [PMID: 34725925 DOI: 10.1002/smll.202104307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Cost-effective photoanodes with remarkable electronic properties are highly demanded for practical photoelectrochemical (PEC) water splitting. The ability to manipulate the surface carrier separation and recombination is pivotal for achieving high PEC performance for water splitting. Here, a facile and economical approach is reported for substantially improving the surface charge separation property of CdS photoanodes through in situ photoactivation, which significantly reduces surface charge recombination through the formation of thiosulfate ion which is favorable to the transfer of photogenerated holes and a uniform nanoporous morphology via the dissolving Cd2+ with phosphate ions on the surface of CdS. The resulting CdS electrodes through scalable particle transfer method exhibit nearly tripled photocurrents, with an incident-photon-to-current conversion efficiency (IPCE) at 480 nm exceeding 80% at 0.6 V versus reversible hydrogen electrode (RHE). And the CdS thin films prepared from chemical bath deposition display quadrupled photocurrents after the stir and PEC activation, with an IPCE of 91.7% at 455 nm and 0.6 V versus RHE. With the suppression of photocorrosion in alkaline borate buffer, the activated photoanodes show great stability for solar hydrogen production at the sacrifice of sulfite. This work brings insights into the design of nanoporous metal sulfide semiconductors for solar water splitting.
Collapse
Affiliation(s)
- Ying Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100, China
| | - Xiuyu Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Hao Xiu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Huanglong Zhuang
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde, Fujian, 352100, China
- Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, College of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, 352100, China
| | - Jianming Li
- Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing, 100083, China
| | - Yang Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Deyu Liu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Yongbo Kuang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| |
Collapse
|