1
|
Teng G, Chen C, Ma X, Mao H, Yuan X, Xu H, Wu Z, Zhang J. Spherical Assembly of Halloysite Clay Nanotubes as a General Reservoir of Hydrophobic Pesticides for pH-Responsive Management of Pests and Weeds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402921. [PMID: 38822715 DOI: 10.1002/smll.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/20/2024] [Indexed: 06/03/2024]
Abstract
The development of smart systems for pesticidal delivery presents a significant advancement in enhancing the utilization efficiency of pesticides and mitigating environmental risks. Here an acid-responsive pesticidal delivery system using microspheres formed by the self-assembly of halloysite clay nanotubes (HNTs) is proposed. Insecticide avermectin (AVM) and herbicide prometryn (PMT) are used as two models of hydrophobic pesticide and encapsulated within the porous microspheres, followed by a coating of tannic acid/iron (TA/FeIII) complex films to generate two controlled-release pesticides, named as HCEAT and HCEPT, resulting in the loading capacity of AVM and PMT being 113.3 and 120.3 mg g-1, respectively. Both HCEAT and HCEPT exhibit responsiveness to weak acid, achieving 24 h-release ratios of 85.8% and 80.5% at a pH of 5.5. The experiment and simulation results indicate that the coordination interaction between EDTA2- and Ca2+ facilitates the spherical aggregation of HNTs. Furthermore, these novel pesticide formulations demonstrate better resistance against ultraviolet (UV) irradiation, higher foliar affinity, and less leaching effect, with negligible impact of the carrier material on plants and terrestrial organisms. This work presents a promising approach toward the development of efficient and eco-friendly pesticide formulations, greatly contributing to the sustainable advancement of agriculture.
Collapse
Affiliation(s)
- Guopeng Teng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Chaowen Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xueqi Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Hengjian Mao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230026, China
| | - Xue Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Huan Xu
- School of Carbon Neutrality Science and Engineering, Anhui University of Science and Technology, Hefei, Anhui, 231131, China
| | - Zhengyan Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Jia Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Engineering Research Center of Environmentally Friendly and High-Performance Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| |
Collapse
|
2
|
Liu S, Han Q, He C, Xu Z, Huang P, Cai L, Chen H, Zheng H, Zhou Y, Wang M, Tian H, Han WQ, Ying H. Ion-Sieving Separator Functionalized by Natural Mineral Coating toward Ultrastable Zn Metal Anodes. ACS NANO 2024; 18:25880-25892. [PMID: 39236748 DOI: 10.1021/acsnano.4c09678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) exhibit promising prospects in becoming large-scale energy storage systems due to environmental friendliness, high security, and low cost. However, the growth of Zn dendrites and side reactions remain heady obstacles for the practical application of AZIBs. To solve these challenges, a functionalized Janus separator is successfully constructed by coating halloysite nanotubes (HNTs) on glass fiber (GF). Impressively, the different electronegativity on the inner and outer surfaces of HNTs endows the HNT-GF separator with ion-sieving property, leading to a significantly high transference number of Zn2+ (tZn2+ = 0.71). Meanwhile, the HNT-GF separator works as an interfacial ion comb to regular Zn2+ flux and realizes multisite progressive nucleation, bringing decreased nucleation overpotential and uniform Zn2+ deposition. Consequently, the HNT-GF separator enables the Zn anode to display an ultralong plating/stripping life of 3000 h and high rate tolerance with a stable long cycle life even under a density of 50 mA cm-2. Moreover, the Z n ∥ H N T - G F ∥ M n O 2 full cell represents an ultrastable cycling stability with a high capacity retention of 93.4% even after 1000 cycles at a current density of 2 A g-1. This work provides a convenient method for the separator modification of AZIBs.
Collapse
Affiliation(s)
- Shenwen Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qizhen Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chaowei He
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zuojie Xu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lucheng Cai
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hengquan Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310024 Zhejiang, China
| | - Haonan Zheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yijing Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengya Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huajun Tian
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing 102206, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Rando G, Scalone E, Sfameni S, Plutino MR. Functional Bio-Based Polymeric Hydrogels for Wastewater Treatment: From Remediation to Sensing Applications. Gels 2024; 10:498. [PMID: 39195027 DOI: 10.3390/gels10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, many researchers have focused on designing hydrogels with specific functional groups that exhibit high affinity for various contaminants, such as heavy metals, organic pollutants, pathogens, or nutrients, or environmental parameters. Novel approaches, including cross-linking strategies and the use of nanomaterials, have been employed to enhance the structural integrity and performance of the desired hydrogels. The evolution of these hydrogels is further highlighted, with an emphasis on fine-tuning features, including water absorption capacity, environmental pollutant/factor sensing and selectivity, and recyclability. Furthermore, this review investigates the emerging topic of stimuli-responsive smart hydrogels, underscoring their potential in both sorption and detection of water pollutants. By critically assessing a wide range of studies, this review not only synthesizes existing knowledge, but also identifies advantages and limitations, and describes future research directions in the field of chemically engineered hydrogels for water purification and monitoring with a low environmental impact as an important resource for chemists and multidisciplinary researchers, leading to improvements in sustainable water management technology.
Collapse
Affiliation(s)
- Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Elisabetta Scalone
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN-CNR, URT of Messina, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| |
Collapse
|
4
|
Feng Y, Chen X, He RR, Liu Z, Lvov YM, Liu M. The Horizons of Medical Mineralogy: Structure-Bioactivity Relationship and Biomedical Applications of Halloysite Nanoclay. ACS NANO 2024. [PMID: 39016265 DOI: 10.1021/acsnano.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Medical mineralogy explores the interactions between natural minerals and living organisms such as cells, tissues, and organs and develops therapeutic and diagnostic applications in drug delivery, medical devices, and healthcare materials. Many minerals (especially clays) have been recognized for pharmacological activities and therapeutic potential. Halloysite clay (Chinese medicine name: Chishizhi), manifested as one-dimensional aluminum silicate nanotubes (halloysite nanotubes, HNTs), has gained applications in hemostasis, wound repair, gastrointestinal diseases, tissue engineering, detection and sensing, cosmetics, and daily chemicals formulations. Various biomedical applications of HNTs are derived from hollow tubular structures, high mechanical strength, good biocompatibility, bioactivity, and unique surface characteristics. This natural nanomaterial is safe, abundantly available, and may be processed with environmentally safe green chemistry methods. This review describes the structure and physicochemical properties of HNTs relative to bioactivity. We discuss surface area, porosity and surface defects, hydrophilicity, heterogeneity and charge of external and internal surfaces, as well as biosafety. The paper provides comprehensive guidance for the development of this tubule nanoclay and its advanced biomedical applications for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiangyu Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine and Disease Susceptibility, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuri M Lvov
- Institute for Micromanufacturing and Biomedical Engineering Program, Louisiana Tech University, Ruston, Louisiana 71272, United States
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| |
Collapse
|
5
|
Jia P, Lu Y, Yang Y, Zhu X, Zhang H, Wu Y. A thermosensitive luminescence halloysite-based nanocomposite enabling encryptable thermal printing. Chem Commun (Camb) 2024; 60:6659-6662. [PMID: 38859762 DOI: 10.1039/d4cc00991f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In situ formation of carbon dots on halloysite nanotubes is demonstrated by treating polyacrylamide-grafted halloysite nanotubes with polycarboxylic acid without the recourse to extremely high temperatures or solvents. Thermosensitive luminescence and phosphorescence properties are carefully investigated. The polyacrylamide-grafted halloysite nanotubes are further processed as composite films for encryptable thermal printing.
Collapse
Affiliation(s)
- Pengying Jia
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China.
- College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yelong Lu
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Yuqing Yang
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Xiaoyan Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Hailei Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, 071002, P. R. China.
| | - Yonggang Wu
- College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P. R. China.
| |
Collapse
|
6
|
Deng Q, Chuan X, Zhao Y, Liu F, Huang S, Wu J. Development of composite separators by coating hydrochloric acid-treated halloysite nanotubes on polypropylene separators for lithium-ion batteries. RSC Adv 2024; 14:16912-16920. [PMID: 38799222 PMCID: PMC11123604 DOI: 10.1039/d4ra02164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
In this study, polypropylene/halloysite nanotube (PP/HNT) composite separators were prepared by coating HNTs treated with hydrochloric acid (HCl) of different concentrations on both sides of a PP separator. The effect of HNTs treated with hydrochloric acid (HCl) of different concentrations on the properties of PP/HNT composite separators was investigated. The results indicate that the PP/HNT composite separator exhibits higher electrolyte uptake and wettability than a commercial PP separator, resulting in a better electrochemical performance in Li/LiFePO4 cells. In particular, the PP/HNTs-1.2 M composite separator with HNTs treated with 1.2 M HCl exhibits the highest electrolyte uptake (384%) and ionic conductivity (1.03 mS cm-1). The cells assembled with a PP/HNTs-1.2 M composite separator deliver discharge capacities of 166 mA h g-1 (0.5 C) and 131 mA h g-1 (3 C) with attractive cycling performance (87.6% capacity retention after 100 cycles). HNTs treated with HCl of appropriate concentrations can significantly improve the properties of PP/HNT composite separators for application in lithium-ion batteries.
Collapse
Affiliation(s)
- Qinting Deng
- Key Laboratory of Orogen Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 China
| | - Xiuyun Chuan
- Key Laboratory of Orogen Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 China
| | - Yupeng Zhao
- Key Laboratory of Orogen Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 China
| | - Fangfang Liu
- Key Laboratory of Orogen Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 China
| | - Shizhi Huang
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jianyang Wu
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
7
|
Al Ansari N, Abid M. Enhancing Presurgical Infant Orthopedic Appliances: Characterization, Mechanics, and Biofilm Inhibition of a Novel Chlorhexidine-Halloysite Nanotube-Modified PMMA. Int J Biomater 2024; 2024:6281972. [PMID: 38962288 PMCID: PMC11221949 DOI: 10.1155/2024/6281972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
Objectives This in vitro study aimed to develop a novel nanocomposite acrylic resin with inherent antimicrobial properties. This study evaluated its effectiveness against microbial biofilm formation, while also assessing its physical and mechanical properties. Methods Polymethylmethacrylate (PMMA) was modified with four different concentrations of chlorhexidine halloysite nanotubes (CHX-HNTs): 1%, 1.5%, 3%, and 4.5 wt.% by weight, along with a control group (0 wt.% CHX-HNTs). The biofilm inhibition ability of the modified CHX-HNTs acrylic against Candida albicans, Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus agalactiae was assessed using microtiter biofilm test. In addition, ten samples from each group were then tested for flexural strength, surface roughness, and hardness. Statistical analysis was performed using one-way ANOVA and Tukey's test for comparison (P < 0.05). Results CHX-HNTs effectively reduced the adhesion of Candida albicans and bacteria to the PMMA in a dose-dependent manner. The higher the concentration of CHX-HNTs, the greater the reduction in microbial adhesion, with the highest concentration (4.5 wt.%) showing the most significant effect with inhibition rates ≥98%. The addition of CHX-HNTs at any tested concentration (1%, 1.5%, 3%, and 4.5 wt.%) did not cause any statistically significant difference in the flexural strength, surface roughness, or hardness of the PMMA compared to the control group. Conclusions The novel integration of CHX-HNT fillers shows promising results as an effective biofilm inhibitor on acrylic appliances. This new approach has the potential to successfully control infectious diseases without negatively affecting the mechanical properties of the acrylic resin. Clinical Relevance. The integration of CHX-HNTs into presurgical infant orthopedic appliances should be thoroughly assessed as a promising preventive measure to mitigate microbial infections. This evaluation holds significant potential for controlling infectious diseases among infants with cleft lip and palate, thereby offering a valuable contribution to their overall well-being.
