1
|
Lawler NB, Bhatt U, Agarwal V, Evans CW, Kaluskar P, Amos SE, Chen K, Yao Y, Jiang H, Choi YS, Zheng M, Spagnoli D, Suarez-Martinez I, Zetterlund PB, Wallace VP, Harvey AR, Hodgetts SI, Iyer KS. Transcriptomic Analysis Reveals the Heterogeneous Role of Conducting Films Upon Electrical Stimulation. Adv Healthc Mater 2024:e2400364. [PMID: 39221662 DOI: 10.1002/adhm.202400364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Central nervous system (CNS) injuries and neurodegenerative diseases have markedly poor prognoses and can result in permanent dysfunction due to the general inability of CNS neurons to regenerate. Differentiation of transplanted stem cells has emerged as a therapeutic avenue to regenerate tissue architecture in damaged areas. Electrical stimulation is a promising approach for directing the differentiation outcomes and pattern of outgrowth of transplanted stem cells, however traditional inorganic bio-electrodes can induce adverse effects such as inflammation. This study demonstrates the implementation of two organic thin films, a polymer/reduced graphene oxide nanocomposite (P(rGO)) and PEDOT:PSS, that have favorable properties for implementation as conductive materials for electrical stimulation, as well as an inorganic indium tin oxide (ITO) conductive film. Transcriptomic analysis reveals that electrical stimulation improves neuronal differentiation of SH-SY5Y cells on all three films, with the greatest effect for P(rGO). Unique material- and electrical stimuli-mediated effects are observed, associated with differentiation, cell-substrate adhesion, and translation. The work demonstrates that P(rGO) and PEDOT:PSS are highly promising organic materials for the development of biocompatible, conductive scaffolds that will enhance electrically-aided stem cell therapeutics for CNS injuries and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicholas B Lawler
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Uditi Bhatt
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Priya Kaluskar
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
- Centre for Orthopaedic Research, The UWA Medical School, The University of Western Australia, Perth, WA, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sebastian E Amos
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kai Chen
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yin Yao
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Haibo Jiang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yu Suk Choi
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Minghao Zheng
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
- Centre for Orthopaedic Research, The UWA Medical School, The University of Western Australia, Perth, WA, 6009, Australia
| | - Dino Spagnoli
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | | | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vincent P Wallace
- School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, 6009, Australia
| | - Alan R Harvey
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Stuart I Hodgetts
- Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
2
|
Fan W, Yang X, Hu X, Huang R, Shi H, Liu G. A novel conductive microtubule hydrogel for electrical stimulation of chronic wounds based on biological electrical wires. J Nanobiotechnology 2024; 22:258. [PMID: 38755644 PMCID: PMC11097419 DOI: 10.1186/s12951-024-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Electrical stimulation (ES) is considered a promising therapy for chronic wounds via conductive dressing. However, the lack of a clinically suitable conductive dressing is a serious challenge. In this study, a suitable conductive biomaterial with favorable biocompatibility and conductivity was screened by means of an inherent structure derived from the body based on electrical conduction in vivo. Ions condensed around the surface of the microtubules (MTs) derived from the cell's cytoskeleton are allowed to flow in the presence of potential differences, effectively forming a network of biological electrical wires, which is essential to the bioelectrical communication of cells. We hypothesized that MT dressing could improve chronic wound healing via the conductivity of MTs applied by ES. We first developed an MT-MAA hydrogel by a double cross-linking method using UV and calcium chloride to improve chronic wound healing by ES. In vitro studies showed good conductivity, mechanical properties, biocompatibility, and biodegradability of the MT-MAA hydrogel, as well as an elevated secretion of growth factors with enhanced cell proliferation and migration ability in response to ES. The in vivo experimental results from a full-thickness diabetic wound model revealed rapid wound closure within 7d in C57BL/6J mice, and the wound bed dressed by the MT-MAA hydrogel was shown to have promoted re-epithelization, enhanced angiogenesis, accelerated nerve growth, limited inflammation phases, and improved antibacterial effect under the ES treatment. These preclinical findings suggest that the MT-MAA hydrogel may be an ideal conductive dressing for chronic wound healing. Furthermore, biomaterials based on MTs may be also promising for treating other diseases.
Collapse
Affiliation(s)
- Weijing Fan
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China
| | - Xiao Yang
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China.
| | - Xiaoming Hu
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China
| | - Renyan Huang
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China
| | - Hongshuo Shi
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China.
| | - Guobin Liu
- Department of Vascular Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Zhangheng Street, Pu Dong New District, Shanghai, 201203, China.
| |
Collapse
|
3
|
Zhao Y, Liu Y, Lu C, Sun D, Kang S, Wang X, Lu L. Reduced Graphene Oxide Fibers Combined with Electrical Stimulation Promote Peripheral Nerve Regeneration. Int J Nanomedicine 2024; 19:2341-2357. [PMID: 38469057 PMCID: PMC10926921 DOI: 10.2147/ijn.s449160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Background The treatment of long-gap peripheral nerve injury (PNI) is still a substantial clinical problem. Graphene-based scaffolds possess extracellular matrix (ECM) characteristic and can conduct electrical signals, therefore have been investigated for repairing PNI. Combined with electrical stimulation (ES), a well performance should be expected. We aimed to determine the effects of reduced graphene oxide fibers (rGOFs) combined with ES on PNI repair in vivo. Methods rGOFs were prepared by one-step dimensionally confined hydrothermal strategy (DCH). Surface characteristics, chemical compositions, electrical and mechanical properties of the samples were characterized. The biocompatibility of the rGOFs were systematically explored both in vitro and in vivo. Total of 54 Sprague-Dawley (SD) rats were randomized into 6 experimental groups: a silicone conduit (S), S+ES, S+rGOFs-filled conduit (SGC), SGC+ES, nerve autograft, and sham groups for a 10-mm sciatic defect. Functional and histological recovery of the regenerated sciatic nerve at 12 weeks after surgery in each group of SD rats were evaluated. Results rGOFs exhibited aligned micro- and nano-channels with excellent mechanical and electrical properties. They are biocompatible in vitro and in vivo. All 6 groups exhibited PNI repair outcomes in view of neurological and morphological recovery. The SGC+ES group achieved similar therapeutic effects as nerve autograft group (P > 0.05), significantly outperformed other treatment groups. Immunohistochemical analysis showed that the expression of proteins related to axonal regeneration and angiogenesis were relatively higher in the SGC+ES. Conclusion The rGOFs had good biocompatibility combined with excellent electrical and mechanical properties. Combined with ES, the rGOFs provided superior motor nerve recovery for a 10-mm nerve gap in a murine acute transection injury model, indicating its excellent repairing ability. That the similar therapeutic effects as autologous nerve transplantation make us believe this method is a promising way to treat peripheral nerve defects, which is expected to guide clinical practice in the future.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yang Liu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Cheng Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Daokuan Sun
- School of Materials Science and Engineering, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shiqi Kang
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Xin Wang
- School of Materials Science and Engineering, Jilin University, Changchun, Jilin, People’s Republic of China
| | - Laijin Lu
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
4
|
Suarato G, Pressi S, Menna E, Ruben M, Petrini EM, Barberis A, Miele D, Sandri G, Salerno M, Schirato A, Alabastri A, Athanassiou A, Proietti Zaccaria R, Papadopoulou EL. Modified Carbon Nanotubes Favor Fibroblast Growth by Tuning the Cell Membrane Potential. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3093-3105. [PMID: 38206310 PMCID: PMC10811621 DOI: 10.1021/acsami.3c14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
As is known, carbon nanotubes favor cell growth in vitro, although the underlying mechanisms are not yet fully elucidated. In this study, we explore the hypothesis that electrostatic fields generated at the interface between nonexcitable cells and appropriate scaffold might favor cell growth by tuning their membrane potential. We focused on primary human fibroblasts grown on electrospun polymer fibers (poly(lactic acid)─PLA) with embedded multiwall carbon nanotubes (MWCNTs). The MWCNTs were functionalized with either the p-methoxyphenyl (PhOME) or the p-acetylphenyl (PhCOMe) moiety, both of which allowed uniform dispersion in a solvent, good mixing with PLA and the consequent smooth and homogeneous electrospinning process. The inclusion of the electrically conductive MWCNTs in the insulating PLA matrix resulted in differences in the surface potential of the fibers. Both PLA and PLA/MWCNT fiber samples were found to be biocompatible. The main features of fibroblasts cultured on different substrates were characterized by scanning electron microscopy, immunocytochemistry, Rt-qPCR, and electrophysiology revealing that fibroblasts grown on PLA/MWCNT reached a healthier state as compared to pure PLA. In particular, we observed physiological spreading, attachment, and Vmem of fibroblasts on PLA/MWCNT. Interestingly, the electrical functionalization of the scaffold resulted in a more suitable extracellular environment for the correct biofunctionality of these nonexcitable cells. Finally, numerical simulations were also performed in order to understand the mechanism behind the different cell behavior when grown either on PLA or PLA/MWCNT samples. The results show a clear effect on the cell membrane potential, depending on the underlying substrate.
