1
|
Kitana W, Levario‐Diaz V, Cavalcanti‐Adam EA, Ionov L. Biofabrication of Composite Bioink-Nanofiber Constructs: Effect of Rheological Properties of Bioinks on 3D (Bio)Printing and Cells Interaction with Aligned Touch Spun Nanofibers. Adv Healthc Mater 2024; 13:e2303343. [PMID: 38009530 PMCID: PMC11469018 DOI: 10.1002/adhm.202303343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 11/29/2023]
Abstract
This paper reports on a novel approach for the fabrication of composite multilayered bioink-nanofibers construct. This work achieves this by using a hands-free 3D (bio)printing integrated touch-spinning approach. Additionally, this work investigates the interaction of fibroblasts in different bioinks with the highly aligned touch-spun nanofibers. This work conducts a comprehensive characterization of the rheological properties of the inks, starting with low-strain oscillatory rheology to analyze the viscoelastic behavior, when the material structure remains intact. Moreover, this work performs amplitude sweeps to investigate the stability of the inks under large deformations, rotational rheology to examine the shear thinning profile, and a three-step creep experiment to study time-dependent rheological behavior. The obtained rheological results are correlated to visual observation of the flow behavior of inks. These behaviors span from an ink with zero-shear viscosity, very weak shear thinning, and no thixotropic behavior to inks exhibiting flow stress, pronounced shear thinning, and thixotropy. It is demonstrated that inks have an essential effect on cell behavior. While all bioinks allow a preferred directionality of the fibroblasts along the fiber direction, cells tend to form aggregates in bioinks with higher viscosity, and a considerable number of agglomerates are observed in the presence of laponite-RD.
Collapse
Affiliation(s)
- Waseem Kitana
- Professorship of BiofabricationFaculty of Engineering ScienceUniversity of BayreuthLudwig‐Thoma‐Straße 36A95447BayreuthGermany
| | - Victoria Levario‐Diaz
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
| | - Elisabetta Ada Cavalcanti‐Adam
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 2969120HeidelbergGermany
- Professorship of Cellular BiomechanicsFaculty of Engineering ScienceUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| | - Leonid Ionov
- Professorship of BiofabricationFaculty of Engineering ScienceUniversity of BayreuthLudwig‐Thoma‐Straße 36A95447BayreuthGermany
- Bavarian Polymer InstituteUniversity of BayreuthUniversitätsstraße 3095447BayreuthGermany
| |
Collapse
|
2
|
Wang W, Ka SGS, Pan Y, Sheng Y, Huang YYS. Biointerface Fiber Technology from Electrospinning to Inflight Printing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38109220 DOI: 10.1021/acsami.3c10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Building two-dimensional (2D) and three-dimensional (3D) micro- and nanofibril structures with designable patterns and functionalities will offer exciting prospects for numerous applications spanning from permeable bioelectronics to tissue engineering scaffolds. This Spotlight on Applications highlights recent technological advances in fiber printing and patterning with functional materials for biointerfacing applications. We first introduce the current state of development of micro- and nanofibers with applications in biology and medical wearables. We then describe our contributions in developing a series of fiber printing techniques that enable the patterning of functional fiber architectures in three dimensions. These fiber printing techniques expand the material library and device designs, which underpin technological capabilities from enabling fundamental studies in cell migration to customizable and ecofriendly fabrication of sensors. Finally, we provide an outlook on the strategic pathways for developing the next-generation bioelectronics and "Fiber-of-Things" (FoT) using nano/micro-fibers as architectural building blocks.