Collapse
Affiliation(s)
- Nadia Al Ansari
- Department of Orthodontics, Al Rafidain University College, Baghdad, Iraq
- Department of Orthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Mushriq Abid
- Department of Orthodontic, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
8
|
Zhang H, Tang B, Zhang B, Huang K, Li S, Zhang Y, Zhang H, Bai L, Wu Y, Cheng Y, Yang Y, Han G. X-ray-activated polymerization expanding the frontiers of deep-tissue hydrogel formation. Nat Commun 2024; 15:3247. [PMID: 38622169 PMCID: PMC11018743 DOI: 10.1038/s41467-024-47559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China.
| | - Boyan Tang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Bo Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA
| | - Shanshan Li
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yuangong Zhang
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Haisong Zhang
- Affiliated Hospital of Hebei University, Baoding, 071000, P. R. China
| | - Libin Bai
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yonggang Wu
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yongqiang Cheng
- College of Chemistry & Materials Science, Hebei University, Baoding, 071002, P. R. China
| | - Yanmin Yang
- College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei Key Lab of Optic-electronic Information and Materials, Hebei University, Baoding, 071002, P. R. China.
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, MA, 01605, USA.
| |
Collapse
|
9
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
10
|
Yu X, He L, Zhang X, Bao G, Zhang R, Jin X, Qin D. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe 3+ complex. Int J Biol Macromol 2024; 265:130894. [PMID: 38490388 DOI: 10.1016/j.ijbiomac.2024.130894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Bamboo fibers (BF), as an important sustainable natural material, are becoming a hot alternative to synthetic fibers for the reinforcement of polypropylene (PP)-based composites. However, the weak interfacial compatibility between BF and PP as matrix and their inherent flammability limit the practical application of BF/PP composites (BPC). Here, a fire-safe BPC was fabricated by constructing flame-retardant interfacial layers containing tannic acid (TA)-Fe3+ complex and halloysite nanotubes (HNTs) on the fiber matrix followed by a hot-pressing process. The results showed that the interfacial chelating of TA with Fe3+ improved the dispersion of HNTs on the fibers and the interfacial interactions within the fiber matrix, resulting in the as-fabricated composite with significantly improved mechanical properties and water resistance. In addition, the flame-retardant composite exhibited higher thermal stability and enhanced residual char content. Moreover, the composite possessed significant flame-retardant performances with a reduction of 23.75 % in the total heat release and 32.44 % in the total smoke production, respectively, owing to the flame retarding in gaseous phase and condensed phase of TA-Fe3+@HNTs layers. This work offers a green and eco-friendly strategy to address the inherent problems of BPC material in terms of fire safety and interfacial compatibility, thus broadening their applications in the automotive interior and construction industries.
Collapse
Affiliation(s)
- Xi Yu
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Lu He
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xiaofeng Zhang
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Gege Bao
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Rong Zhang
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xiaobei Jin
- Institute of New Bamboo and Rattan Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration / Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| | - Daochun Qin
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya 572022, China
| |
Collapse
|
11
|
Naciri Y, Ghazzal MN, Paineau E. Nanosized tubular clay minerals as inorganic nanoreactors for energy and environmental applications: A review to fill current knowledge gaps. Adv Colloid Interface Sci 2024; 326:103139. [PMID: 38552380 DOI: 10.1016/j.cis.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/08/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
Modern society pays further and further attention to environmental protection and the promotion of sustainable energy solutions. Heterogeneous photocatalysis is widely recognized as one of the most economically viable and ecologically sound technologies to combat environmental pollution and the global energy crisis. One challenge is finding a suitable photocatalytic material for an efficient process. Inorganic nanotubes have garnered attention as potential candidates due to their optoelectronic properties, which differ from their bulk equivalents. Among them, clay nanotubes (halloysite, imogolite, and chrysotile) are attracting renewed interest for photocatalysis applications thanks to their low production costs, their unique physical and chemical properties, and the possibility to functionalize or dope their structure to enhance charge-carriers separation into their structure. In this review, we provide new insights into the potential of these inorganic nanotubes in photocatalysis. We first discuss the structural and morphological features of clay nanotubes. Applications of photocatalysts based on clay nanotubes across a range of photocatalytic reactions, including the decomposition of organic pollutants, elimination of NOx, production of hydrogen, and disinfection of bacteria, are discussed. Finally, we highlight the obstacles and outline potential avenues for advancing the current photocatalytic system based on clay nanotubes. Our aim is that this review can offer researchers new opportunities to advance further research in the field of clay nanotubes-based photocatalysis with other vital applications in the future.
Collapse
Affiliation(s)
- Yassine Naciri
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France; Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, CNRS, UMR8000, Institut de Chimie Physique, Orsay 91405, France.
| | - Erwan Paineau
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
| |
Collapse
|
12
|
Tang ZQ, Tian T, Molino PJ, Skvortsov A, Ruan D, Ding J, Li Y. Recent Advances in Superhydrophobic Materials Development for Maritime Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308152. [PMID: 38403472 DOI: 10.1002/advs.202308152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2023] [Indexed: 02/27/2024]
Abstract
Underwater superhydrophobic surfaces stand as a promising frontier in materials science, holding immense potential for applications in underwater infrastructure, vehicles, pipelines, robots, and sensors. Despite this potential, widespread commercial adoption of these surfaces faces limitations, primarily rooted in challenges related to material durability and the stability of the air plastron during prolonged submersion. Factors such as pressure, flow, and temperature further complicate the operational viability of underwater superhydrophobic technology. This comprehensive review navigates the evolving landscape of underwater superhydrophobic technology, providing a deep dive into the introduction, advancements, and innovations in design, fabrication, and testing techniques. Recent breakthroughs in nanotechnology, magnetic-responsive coatings, additive manufacturing, and machine learning are highlighted, showcasing the diverse avenues of progress. Notable research endeavors concentrate on enhancing the longevity of plastrons, the fundamental element governing superhydrophobic behavior. The review explores the multifaceted applications of superhydrophobic coatings in the underwater environment, encompassing areas such as drag reduction, anti-biofouling, and corrosion resistance. A critical examination of commercial offerings in the superhydrophobic coating landscape offers a current perspective on available solutions. In conclusion, the review provides valuable insights and forward-looking recommendations to propel the field of underwater superhydrophobicity toward new dimensions of innovation and practical utility.
Collapse
Affiliation(s)
- Zhao Qing Tang
- Centre for Smart Infrastructure and Digital Construction, School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Tongfei Tian
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Paul J Molino
- Platforms Division, Defence Science and Technology, 506 Lorimer Street, Fishermans Bend, VIC, 3207, Australia
| | - Alex Skvortsov
- Platforms Division, Defence Science and Technology, 506 Lorimer Street, Fishermans Bend, VIC, 3207, Australia
| | - Dong Ruan
- Department of Mechanical Engineering and Product Design Engineering, Swinburne University of Technology, Hawthorn, Melbourne, VIC, 3122, Australia
| | - Jie Ding
- Platforms Division, Defence Science and Technology, 506 Lorimer Street, Fishermans Bend, VIC, 3207, Australia
| | - Yali Li
- Centre for Smart Infrastructure and Digital Construction, School of Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
13
|
Liu M, Fakhrullin R, Stavitskaya A, Vinokurov V, Lama N, Lvov Y. Micropatterning of biologically derived surfaces with functional clay nanotubes. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2327276. [PMID: 38532983 PMCID: PMC10964834 DOI: 10.1080/14686996.2024.2327276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
Micropatterning of biological surfaces performed via assembly of nano-blocks is an efficient design method for functional materials with complex organic-inorganic architecture. Halloysite clay nanotubes with high aspect ratios and empty lumens have attracted widespread interest for aligned biocompatible composite production. Here, we give our vision of advances in interfacial self-assembly techniques for these natural nanotubes. Highly ordered micropatterns of halloysite, such as coffee rings, regular strips, and concentric circles, can be obtained through high-temperature evaporation-induced self-assembly in a confined space and shear-force brush-induced orientation. Assembly of these clay nanotubes on biological surfaces, including the coating of human or animal hair, wool, and cotton, was generalized with the indication of common features. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, medical hemostasis, and flame-retardant tissue applications. An interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its core-shell structure (functionalization with quantum dots) was described in comparison with microfiber nanoclay coatings. In addition to being abundantly available in nature, halloysite is also biosafe, which makes its spontaneous surface micropatterning prospective for high-performance materials, and it is a promising technique with potential for an industrial scale-up.