Collapse
Affiliation(s)
- Giulia Suarato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Samuel Pressi
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Enzo Menna
- Department
of Chemical Sciences, University of Padua, via Marzolo 1, 35131 Padova, Italy
- Interdepartmental
Centre Giorgio Levi Cases for Energy Economics and Technology, University of Padua, via Marzolo 9, 35131 Padova, Italy
| | - Massimo Ruben
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | | | - Andrea Barberis
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Dalila Miele
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department
of Drug Sciences, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Marco Salerno
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
| | - Andrea Schirato
- Istituto
Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Dipartimento
di Fisica, Politecnico di Milano, Pizza Leonardo da Vinci 32, Milan 20133, Italy
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | | | | | | |
Collapse
|
5
|
Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A. Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomater Sci 2023; 11:6687-6710. [PMID: 37646462 DOI: 10.1039/d3bm01114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey
| | - Yousof Mir
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| |
Collapse
|
6
|
Lazăr AI, Aghasoleimani K, Semertsidou A, Vyas J, Roșca AL, Ficai D, Ficai A. Graphene-Related Nanomaterials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1092. [PMID: 36985986 PMCID: PMC10051126 DOI: 10.3390/nano13061092] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition-structure-activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil-hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility.
Collapse
Affiliation(s)
- Andreea-Isabela Lazăr
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | | | - Anna Semertsidou
- Charles River Laboratories, Margate, Manston Road, Kent CT9 4LT, UK
| | - Jahnavi Vyas
- Drug Development Solution, Newmarket road, Ely, CB7 5WW, UK
| | - Alin-Lucian Roșca
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu St. 1–7, 011061 Bucharest, Romania
- National Centre for Micro- and Nanomaterials, University POLITEHNICA of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania;
- National Centre for Food Safety, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov St. 3, 050045 Bucharest, Romania
| |
Collapse
|
7
|
Nanotechnology and quantum science enabled advances in neurological medical applications: diagnostics and treatments. Med Biol Eng Comput 2022; 60:3341-3356. [DOI: 10.1007/s11517-022-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
|
8
|
Yadav S, Singh Raman AP, Meena H, Goswami AG, Bhawna, Kumar V, Jain P, Kumar G, Sagar M, Rana DK, Bahadur I, Singh P. An Update on Graphene Oxide: Applications and Toxicity. ACS OMEGA 2022; 7:35387-35445. [PMID: 36249372 PMCID: PMC9558614 DOI: 10.1021/acsomega.2c03171] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 08/24/2023]
Abstract
Graphene oxide (GO) has attracted much attention in the past few years because of its interesting and promising electrical, thermal, mechanical, and structural properties. These properties can be altered, as GO can be readily functionalized. Brodie synthesized the GO in 1859 by reacting graphite with KClO3 in the presence of fuming HNO3; the reaction took 3-4 days to complete at 333 K. Since then, various schemes have been developed to reduce the reaction time, increase the yield, and minimize the release of toxic byproducts (NO2 and N2O4). The modified Hummers method has been widely accepted to produce GO in bulk. Due to its versatile characteristics, GO has a wide range of applications in different fields like tissue engineering, photocatalysis, catalysis, and biomedical applications. Its porous structure is considered appropriate for tissue and organ regeneration. Various branches of tissue engineering are being extensively explored, such as bone, neural, dentistry, cartilage, and skin tissue engineering. The band gap of GO can be easily tuned, and therefore it has a wide range of photocatalytic applications as well: the degradation of organic contaminants, hydrogen generation, and CO2 reduction, etc. GO could be a potential nanocarrier in drug delivery systems, gene delivery, biological sensing, and antibacterial nanocomposites due to its large surface area and high density, as it is highly functionalized with oxygen-containing functional groups. GO or its composites are found to be toxic to various biological species and as also discussed in this review. It has been observed that superoxide dismutase (SOD) and reactive oxygen species (ROS) levels gradually increase over a period after GO is introduced in the biological systems. Hence, GO at specific concentrations is toxic for various species like earthworms, Chironomus riparius, Zebrafish, etc.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | | | - Harshvardhan Meena
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department
of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Abhay Giri Goswami
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Bhawna
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Vinod Kumar
- Special
Centre for Nanoscience, Jawaharlal Nehru
University, Delhi, India
| | - Pallavi Jain
- Department
of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh, India
| | - Gyanendra Kumar
- Department
of Chemistry, University of Delhi, Delhi, India
- Swami Shraddhanand
College, University of Delhi, Delhi, India
| | - Mansi Sagar
- Department
of Chemistry, University of Delhi, Delhi, India
| | - Devendra Kumar Rana
- Department
of Physics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Indra Bahadur
- Department
of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Prashant Singh
- Department
of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| |
Collapse
|
9
|
Zhang J, Wang T, Zhang Y, Lu P, Shi N, Zhu W, Cai C, He N. Soft integration of a neural cells network and bionic interfaces. Front Bioeng Biotechnol 2022; 10:950235. [PMID: 36246365 PMCID: PMC9558115 DOI: 10.3389/fbioe.2022.950235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Both glial cells and neurons can be considered basic computational units in neural networks, and the brain–computer interface (BCI) can play a role in awakening the latency portion and being sensitive to positive feedback through learning. However, high-quality information gained from BCI requires invasive approaches such as microelectrodes implanted under the endocranium. As a hard foreign object in the aqueous microenvironment, the soft cerebral cortex’s chronic inflammation state and scar tissue appear subsequently. To avoid the obvious defects caused by hard electrodes, this review focuses on the bioinspired neural interface, guiding and optimizing the implant system for better biocompatibility and accuracy. At the same time, the bionic techniques of signal reception and transmission interfaces are summarized and the structural units with functions similar to nerve cells are introduced. Multiple electrical and electromagnetic transmissions, regulating the secretion of neuromodulators or neurotransmitters via nanofluidic channels, have been flexibly applied. The accurate regulation of neural networks from the nanoscale to the cellular reconstruction of protein pathways will make BCI the extension of the brain.
Collapse
Affiliation(s)
- Jixiang Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Southeast University Jiangbei New Area Innovation Institute, Nanjing, China
- *Correspondence: Ting Wang,
| | - Yixin Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Pengyu Lu
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Neng Shi
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | | - Chenglong Cai
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Southeast University Jiangbei New Area Innovation Institute, Nanjing, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Biofeedback electrostimulation for bionic and long-lasting neural modulation. Nat Commun 2022; 13:5302. [PMID: 36085331 PMCID: PMC9463164 DOI: 10.1038/s41467-022-33089-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
Invasive electrical stimulation (iES) is prone to cause neural stimulus-inertia owing to its excessive accumulation of exogenous charges, thereby resulting in many side effects and even failure of nerve regeneration and functional recovery. Here, a wearable neural iES system is well designed and built for bionic and long-lasting neural modulation. It can automatically yield biomimetic pulsed electrical signals under the driven of respiratory motion. These electrical signals are full of unique physiological synchronization can give biofeedback to respiratory behaviors, self-adjusting with different physiological states of the living body, and thus realizing a dynamic and biological self-matched modulation of voltage-gated calcium channels on the cell membrane. Abundant cellular and animal experimental evidence confirm an effective elimination of neural stimulus-inertia by these bioelectrical signals. An unprecedented nerve regeneration and motor functional reconstruction are achieved in long-segmental peripheral nerve defects, which is equal to the gold standard of nerve repair -- autograft. The wearable neural iES system provides an advanced platform to overcome the common neural stimulus-inertia and gives a broad avenue for personalized iES therapy of nerve injury and neurodegenerative diseases. Designing wereable neural invasive electrical stimulation system remains a challenge. Here, researchers provide an effective technology platform for the elimination of tricky neural stimulus-inertia using bionic electronic modulation, which is a significant step forward for long-lasting treatment of nervous system diseases.