Collapse
Affiliation(s)
- Wenyu Wang
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Stanley Gong Sheng Ka
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Yifei Pan
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Yaqi Sheng
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
- The Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, CB3 0FF Cambridge, United Kingdom
| |
Collapse
|
3
|
Fan Y, Miao X, Hou C, Wang J, Lin J, Bian F. High tensile performance of PLA fiber-reinforced PCL composite via a synergistic process of strain and crystallization. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Cavanaugh M, Asheghali D, Motta CM, Silantyeva E, Nikam SP, Becker ML, Willits RK. Influence of Touch-Spun Nanofiber Diameter on Contact Guidance during Peripheral Nerve Repair. Biomacromolecules 2022; 23:2635-2646. [DOI: 10.1021/acs.biomac.2c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- McKay Cavanaugh
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Cecilia M. Motta
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elena Silantyeva
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shantanu P. Nikam
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rebecca K. Willits
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Palit S, Kreplak L, Frampton JP. Formation of Core-Sheath Polymer Fibers by Free Surface Spinning of Aqueous Two-Phase Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4617-4624. [PMID: 35390253 DOI: 10.1021/acs.langmuir.1c03472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Core-sheath fibers have numerous applications ranging from composite materials for advanced manufacturing to materials for drug delivery and regenerative medicine. Here, a simple and tunable approach for the generation of core-sheath fibers from immiscible solutions of dextran and polyethylene oxide is described. This approach exploits the entanglement of polymer molecules within the dextran and polyethylene oxide phases for free surface spinning into dry fibers. The mechanism by which these core-sheath fibers are produced after contact with a solid substrate (such as a microneedle) involves complex flows of the phase-separating polymer solutions, giving rise to a liquid-liquid core-sheath flow that is drawn into a liquid bridge. This liquid bridge then elongates into a core-sheath fiber through extensional flow as the contacting substrate is withdrawn. The core-sheath structure of the fibers produced by this approach is confirmed by attenuated total reflection Fourier-transform infrared spectroscopy and confocal microscopy. Tuning of the core diameter is also demonstrated by varying the weight percentage of dextran added to the reservoir from which the fibers are formed.
Collapse
Affiliation(s)
- Swomitra Palit
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Laurent Kreplak
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - John P Frampton
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
6
|
Coleman BF, Street RM, Fitzsimons T, Schauer CL. Touchspinning: Mechanically drawing polyacrylonitrile nanofibers. J Appl Polym Sci 2022. [DOI: 10.1002/app.52339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Brennan F. Coleman
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| | - Reva M. Street
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| | | | - Caroline L. Schauer
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| |
Collapse
|
7
|
Uribe-Gomez J, Schönfeld D, Posada-Murcia A, Roland MM, Caspari A, Synytska A, Salehi S, Pretsch T, Ionov L. Fibrous Scaffolds for Muscle Tissue Engineering Based on Touch-Spun Poly(Ester-Urethane) Elastomer. Macromol Biosci 2022; 22:e2100427. [PMID: 35007398 DOI: 10.1002/mabi.202100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/17/2021] [Indexed: 12/28/2022]
Abstract
Development of fiber-spinning technologies and materials with proper mechanical properties is highly important for the manufacturing of aligned fibrous scaffolds mimicking structure of the muscle tissues. Here, the authors report touch spinning of a thermoplastic poly(1,4-butylene adipate)-based polyurethane elastomer, obtained via solvent-free polymerization. This polymer possesses a combination of important advantages such as 1) low elastic modulus in the range of a few MPa, 2) good recovery ratio and 3) resilience, 4) processability, 5) nontoxicity, 6) biocompatibility, and 7) biodegradability that makes it suitable for fabrication of structures mimicking extracellular matrix of muscle tissue. Touch spinning allows fast and precise deposition of highly aligned micro- and nano-fibers without use of high voltage. C2C12 myoblasts readily align along soft polymer fibers and demonstrate high viability as well as proliferation that make proposed combination of polymer and fabrication method highly suitable for engineering skeletal muscles.