Collapse
Affiliation(s)
- Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, P. R. China
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Anna Stavitskaya
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation
| | - Vladimir Vinokurov
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, Moscow, Russian Federation
| | - Nisha Lama
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, USA
| |
Collapse
|
14
|
Saadh MJ, Abdulsahib WK, Mustafa AN, Zabibah RS, Adhab ZH, Rakhimov N, Alsaikhan F. Recent advances in natural nanoclay for diagnosis and therapy of cancer: A review. Colloids Surf B Biointerfaces 2024; 235:113768. [PMID: 38325142 DOI: 10.1016/j.colsurfb.2024.113768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Cancer is still one of the deadliest diseases, and diagnosing and treating it effectively remains difficult. As a result, advancements in earlier detection and better therapies are urgently needed. Conventional chemotherapy induces chemoresistance, has non-specific toxicity, and has a meager efficacy. Natural materials like nanosized clay mineral formations of various shapes (platy, tubular, spherical, and fibrous) with tunable physicochemical, morphological, and structural features serve as potential templates for these. As multifunctional biocompatible nanocarriers with numerous applications in cancer research, diagnosis, and therapy, their submicron size, individual morphology, high specific surface area, enhanced adsorption ability, cation exchange capacity, and multilayered organization of 0.7-1 nm thick single sheets have attracted significant interest. Kaolinite, halloysite, montmorillonite, laponite, bentonite, sepiolite, palygorskite, and allophane are the most typical nanoclay minerals explored for cancer. These multilayered minerals can function as nanocarriers to effectively carry a variety of anticancer medications to the tumor site and improve their stability, dispersibility, sustained release, and transport. Proteins and DNA/RNA can be transported using nanoclays with positive and negative surfaces. The platform for phototherapeutic agents can be nanoclays. Clays with bio-functionality have been developed using various surface engineering techniques, which could help treat cancer. The promise of nanoclays as distinctive crystalline materials with applications in cancer research, diagnostics, and therapy are examined in this review.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| |
Collapse
|
15
|
Yu X, Jin X, He Y, Yu Z, Zhang R, Qin D. Eco-friendly bamboo pulp foam enabled by chitosan and phytic acid interfacial assembly of halloysite nanotubes: Toward flame retardancy, thermal insulation, and sound absorption. Int J Biol Macromol 2024; 260:129393. [PMID: 38218301 DOI: 10.1016/j.ijbiomac.2024.129393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lightweight, porous cellulose foam is an attractive alternative to traditional petroleum-based products, but the intrinsic flammability impedes its use in construction. Herein, an environmentally friendly strategy for scalable fabrication of flame-retardant bamboo pulp foam (BPF) using a foam-forming technique followed by low-cost ambient drying is reported. In the process, a hierarchical structure of halloysite nanotubes (HNT) was decorated onto bamboo pulp fibers through layer-by-layer assembling of chitosan (CS) and phytic acid (PA). This modification retained the highly porous microcellular structure of the resultant BPF (92 %-98 %). It improved its compressive strength by 228.01 % at 50 % strain, endowing this foam with desired thermal insulation properties and sound absorption coefficient comparable to commercial products. More importantly, this foam possessed exceptional flame retardancy (47.05 % reduction in the total heat release and 95.24 % reduction in the total smoke production) in cone calorimetry, and it showed excellent extinguishing performance, indicating considerably enhanced fire safety. These encouraging results suggest that the flame retardant BPF has the potential to serve as a renewable and cost-effective alternative to traditional foam for applications in acoustic and thermal insulation.
Collapse
Affiliation(s)
- Xi Yu
- Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science & Technology, State Forestry Administration, Beijing 100102, China
| | - Xiaobei Jin
- Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science & Technology, State Forestry Administration, Beijing 100102, China.
| | - Ying He
- Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science & Technology, State Forestry Administration, Beijing 100102, China
| | - Zixuan Yu
- Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science & Technology, State Forestry Administration, Beijing 100102, China
| | - Rong Zhang
- Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing 100102, China; SFA and Beijing Co-built Key Laboratory of Bamboo and Rattan Science & Technology, State Forestry Administration, Beijing 100102, China
| | - Daochun Qin
- Sanya Research Base, International Centre for Bamboo and Rattan, Sanya 572000, Hainan, China
| |
Collapse
|
16
|
Wang R, Zha X, Chen J, Fu R, Fu Y, Xiang J, Yang W, Zhao L. Hierarchical Composite Scaffold with Deferoxamine Delivery System to Promote Bone Regeneration via Optimizing Angiogenesis. Adv Healthc Mater 2024:e2304232. [PMID: 38375993 DOI: 10.1002/adhm.202304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Indexed: 02/21/2024]
Abstract
A bone defect refers to the loss of bone tissue caused by trauma or lesion. Bone defects result in high morbidity and deformity rates worldwide. Autologous bone grafting has been widely applied in clinics as the gold standard of treatment; however, it has limitations. Hence, bone tissue engineering has been proposed and developed as a novel therapeutic strategy for treating bone defects. Rapid and effective vascularization is essential for bone regeneration. In this study, a hierarchical composite scaffold with deferoxamine (DFO) delivery system, DFO@GMs-pDA/PCL-HNTs (DGPN), is developed, focusing on vascularized bone regeneration. The hierarchical structure of DGPN imitates the microstructure of natural bone and interacts with the local extracellular matrix, facilitating cell adhesion and proliferation. The addition of 1 wt% of halloysite nanotubes (HNTs) improves the material properties. Hydrophilic and functional groups conferred by polydopamine (pDA) modifications strengthen the scaffold bioactivity. Gelatin microspheres (GMs) protect the pharmacological activity of DFO, achieving local application and sustained release for 7 days. DFO effectively promotes angiogenesis by activating the signaling pathway of hypoxia inducible factor-1 α. In addition, DFO synergizes with HNTs to promote osteogenic differentiation and matrix mineralization. These results indicate that DGPN promotes bone regeneration and accelerates cranial defect healing.
Collapse
Affiliation(s)
- Raokaijuan Wang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jouchen Chen
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Ruijie Fu
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Yajun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jie Xiang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Lixing Zhao
- Department of Orthodontics, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| |
Collapse
|
17
|
Timbó ICG, Oliveira MSCS, Lima RA, Chaves AV, Pereira VDA, Fechine PBA, Regis RR. Microbiological, physicomechanical, and surface evaluation of an experimental self-curing acrylic resin containing halloysite nanotubes doped with chlorhexidine. Dent Mater 2024; 40:348-358. [PMID: 38142145 DOI: 10.1016/j.dental.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE The objective was to synthesize halloysite nanotubes loaded with chlorhexidine (HNT/CHX) and evaluate the antimicrobial activity, microhardness, color change, and surface characteristics of an experimental self-curing acrylic resin containing varying concentrations of the synthesized nanomaterial. METHODS The characterization of HNT/CHX was carried out by calculating incorporation efficiency, morphological and compositional, chemical and thermal evaluations. SAR disks were made containing 0 %, 3 %, 5 %, and 10 % of HNT/CHX. Specimens (n = 3) were immersed in distilled water and spectral measurements were carried out using UV/Vis spectroscopy to evaluate the release of CHX for up to 50 days. The antimicrobial activity of the composite against Candida albicans and Streptococcus mutans was evaluated by disk-diffusion test. Microhardness, color analyses (ΔE), and surface roughness (Ra) (n = 9) were performed before and after 30 days of immersion. Data were analyzed using ANOVA/Bonferroni. {Results.} The incorporation efficiency of CHX into HNT was of 8.15 %. All test groups showed controlled and cumulative CHX release up to 30 or 50 days. Significant antimicrobial activity was verified against both microorganisms (p < 0.001). After the 30-day immersion period, the 10 % HNT/CHX group showed a significant increase in hardness (p < 0.05) and a progressive color change (p < 0.001). At T0, the 5 % and 10 % groups exhibited Ra values similar to the control group (p > 0.05), while at T30, all groups showed similar roughness values (p > 0.05). {Significance.} The modification of a SAR with HNT/CHX provides antimicrobial effect and controlled release of CHX, however, the immediate surface roughness in the 3 % group was compromised when compared to the control group.
Collapse
Affiliation(s)
- Isabelle C G Timbó
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Mayara S C S Oliveira
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Ramille A Lima
- Department of Dentistry, Unichristus, Fortaleza, CE, Brazil
| | - Anderson V Chaves
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Vanessa de A Pereira
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Romulo R Regis
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
18
|
Paul N, Zhang L, Lei S, Huang D, Wang L, Cheng Z, Zeng M. Ligand-Directed Shape Reconfiguration in Inorganic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305460. [PMID: 37726244 DOI: 10.1002/smll.202305460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Polymer elastomers with reversible shape-changing capability have led to significant development of artificial muscles, functional devices, and soft robots. By contrast, reversible shape transformation of inorganic nanoparticles is notoriously challenging due to their relatively rigid lattice structure. Here, the authors demonstrate the synthesis of shape-changing nanoparticles via an asymmetrical surface functionalization process. Various ligands are investigated, revealing the essential role of steric hindrance from the functional groups. By controlling the unbalanced structural hindrance on the surface, the as-prepared clay nanoparticles can transform their shape in a fast, facile, and reversible manner. In addition, such flexible morphology-controlled mechanism provides a platform for developing self-propelled shape-shifting nanocollectors. Owing to the ion-exchanging capability of clay, these self-propelled nanoswimmers (NS) are able to autonomously adsorb rare earth elements with ultralow concentration, indicating the feasibility of using naturally occurring materials for self-powered nanomachine.
Collapse
Affiliation(s)
- Nishat Paul
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lecheng Zhang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Shijun Lei
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Dali Huang
- Department of Materials Science & Engineering, Texas A&M University, 3003 TAMU, College Station, TX, 77843, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhengdong Cheng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Minxiang Zeng
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| |
Collapse
|
19
|
Wang Y, Duan S, Wang H, Wei C, Qin L, Dong G, Zhang Y. Thin Film Nanocomposite Membranes Based on Zeolitic Imidazolate Framework-8/Halloysite Nanotube Composites. MEMBRANES 2023; 14:7. [PMID: 38248697 PMCID: PMC10819655 DOI: 10.3390/membranes14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024]
Abstract
Thin film nanocomposite (TFN) membranes have proven their unrivaled value, as they can combine the advantages of different materials and furnish membranes with improved selectivity and permeability. The development of TFN membranes has been severely limited by the poor dispersion of the nanoparticles and the weak adhesion between the nanoparticles and the polymer matrix. In this study, to address the poor dispersion of nanoparticles in TFN membranes, we proposed a new combination of m-ZIF-8 and m-HNTs, wherein the ZIF-8 and HNTs were modified with poly (sodium p-styrenesulfonate) to enhance their dispersion in water. Furthermore, the hydropathic properties of the membranes can be well controlled by adjusting the content of m-ZIF-8 and m-HNTs. A series of modified m-ZIF-8/m-HNT/PAN membranes were prepared to modulate the dye/salt separation performance of TFN membranes. The experimental results showed that our m-ZIF-8/m-HNT/PAN membranes can elevate the water flux significantly up to 42.6 L m-2 h-1 MPa-1, together with a high rejection of Reactive Red 49 (more than 80%). In particular, the optimized NFM-7.5 membrane that contained 7.5 mg of HNTs and 2.5 mg of ZIF-8 showed a 97.1% rejection of Reactive Red 49 and 21.3% retention of NaCl.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Shaofan Duan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Huixian Wang
- School of Material Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Can Wei
- Pollution Prevention and Control Office, Ecological Environment Protection Commission of Zhengzhou, Zhengzhou 450007, China;
| | - Lijuan Qin
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
- Research Department of New Energy Technology, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450046, China
| | - Guanying Dong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (S.D.); (L.Q.); (G.D.)