Collapse
|
11
|
Zeng Z, Yang Y, Deng J, Saif Ur Rahman M, Sun C, Xu S. Physical Stimulation Combined with Biomaterials Promotes Peripheral Nerve Injury Repair. Bioengineering (Basel) 2022; 9:292. [PMID: 35877343 PMCID: PMC9311987 DOI: 10.3390/bioengineering9070292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury (PNI) is a clinical problem with high morbidity that can cause severe damage. Surgical suturing or implants are usually required due to the slow speed and numerous factors affecting repair after PNI. An autologous nerve graft is the gold standard for PNI repair among implants. However, there is a potential problem of the functional loss of the donor site. Therefore, tissue-engineered nerve biomaterials are often used to bridge the gap between nerve defects, but the therapeutic effect is insufficient. In order to enhance the repair effect of nerve biomaterials for PNI, researchers are seeking to combine various stimulation elements, such as the addition of biological factors such as nerve growth factors or physical factors such as internal microstructural modifications of catheters and their combined application with physical stimulation therapy. Physical stimulation therapy is safer, is more convenient, and has more practical features than other additive factors. Its feasibility and convenience, when combined with nerve biomaterials, provide broader application prospects for PNI repair, and has therefore become a research hot spot. This paper will review the combined application of physical stimulation and biomaterials in PNI repair in recent years to provide new therapeutic ideas for the future use of physical stimulation in PNI repair.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yajing Yang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen 518116, China;
| | - Junyong Deng
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang University, Nanchang 330006, China;
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (Z.Z.); (M.S.U.R.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Niknam Z, Hosseinzadeh F, Shams F, Fath-Bayati L, Nuoroozi G, Mohammadi Amirabad L, Mohebichamkhorami F, Khakpour Naeimi S, Ghafouri-Fard S, Zali H, Tayebi L, Rasmi Y. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res A 2022; 110:1695-1721. [PMID: 35762460 DOI: 10.1002/jbm.a.37417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/22/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023]
Abstract
Graphene-based nanocomposites have recently attracted increasing attention in tissue engineering because of their extraordinary features. These biocompatible substances, in the presence of an apt microenvironment, can stimulate and sustain the growth and differentiation of stem cells into different lineages. This review discusses the characteristics of graphene and its derivatives, such as their excellent electrical signal transduction, carrier mobility, outstanding mechanical strength with improving surface characteristics, self-lubrication, antiwear properties, enormous specific surface area, and ease of functional group modification. Moreover, safety issues in the application of graphene and its derivatives in terms of biocompatibility, toxicity, and interaction with immune cells are discussed. We also describe the applicability of graphene-based nanocomposites in tissue healing and organ regeneration, particularly in the bone, cartilage, teeth, neurons, heart, skeletal muscle, and skin. The impacts of special textural and structural characteristics of graphene-based nanomaterials on the regeneration of various tissues are highlighted. Finally, the present review gives some hints on future research for the transformation of these exciting materials in clinical studies.
Collapse
Affiliation(s)
- Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.,Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran.,Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering, Qom University of Medical Science, Qom, Iran
| | - Ghader Nuoroozi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fariba Mohebichamkhorami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, Wisconsin, USA
| | - Yousef Rasmi
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
13
|
Bioactive 2D nanomaterials for neural repair and regeneration. Adv Drug Deliv Rev 2022; 187:114379. [PMID: 35667464 DOI: 10.1016/j.addr.2022.114379] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/27/2022] [Indexed: 12/18/2022]
Abstract
Biomaterials have provided promising strategies towards improving the functions of injured tissues of the nervous system. Recently, 2D nanomaterials, such as graphene, layered double hydroxides (LDHs), and black phosphorous, which are characterized by ultrathin film structures, have attracted much attention in the fields of neural repair and regeneration. 2D nanomaterials have extraordinary physicochemical properties and excellent biological activities, such as a large surface-area-to-thickness ratio, high levels of adhesion, and adjustable flexibility. In addition, they can be designed to have superior biocompatibility and electrical or nano-carrier properties. To date, many 2D nanomaterials have been used for synaptic modulation, neuroinflammatory reduction, stem cell fate regulation, and injured neural cell/tissue repair. In this review, we discuss the advances in 2D nanomaterial technology towards novel neurological applications and the mechanisms underlying their unique features. In addition, the future outlook of functional 2D nanomaterials towards addressing the difficult issues of neuropathy has been explored to introduce a promising strategy towards repairing and regenerating the injured nervous system.
Collapse
|
14
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Deng P, Chen F, Zhang H, Chen Y, Zhou J. Multifunctional Double-Layer Composite Hydrogel Conduit Based on Chitosan for Peripheral Nerve Repairing. Adv Healthc Mater 2022; 11:e2200115. [PMID: 35396930 DOI: 10.1002/adhm.202200115] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/31/2022] [Indexed: 12/21/2022]
Abstract
Peripheral nerve regeneration and functional recovery is a major challenge in clinical practice. Nerve conduit is an effective treatment for peripheral nerve repair, but the traditional hollow nerve conduit is not satisfactory in peripheral nerve repair due to the limitation of cell migration and nutrient transport. Herein, the double cross-linked hydrogels with injectable, self-healing, and conductive properties are synthesized by the Schiff base reaction between polyaniline-modified carboxymethyl chitosan and aldehyde-modified Pluronic F-127 (F127-CHO), and the hydrophobic interaction of F127-CHO. The conductive hydrogel is injected into the cavity of chitosan conduit prepared by electrodeposition. The inner conductive hydrogel and the outer chitosan conduit are formed into a whole through the Schiff base reaction to obtain a double-layer composite hydrogel nerve conduit. The double-layer composite hydrogel neural conduit loaded with 7,8-dihydroxyflavone (DHF) has excellent degradability, biocompatibility, antioxidant activity, and Schwann cell proliferation activity. In the rat sciatic nerve defect model, the double-layer composite hydrogel nerve conduit significantly promotes sciatic nerve regeneration compared with the chitosan hollow conduit. Surprisingly, the repair ability of double-layered hydrogel nerve conduit loaded with DHF is comparable to that of autologous transplantation. Therefore, this multifunctional double-layer composite hydrogel conduit has great potential for peripheral nerve repairing.
Collapse
Affiliation(s)
- Pengpeng Deng
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
- Department of Biomedical Engineering Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Science Wuhan University Wuhan 430071 China
| | - Feixiang Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Haodong Zhang
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| | - Yun Chen
- Glyn O. Philips Hydrocolloid Research Centre at HUT Hubei University of Technology Wuhan 430068 China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers‐based Medical Materials Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 China
| |
Collapse
|
16
|
Pinar E, Sahin A, Unal S, Gunduz O, Harman F, Kaptanoglu E. The effect of polycaprolactone/graphene oxide electrospun scaffolds on the neurogenic behavior of adipose stem cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111000] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Weir N, Stevens B, Wagner S, Miles A, Ball G, Howard C, Chemmarappally J, McGinnity M, Hargreaves AJ, Tinsley C. Aligned Poly-l-lactic Acid Nanofibers Induce Self-Assembly of Primary Cortical Neurons into 3D Cell Clusters. ACS Biomater Sci Eng 2022; 8:765-776. [PMID: 35084839 DOI: 10.1021/acsbiomaterials.1c01102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Relative to two-dimensional (2D) culture, three-dimensional (3D) culture of primary neurons has yielded increasingly physiological responses from cells. Electrospun nanofiber scaffolds are frequently used as a 3D biomaterial support for primary neurons in neural tissue engineering, while hydrophobic surfaces typically induce aggregation of cells. Poly-l-lactic acid (PLLA) was electrospun as aligned PLLA nanofiber scaffolds to generate a structure with both qualities. Primary cortical neurons from E18 Sprague-Dawley rats cultured on aligned PLLA nanofibers generated 3D clusters of cells that extended highly aligned, fasciculated neurite bundles within 10 days. These clusters were viable for 28 days and responsive to AMPA and GABA. Relative to the 2D culture, the 3D cultures exhibited a more developed profile; mass spectrometry demonstrated an upregulation of proteins involved in cortical lamination, polarization, and axon fasciculation and a downregulation of immature neuronal markers. The use of artificial neural network inference suggests that the increased formation of synapses may drive the increase in development that is observed for the 3D cell clusters. This research suggests that aligned PLLA nanofibers may be highly useful for generating advanced 3D cell cultures for high-throughput systems.