Collapse
Affiliation(s)
- Juan Uribe-Gomez
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, Bayreuth, 95447, Germany
| | - Dennis Schönfeld
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Andrés Posada-Murcia
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, Bayreuth, 95447, Germany
| | - Michel-Manuel Roland
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, Bayreuth, 95447, Germany
| | - Anja Caspari
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, Dresden, 01069, Germany.,Fakultät Mathematik und Naturwissenschaften, Technische Universität Dresden, Mommsenstrasse 4, Dresden, 01064, Germany.,Bayerisches Polymerinstitut - BPI, Universität Bayreuth, Universitätsstraße 30, Bayreuth, 95440, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, Bayreuth, 95447, Germany
| | - Thorsten Pretsch
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, Potsdam, 14476, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, Bayreuth, 95447, Germany
| |
Collapse
|
8
|
Abstract
In contrast to conventional hard actuators, soft actuators offer many vivid advantages, such as improved flexibility, adaptability, and reconfigurability, which are intrinsic to living systems. These properties make them particularly promising for different applications, including soft electronics, surgery, drug delivery, artificial organs, or prosthesis. The additional degree of freedom for soft actuatoric devices can be provided through the use of intelligent materials, which are able to change their structure, macroscopic properties, and shape under the influence of external signals. The use of such intelligent materials allows a substantial reduction of a device's size, which enables a number of applications that cannot be realized by externally powered systems. This review aims to provide an overview of the properties of intelligent synthetic and living/natural materials used for the fabrication of soft robotic devices. We discuss basic physical/chemical properties of the main kinds of materials (elastomers, gels, shape memory polymers and gels, liquid crystalline elastomers, semicrystalline ferroelectric polymers, gels and hydrogels, other swelling polymers, materials with volume change during melting/crystallization, materials with tunable mechanical properties, and living and naturally derived materials), how they are related to actuation and soft robotic application, and effects of micro/macro structures on shape transformation, fabrication methods, and we highlight selected applications.
Collapse
Affiliation(s)
- Indra Apsite
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, Center of Energy Technology und Materials Science, University of Bayreuth, Prof.-Rüdiger-Bormann-Straße 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Science, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
High-resolution microscopy assisted mechanical modeling of ultrafine electrospun network. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Uribe-Gomez J, Posada-Murcia A, Shukla A, Alkhamis H, Salehi S, Ionov L. Soft Elastic Fibrous Scaffolds for Muscle Tissue Engineering by Touch Spinning. ACS APPLIED BIO MATERIALS 2021; 4:5585-5597. [PMID: 35006745 DOI: 10.1021/acsabm.1c00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper reports an approach for the fabrication of highly aligned soft elastic fibrous scaffolds using touch spinning of thermoplastic polycaprolactone-polyurethane elastomers and demonstrates their potential for the engineering of muscle tissue. A family of polyester-polyurethane soft copolymers based on polycaprolactone with different molecular weights and three different chain extenders such as 1,4-butanediol and polyethylene glycols with different molecular weight was synthesized. By varying the molar ratio and molecular weights between the segments of the copolymer, different physicochemical and mechanical properties were obtained. The polymers possess elastic modulus in the range of a few megapascals and good reversibility of deformation after stretching. The combination of the selected materials and fabrication methods allows several essential advantages such as biocompatibility, biodegradability, suitable mechanical properties (elasticity and softness of the fibers), high recovery ratio, and high resilience mimicking properties of the extracellular matrix of muscle tissue. Myoblasts demonstrate high viability in contact with aligned fibrous scaffolds, where they align along the fibers, allowing efficient cell patterning on top of the structures. Altogether, the importance of this approach is the fabrication of highly oriented fiber constructs that can support the proliferation and alignment of muscle cells for muscle tissue engineering applications.
Collapse
Affiliation(s)
- Juan Uribe-Gomez
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Andrés Posada-Murcia
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Amit Shukla
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Hanin Alkhamis
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| | - Sahar Salehi
- Department of Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann Str. 1, 95447 Bayreuth, Germany
| | - Leonid Ionov
- Faculty of Engineering Sciences and Bavarian Polymer Institute, University of Bayreuth, Ludwig Thoma Str. 36A, 95447 Bayreuth, Germany
| |
Collapse
|
11
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
12
|
King WE, Bowlin GL. Near-Field Electrospinning and Melt Electrowriting of Biomedical Polymers-Progress and Limitations. Polymers (Basel) 2021; 13:1097. [PMID: 33808288 PMCID: PMC8037214 DOI: 10.3390/polym13071097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/18/2022] Open
Abstract
Near-field electrospinning (NFES) and melt electrowriting (MEW) are the process of extruding a fiber due to the force exerted by an electric field and collecting the fiber before bending instabilities occur. When paired with precise relative motion between the polymer source and the collector, a fiber can be directly written as dictated by preprogrammed geometry. As a result, this precise fiber control results in another dimension of scaffold tailorability for biomedical applications. In this review, biomedically relevant polymers that to date have manufactured fibers by NFES/MEW are explored and the present limitations in direct fiber writing of standardization in published setup details, fiber write throughput, and increased ease in the creation of complex scaffold geometries are discussed.