| |
Collapse
|
20
|
Radziemska M, Gusiatin MZ, Cydzik-Kwiatkowska A, Blazejczyk A, Majewski G, Jaskulska I, Brtnicky M. Effect of freeze-thaw manipulation on phytostabilization of industrially contaminated soil with halloysite nanotubes. Sci Rep 2023; 13:22175. [PMID: 38092858 PMCID: PMC10719333 DOI: 10.1038/s41598-023-49698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
The latest trends in improving the performance properties of soils contaminated with potentially toxic elements (PTEs) relate to the possibility of using raw additives, including halloysite nanotubes (HNTs) due to eco-friendliness, and inexpensiveness. Lolium perenne L. was cultivated for 52 days in a greenhouse and then moved to a freezing-thawing chamber for 64 days. HNT addition into PTE-contaminated soil cultivated with grass under freezing-thawing conditions (FTC) was tested to demonstrate PTE immobilization during phytostabilization. The relative yields increased by 47% in HNT-enriched soil in a greenhouse, while under FTC decreased by 17% compared to the adequate greenhouse series. The higher PTE accumulation in roots in HNT presence was evident both in greenhouse and chamber conditions. (Cr/Cd and Cu)-relative contents were reduced in soil HNT-enriched-not-FTC-exposed, while (Cr and Cu) in HNT-enriched-FTC-exposed. PTE-immobilization was discernible by (Cd/Cr/Pb and Zn)-redistribution into the reducible fraction and (Cu/Ni and Zn) into the residual fraction in soil HNT-enriched-not-FTC-exposed. FTC and HNT facilitated transformation to the residual fraction mainly for Pb. Based on PTE-distribution patterns and redistribution indexes, HNT's role in increasing PTE stability in soils not-FTC-exposed is more pronounced than in FTC-exposed compared to the adequate series. Sphingomonas, Acidobacterium, and Mycobacterium appeared in all soils. HNTs mitigated FTC's negative effect on microbial diversity and increased Planctomycetia abundance.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-776, Warsaw, Poland.
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | | | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Grzegorz Majewski
- Institute of Environmental Engineering, Warsaw University of Life Sciences, 02-776, Warsaw, Poland
| | - Iwona Jaskulska
- Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, 85-796, Bydgoszcz, Poland
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Mendel University in Brno, 613 00, Brno, Czech Republic
| |
Collapse
|
21
|
Ruiz-Hitzky E, Ruiz-Garcia C. MXenes vs. clays: emerging and traditional 2D layered nanoarchitectonics. NANOSCALE 2023; 15:18959-18979. [PMID: 37937945 DOI: 10.1039/d3nr03037g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Although MXene materials are considered an emerging research topic, they are receiving considerable interest because, like metals and graphene, they are good electronic conductors but with the particularity that they have a marked hydrophilic character. Having a structural organization and properties close to those of clay minerals (natural silicates typically with a lamellar morphology), they are sometimes referred to as "conducting clays" and exhibit colloidal, surface and intercalation properties also similar to those of clay minerals. The present contribution aims to inform and discuss the nature of MXenes in comparison with clay phyllosilicates, taking into account their structural analogies, outstanding surface properties and advanced applications. The current in-depth understanding of clay minerals may represent a basis for the future development of MXene-derived nanoarchitectures. Comparative examples of the preparation, and studies on the properties and applications of various nanoarchitectures based on clays and MXenes have been included in the present work.
Collapse
Affiliation(s)
- Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| | - Cristina Ruiz-Garcia
- Chemical Engineering Department, Faculty of Science, c/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
Pellerito C, Presentato A, Lazzara G, Cavallaro G, Alduina R, Fiore T. New Biocide Based on Tributyltin(IV) Ferulate-Loaded Halloysite Nanotubes for Preserving Historical Paper Artworks. Molecules 2023; 28:7953. [PMID: 38138442 PMCID: PMC10745945 DOI: 10.3390/molecules28247953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Combining biologically active compounds with nanocarriers is an emerging and promising strategy for enhancing the activities of molecules while reducing their levels of toxicity. Green nanomaterials have recently gained momentum in developing protocols for treating and preserving artifacts. In this study, we designed a functional biohybrid material by incorporating tributyltin(IV) ferulate (TBT-F) into halloysite nanotubes (HNTs), generating a new formulation called HNT/TBT-F. The primary objective was to develop a formulation with robust antimicrobial properties and reinforcing features for treating paper with artistic and historical value. To characterize HNT/TBT-F, assess the HNT's loading capacity, and investigate the TBT-F release kinetics from the nanotubes, various analytical techniques, including UV-Vis and infrared spectroscopies, thermogravimetry, and microscopy analysis, were employed. Furthermore, we evaluated the antimicrobial potential of TBT-F and HNT/TBT-F against Kocuria rhizophila, a bacterial strain known for its opportunistic behavior and a cause of artifact biodeterioration. HNT/TBT-F exhibited a significantly stronger bactericidal effect than TBT-F alone against K. rhizophila cells growing planktonically or those forming a biofilm. This enhanced performance could relate to the confinement of TBT-F within the nanotubes, which likely improved its physical-chemical stability and increased the local concentration of TBT-F upon contact with the bacterial cells. Additionally, we evaluated the mechanical properties of a paper treated with HNT/TBT-F, assessing any potential alterations in its color. The findings of this study highlight the favorable attributes of the HNT/TBT-F formulation and its potential for developing protocols aimed at consolidating and preserving culturally significant paper objects.
Collapse
Affiliation(s)
- Claudia Pellerito
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Alessandro Presentato
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Giuseppe Lazzara
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Giuseppe Cavallaro
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| | - Rosa Alduina
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (A.P.); (R.A.)
| | - Tiziana Fiore
- Dipartimento di Fisica Chimica-Emilio Segrè (DiFC), Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (C.P.); (G.L.); (G.C.)
| |
Collapse
|
23
|
Vasco G, Arima V, Boudjelida S, Carraro M, Bianco M, Zizzari A, Perrone E, Galiano F, Figoli A, Cesaria M. Polymeric Membranes Doped with Halloysite Nanotubes Imaged using Proton Microbeam Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2970. [PMID: 37999324 PMCID: PMC10674683 DOI: 10.3390/nano13222970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Polymeric membranes are useful tools for water filtration processes, with their performance strongly dependent on the presence of hydrophilic dopants. In this study, polyaniline (PANI)-capped aluminosilicate (halloysite) nanotubes (HNTs) are dispersed into polyether sulfone (PES), with concentrations ranging from 0.5 to 1.5 wt%, to modify the properties of the PES membrane. Both undoped and HNT-doped PES membranes are investigated in terms of wettability (static and time-dependent contact angle), permeance, mechanical resistance, and morphology (using scanning electron microscopy (SEM)). The higher water permeance observed for the PES membranes incorporating PANI-capped HNTs is, finally, assessed and discussed vis-à-vis the real distribution of HNTs. Indeed, the imaging and characterization in terms of composition, spatial arrangement, and counting of HNTs embedded within the polymeric matrix are demonstrated using non-destructive Micro Particle Induced X-ray Emission (µ-PIXE) and Scanning Transmission Ion Microscopy (STIM) techniques. This approach not only exhibits the unique ability to detect/highlight the distribution of HNTs incorporated throughout the whole thickness of polymer membranes and provide volumetric morphological information consistent with SEM imaging, but also overcomes the limits of the most common analytical techniques exploiting electron probes. These aspects are comprehensively discussed in terms of practical analysis advantages.
Collapse
Affiliation(s)
- Giovanna Vasco
- CEDAD—Center of Applied Physics, Dating and Diagnostics, Cittadella della Ricerca, University of Salento, SS. 7, Km. 7300, 72100 Brindisi, Italy;
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | - Valentina Arima
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Soufiane Boudjelida
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Department of Material Sciences, University Mohamed El Bachir El Ibrahimi, Bordj Bou Arreridj 34030, Algeria
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy;
- Institute on Membrane Technology (CNR-ITM), University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Monica Bianco
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Alessandra Zizzari
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Elisabetta Perrone
- CNR NANOTEC—Institute of Nanotechnology, c/o Campus Ecotekne, 73100 Lecce, Italy; (M.B.); (A.Z.); (E.P.)
| | - Francesco Galiano
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Alberto Figoli
- Institute on Membrane Technology (CNR-ITM), Via P. Bucci 17/c, 87036 Rende, CS, Italy; (F.G.); (A.F.)
| | - Maura Cesaria
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
24
|
Liu H, Chen R, Wang P, Fu J, Tang Z, Xie J, Ning Y, Gao J, Zhong Q, Pan X, Wang D, Lei M, Li X, Zhang Y, Wang J, Cheng H. Electrospun polyvinyl alcohol-chitosan dressing stimulates infected diabetic wound healing with combined reactive oxygen species scavenging and antibacterial abilities. Carbohydr Polym 2023; 316:121050. [PMID: 37321740 DOI: 10.1016/j.carbpol.2023.121050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Diabetic wounds (DW) are constantly challenged by excessive reactive oxygen species (ROS) accumulation and susceptibility to bacterial contamination. Therefore, the elimination of ROS in the immediate vicinity and the eradication of local bacteria are critical to stimulating the efficient healing of diabetic wounds. In the current study, we encapsulated mupirocin (MP) and cerium oxide nanoparticles (CeNPs) into a polyvinyl alcohol/chitosan (PVA/CS) polymer, and then a PVA/chitosan nanofiber membrane wound dressing was fabricated using electrostatic spinning, which is a simple and efficient method for fabricating membrane materials. The PVA/chitosan nanofiber dressing provided a controlled release of MP, which produced rapid and long-lasting bactericidal activity against both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) strains. Simultaneously, the CeNPs embedded in the membrane exhibited the desired ROS scavenging capacity to maintain the local ROS at a normal physiological level. Moreover, the biocompatibility of the multifunctional dressing was evaluated both in vitro and in vivo. Taken together, PVA-CS-CeNPs-MP integrated the desirable features of a wound dressing, including rapid and broad-spectrum antimicrobial and ROS scavenging activities, easy application, and good biocompatibility. The results validated the effectiveness of our PVA/chitosan nanofiber dressing, highlighting its promising translational potential in the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Haibing Liu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Orthopaedic, Affiliated Hengyang Hospital, Southern Medical University, Hengyang Central Hospital, Hengyang 421001, China
| | - Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pinkai Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlang Fu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiajun Xie
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Ning
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jian Gao
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Pan
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqi Li
- School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang Zhang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
25
|
Duan X, Li Y, Zhao C, Shen Y, Guo Q, Huang Z, Shan D, Gao Y, Zhang K, Shi J, Liu J, Chen Y, Yuan CG. Efficient immobilization and detoxification of gaseous elemental mercury by nanoflower/rod WSe 2/halloysite composite: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131898. [PMID: 37354718 DOI: 10.1016/j.jhazmat.2023.131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Gaseous mercury pollution control technologies with low stability and high releasing risks always face with great challenges. Herein, we developed one halloysite nanotubes (HNTs)-supported tungsten diselenide (WSe2) composite (WSe2/HNTs) by one-pot solvothermal approach, curing Hg0 from complicated flue gas (CFG) and reducing second environment risks. WSe2 as a monolayer with nano-flower structure and HNTs with rod shapes in the as-prepared sorbent exhibited outstanding synergy efficiency, resulting in exceptional performance for Hg0 removal with high capture capacity of 30.6 mg·g-1 and rate of 9.09 μg·g-1·min-1, which benefited from the high affinity of selenium and mercury (1 ×1045) and the adequate exposure of Se-terminated. The adsorbent showed beneficial tolerance to high amount of NOx and SOx. An online lab-built thermal decomposition system (TPD-AFS) was employed to explore Hg species on the used-sorbent, finding that the adsorbed-mercury species were principally mercury selenide (HgSe). Density functional theory calculations indicated that the hollow-sites were the major adsorption sites and exhibited excellent selectivity for Hg0, as well as HgSe generation needed to overcome the 0.32 eV energy barrier. The adsorbed mercury displayed high environmental stability after the leaching toxicity test, which significantly decreased its secondary environmental risks. With these advantages, WSe2/HNTs possess enormous potential to achieve the effective and permanent immobilization of gaseous mercury from CFG in the future.