Collapse
Affiliation(s)
- Nick Weir
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Bob Stevens
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Sarah Wagner
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Amanda Miles
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Charlotte Howard
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Joseph Chemmarappally
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Martin McGinnity
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Alan Jeffrey Hargreaves
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Chris Tinsley
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| |
Collapse
|
18
|
Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021; 23:33. [PMID: 35008456 PMCID: PMC8745025 DOI: 10.3390/ijms23010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Graphene is the thinnest two-dimensional (2D), only one carbon atom thick, but one of the strongest biomaterials. Due to its unique structure, it has many unique properties used in tissue engineering of the nervous system, such as high strength, flexibility, adequate softness, electrical conductivity, antibacterial effect, and the ability to penetrate the blood-brain barrier (BBB). Graphene is also characterized by the possibility of modifications that allow for even wider application and adaptation to cell cultures of specific cells and tissues, both in vitro and in vivo. Moreover, by using the patient's own cells for cell culture, it will be possible to produce tissues and organs that can be re-transplanted without transplant rejection, the negative effects of taking immunosuppressive drugs, and waiting for an appropriate organ donor.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Marta Pokrywczyńska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Luis Alex Kluth
- Department of Urology, University Medical Center Frankfurt a.M., 60590 Frankfurt am Main, Germany;
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| |
Collapse
|
19
|
Jin F, Li T, Yuan T, Du L, Lai C, Wu Q, Zhao Y, Sun F, Gu L, Wang T, Feng ZQ. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104175. [PMID: 34608668 DOI: 10.1002/adma.202104175] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The long-segment peripheral nerve injury (PNI) represents a global medical challenge, leading to incomplete nerve tissue recovery and unsatisfactory functional reconstruction. However, the current electrical stimulation (ES) apparatuses fail perfect nerve repair due to their inability of the variable synchronous self-regulated function with physiological states. It is urgent to develop an implantable ES platform with physiologically adaptive function to provide instantaneous and nerve-preferred ES. Here, a physiologically self-regulated electrical signal is generated by integrating a novel tribo/piezoelectric hybrid nanogenerator with a nanoporous nerve guide conduit to construct a fully implantable neural electrical stimulation (FI-NES) system. The optimal neural ES parameters completely originate from the body itself and are highly self-responsive to different physiological states. The morphological evaluation, representative protein expression level, and functional reconstruction of the regenerated nerves are conducted to assess the PNI recovery process. Evidence shows that the recovery effect of 15 mm length nerve defects under the guidance of the FI-NES system is significantly close to the autograft. The designed FI-NES system provides an effective method for long-term accelerating the recovery of PNI in vivo and is also appropriate for other tissue injury or neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Tao Yuan
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
| | - Lijuan Du
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Chengteng Lai
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
- Medical School of Nanjing University, Nanjing University, Nanjing, 210002, P. R. China
| | - Qi Wu
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
- Medical School of Nanjing University, Nanjing University, Nanjing, 210002, P. R. China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fengyu Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Long Gu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710071, P. R. China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
20
|
Khedri M, Beheshtizadeh N, Maleki R, Webster TJ, Rezvantalab S. Improving the self-assembly of bioresponsive nanocarriers by engineering doped nanocarbons: a computational atomistic insight. Sci Rep 2021; 11:21538. [PMID: 34728678 PMCID: PMC8564517 DOI: 10.1038/s41598-021-00817-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 11/09/2022] Open
Abstract
Here, molecular dynamics (MD) simulations were employed to explore the self-assembly of polymers and docetaxel (DTX) as an anticancer drug in the presence of nitrogen, phosphorous, and boron-nitrogen incorporated graphene and fullerene. The electrostatic potential and the Gibbs free energy of the self-assembled materials were used to optimize the atomic doping percentage of the N- and P-doped formulations at 10% and 50%, respectively. Poly lactic-glycolic acid (PLGA)- polyethylene glycol (PEG)-based polymeric nanoparticles were assembled in the presence of nanocarbons in the common (corresponding to the bulk environment) and interface of organic/aqueous solutions (corresponding to the microfluidic environment). Assessment of the modeling results (e.g., size, hydrophobicity, and energy) indicated that among the nanocarbons, the N-doped graphene nanosheet in the interface method created more stable polymeric nanoparticles (PNPs). Energy analysis demonstrated that doping with nanocarbons increased the electrostatic interaction energy in the self-assembly process. On the other hand, the fullerene-based nanocarbons promoted van der Waals intramolecular interactions in the PNPs. Next, the selected N-doped graphene nanosheet was utilized to prepare nanoparticles and explore the physicochemical properties of the nanosheets in the permeation of the resultant nanoparticles through cell-based lipid bilayer membranes. In agreement with the previous results, the N-graphene assisted PNP in the interface method and was translocated into and through the cell membrane with more stable interactions. In summary, the present MD simulation results demonstrated the success of 2D graphene dopants in the nucleation and growth of PLGA-based nanoparticles for improving anticancer drug delivery to cells, establishing new promising materials and a way to assess their performance that should be further studied.
Collapse
Affiliation(s)
- Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, Urmia, 57166-419, Iran.
| |
Collapse
|
21
|
Moschetta M, Chiacchiaretta M, Cesca F, Roy I, Athanassiou A, Benfenati F, Papadopoulou EL, Bramini M. Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Front Neurosci 2021; 15:731198. [PMID: 34616276 PMCID: PMC8488094 DOI: 10.3389/fnins.2021.731198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/13/2021] [Indexed: 12/22/2022] Open
Abstract
The use of composite biomaterials as innovative bio-friendly neuronal interfaces has been poorly developed so far. Smart strategies to target neuro-pathologies are currently exploiting the mixed and complementary characteristics of composite materials to better design future neural interfaces. Here we present a polymer-based scaffold that has been rendered suitable for primary neurons by embedding graphene nanoplatelets (GnP). In particular, the growth, network formation, and functionality of primary neurons on poly(3-hydroxybutyrate) [P(3HB)] polymer supports functionalized with various concentrations of GnP were explored. After growing primary cortical neurons onto the supports for 14 days, all specimens were found to be biocompatible, revealing physiological growth and maturation of the neuronal network. When network functionality was investigated by whole patch-clamp measurements, pure P(3HB) led to changes in the action potential waveform and reduction in firing frequency, resulting in decreased neuronal excitability. However, the addition of GnP to the polymer matrix restored the electrophysiological parameters to physiological values. Interestingly, a low concentration of graphene was able to promote firing activity at a low level of injected current. The results indicate that the P(3HB)/GnP composites show great potential for electrical interfacing with primary neurons to eventually target central nervous system disorders.
Collapse
Affiliation(s)
- Matteo Moschetta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Mattia Bramini
- Center for Synaptic Neuroscience and Technologies, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Cell Biology, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
22
|
Guo R, Liao M, Ma X, Hu Y, Qian X, Xiao M, Gao X, Chai R, Tang M. Cochlear implant-based electric-acoustic stimulation modulates neural stem cell-derived neural regeneration. J Mater Chem B 2021; 9:7793-7804. [PMID: 34586130 DOI: 10.1039/d1tb01029h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cochlear implantation is considered to be the best therapeutic method for profound sensorineural hearing loss, but insufficient numbers of functional spiral ganglion neurons hinder the clinical effects of cochlear implantation. Stem cell transplantation has the potential to provide novel strategies for spiral ganglion neuron regeneration after injury. However, some obstacles still need to be overcome, such as low survival and uncontrolled differentiation. Several novel technologies show promise for modulating neural stem cell behaviors to address these issues. Here, a device capable of electrical stimulation was designed by combining a cochlear implant with a graphene substrate. Neural stem cells (NSCs) were cultured on the graphene substrate and subjected to electrical stimulation transduced from sound waves detected by the cochlear implant. Cell behaviors were studied, and this device showed good biocompatibility for NSCs. More importantly, electric-acoustic stimulation with higher frequencies and amplitudes induced NSC death and apoptosis, and electric-acoustic stimulation could promote NSCs to proliferate and differentiate into neurons only when low-frequency stimulation was supplied. The present study provides experimental evidence for understanding the regulatory role of electric-acoustic stimulation on NSCs and highlights the potentials of the above-mentioned device in stem cell therapy for hearing loss treatment.