Collapse
Affiliation(s)
- William E. King
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
- Department of Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| |
Collapse
|
13
|
Chen R, Cheng Z, Hu Y, Jiang L, Pan P, Mao J, Ni C. Discarded clothing acrylic yarns: Low-cost raw materials for deformable c nanofibers applied to flexible sodium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Song J, Kim M, Lee H. Recent Advances on Nanofiber Fabrications: Unconventional State-of-the-Art Spinning Techniques. Polymers (Basel) 2020; 12:E1386. [PMID: 32575746 PMCID: PMC7361967 DOI: 10.3390/polym12061386] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
In this review, we describe recent relevant advances in the fabrication of polymeric nanofibers to address challenges in conventional approaches such as electrospinning, namely low throughput and productivity with low size uniformity, assembly with a regulated structure and even architecture, and location with desired alignments and orientations. The efforts discussed have mainly been devoted to realize novel apparatus designed to resolve individual issues that have arisen, i.e., eliminating ejection tips of spinnerets in a simple electrospinning system by effective control of an applied electric field and by using mechanical force, introducing a uniquely designed spinning apparatus including a solution ejection system and a collection system, and employing particular processes using a ferroelectric material and reactive precursors for atomic layer deposition. The impact of these advances to ultimately attain a fabrication technique to solve all the issues simultaneously is highlighted with regard to manufacturing high-quality nanofibers with high- throughput and eventually, practically implementing the nanofibers in cutting-edge applications on an industrial scale.
Collapse
Affiliation(s)
- Jinkyu Song
- Division of Nano-Convergence Material Development, National Nano Fab Center (NNFC), Daejeon 34141, Korea;
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea
| | - Hoik Lee
- Research Institute of Industrial Technology Convergence, Korea Institute of Industrial Technology, Gyeonggi-do, Ansan 15588, Korea
| |
Collapse
|
15
|
Chawathe M, Asheghali D, Minko S, Jonnalagadda S, Sidorenko A. Adaptive Hybrid Molecular Brushes Composed of Chitosan, Polylactide, and Poly(N-vinyl pyrrolidone) for Support and Guiding Human Dermal Fibroblasts. ACS APPLIED BIO MATERIALS 2020; 3:4118-4127. [DOI: 10.1021/acsabm.0c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manasi Chawathe
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Darya Asheghali
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sriramakamal Jonnalagadda
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Sidorenko
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Yadavalli NS, Asheghali D, Tokarev A, Zhang W, Xie J, Minko S. Gravity Drawing of Micro- and Nanofibers for Additive Manufacturing of Well-Organized 3D-Nanostructured Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907422. [PMID: 32068968 DOI: 10.1002/smll.201907422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/19/2020] [Indexed: 06/10/2023]
Abstract
This work introduces a gravity fiber drawing (GFD) method of making single filament nanofibers from polymer solutions and precise alignment of the fibers in 3D scaffolds. This method is advantageous for nanofiber 3D alignment in contrast to other known methods. GFD provides a technology for the fabrication of freestanding filament nanofibers of well-controlled diameter, draw ratio, and 3D organization with controllable spacing and angular orientation between nanofibers. The GFD method is capable of fabricating complex 3D scaffolds combining fibers with different diameters, chemical compositions, mechanical properties, angular orientations, and multilayer structures in the same construct. The scaffold porosity can be as high as 99% to secure transport of nutrients and space for cell infiltration and differentiation in tissue engineering and 3D cell culture applications.