Collapse
Affiliation(s)
- Xuelei Duan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yuan Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Changxian Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yiwen Shen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Zhihao Huang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Dexu Shan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yue Gao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Kegang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Yongsheng Chen
- Department of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
26
|
Huang P, Tang N, Mao LF, Zhang Y, Tang XF, Zhou RY, Wei B, Tan HL, Shi QM, Lin J, Li ZC, Chang S. Nanoclay Drug-Delivery System Loading Potassium Iodide Promotes Endocytosis and Targeted Therapy in Anaplastic Thyroid Cancer. NANO LETTERS 2023; 23:8013-8021. [PMID: 37615624 PMCID: PMC10510574 DOI: 10.1021/acs.nanolett.3c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Indexed: 08/25/2023]
Abstract
The rapid proliferative biological behavior of primary foci of anaplastic thyroid cancer (ATC) makes it a lethal tumor. According to the specific iodine uptake capacity of thyroid cells and enhanced endocytosis of ATC cells, we designed a kind of nanoclay drug-loading system and showed a promising treatment strategy for ATC. Introducing potassium iodide (KI) improves the homoaggregation of clay nanoparticles and then affects the distribution of nanoparticles in vivo, which makes KI@DOX-KaolinMeOH enriched almost exclusively in thyroid tissue. Simultaneously, the improvement of dispersibility of KI@DOX-KaolinMeOH changes the target uptake of ATC cells by improving the endocytosis and nanoparticle-induced autophagy, which regulate the production of autolysosomes and autophagy-enhanced chemotherapy, eventually contributing to a tumor inhibition rate of more than 90% in the primary foci of ATC. Therefore, this facile strategy to improve the homoaggregation of nanoclay by introducing KI has the potential to become an advanced drug delivery vehicle in ATC treatment.
Collapse
Affiliation(s)
- Peng Huang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Neng Tang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Lin-Feng Mao
- Department
of Hepatobiliary Surgery, The First Affiliated
Hospital of Guangxi Medical University, Nanning, Guangxi Province 530021, China
| | - Yi Zhang
- Centre
for Mineral Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan Province 410083, China
| | - Xiao-Feng Tang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Ruo-Yun Zhou
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Bo Wei
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Hai-Long Tan
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Qi-Man Shi
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Jing Lin
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Zhe-Cheng Li
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| | - Shi Chang
- Department
of General Surgery, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
- Clinical
Research Center for Thyroid Disease in Hunan Province, Xiangya Hospital Central South University, Changsha, Hunan Province 410008, China
- Hunan
Provincial Engineering Research Center for Thyroid and Related Diseases
Treatment Technology, Xiangya Hospital Central
South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
27
|
Wu Q, Liao J, Yang H. Recent Advances in Kaolinite Nanoclay as Drug Carrier for Bioapplications: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300672. [PMID: 37344357 PMCID: PMC10477907 DOI: 10.1002/advs.202300672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/04/2023] [Indexed: 06/23/2023]
Abstract
Advanced functional two-dimensional (2D) nanomaterials offer unique advantages in drug delivery systems for disease treatment. Kaolinite (Kaol), a nanoclay mineral, is a natural 2D nanomaterial because of its layered silicate structure with nanoscale layer spacing. Recently, Kaol nanoclay is used as a carrier for controlled drug release and improved drug dissolution owing to its advantageous properties such as surface charge, strong biocompatibility, and naturally layered structure, making it an essential development direction for nanoclay-based drug carriers. This review outlines the main physicochemical characteristics of Kaol and the modification methods used for its application in biomedicine. The safety and biocompatibility of Kaol are addressed, and details of the application of Kaol as a drug delivery nanomaterial in antibacterial, anti-inflammatory, and anticancer treatment are discussed. Furthermore, the challenges and prospects of Kaol-based drug delivery nanomaterials in biomedicine are discussed. This review recommends directions for the further development of Kaol nanocarriers by improving their physicochemical properties and expanding the bioapplication range of Kaol.
Collapse
Affiliation(s)
- Qianwen Wu
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Juan Liao
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
- Engineering Research Center of Nano‐Geomaterials of Ministry of EducationChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| |
Collapse
|
28
|
Wang Z, Yang L, Dai L, Huang Z, Wu K, Liu B. Scalable Production of 2D Minerals by Polymer Intercalation and Adhesion for Multifunctional Applications. SMALL METHODS 2023; 7:e2300529. [PMID: 37246257 DOI: 10.1002/smtd.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/17/2023] [Indexed: 05/30/2023]
Abstract
Natural and sustainable 2D minerals have many unique properties and may reduce reliance on petroleum-based products. However, the large-scale production of 2D minerals remains challenging. Herein, a green, scalable, and universal polymer intercalation and adhesion exfoliation (PIAE) method to produce 2D minerals such as vermiculite, mica, nontronite, and montmorillonite with large lateral sizes and high efficiency, is developed. The exfoliation relies on the dual functions of polymers involving intercalation and adhesion to expand interlayer space and weaken interlayer interactions of minerals, facilitating their exfoliation. Taking vermiculite as an example, the PIAE produces 2D vermiculite with an average lateral size of 1.83 ± 0.48 µm and thickness of 2.40 ± 0.77 nm at a yield of ≈30.8%, surpassing state-of-the-art methods in preparing 2D minerals. Flexible films are directly fabricated by the 2D vermiculite/polymer dispersion, exhibiting outstanding performances including mechanical strength, thermal resistance, ultraviolet shielding, and recyclability. The representative application of colorful multifunctional window coatings in sustainable buildings is demonstrated, indicating the potential of massively produced 2D minerals.
Collapse
Affiliation(s)
- Zhongyue Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liusi Yang
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing, 100048, P. R. China
| | - Lixin Dai
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Ziyang Huang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Keyou Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
29
|
Feng Y, Luo X, Li Z, Fan X, Wang Y, He RR, Liu M. A ferroptosis-targeting ceria anchored halloysite as orally drug delivery system for radiation colitis therapy. Nat Commun 2023; 14:5083. [PMID: 37607944 PMCID: PMC10444825 DOI: 10.1038/s41467-023-40794-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Radiation colitis is the leading cause of diarrhea and hematochezia in pelvic radiotherapy patients. This work advances the pathogenesis of radiation colitis from the perspective of ferroptosis. An oral Pickering emulsion is stabilized with halloysite clay nanotubes to alleviate radiation colitis by inhibiting ferroptosis. Ceria nanozyme grown in situ on nanotubes can scavenge reactive oxygen species, and deferiprone was loaded into the lumen of nanotubes to relieve iron stress. These two strategies effectively inhibit lipid peroxidation and rescue ferroptosis in the intestinal microenvironment. The clay nanotubes play a critical role as either a medicine to alleviate colitis, a nanocarrier that targets the inflamed colon by electrostatic adsorption, or an interfacial stabilizer for emulsions. This ferroptosis-based strategy was effective in vitro and in vivo, providing a prospective candidate for radiotherapy protection via rational regulation of specific oxidative stress.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, 511443, Guangzhou, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Zichun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Yiting Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China.
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
30
|
Yang L, Yang X, Xia F, Gong Y, Li F, Yu J, Gao T, Li Y. Recent Progress on Natural Clay Minerals for Lithium-Sulfur Batteries. Chem Asian J 2023; 18:e202300473. [PMID: 37424057 DOI: 10.1002/asia.202300473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Li-S batteries with high energy density have the potential to become a viable alternative to Li-ion batteries. However, Li-S batteries still face several challenges, including the shuttle effect, low conversion kinetics, and Li dendrite growth. Natural clay minerals with porous structures, abundant Lewis-acid sites, high mechanical modulus, and versatile structural regulation show great potential for improving the performance of Li-S batteries. However, so far, relevant reviews focusing on the applications of natural clay minerals in Li-S batteries are still missing. To fill the gap, this review first presents an overview of the crystal structures of several natural clay minerals, including 1D (halloysites, attapulgites, and sepiolite), 2D (montmorillonite and vermiculite), and 3D (diatomite) structures, providing a theoretical basis for the application of natural clay minerals in Li-S batteries. Subsequently, research advancements in the natural clay-based energy materials in Li-S batteries have been comprehensively reviewed. Finally, the perspectives concerning the development of natural clay minerals and their applications in Li-S batteries are provided. We hope this review can provide timely and comprehensive information on the correlation between the structure and function of natural clay minerals in Li-S batteries and offer guidance for material selection and structure optimization of natural clay-based energy materials.