Collapse
Affiliation(s)
- Rongrong Guo
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China. .,State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China.
| | - Menghui Liao
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaofeng Ma
- Department of Otorhinolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210008, China.,Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Yangnan Hu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xiaoyun Qian
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
| | - Xia Gao
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, Jiangsu 210008, China. .,Research Institution of Otorhinolaryngology, Nanjing, Jiangsu 210008, P. R. China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China. .,Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing 210096, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
23
|
Li T, Shi C, Jin F, Yang F, Gu L, Wang T, Dong W, Feng ZQ. Cell activity modulation and its specific function maintenance by bioinspired electromechanical nanogenerator. SCIENCE ADVANCES 2021; 7:eabh2350. [PMID: 34559554 PMCID: PMC8462902 DOI: 10.1126/sciadv.abh2350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The biophysical characteristics of the extracellular matrix (ECM), such as a three-dimensional (3D) network and bioelectricity, have a profound influence on cell development, migration, function expression, etc. Here, inspired by these biophysical cues of ECM, we develop an electromechanical coupling bio-nanogenerator (bio-NG) composed of highly discrete piezoelectric fibers. It can generate surface piezopotential up to millivolts by cell inherent force and thus provide in situ electrical stimulation for the living cells. Besides, the unique 3D space in the bio-NGs provides an ECM-like growth microenvironment for cells. As a result, our bio-NGs effectively promote cell viability and development and, more importantly, maintain its specific functional expression. These advanced in vitro bio-NGs are expected to fill the gap between the inaccurate 2D systems and the expensive and time-consuming animal models, mimicking the complexity of the ECM and the physiological relevance of an in vivo biological system.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Chuanmei Shi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Fan Yang
- Institute of Rail Transit, Tongji University, Shanghai 201804, P. R. China
| | - Long Gu
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, P. R. China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Corresponding author.
| |
Collapse
|
24
|
Rawat S, Jain KG, Gupta D, Raghav PK, Chaudhuri R, Pinky, Shakeel A, Arora V, Sharma H, Debnath D, Kalluri A, Agrawal AK, Jassal M, Dinda AK, Patra P, Mohanty S. Graphene nanofiber composites for enhanced neuronal differentiation of human mesenchymal stem cells. Nanomedicine (Lond) 2021; 16:1963-1982. [PMID: 34431318 DOI: 10.2217/nnm-2021-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To differentiate mesenchymal stem cells into functional dopaminergic neurons using an electrospun polycaprolactone (PCL) and graphene (G) nanocomposite. Methods: A one-step approach was used to electrospin the PCL nanocomposite, with varying G concentrations, followed by evaluating their biocompatibility and neuronal differentiation. Results: PCL with exiguous graphene demonstrated an ideal nanotopography with an unprecedented combination of guidance stimuli and substrate cues, aiding the enhanced differentiation of mesenchymal stem cells into dopaminergic neurons. These newly differentiated neurons were seen to exhibit unique neuronal arborization, enhanced intracellular Ca2+ influx and dopamine secretion. Conclusion: Having cost-effective fabrication and room-temperature storage, the PCL-G nanocomposites could pave the way for enhanced neuronal differentiation, thereby opening a new horizon for an array of applications in neural regenerative medicine.
Collapse
Affiliation(s)
- Sonali Rawat
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Krishan Gopal Jain
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepika Gupta
- SMITA Research Lab, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Pawan Kumar Raghav
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rituparna Chaudhuri
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pinky
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Adeeba Shakeel
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Varun Arora
- SMITA Research Lab, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Harshita Sharma
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Debika Debnath
- Department of Biomedical Engineering, Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Ankarao Kalluri
- Department of Biomedical Engineering, Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Ashwini K Agrawal
- SMITA Research Lab, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Manjeet Jassal
- SMITA Research Lab, Department of Textile & Fibre Engineering, Indian Institute of Technology, New Delhi, 110016, India
| | - Amit K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prabir Patra
- Department of Biomedical Engineering, Department of Mechanical Engineering, University of Bridgeport, Bridgeport, CT 06604, USA
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
25
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
26
|
Molino BZ, Fukuda J, Molino PJ, Wallace GG. Redox Polymers for Tissue Engineering. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:669763. [PMID: 35047925 PMCID: PMC8757887 DOI: 10.3389/fmedt.2021.669763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 01/23/2023] Open
Abstract
This review will focus on the targeted design, synthesis and application of redox polymers for use in regenerative medicine and tissue engineering. We define redox polymers to encompass a variety of polymeric materials, from the multifunctional conjugated conducting polymers to graphene and its derivatives, and have been adopted for use in the engineering of several types of stimulus responsive tissues. We will review the fundamental properties of organic conducting polymers (OCPs) and graphene, and how their properties are being tailored to enhance material - biological interfacing. We will highlight the recent development of high-resolution 3D fabrication processes suitable for biomaterials, and how the fabrication of intricate scaffolds at biologically relevant scales is providing exciting opportunities for the application of redox polymers for both in-vitro and in-vivo tissue engineering. We will discuss the application of OCPs in the controlled delivery of bioactive compounds, and the electrical and mechanical stimulation of cells to drive behaviour and processes towards the generation of specific functional tissue. We will highlight the relatively recent advances in the use of graphene and the exploitation of its physicochemical and electrical properties in tissue engineering. Finally, we will look forward at the future of organic conductors in tissue engineering applications, and where the combination of materials development and fabrication processes will next unite to provide future breakthroughs.
Collapse
Affiliation(s)
- Binbin Z. Molino
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Paul J. Molino
- Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Gordon G. Wallace
- Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
27
|
Li X, Xu W, Xin Y, Yuan J, Ji Y, Chu S, Liu J, Luo Q. Supramolecular Polymer Nanocomposites for Biomedical Applications. Polymers (Basel) 2021; 13:polym13040513. [PMID: 33572052 PMCID: PMC7915403 DOI: 10.3390/polym13040513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Polymer nanocomposites, a class of innovative materials formed by polymer matrixes and nanoscaled fillers (e.g., carbon-based nanomaterials, inorganic/semiconductor nanoparticles, metal/metal-oxide nanoparticles, polymeric nanostructures, etc.), display enhanced mechanical, optoelectrical, magnetic, catalytic, and bio-related characteristics, thereby finding a wide range of applications in the biomedical field. In particular, the concept of supramolecular chemistry has been introduced into polymer nanocomposites, which creates myriad “smart” biomedical materials with unique physicochemical properties and dynamic tunable structures in response to diverse external stimuli. This review aims to provide an overview of the chemical composition, morphological structures, biological functionalities, and reinforced performances of supramolecular polymer nanocomposites. Additionally, recent advances in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering are also discussed, especially their excellent properties leveraged in the development of multifunctional intelligent biomedical materials.
Collapse
Affiliation(s)
- Xiumei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanjia Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
| | - Yue Xin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
| | - Jiawei Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
| | - Yuancheng Ji
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
| | - Shengnan Chu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (X.L.); (W.X.); (Y.X.); (J.Y.); (Y.J.); (S.C.); (J.L.)
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
- Correspondence:
| |
Collapse
|
28
|
PC12 cells proliferation and morphological aspects: Inquiry into raffinose-grafted graphene oxide in silk fibroin-based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111810. [DOI: 10.1016/j.msec.2020.111810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
|
29
|
Li T, Qu M, Carlos C, Gu L, Jin F, Yuan T, Wu X, Xiao J, Wang T, Dong W, Wang X, Feng ZQ. High-Performance Poly(vinylidene difluoride)/Dopamine Core/Shell Piezoelectric Nanofiber and Its Application for Biomedical Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006093. [PMID: 33274802 DOI: 10.1002/adma.202006093] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/31/2020] [Indexed: 05/22/2023]
Abstract
Fabrication of soft piezoelectric nanomaterials is essential for the development of wearable and implantable biomedical devices. However, a big challenge in this soft functional material development is to achieve a high piezoelectric property with long-term stability in a biological environment. Here, a one-step strategy for fabricating core/shell poly(vinylidene difluoride) (PVDF)/dopamine (DA) nanofibers (NFs) with a very high β-phase content and self-aligned polarization is reported. The self-assembled core/shell structure is believed essential for the formation and alignment of β-phase PVDF, where strong intermolecular interaction between the NH2 groups on DA and the CF2 groups on PVDF is responsible for aligning the PVDF chains and promoting β-phase nucleation. The as-received PVDF/DA NFs exhibit significantly enhanced piezoelectric performance and excellent stability and biocompatibility. An all-fiber-based soft sensor is fabricated and tested on human skin and in vivo in mice. The devices show a high sensitivity and accuracy for detecting weak physiological mechanical stimulation from diaphragm motions and blood pulsation. This sensing capability offers great diagnostic potential for the early assessment and prevention of cardiovascular diseases and respiratory disorders.