Collapse
Affiliation(s)
- Nataraja S Yadavalli
- Nanostructured Materials Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Darya Asheghali
- Nanostructured Materials Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Alexander Tokarev
- Nanostructured Materials Laboratory, University of Georgia, Athens, GA, 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, The University of Georgia, Athens, GA, 30602, USA
| | - Jin Xie
- Department of Chemistry, The University of Georgia, Athens, GA, 30602, USA
| | - Sergiy Minko
- Nanostructured Materials Laboratory, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
17
|
Asheghali D, Lee SJ, Furchner A, Gruzd A, Larson S, Tokarev A, Stake S, Zhou X, Hinrichs K, Zhang LG, Minko S. Enhanced neuronal differentiation of neural stem cells with mechanically enhanced touch-spun nanofibrous scaffolds. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102152. [DOI: 10.1016/j.nano.2020.102152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/29/2022]
|
18
|
Lee SJ, Asheghali D, Blevins B, Timsina R, Esworthy T, Zhou X, Cui H, Hann SY, Qiu X, Tokarev A, Minko S, Zhang LG. Touch-Spun Nanofibers for Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2067-2075. [PMID: 31859479 DOI: 10.1021/acsami.9b18614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the current study, we examined the potential for neural stem cell (NSCs) proliferation on novel aligned touch-spun polycaprolactone (PCL) nanofibers. Electrospun PCL nanofibers with similar diameter and alignment were used as a control. Confocal microscopy images showed that NSCs grew and differentiated all over the scaffolds up to 8 days. Neurite quantification analysis revealed that the NSCs cultured on the touch-spun fibers with incorporated bovine serum albumin promoted the expression of neuron-specific class III β-tubulin after 8 days. More importantly, NSCs grown on the aligned touch-spun PCL fibers exhibited a bipolar elongation along the direction of the fiber, while NSCs cultured on the aligned electrospun PCL fibers expressed a multipolar elongation. The structural characteristics of the PCL nanofibers analyzed by X-ray diffraction indicated that the degree of crystallinity and elastic modulus of the touch-spun fiber are significantly higher than those of electrospun fibers. These findings indicate that the aligned and stiff touch-spun nanofibrous scaffolds show considerable potential for nerve injury repair.
Collapse
|
19
|
Silantyeva EA, Willits RK, Becker ML. Postfabrication Tethering of Molecular Gradients on Aligned Nanofibers of Functional Poly(ε-caprolactone)s. Biomacromolecules 2019; 20:4494-4501. [PMID: 31721566 PMCID: PMC7546418 DOI: 10.1021/acs.biomac.9b01264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Substrates with combinations of topographical and biochemical cues are highly useful for a number of fundamental biological investigations. Tethered molecular concentration gradients in particular are highly desired for a number of biomedical applications including cell migration. Herein, we report a versatile method for the fabrication of aligned nanofiber substrates with a tunable concentration gradient along the fiber direction. 4-Dibenzocyclooctynol (DIBO) was used as an initiator for the ring-opening copolymerization of ε-caprolactone (εCL) and allyl-functionalized ε-caprolactone (AεPCL), which yielded a well-defined polymer with orthogonal functional handles. These materials were fabricated into aligned nanofiber substrates via touch-spinning. Fibers were modified post-spinning with a concentration gradient of fluorescently labeled dye via a light activated thiol-ene reaction through a photomask. As a demonstration, the cell adhesive peptide RGD was chemically tethered to the fiber surface at a second functionalization site via strain-promoted azide-alkyne cycloaddition (SPAAC). This novel approach affords fabrication of dual functional nanofiber substrates.