Collapse
Affiliation(s)
- Liu Yang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xin Yang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Feng Xia
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Yifei Gong
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Faxue Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Jianyong Yu
- Innovation Center for Textile Science & Technology, Donghua University, Shanghai, 201620, P. R. China
| | - Tingting Gao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Yiju Li
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
31
|
Akiyama N, Patel KD, Jang EJ, Shannon MR, Patel R, Patel M, Perriman AW. Tubular nanomaterials for bone tissue engineering. J Mater Chem B 2023; 11:6225-6248. [PMID: 37309580 DOI: 10.1039/d3tb00905j] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanomaterial composition, morphology, and mechanical performance are critical parameters for tissue engineering. Within this rapidly expanding space, tubular nanomaterials (TNs), including carbon nanotubes (CNTs), titanium oxide nanotubes (TNTs), halloysite nanotubes (HNTs), silica nanotubes (SiNTs), and hydroxyapatite nanotubes (HANTs) have shown significant potential across a broad range of applications due to their high surface area, versatile surface chemistry, well-defined mechanical properties, excellent biocompatibility, and monodispersity. These include drug delivery vectors, imaging contrast agents, and scaffolds for bone tissue engineering. This review is centered on the recent developments in TN-based biomaterials for structural tissue engineering, with a strong focus on bone tissue regeneration. It includes a detailed literature review on TN-based orthopedic coatings for metallic implants and composite scaffolds to enhance in vivo bone regeneration.
Collapse
Affiliation(s)
- Naomi Akiyama
- Department of Chemical Engineering, The Cooper Union of the Advancement of Science and Art, New York City, NY 10003, USA
| | - Kapil D Patel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Eun Jo Jang
- Nano Science and Engineering (NSE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Mark R Shannon
- Bristol Composites Institute (BCI), University of Bristol, Bristol, BS8 1UP, UK
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Yeonsu-gu, Incheon 21983, South Korea
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea.
| | - Adam Willis Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
32
|
Elibol MK, Jiang L, Xie D, Cao S, Pan X, Härk E, Lu Y. Nickel Oxide Decorated Halloysite Nanotubes as Sulfur Host Materials for Lithium-Sulfur Batteries. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300005. [PMID: 37483418 PMCID: PMC10362100 DOI: 10.1002/gch2.202300005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Indexed: 07/25/2023]
Abstract
Lithium-sulfur batteries with high energy density still confront many challenges, such as polysulfide dissolution, the large volume change of sulfur, and fast capacity fading in long-term cycling. Herein, a naturally abundant clay material, halloysite, is introduced as a sulfur host material in the cathode of Li-S batteries. Nickel oxide nanoparticles are embedded into the halloysite nanotubes (NiO@Halloysite) by hydrothermal and calcination treatment to improve the affinity of halloysite nanotubes to polysulfides. The NiO@Halloysite composite loaded with sulfur (S/NiO@Halloysite) is employed as the cathode of Li-S batteries, which combines the physical confinements of tubular halloysite particles and good chemical adsorption ability of NiO. The S/NiO@Halloysite electrode exhibits a high discharge capacity of 1205.47 mAh g-1 at 0.1 C. In addition, it demonstrates enhanced cycling stability, retaining ≈60% of initial capacity after 450 cycles at 0.5 C. The synthesized NiO@Halloysite can provide a promising prospect and valuable insight into applying natural clay materials in Li-S batteries.
Collapse
Affiliation(s)
- Meltem Karaismailoglu Elibol
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Department for Energy Science and TechnologyTurkish‐German UniversityŞahinkaya Cad. 106İstanbul34820Turkey
| | - Lihong Jiang
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Key Laboratory of Textile Science & TechnologyCollege of TextilesDonghua UniversityNorth Renmin Road 2999Shanghai201620P. R. China
| | - Dongjiu Xie
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| | - Sijia Cao
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| | - Xuefeng Pan
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| | - Eneli Härk
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
| | - Yan Lu
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| |
Collapse
|
33
|
Abdulmalik S, Gallo J, Nip J, Katebifar S, Arul M, Lebaschi A, Munch LN, Bartly JM, Choudhary S, Kalajzic I, Banasavadi-Siddegowdae YK, Nukavarapu SP, Kumbar SG. Nanofiber matrix formulations for the delivery of Exendin-4 for tendon regeneration: In vitro and in vivo assessment. Bioact Mater 2023; 25:42-60. [PMID: 36733930 PMCID: PMC9876843 DOI: 10.1016/j.bioactmat.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Tendon and ligament injuries are the most common musculoskeletal injuries, which not only impact the quality of life but result in a massive economic burden. Surgical interventions for tendon/ligament injuries utilize biological and/or engineered grafts to reconstruct damaged tissue, but these have limitations. Engineered matrices confer superior physicochemical properties over biological grafts but lack desirable bioactivity to promote tissue healing. While incorporating drugs can enhance bioactivity, large matrix surface areas and hydrophobicity can lead to uncontrolled burst release and/or incomplete release due to binding. To overcome these limitations, we evaluated the delivery of a peptide growth factor (exendin-4; Ex-4) using an enhanced nanofiber matrix in a tendon injury model. To overcome drug surface binding due to matrix hydrophobicity of poly(caprolactone) (PCL)-which would be expected to enhance cell-material interactions-we blended PCL and cellulose acetate (CA) and electrospun nanofiber matrices with fiber diameters ranging from 600 to 1000 nm. To avoid burst release and protect the drug, we encapsulated Ex-4 in the open lumen of halloysite nanotubes (HNTs), sealed the HNT tube endings with a polymer blend, and mixed Ex-4-loaded HNTs into the polymer mixture before electrospinning. This reduced burst release from ∼75% to ∼40%, but did not alter matrix morphology, fiber diameter, or tensile properties. We evaluated the bioactivity of the Ex-4 nanofiber formulation by culturing human mesenchymal stem cells (hMSCs) on matrix surfaces for 21 days and measuring tenogenic differentiation, compared with nanofiber matrices in basal media alone. Strikingly, we observed that Ex-4 nanofiber matrices accelerated the hMSC proliferation rate and elevated levels of sulfated glycosaminoglycan, tendon-related genes (Scx, Mkx, and Tnmd), and ECM-related genes (Col-I, Col-III, and Dcn), compared to control. We then assessed the safety and efficacy of Ex-4 nanofiber matrices in a full-thickness rat Achilles tendon defect with histology, marker expression, functional walking track analysis, and mechanical testing. Our analysis confirmed that Ex-4 nanofiber matrices enhanced tendon healing and reduced fibrocartilage formation versus nanofiber matrices alone. These findings implicate Ex-4 as a potentially valuable tool for tendon tissue engineering.
Collapse
Affiliation(s)
- Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Jack Gallo
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jonathan Nip
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Amir Lebaschi
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Lucas N. Munch
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Jenna M. Bartly
- Department of Immunology, Center on Aging, University of Connecticut Health, Farmington, CT, USA
| | - Shilpa Choudhary
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health, Farmington, CT, USA
| | | | - Syam P. Nukavarapu
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
34
|
Yanamadala Y, Saleh MY, Williams AA, Lvov Y, Murray TA. Clay Nanotubes Loaded with Diazepam or Xylazine Permeate the Brain through Intranasal Administration in Mice. Int J Mol Sci 2023; 24:ijms24119648. [PMID: 37298599 DOI: 10.3390/ijms24119648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The blood-brain barrier (BBB) is an obstacle to the permeation of most therapeutic drugs into the brain, limiting treatments for neurological disorders. Drugs loaded within nanocarriers that pass through the BBB can overcome this limitation. Halloysite consists of naturally occurring biocompatible clay nanotubes of 50 nm diameter and 15 nm lumen, allowing the loading and sustained release of loaded drugs. These have demonstrated the ability to transport loaded molecules into cells and organs. We propose to use halloysite nanotubes as a "nano-torpedo" for drug delivery through the BBB due to their needle-like shape. To determine if they can cross the BBB using a non-invasive, clinically translatable route of administration, we loaded halloysite with either diazepam or xylazine and delivered these intranasally to mice daily over six days. The sedative effects of these drugs were observed in vestibulomotor tests conducted at two, five, and seven days after the initial administration. Behavioral tests were conducted 3.5 h after administration to show that the effects were from halloysite/delivered drugs and not from the drug alone. As expected, the treated mice performed more poorly than the sham, drug alone, and halloysite-vehicle-treated mice. These results confirm that halloysite permeates the BBB to deliver drugs when administered intranasally.
Collapse
Affiliation(s)
- Yaswanthi Yanamadala
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Rustom, LA 71270, USA
| | - Mahdi Y Saleh
- Institute for Micromanufacturing, Louisiana Tech University, Rustom, LA 71270, USA
| | - Afrika A Williams
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Rustom, LA 71270, USA
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Rustom, LA 71270, USA
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Sciences, Louisiana Tech University, Rustom, LA 71270, USA
| |
Collapse
|
35
|
Liu W, Li J. Sodium Lignosulfonate-Loaded Halloysite Nanotubes/Epoxy Composites for Corrosion Resistance Coating. ACS OMEGA 2023; 8:18425-18434. [PMID: 37273615 PMCID: PMC10233832 DOI: 10.1021/acsomega.2c07786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/28/2023] [Indexed: 06/06/2023]
Abstract
Corrosion resistance coating applied on Q235 carbon steel in a chloride-rich environment was explored in our research. The coating as a barrier inhibits the penetration of the corrosion medium and provides active corrosion protection for Q235 carbon steel. Halloysite nanotubes (HNTs) were loaded with sodium lignosulfonate (SLS) under vacuum conditions. 4.53% of loading efficiency was validated by thermogravimetric analysis (TGA). The deposition of polyelectrolyte layers including poly(dimethyl diallyl ammonium chloride) (PDDA) and poly(styrenesulfonate) (PSS) not only resulted in controlling the release rate of SLS but also enabled the HNTs to possess pH-responsive release property. The modified HNTs were defined as "PSS/PDDA/SLS/HNTs", which were characterized by SEM, TEM, FTIR, and zeta potential analyses. TGA elucidates that PSS/PDDA/SLS/HNTs exhibit superior thermal stability. The results of UV-vis spectroscopic analysis confirm that HNTs exhibit a higher release amount in an alkaline medium than in neutral and acidic conditions. Afterward, PSS/PDDA/SLS/HNTs were mixed with the epoxy coating, which was applied on Q235 carbon steel immersed in 3.5 wt % NaCl solution. Electrochemical measurements illustrate the excellent corrosion resistance of the epoxy coating with the addition of PSS/PDDA/SLS/HNTs. Also, water contact angle analysis demonstrates the modification of the epoxy coating with decent hydrophobicity.