Collapse
Affiliation(s)
- Tong Li
- School of Chemical Engineering, Nanjing University of Science and Technology, #200 Xiaolingwei, Nanjing, 210094, P. R. China
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Minghe Qu
- School of Chemical Engineering, Nanjing University of Science and Technology, #200 Xiaolingwei, Nanjing, 210094, P. R. China
| | - Corey Carlos
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Long Gu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Fei Jin
- School of Chemical Engineering, Nanjing University of Science and Technology, #200 Xiaolingwei, Nanjing, 210094, P. R. China
| | - Tao Yuan
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing, 210002, P. R. China
| | - Xiaowei Wu
- School of Chemical Engineering, Nanjing University of Science and Technology, #200 Xiaolingwei, Nanjing, 210094, P. R. China
| | - Jijun Xiao
- School of Chemical Engineering, Nanjing University of Science and Technology, #200 Xiaolingwei, Nanjing, 210094, P. R. China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, P. R. China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science and Technology, #200 Xiaolingwei, Nanjing, 210094, P. R. China
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhang-Qi Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, #200 Xiaolingwei, Nanjing, 210094, P. R. China
| |
Collapse
|
30
|
Wang W, Hou Y, Martinez D, Kurniawan D, Chiang WH, Bartolo P. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers (Basel) 2020; 12:E2946. [PMID: 33317211 PMCID: PMC7764097 DOI: 10.3390/polym12122946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
The use of electrically conductive materials to impart electrical properties to substrates for cell attachment proliferation and differentiation represents an important strategy in the field of tissue engineering. This paper discusses the concept of electro-active structures and their roles in tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue regeneration. The most relevant carbon-based materials used to produce electro-active structures are presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put on the electrically conductive property, material synthesis and their applications on tissue engineering. Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures in a controlled way, are also presented. Finally, challenges for future research are highlighted. This review shows that electrical stimulation plays an important role in modulating the growth of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon nanotubes, have great potential for fabricating electro-active structures due to their exceptional electrical and surface properties, opening new routes for more efficient tissue engineering approaches.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Yanhao Hou
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| | - Dean Martinez
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei E2-514, Taiwan; (D.M.); (D.K.); (W.-H.C.)
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK; (Y.H.); (P.B.)
| |
Collapse
|
31
|
Wang L, Lu C, Yang S, Sun P, Wang Y, Guan Y, Liu S, Cheng D, Meng H, Wang Q, He J, Hou H, Li H, Lu W, Zhao Y, Wang J, Zhu Y, Li Y, Luo D, Li T, Chen H, Wang S, Sheng X, Xiong W, Wang X, Peng J, Yin L. A fully biodegradable and self-electrified device for neuroregenerative medicine. SCIENCE ADVANCES 2020; 6:eabc6686. [PMID: 33310851 PMCID: PMC7732202 DOI: 10.1126/sciadv.abc6686] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/26/2020] [Indexed: 05/08/2023]
Abstract
Peripheral nerve regeneration remains one of the greatest challenges in regenerative medicine. Deprivation of sensory and/or motor functions often occurs with severe injuries even treated by the most advanced microsurgical intervention. Although electrical stimulation represents an essential nonpharmacological therapy that proved to be beneficial for nerve regeneration, the postoperative delivery at surgical sites remains daunting. Here, a fully biodegradable, self-electrified, and miniaturized device composed of dissolvable galvanic cells on a biodegradable scaffold is achieved, which can offer both structural guidance and electrical cues for peripheral nerve regeneration. The electroactive device can provide sustained electrical stimuli beyond intraoperative window, which can promote calcium activity, repopulation of Schwann cells, and neurotrophic factors. Successful motor functional recovery is accomplished with the electroactive device in behaving rodent models. The presented materials options and device schemes provide important insights into self-powered electronic medicine that can be critical for various types of tissue regeneration and functional restoration.
Collapse
Affiliation(s)
- Liu Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Changfeng Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Shuhui Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Shuang Liu
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, P. R. China
| | - Dali Cheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, P. R. China
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Qiang Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, P. R. China
| | - Jianguo He
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Hanqing Hou
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, P. R. China
| | - Huo Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Wei Lu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yanxu Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Jing Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yaqiong Zhu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yunxuan Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Dong Luo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Tong Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Hao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Shirong Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, and Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, P. R. China
| | - Wei Xiong
- School of Life Sciences, IDG/McGovern Institute for Brain Research at Tsinghua University, Tsinghua University, Beijing 100084, P. R. China
| | - Xiumei Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing 100853, P. R. China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
32
|
Torres D, Pérez-Rodríguez S, Sebastián D, Pinilla JL, Lázaro MJ, Suelves I. Capacitance Enhancement of Hydrothermally Reduced Graphene Oxide Nanofibers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1056. [PMID: 32486258 PMCID: PMC7352485 DOI: 10.3390/nano10061056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/16/2022]
Abstract
Nanocarbon materials present sp2-carbon domains skilled for electrochemical energy conversion or storage applications. In this work, we investigate graphene oxide nanofibers (GONFs) as a recent interesting carbon material class. This material combines the filamentous morphology of the starting carbon nanofibers (CNFs) and the interlayer spacing of graphene oxide, and exhibits a domain arrangement accessible for fast transport of electrons and ions. Reduced GONFs (RGONFs) present the partial removal of basal functional groups, resulting in higher mesoporosity, turbostratic stacking, and surface chemistry less restrictive for transport phenomena. Besides, the filament morphology minimizes the severe layer restacking shown in the reduction of conventional graphene oxide sheets. The influence of the reduction temperature (140-220 °C) on the electrochemical behaviour in aqueous 0.5 M H2SO4 of RGONFs is reported. RGONFs present an improved capacitance up to 16 times higher than GONFs, ascribed to the unique structure of RGONFs containing accessible turbostratic domains and restored electronic conductivity. Hydrothermal reduction at 140 °C results in the highest capacitance as evidenced by cyclic voltammetry and electrochemical impedance spectroscopy measurements (up to 137 F·g-1). Higher temperatures lead to the removal of sulphur groups and slightly thicker graphite domains, and consequently a decrease of the capacitance.
Collapse
Affiliation(s)
- Daniel Torres
- Instituto de Carboquímica, Consejo Superior de Investigaciones Científicas (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, Spain; (S.P.-R.); (D.S.); (J.L.P.); (M.J.L.); (I.S.)
| | | | | | | | | | | |
Collapse
|
33
|
Sadasivam R, Packirisamy G. Facile architecture of highly effective nanofibrous membrane adsorbent via electrospun followed by hydrothermal carbonization for potential application in dye removal from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11905-11918. [PMID: 31981031 DOI: 10.1007/s11356-019-07555-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Rapid removal of toxic dye pollutants in water by conventional materials is ineffective and expensive that warrants the necessity for the architecture of hybrid nanofibrous membrane through layer by layer deposition using electrospinning method. In order to achieve this, here we demonstrated the electrospun fabrication of graphene/ferrocene intercalated polyacrylonitrile nanofibrous (GFPN) membrane through hydrothermal carbonization (HTC) method and studied its potential adsorption properties for the removal of environmental pollutants. An aqueous dispersion of graphene/ferrocene (1 mg/mL) stabilized by the polymeric backbone was prepared by the solvent homogenization method and electrospun to yield nanofibrous membrane and further characterized by several analytical and spectroscopic techniques. Raman and XPS investigations corroborated the intercalation of graphene/Fe decorated onto the nanofibrous network. Adsorption experiments found that the GFPN membrane achieved more than 90% removal of anionic Congo red (CR) dye within 30 min in the aqueous phase irrespective of the concentration and takes some additional time for attaining the equilibrium. The longevity and stability of the membrane was studied by conducting successive adsorption-desorption cycles for the regeneration of its adsorption properties. The de-coloration mechanism was comprehensively investigated through the mathematical approaches using the kinetic and intraparticle diffusion studies and confirmed with the experimental findings through IR and XPS spectroscopic techniques. In a nutshell, this work focuses on the fabrication of hybrid nanofibrous membrane and studied its adsorption properties through varying concentrations of dye (20 to 150 mg/L). Moreover, this work extensively explored the mechanism associated with the adsorption process and specifically emphasize the existence of combined phenomena during the process, i.e., anion-cation interactions, hydrogen bonding, and successive stages of intraparticle diffusion through the comparative elucidation of both theoretical and experimental approaches.