Collapse
Affiliation(s)
- Elena A. Silantyeva
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
| | - Rebecca K. Willits
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Matthew L. Becker
- Department of Polymer Science, The University of Akron, Akron, OH 44325, USA
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
- Department of Chemistry, Duke University, Durham, NC 27708, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
20
|
Strauss MJ, Asheghali D, Evans AM, Li RL, Chavez AD, Sun C, Becker ML, Dichtel WR. Cooperative Self‐Assembly of Pyridine‐2,6‐Diimine‐Linked Macrocycles into Mechanically Robust Nanotubes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael J. Strauss
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Darya Asheghali
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - Austin M. Evans
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Rebecca L. Li
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Anton D. Chavez
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Chao Sun
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Matthew L. Becker
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - William R. Dichtel
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
21
|
Strauss MJ, Asheghali D, Evans AM, Li RL, Chavez AD, Sun C, Becker ML, Dichtel WR. Cooperative Self‐Assembly of Pyridine‐2,6‐Diimine‐Linked Macrocycles into Mechanically Robust Nanotubes. Angew Chem Int Ed Engl 2019; 58:14708-14714. [DOI: 10.1002/anie.201907668] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Michael J. Strauss
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Darya Asheghali
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - Austin M. Evans
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Rebecca L. Li
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Anton D. Chavez
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Chao Sun
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University Ithaca NY 14853 USA
| | - Matthew L. Becker
- Department of Polymer Science The University of Akron Akron OH 44325 USA
| | - William R. Dichtel
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
22
|
Jao D, Beachley VZ. Continuous Dual-Track Fabrication of Polymer Micro-/Nanofibers Based on Direct Drawing. ACS Macro Lett 2019; 8:588-595. [PMID: 35619372 DOI: 10.1021/acsmacrolett.9b00167] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This manuscript proposes a continuous and straightforward method for fabricating suspended micro- and nanodiameter polymer fibers using an automated single-step drawing system. Termed track spinning, the system is based on a simple manual fiber drawing process that is automated by using two oppositely rotating tracks. Fibers are continuously spun by direct contact of polymer solution coated tracks followed by mechanical drawing as the distance between the tracks increases. The device can draw single or multifilament arrays of micro- and nanofibers from many kinds of polymers and solvent combinations. To demonstrate, fibers were pulled from polymer solutions containing polyvinyl acetate (PVAc) and polyurethane (PU). Fiber morphology was smooth and uniform, and the diameter was sensitive to draw length and polymer solution/melt properties. Polymer nanofibers with diameters as small as 450 nm and length of 255 mm were produced. The track spinning method is able to form fibers from high viscosity solutions and melts that are not compatible with some other nanofiber fabrication methods. Further, the setup is simple and inexpensive to implement and nozzleless and does not require an electric field or high-velocity jets, and the tracks can be widened and patterned/textured to enhance fiber yield and manufacturing precision.
Collapse
Affiliation(s)
- Dave Jao
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Vince Z. Beachley
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
23
|
Abstract
Electrospinning is a versatile and viable technique for generating ultrathin fibers. Remarkable progress has been made with regard to the development of electrospinning methods and engineering of electrospun nanofibers to suit or enable various applications. We aim to provide a comprehensive overview of electrospinning, including the principle, methods, materials, and applications. We begin with a brief introduction to the early history of electrospinning, followed by discussion of its principle and typical apparatus. We then discuss its renaissance over the past two decades as a powerful technology for the production of nanofibers with diversified compositions, structures, and properties. Afterward, we discuss the applications of electrospun nanofibers, including their use as "smart" mats, filtration membranes, catalytic supports, energy harvesting/conversion/storage components, and photonic and electronic devices, as well as biomedical scaffolds. We highlight the most relevant and recent advances related to the applications of electrospun nanofibers by focusing on the most representative examples. We also offer perspectives on the challenges, opportunities, and new directions for future development. At the end, we discuss approaches to the scale-up production of electrospun nanofibers and briefly discuss various types of commercial products based on electrospun nanofibers that have found widespread use in our everyday life.