Collapse
Affiliation(s)
- Weilin Liu
- School
of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
| | - Jiansan Li
- College
of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
36
|
Shen Y, Liu Y, Nunes JK, Wang C, Xu M, To MKT, Stone HA, Shum HC. Fibro-Gel: An All-Aqueous Hydrogel Consisting of Microfibers with Tunable Release Profile and its Application in Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211637. [PMID: 36789886 DOI: 10.1002/adma.202211637] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Indexed: 05/12/2023]
Abstract
Injectable hydrogels are valuable tools in tissue engineering and regenerative medicine due to their unique advantages of injectability with minimal invasiveness and usability for irregularly shaped sites. However, it remains challenging to achieve scalable manufacturing together with matching physicochemical properties and on-demand drug release for a high level of control over biophysical and biomedical cues to direct endogenous cells. Here, the use of an injectable fibro-gel is demonstrated, a water-filled network of entangled hydrogel microfibers, whose physicochemical properties and drug release profiles can be tailored to overcome these shortcomings. This fibro-gel exhibits favorable in vitro biocompatibility and the capability to aid vascularization. The potential use of the fibro-gel for advancing tissue regeneration is explored with a mice excision skin model. Preliminary in vivo tests indicate that the fibro-gel promotes wound healing and new healthy tissue regeneration at a faster rate than a commercial gel. Moreover, it is demonstrated that the release of distinct drugs at different rates can further accelerate wound healing with higher efficiency, by using a two-layer fibro-gel model. The combination of injectability and tailorable properties of this fibro-gel offers a promising approach in biomedical fields such as therapeutic delivery, medical dressings, and 3D tissue scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Yanting Shen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yuan Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Janine K Nunes
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Chenmin Wang
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Miao Xu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Michael K T To
- Department of Orthopaedics and Traumatology, LKS Faculty of Medicine, University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
37
|
Li Y, Yuan X, Guan X, Bai J, Wang H. One-pot synthesis of siliceous ferrihydrite - coated halloysite nanorods in alkaline medium: Structure, properties and cadmium adsorption performance. J Colloid Interface Sci 2023; 636:435-449. [PMID: 36641819 DOI: 10.1016/j.jcis.2023.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The application of amorphous ferrihydrite (Fh) for Cd(II) removal is restricted by its unstable and easily transformable nature. Although doping with silicates stabilized ferrihydrite, its product siliceous ferrihydrite (SiFh) again suffered from the disadvantage of spontaneous agglomeration. Herein, ferrihydrite was hybridized with halloysite nanotubes (HNTs) to prepare a novel siliceous ferrihydrite - coated halloysite nanorods (SiFh@HNTs) in alkaline medium, to break through the current barriers. The characterization results showed that SiFh@HNTs could simultaneously overcome the defects of easy phase transformation of ferrihydrite and easy aggregation of SiFh nanoparticles (NPs). Meanwhile, the optimal SiFh@HNT40 with halloysite content of 40 % formed a well-developed mesoporous structure and exhibited the desired surface properties: a high specific surface area of 303.4 m2/g, an isoelectric point as low as pHiep = 4.5, and rich functional Fe - OH groups. The formation mechanism of such excellent sturcture-properties of SiFh@HNT40 were mainly attributed to two factors: the generation of smaller (∼5 nm) SiFh NPs induced by the integration of halloysite-derived SiO44- into ferrihydrite, and the dispersion of SiFh NPs on clay nanotubes. Furthermore, the adsorption capacity of SiFh@HNT40 for Cd(II) was up to 137.8 mg/g at 30 °C and pH 6, which was much higher than that of aggregated ferrihydrite (11.2 mg/g), halloysite (18.8 mg/g) and goethite (49.4 mg/g). The adsorption thermodynamics study revealed the adsorption of Cd(II) on SiFh@HNT40 was clearly chemisorption with a (ΔHads)q of 43.3 kJ/mol. Characterization results of XPS and FTIR confirmed that the rich Fe - OH groups on SiFh@HNT40 was the main adsorption sites, and Cd(II) was specifically adsorbed by inner-sphere surface complexation. In addition, SiFh@HNT40 had application potential in the mixed-metal wastewaters treatment. Cyclic regeneration experiments showed that SiFh@HNT40 had good regeneration performance and could be reused many times.
Collapse
Affiliation(s)
- Ying Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Xian Guan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jing Bai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
38
|
Lin X, Feng Y, He Y, Ding S, Liu M. Engineering design of asymmetric halloysite/chitosan/collagen sponge with hydrophobic coating for high-performance hemostasis dressing. Int J Biol Macromol 2023; 237:124148. [PMID: 36958442 DOI: 10.1016/j.ijbiomac.2023.124148] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Uncontrolled massive hemorrhage is a crucial cause of death, and developing efficient hemostatic materials are of great medical importance. Herein, we prepared a halloysite-chitosan-collagen composite sponge by directional freeze-drying method and coating the sponge by hydrophobic polydimethylsiloxane coating for rapid and effective hemostasis. The aligned channel structure of the sponge with a pore size of ~30 μm was beneficial for the transport of blood. Morphology and spectrum results suggested that chitosan and collagen are capable of adsorbing on the outer surface of HNTs due to the hydrogen bonding and electrostatic attractions. The directional freeze-dried sponge absorbed the majority of the blood within 10 s, and that process essentially completed in 30 s, which are faster than its non-directional counterpart. The composite sponges exhibited high antibacterial properties towards E. coli and S. aureus, and they are non-cytotoxic towards mouse fibroblasts and have high hemocompatibility. The hemostatic dressing avoided unnecessary blood loss because of excessive blood absorption. In vivo experiments of rats also confirmed the ability of the asymmetric sponges to rapidly clot and reduce reducing blood loss. This work developed a high-performance and hemostatic dressing by material design and processing technique, which shows a promising application in wound healing.
Collapse
Affiliation(s)
- Xiaoying Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China.
| |
Collapse
|
39
|
Shahabi N, Soleimani S, Ghorbani M. Investigating functional properties of halloysite nanotubes and propolis used in reinforced composite film based on soy protein/basil seed gum for food packaging application. Int J Biol Macromol 2023; 231:123350. [PMID: 36681220 DOI: 10.1016/j.ijbiomac.2023.123350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effect of halloysite nanotubes (HNTs) on the physicochemical characteristics of the soy protein isolated/basil seed gum (SPI/BSG) film activated with propolis (PP). The obtained results of scanning electron microscope (SEM), thermal gravimetric analysis (TGA), and tensile investigations illustrated that the addition of HNTs as nanofiller led to positive changes in the morphology, thermal stability, and mechanical characteristics of SPI/BSG films. The barrier properties of films considerably decreased with incorporation of HNTs. Furthermore, the encapsulation of PP as bioactive agent into the produced films significantly increased (P < 0.05) the antioxidant potential of the samples in DPPH radical-scavenging activity assays. The antibacterial effects of film also significantly increased (P < 0.05) after the encapsulation of PP. In conclusion, the produced films illustrated acceptable efficiency for usage in food packaging system.
Collapse
Affiliation(s)
- Nasim Shahabi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Sajad Soleimani
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Alhijji S, Platt JA, Alhotan A, Labban N, Bottino MC, Windsor LJ. Release and MMP-9 Inhibition Assessment of Dental Adhesive Modified with EGCG-Encapsulated Halloysite Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13060999. [PMID: 36985892 PMCID: PMC10051210 DOI: 10.3390/nano13060999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 06/09/2023]
Abstract
Degradation of the collagen fibrils at the dentin-resin interface by the enzymatic activity of matrix metalloproteinases (MMPs) has been known to permit some dental restoration complications, such as microleakage, secondary caries, and, ultimately, restoration failures. This study aimed to evaluate a modified adhesive by adding an MMP inhibitor from green tea extract with and without nanotube encapsulation to sustain the drug release. Epigallocatechin-3-gallate (EGCG) and Halloysite nanotubes (HNTs) were prepared to produce three variant combinations of modified adhesive (EGCG, EGCG-encapsulated HNT, and EGCG-free HNT). The drug loading efficiency and EGCG release over time were evaluated using UV-vis spectrometry. MMP-mediated β-casein (BCN) cleavage rate assays were used to determine the ability of the EGCG in eluates of the adhesive to inhibit MMP-9 activities. For up to 8 weeks, HNT encapsulation reduced release to a statistically significant level. MMP-mediated β-casein cleavage rate assays showed a significant decrease for the EGCG groups compared to the non-EGCG adhesive groups. Furthermore, the use of HNT for EGCG encapsulation to modify a dental adhesive helped slow down the rate of EGCG release without impacting its MMP inhibitory capabilities, which may help to maintain the dentin-resin interface's integrity over the long term after dental restoration placement.
Collapse
Affiliation(s)
- Saleh Alhijji
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh 11545, Saudi Arabia
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Jeffrey A. Platt
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh 11545, Saudi Arabia
| | - Nawaf Labban
- Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Jack Windsor
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| |
Collapse
|
41
|
Farokh A, Pourmadadi M, Rashedi H, Yazdian F, Navaei-Nigjeh M. Assessment of synthesized chitosan/halloysite nanocarrier modified by carbon nanotube for pH-sensitive delivery of curcumin to cancerous media. Int J Biol Macromol 2023; 237:123937. [PMID: 36882143 DOI: 10.1016/j.ijbiomac.2023.123937] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Constructing a system to carry medicine for more effective remedy of cancer has been a leading challenge, as the number of cancer cases continues to increase. In this present research, a curcumin-loaded chitosan/halloysite/carbon nanotube nanomixture was fabricated by means of water/oil/water emulsification method. The drug loading efficiency (DL) and entrapment efficiency (EE), as a result, reached 42 % and 88 %, respectively and FTIR and XRD analysis confirmed the bonding between the drug and nanocarrier. Morphological observation through FE-SEM and characterization through DLS analysis demonstrated that the average size of nanoparticles is 267.37 nm. Assessment of release within 96 h in pH 7.4 and 5.4 showed sustained release. For more investigation, release data was analyzed by diverse kinetic models to understand the mechanism in the release procedure. An MTT assay was also carried out, and the results illustrated apoptosis induction on MCF-7 cells and exhibited ameliorated cytotoxicity of the drug-loaded nanocomposite compared to the free curcumin. These findings suggest that the unique pH-responsive chitosan/halloysite/carbon nanotube nanocomposite might make a good option for drug delivery systems, particularly for the cancer treatment.