Collapse
Affiliation(s)
- Rajkumar Sadasivam
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Roorkee, Uttarakhand, 247667, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Roorkee, Uttarakhand, 247667, India.
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
34
|
Domínguez-Bajo A, González-Mayorga A, López-Dolado E, Munuera C, García-Hernández M, Serrano MC. Graphene Oxide Microfibers Promote Regenerative Responses after Chronic Implantation in the Cervical Injured Spinal Cord. ACS Biomater Sci Eng 2020; 6:2401-2414. [PMID: 33455347 DOI: 10.1021/acsbiomaterials.0c00345] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spinal cord injury (SCI) is characterized by the disruption of neuronal axons and the creation of an inhibitory environment for spinal tissue regeneration. For decades, researchers and clinicians have been devoting a great effort to develop novel therapeutic approaches which include the fabrication of biocompatible implants that could guide neural tissue repair in the lesion site in an attempt to recover the functionality of the nervous tissue. In this context, although fiberlike structures have been hypothesized to serve as a topographical guidance for axonal regrowth, work on the exploration of this type of materials is still limited for SCI. Aiming to develop such guidance platforms, we recently designed and explored in vitro reduced graphene oxide materials in the shape of microfibers (rGO-MFs). After preliminary studies to assess the feasibility of their implantation at the injured spinal cord in vivo, no evident signs of subacute local toxicity were noticed (10 days of implantation). In this work, we specifically examine for the first time the regenerative potential of these scaffolds, slightly modified in their fabrication for improved reproducibility, when chronically interfaced with a cervical spinal cord injury. After extensive characterization of their physicochemical properties and in vitro experiments with neural progenitor cells, their neural regenerative capacity in vivo is investigated in a rat experimental model of SCI after 4 months of implantation (chronic state). Behavioral tests involving the use of forelimbs are performed. Immunofluorescence studies evidence that rGO-MFs scaffolds foster the presence of neuronal structures along with blood vessels both within the epicenter and in the surroundings of the lesion area. Moreover, the inflammatory response does not worsen by the presence of this material. These findings outline the potential of rGO-MF-based scaffolds to promote regenerative features at the injured spinal cord such as axonal and vascular growth. Further studies including biological functionalization might improve their therapeutic potential by a synergistic effect of topographical and chemical cues, thus boosting neural repair after SCI.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos (HNP), Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Elisa López-Dolado
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos (HNP), Servicio de Salud de Castilla-La Mancha (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain.,Research Unit of "Design and Development of Biomaterials for Neural Regeneration", HNP-SESCAM, Joint Research Unit with CSIC, 45071 Toledo, Spain
| | - Carmen Munuera
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Mar García-Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - María Concepción Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| |
Collapse
|
35
|
Lee TH, Yen CT, Hsu SH. Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration. ACS Biomater Sci Eng 2019; 6:597-609. [DOI: 10.1021/acsbiomaterials.9b01473] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tsung-Han Lee
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
- Research and Development Center for Medical Devices, National Taiwan University, Taipei, Taiwan, Republic of China
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| |
Collapse
|
36
|
Norahan MH, Pourmokhtari M, Saeb MR, Bakhshi B, Soufi Zomorrod M, Baheiraei N. Electroactive cardiac patch containing reduced graphene oxide with potential antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109921. [DOI: 10.1016/j.msec.2019.109921] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
|
37
|
Xia L, Zhu W, Wang Y, He S, Chai R. Regulation of Neural Stem Cell Proliferation and Differentiation by Graphene-Based Biomaterials. Neural Plast 2019; 2019:3608386. [PMID: 31737061 PMCID: PMC6817925 DOI: 10.1155/2019/3608386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/16/2019] [Indexed: 01/23/2023] Open
Abstract
The transplantation of neural stem cells (NSCs) has become an emerging treatment for neural degeneration. A key factor in such treatments is to manipulate NSC behaviors such as proliferation and differentiation, resulting in the eventual regulation of NSC fate. Novel bionanomaterials have shown usefulness in guiding the proliferation and differentiation of NSCs due to the materials' unique morphological and topological properties. Among the nanomaterials, graphene has drawn increasing attention for neural regeneration applications based on the material's excellent physicochemical properties, surface modifications, and biocompatibility. In this review, we summarize recent works on the use of graphene-based biomaterials for regulating NSC behaviors and the potential use of these materials in clinical treatment. We also discuss the limitations of graphene-based nanomaterials for use in clinical practice. Finally, we provide some future prospects for graphene-based biomaterial applications in neural regeneration.
Collapse
Affiliation(s)
- Lin Xia
- State Key Laboratory of Bioelectronics, MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 210096, China
| | - Wenjuan Zhu
- Zhangjiagang City First People's Hospital, The Affiliated Zhangjiagang Hospital of Suzhou University, Zhangjiagang 215600, China
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 210096, China
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Key Laboratory of Hearing Medicine of NHFPC, Shanghai Engineering Research Centre of Cochlear Implant, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing 211102, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| |
Collapse
|
38
|
Design of high conductive and piezoelectric poly (3,4-ethylenedioxythiophene)/chitosan nanofibers for enhancing cellular electrical stimulation. J Colloid Interface Sci 2019; 559:65-75. [PMID: 31610306 DOI: 10.1016/j.jcis.2019.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/23/2022]
Abstract
Electroactive nanofibrous scaffold is a vital tool for the study of the various biological research fields from bioelectronics to regenerative medicine, which can provide cell preferable 3D nanofiber architecture and programmed electrical signal. However, intrinsic non-biodegradability is a major problem that hinders its widespread application in the clinic. Herein, we designed, synthesized, and characterized shell/core poly (3,4-ethylenedioxythiophene) (PEDOT)/chitosan (CS) nanofibers by combining the electrospinning and recrystallization processes. Upon incorporating a trace amount of PEDOT (1.0 wt%), the resultant PEDOT/CS nanofibers exhibited low interfacial charge transfer impedance, high electrochemical stability, high electrical conductivity (up to 0.1945 S/cm), and ultrasensitive piezoelectric property (output voltage of 22.5 mV by a human hair prodding). With such unique electrical and conductive properties, PEDOT/CS nanofibers were further applied to brain neuroglioma cells (BNCs) to stimulate their adhesion, proliferation, growth, and development under an optimal external electrical stimulation (ES) and a pulse voltage of 400 mV/cm. ES-responsive PEDOT/CS nanofibers indeed promoted BNCs growth and development as indicated by a large number and density of axons. The synergetic interplay between external ES and piezoelectric voltage demonstrates new PEDOT-based nanofibers as implantable electroactive scaffolds for numerous applications in nerve tissue engineering, human health monitoring, brain mantle information extraction, and degradable microelectronic devices.
Collapse
|
39
|
Li T, Feng ZQ, Qu M, Yan K, Yuan T, Gao B, Wang T, Dong W, Zheng J. Core/Shell Piezoelectric Nanofibers with Spatial Self-Orientated β-Phase Nanocrystals for Real-Time Micropressure Monitoring of Cardiovascular Walls. ACS NANO 2019; 13:10062-10073. [PMID: 31469542 DOI: 10.1021/acsnano.9b02483] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Implantable pressure biosensors show great potential for assessment and diagnostics of pressure-related diseases. Here, we present a structural design strategy to fabricate core/shell polyvinylidene difluoride (PVDF)/hydroxylamine hydrochloride (HHE) organic piezoelectric nanofibers (OPNs) with well-controlled and self-orientated nanocrystals in the spatial uniaxial orientation (SUO) of β-phase-rich fibers, which significantly enhance piezoelectric performance, fatigue resistance, stability, and biocompatibility. Then PVDF/HHE OPNs soft sensors are developed and used to monitor subtle pressure changes in vivo. Upon implanting into pig, PVDF/HHE OPNs sensors demonstrate their ultrahigh detecting sensitivity and accuracy to capture micropressure changes at the outside of cardiovascular walls, and output piezoelectric signals can real-time and synchronously reflect and distinguish changes of cardiovascular elasticity and occurrence of atrioventricular heart-block and formation of thrombus. Such biological information can provide a diagnostic basis for early assessment and diagnosis of thrombosis and atherosclerosis, especially for postoperative recrudescence of thrombus deep within the human body.