Collapse
Affiliation(s)
- Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, People’s Republic of China
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
24
|
Cai W, Zhang F, Li B, Yang Y, Li Y. Fabrication of C/SiC/Si composite fibers from helical mesoporous silica and application as lithium ion battery anode. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Dotivala AC, Puthuveetil KP, Tang C. Shear Force Fiber Spinning: Process Parameter and Polymer Solution Property Considerations. Polymers (Basel) 2019; 11:E294. [PMID: 30960278 PMCID: PMC6419197 DOI: 10.3390/polym11020294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 11/18/2022] Open
Abstract
For application of polymer nanofibers (e.g., sensors, and scaffolds to study cell behavior) it is important to control the spatial orientation of the fibers. We compare the ability to align and pattern fibers using shear force fiber spinning, i.e. contacting a drop of polymer solution with a rotating collector to mechanically draw a fiber, with electrospinning onto a rotating drum. Using polystyrene as a model system, we observe that the fiber spacing using shear force fiber spinning was more uniform than electrospinning with the rotating drum with relative standard deviations of 18% and 39%, respectively. Importantly, the approaches are complementary as the fiber spacing achieved using electrospinning with the rotating drum was ~10 microns while fiber spacing achieved using shear force fiber spinning was ~250 microns. To expand to additional polymer systems, we use polymer entanglement and capillary number. Solution properties that favor large capillary numbers (>50) prevent droplet breakup to facilitate fiber formation. Draw-down ratio was useful for determining appropriate process conditions (flow rate, rotational speed of the collector) to achieve continuous formation of fibers. These rules of thumb for considering the polymer solution properties and process parameters are expected to expand use of this platform for creating hierarchical structures of multiple fiber layers for cell scaffolds and additional applications.
Collapse
Affiliation(s)
- Arzan C Dotivala
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284-3028, USA.
| | - Kavya P Puthuveetil
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284-3028, USA.
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284-3028, USA.
| |
Collapse
|
26
|
De la Garza D, De Santiago F, Materon L, Chipara M, Alcoutlabi M. Fabrication and characterization of centrifugally spun poly(acrylic acid) nanofibers. J Appl Polym Sci 2019. [DOI: 10.1002/app.47480] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- David De la Garza
- Department of Mechanical Engineering University of Texas Rio Grande Valley Edinburg Texas 78539
| | - Francisco De Santiago
- Department of Mechanical Engineering University of Texas Rio Grande Valley Edinburg Texas 78539
| | - Luis Materon
- Department of Biology University of Texas Rio Grande Valley Edinburg Texas 78539
| | - Mircea Chipara
- Department of Physics and Astronomy University of Texas Rio Grande Valley Edinburg Texas 78539
| | - Mataz Alcoutlabi
- Department of Mechanical Engineering University of Texas Rio Grande Valley Edinburg Texas 78539
| |
Collapse
|
27
|
Lee H, Kim IS. Nanofibers: Emerging Progress on Fabrication Using Mechanical Force and Recent Applications. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1495650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hoik Lee
- Division of Frontier Fibers, Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano, Japan
| | - Ick Soo Kim
- Division of Frontier Fibers, Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano, Japan
| |
Collapse
|
28
|
Lee H, Inoue Y, Kim M, Ren X, Kim IS. Effective Formation of Well-Defined Polymeric Microfibers and Nanofibers with Exceptional Uniformity by Simple Mechanical Needle Spinning. Polymers (Basel) 2018; 10:polym10090980. [PMID: 30960905 PMCID: PMC6403702 DOI: 10.3390/polym10090980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022] Open
Abstract
The fabrication of nanofibers with a mechanical force has attracted increasing attention owing to its facile and easy fabrication. Herein, we demonstrate a novel and facile fabrication technique with the mechanical force, needle spinning, which utilizes a needle tip to draw a polymer solution to form fibrous structures. We studied the effect of the processing parameters to the nanofiber structure, namely, the pulling away speed, pulling away distances, needle size, and polymer concentration, which were systemically controlled. As the needle spinning provides an effective route to adjust those parameters, highly uniform nanofibers can be achieved. There are clear tendencies in the diameter; it was increased as the polymer concentration and needle size were increased, and was decreased as the pulling away distance and pulling away speed were increased. Needle spinning with a precise control of the processing parameter enables us to readily fabricate well-defined nanofibers, with controlled dimensions in diameter and length; plus, single nanofibers also can be easily formed. Those features cannot be realized in common spinning process such as electrospinning. Therefore, this technique will lead to further development of the use of mechanical force for nanofiber fabrication and will expand the range of nanofibers applications.