Collapse
Affiliation(s)
- Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
42
|
Ye JJ, Li LF, Hao RN, Gong M, Wang T, Song J, Meng QH, Zhao NN, Xu FJ, Lvov Y, Zhang LQ, Xue JJ. Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release. Bioact Mater 2023; 21:284-298. [PMID: 36157247 PMCID: PMC9478498 DOI: 10.1016/j.bioactmat.2022.08.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022] Open
Abstract
It is of great importance to treat a bacterial-infected wound by a smart dressing capable of delivering antibiotics in a smart manner without causing drug resistance. The construction of smart release nanocontainers responsive to near-infrared (NIR) laser irradiation in an on-demand and stepwise way is a promising strategy for avoiding the emergence of multidrug-resistant bacteria. Here, we develop a hydrogel composite made of alginate and nanotubes with an efficient NIR-triggered release of rifampicin and outstanding antibacterial ability. This composite hydrogel is prepared through co-encapsulating antibacterial drug (rifampicin), NIR-absorbing dye (indocyanine green), and phase-change materials (a eutectic mixture of fatty acids) into halloysite nanotubes, followed by incorporation into alginate hydrogels, allowing the in-situ gelation at room temperature and maintaining the integrity of drug-loaded nanotubes. Among them, the eutectic mixture with a melting point of 39 °C serves as the biocompatible phase-change material to facilitate the NIR-triggered drug release. The resultant phase-change material gated-nanotubes exhibit a prominent photothermal efficiency with multistep drug release under laser irradiation. In an in vitro assay, composite hydrogel provides good antibacterial potency against Staphylococcus aureus, one of the most prevalent microorganisms of dangerous gas gangrene. A bacterial-infected rat full-thickness wound model demonstrates that the NIR-responsive composite hydrogel inhibits the bacteria colonization and suppresses the inflammatory response caused by bacteria, promoting angiogenesis and collagen deposition to accelerate wound regeneration. The NIR-responsive composite hydrogel has a great potential as an antibacterial wound dressing functionalized with controlled multistep treatment of the infected sites. Phase change material-gated nanocontainer exhibits an efficient NIR-triggered release of drugs. Photothermal-responsive hydrogel shows efficient antibacterial properties through the NIR-responsive step-wise antibacterial drug release. In vivo, photothermal-responsive hydrogel inhibits bacterial proliferation and effectively suppress the inflammatory response caused by bacteria, thus accelerating bacteria-infected wound regeneration. Various types of drugs and biological effectors can be loaded in the nanotubes while the hydrogel matrix can also be regulated to achieve multiple healing functions.
Collapse
|
43
|
Wu H, Xu S, Lin K, Xu J, Fu D. Acidity-activatable dynamic halloysite nanotubes as a drug delivery system for efficient antitumor therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
44
|
Zagni C, Scamporrino AA, Riccobene PM, Floresta G, Patamia V, Rescifina A, Carroccio SC. Portable Nanocomposite System for Wound Healing in Space. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:741. [PMID: 36839109 PMCID: PMC9961582 DOI: 10.3390/nano13040741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical-physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material's ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space.
Collapse
Affiliation(s)
- Chiara Zagni
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | | | - Paolo Maria Riccobene
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Floresta
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vincenzo Patamia
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Antonio Rescifina
- Department of Drug and Health Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Sabrina Carola Carroccio
- Institute for Polymers, Composites, and Biomaterials CNR-IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
45
|
Bianchini M, Micera S, Redolfi Riva E. Recent Advances in Polymeric Drug Delivery Systems for Peripheral Nerve Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020640. [PMID: 36839962 PMCID: PMC9965241 DOI: 10.3390/pharmaceutics15020640] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
When a traumatic event causes complete denervation, muscle functional recovery is highly compromised. A possible solution to this issue is the implantation of a biodegradable polymeric tubular scaffold, providing a biomimetic environment to support the nerve regeneration process. However, in the case of consistent peripheral nerve damage, the regeneration capabilities are poor. Hence, a crucial challenge in this field is the development of biodegradable micro- nanostructured polymeric carriers for controlled and sustained release of molecules to enhance nerve regeneration. The aim of these systems is to favor the cellular processes that support nerve regeneration to increase the functional recovery outcome. Drug delivery systems (DDSs) are interesting solutions in the nerve regeneration framework, due to the possibility of specifically targeting the active principle within the site of interest, maximizing its therapeutical efficacy. The scope of this review is to highlight the recent advances regarding the study of biodegradable polymeric DDS for nerve regeneration and to discuss their potential to enhance regenerative performance in those clinical scenarios characterized by severe nerve damage.
Collapse
Affiliation(s)
- Marta Bianchini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1000 Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence:
| |
Collapse
|
46
|
Malla SR, Gujjari A, Corona CE, Beall GW, Lewis LK. Spectrophotometric and nucleic acid-binding properties of halloysite clay nanotubes and kaolinite. Heliyon 2023; 9:e13009. [PMID: 36699281 PMCID: PMC9868539 DOI: 10.1016/j.heliyon.2023.e13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Halloysite particles (HNTs) are naturally occurring aluminosilicate nanotubes of low toxicity that have shown great promise for drug and biomolecule delivery into human and animal cells. Kaolinite particles retain the same layered structure as HNT, but do not form nanotubes. In this study, the spectrophotometric and sedimentation properties of the two clays in aqueous solutions and their abilities to associate with both small and large nucleic acids have been investigated. Both clays scattered ultraviolet light strongly and this characteristic of HNT was not affected by either vacuum treatment to remove trapped gases or by sonication. Vacuum treatment increased the binding of small nucleic acids to HNT and this association was further enhanced by addition of divalent metal ions. By contrast, only small RNAs were bound efficiently by kaolinite in the presence of Mg2+ ions. Large linear double-stranded DNAs and circular plasmid DNAs bound poorly to kaolinite under all conditions, but these nucleic acids could form strong associations with HNT. Differences in binding data were largely consistent with measurements of the available surface areas of each clay. These results demonstrate that interactions with each clay are critically dependent on both the type and the conformation of each nucleic acid.
Collapse
Affiliation(s)
- Shubha R.L. Malla
- Materials Science, Engineering and Commercialization Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Archana Gujjari
- Materials Science, Engineering and Commercialization Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Carlos E. Corona
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Gary W. Beall
- Materials Science, Engineering and Commercialization Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA,Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - L. Kevin Lewis
- Materials Science, Engineering and Commercialization Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA,Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA,Corresponding author. Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| |
Collapse
|
47
|
Xu Y, Zhu Y, Qiu Q, Qi Z, Liu S, Weng J, Shen J. Development of Mixed-Dimensional Membranes Comprising Halloysite Nanotubes and Kevlar Aramid Nanofiber for Enhanced Small-Molecule Dye/Salt Separation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Yuying Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Qite Qiu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Zhifu Qi
- Zhejiang Energy Group R & D Co., Ltd, Hangzhou311121, China
| | - Shenghui Liu
- Zhejiang Energy Group R & D Co., Ltd, Hangzhou311121, China
| | - Jianquan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, China
| |
Collapse
|
48
|
Functionally modified halloysite nanotubes for personalized bioapplications. Adv Colloid Interface Sci 2023; 311:102812. [PMID: 36427464 DOI: 10.1016/j.cis.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Halloysite nanotubes (HNTs) are naturally aluminosilicate clay minerals that have the benefits of large surface areas, high mechanical properties, easy functionalization, and high biocompatibility, HNTs have been developed as multifunctional nanoplatforms for various bioapplications. Although some reviews have summarized the properties and bioapplications of HNTs, it remains unclear how to functionalize the modifications of HNTs for their personalized bioapplications. In this review, based on the physicochemical properties of HNTs, we summarized the methods of functionalized modifications (surface modification and structure modification) on HNTs. Also, we highlighted their personalized bioapplications (anti-bacterial, anti-inflammatory, wound healing, cancer theranostics, bone regenerative, and biosensing) by stressing on the main roles of HNTs. Finally, we provide perspectives on the future of functionalized modifications of HNTs for docking specific biological applications.
Collapse
|
49
|
Feng Y, He Y, Lin X, Xie M, Liu M, Lvov Y. Assembly of Clay Nanotubes on Cotton Fibers Mediated by Biopolymer for Robust and High-Performance Hemostatic Dressing. Adv Healthc Mater 2023; 12:e2202265. [PMID: 36314398 DOI: 10.1002/adhm.202202265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/20/2022] [Indexed: 02/03/2023]
Abstract
Uncontrollable bleeding from military conflicts, accidents, and surgical procedures is a major life-threatening factor. Rapid, safe, and convenient hemostasis is critical to the survival of bleeding patients in prehospital care. However, the peel-off of hemostats such as kaolinite sheets from the cotton fibers often poses a risk of distal thrombosis. Here, an efficient clay hemostat of halloysite nanotubes is tightly bound onto commercial cotton fibers, which is capillary mediated by biopolymer alginate with Ca2+ crosslinking. The robust clay nanotube dressing materials maintain high procoagulant activity after harsh water treatment, and only a few residuals of halloysite exist in the wound area. Compared with commercial hemostat QuikClot Combat gauze, halloysite-alginate-cotton composite dressing exhibits hemostatic properties both in vivo and in vitro with high safety. The hemostatic mechanism of the dressing is attributed to activating platelets, locally concentrating clotting components in the nanoclay, halloysite coagulation factors, and alginate cross-linked with Ca2+ . This work inspires robust self-assembly of clay nanotubes on textile fibers and offers a hemostatic material with balanced high hemostatic activity, minimal ingredient loss, and biocompatibility. The robust dressing based on halloysite tightly bounded cotton shows great potential for military, medical, and civil bleeding control with low health risks.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Xiaoying Lin
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Mingyang Xie
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511443, P. R. China.,Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| |
Collapse
|
50
|
XPS, structural and antimicrobial studies of novel functionalized halloysite nanotubes. Sci Rep 2022; 12:21633. [PMID: 36517515 PMCID: PMC9751097 DOI: 10.1038/s41598-022-25270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
A novel robust preparation method based on thermal salt decomposition has been elaborated for synthesis of halloysite nanotubes (HNTs) impregnated with silver and iron oxide nanoparticles. The developed method is simple, time-effective, and can be employed for large scale material fabrication. Different characterization techniques, including X-ray diffraction (XRD), scanning and transmission electron spectroscopy (SEM and TEM) and energy dispersive X-ray spectroscopy (EDS) have been used to characterize the functionalized HNTs composite materials. Surface elemental and chemical state analysis was conducted using X-ray photoelectron spectrometer (XPS). The functionalized HNTs exhibit enhanced total surface area (by 17.5%) and pore volume (by 11%) compare to the raw HNTs calculated by using the Brunauer-Emmett-Teller (BET) method. It was shown that functionalized HNTs possess high antimicrobial properties towards both gram- positive and gram-negative bacteria species. The enhanced surface area and bactericidal properties of functionalized HNTs could be beneficial for employing of the prepared material as low cost filtration media for water treatment applications. Molecular dynamics (FPMD) were performed to obtain insights about possible physiochemical mechanisms for chemical adsorption and on the HNT thermal stability.
Collapse
|