Collapse
Affiliation(s)
- Hoik Lee
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano 386-8567, Japan.
| | - Yuma Inoue
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano 386-8567, Japan.
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea.
| | - Xuehong Ren
- Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Nagano 386-8567, Japan.
| |
Collapse
|
29
|
Zhang Y, Cheng Z, Han Z, Zhao S, Zhao X, Kang L. Stable multi-jet electrospinning with high throughput using the bead structure nozzle. RSC Adv 2018; 8:6069-6074. [PMID: 35539572 PMCID: PMC9078246 DOI: 10.1039/c7ra13125a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/19/2018] [Indexed: 11/24/2022] Open
Abstract
A modified bead structure nozzle for the electrospinning process was developed to improve the production efficiency of nanofibers and facilitate the cleaning of equipment. The effects of the flow rate, voltage and receiving distance on the number of jets were studied. The results indicate that the number of stable jets can be effectively controlled by spinning conditions. The rotating spinning phenomenon, which occurred during spinning, was subjected to force analysis. The COMSOL Multiphysics model was applied to simulate the electric field to show that the bead structured nozzle does not change the overall spinning electric field compared with traditional spinning. The results indicate that the bead structure nozzle can produce a stable multi-jet using a curved surface structure and improve the production efficiency of nanofibers. Compared with the high-voltage conditions of needleless spinning, the bead-type nozzle helps to save energy and facilitate cleaning, so as to avoid the production of waste in experimental research and industrial production. A modified bead structure nozzle for the electrospinning process was developed to improve the production efficiency of nanofibers and facilitate the cleaning of equipment.![]()
Collapse
Affiliation(s)
- Yingying Zhang
- College of Resources and Environment
- Jilin Agriculture University
- Changchun 130118
- People's Republic of China
| | - Zhiqiang Cheng
- College of Resources and Environment
- Jilin Agriculture University
- Changchun 130118
- People's Republic of China
| | - Zhaolian Han
- College of Resources and Environment
- Jilin Agriculture University
- Changchun 130118
- People's Republic of China
| | - Shengzhe Zhao
- College of Resources and Environment
- Jilin Agriculture University
- Changchun 130118
- People's Republic of China
| | - Xiaodong Zhao
- College of Resources and Environment
- Jilin Agriculture University
- Changchun 130118
- People's Republic of China
| | - Lijuan Kang
- College of Resources and Environment
- Jilin Agriculture University
- Changchun 130118
- People's Republic of China
| |
Collapse
|
30
|
Park JH, Rutledge GC. 50th Anniversary Perspective: Advanced Polymer Fibers: High Performance and Ultrafine. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00864] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jay Hoon Park
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Gregory C. Rutledge
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Liu F, Avena‐Bustillos RJ, Bilbao‐Sainz C, Woods R, Chiou B, Wood D, Williams T, Yokoyama W, Glenn GM, McHugh TH, Zhong F. Solution Blow Spinning of Food‐Grade Gelatin Nanofibers. J Food Sci 2017; 82:1402-1411. [DOI: 10.1111/1750-3841.13710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Fei Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan Univ. Wuxi 214122 People's Republic of China
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | | | - Cristina Bilbao‐Sainz
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Rachelle Woods
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Bor‐Sen Chiou
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Delilah Wood
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Tina Williams
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Wallace Yokoyama
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Gregory M. Glenn
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Tara H. McHugh
- Western Regional Research Center, ARS U.S. Dept. of Agriculture Albany CA 94710 U.S.A
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology Jiangnan Univ. Wuxi 214122 People's Republic of China
| |
Collapse
|
32
|
Agubra VA, Zuniga L, Flores D, Campos H, Villarreal J, Alcoutlabi M. A comparative study on the performance of binary SnO2/NiO/C and Sn/C composite nanofibers as alternative anode materials for lithium ion batteries. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Effect of Polymer Concentration, Rotational Speed, and Solvent Mixture on Fiber Formation Using Forcespinning®. FIBERS 2016. [DOI: 10.3390/fib4020020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|