Collapse
Affiliation(s)
- Tong Li
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Zhang-Qi Feng
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Minghe Qu
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Ke Yan
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Tao Yuan
- Department of Orthopedic , Nanjing Jinling Hospital , Nanjing 210002 , China
| | - Bingbing Gao
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Ting Wang
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Wei Dong
- School of Chemical Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
40
|
Saberi A, Jabbari F, Zarrintaj P, Saeb MR, Mozafari M. Electrically Conductive Materials: Opportunities and Challenges in Tissue Engineering. Biomolecules 2019; 9:E448. [PMID: 31487913 PMCID: PMC6770812 DOI: 10.3390/biom9090448] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
Tissue engineering endeavors to regenerate tissues and organs through appropriate cellular and molecular interactions at biological interfaces. To this aim, bio-mimicking scaffolds have been designed and practiced to regenerate and repair dysfunctional tissues by modifying cellular activity. Cellular activity and intracellular signaling are performances given to a tissue as a result of the function of elaborated electrically conductive materials. In some cases, conductive materials have exhibited antibacterial properties; moreover, such materials can be utilized for on-demand drug release. Various types of materials ranging from polymers to ceramics and metals have been utilized as parts of conductive tissue engineering scaffolds, having conductivity assortments from a range of semi-conductive to conductive. The cellular and molecular activity can also be affected by the microstructure; therefore, the fabrication methods should be evaluated along with an appropriate selection of conductive materials. This review aims to address the research progress toward the use of electrically conductive materials for the modulation of cellular response at the material-tissue interface for tissue engineering applications.
Collapse
Affiliation(s)
- Azadeh Saberi
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box: 31787-316 Tehran, Iran.
| | - Payam Zarrintaj
- Polymer Engineering Department, Faculty of Engineering, Urmia University, P.O. Box: 5756151818-165 Urmia, Iran.
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654 Tehran, Iran.
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), P.O Box: 14665-354 Tehran, Iran.
| |
Collapse
|
41
|
You D, Li K, Guo W, Zhao G, Fu C. Poly (lactic-co-glycolic acid)/graphene oxide composites combined with electrical stimulation in wound healing: preparation and characterization. Int J Nanomedicine 2019; 14:7039-7052. [PMID: 31564864 PMCID: PMC6722438 DOI: 10.2147/ijn.s216365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE In this study, we fabricated multifunctional, electrically conductive composites by incorporating graphene oxide (GO) into a poly (lactic-co-glycolic acid) (PLGA) copolymer for wound repair. Furthermore, the resultant composites were coupled with electrical stimulation to further improve the therapeutic effect of wound repair. METHODS We evaluated the surface morphology of the composites, as well as their physical properties, cytotoxicity, and antibacterial activity, along with the combined effects of composites and electrical stimulation (ES) in a rat model of wound healing. RESULTS Application of the PLGA/GO composites to full-thickness wounds confirmed their advantageous biological properties, as evident from the observed improvements in wound-specific mechanical properties, biocompatibility, and antibacterial activity. Additionally, we found that the combination of composites and ES improved composite-mediated cell survival and accelerated wound healing in vivo by promoting neovascularization and the formation of type I collagen. CONCLUSION These results demonstrated that combined treatment with the PLGA/GO composite and ES promoted vascularization and epidermal remodeling and accelerated wound healing in rats, thereby suggesting the efficacy of PLGA/GO+ES for broad applications associated with wound repair.
Collapse
Affiliation(s)
- Di You
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Kai Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Wenlai Guo
- Department of Hand and Foot Surgery, The Second Hospital of Jilin University, Changchun130012, People’s Republic of China
| | - Guoqing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| | - Chuan Fu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun130033, People’s Republic of China
| |
Collapse
|
42
|
Guo Z, Kofink S, Chen H, Liang J, Grijpma DW, Poot AA. Synthesis and characterization of rGO-graft-poly(trimethylene carbonate) for nerve regeneration conduits. Biomed Mater 2019; 14:034101. [DOI: 10.1088/1748-605x/ab0269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Bei HP, Yang Y, Zhang Q, Tian Y, Luo X, Yang M, Zhao X. Graphene-Based Nanocomposites for Neural Tissue Engineering. Molecules 2019; 24:E658. [PMID: 30781759 PMCID: PMC6413135 DOI: 10.3390/molecules24040658] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 11/25/2022] Open
Abstract
Graphene has made significant contributions to neural tissue engineering due to its electrical conductivity, biocompatibility, mechanical strength, and high surface area. However, it demonstrates a lack of biological and chemical cues. Also, it may cause potential damage to the host body, limiting its achievement of efficient construction of neural tissues. Recently, there has been an increasing number of studies showing that combining graphene with other materials to form nano-composites can provide exceptional platforms for both stimulating neural stem cell adhesion, proliferation, differentiation and neural regeneration. This suggests that graphene nanocomposites are greatly beneficial in neural regenerative medicine. In this mini review, we will discuss the application of graphene nanocomposites in neural tissue engineering and their limitations, through their effect on neural stem cell differentiation and constructs for neural regeneration.
Collapse
Affiliation(s)
- Ho Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Yu Tian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Xiaoming Luo
- Department of Preventive Medicine, School of Public Health, Chengdu Medical College, Chengdu 610500, China.
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
44
|
Wu Y, Peng Y, Bohra H, Zou J, Ranjan VD, Zhang Y, Zhang Q, Wang M. Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4833-4841. [PMID: 30624894 DOI: 10.1021/acsami.8b19631] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report multiscale structured fibers and patterned films based on a semiconducting polymer, poly(3-hexylthiophene) (P3HT), as photoconductive biointerfaces to promote neuronal stimulation upon light irradiation. The micro/nanoscale structures of P3HT used for neuronal interfacing and stimulation include nanofibers with an average diameter of 100 nm, microfibers with an average diameter of about 1 μm, and lithographically patterned stripes with width of 3, 25, and 50 μm, respectively. The photoconductive effect of P3HT upon light irradiation provides electrical stimulation for neuronal differentiation and directed growth. Our results demonstrate that neurons on P3HT nanofibers showed a significantly higher total number of branches, while neurons grown on P3HT microfibers had longer and thinner neurites. Such a combination strategy of topographical and photoconductive stimulation can be applied to further enhance neuronal differentiation and directed growth. These photoconductive polymeric micro/nanostructures demonstrated their great potential for neural engineering and development of novel neural regenerative devices.
Collapse
Affiliation(s)
- Yingjie Wu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Yanfen Peng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Hassan Bohra
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jianping Zou
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Vivek Damodar Ranjan
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qing Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
45
|
Feng ZQ, Wu F, Jin L, Wang T, Dong W, Zheng J. Graphene Nanofibrous Foam Designed as an Efficient Oil Absorbent. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhang-Qi Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
- Nanjing Daniel New Mstar Technology, Limited, Nanjing 211200, P. R. China
| | - Fangfang Wu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Lin Jin
- The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, P. R. China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
46
|
Shang L, Huang Z, Pu X, Yin G, Chen X. Preparation of Graphene Oxide-Doped Polypyrrole Composite Films with Stable Conductivity and Their Effect on the Elongation and Alignment of Neurite. ACS Biomater Sci Eng 2019; 5:1268-1278. [DOI: 10.1021/acsbiomaterials.8b01326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lei Shang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhongbing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Guangfu Yin
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xianchun Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Jing W, Zhang Y, Cai Q, Chen G, Wang L, Yang X, Zhong W. Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chem Neurosci 2019; 10:348-357. [PMID: 30212623 DOI: 10.1021/acschemneuro.8b00286] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The strategy of using electrical stimulation (ES) to promote the neural differentiation and regeneration of injured nerves is proven feasible. Study of the possible molecular mechanisms in relation to this ES promotion effect should be helpful for understanding the phenomenon. In this study, it was identified that the neuronal differentiation of PC12 cells was enhanced when the electric field intensity was in the range of 30-80 mV/mm, and a lower or higher electric-field intensity displayed inferior effects. Under ES, however, levels of intracellular reactive oxygen species (ROS), intracellular Ca2+ dynamics, and expression of TREK-1 were measured as being gradually increasing alongside higher electric-field intensity. In trying to understand the relationship between the ES enhancement on differentiation and these variations in cell activities, parallel experiments were conducted by introducing exogeneous H2O2 into culture systems at different concentrations. Similarly, the effects of H2O2 concentration on the neuronal differentiation of PC12 cells, intracellular ROS and Ca2+ levels, and TREK-1 expression were systematically characterized. In comparative studies, it was found in two cases that ES of 50 mV/mm for 2 h/day and H2O2 of 5 μM in culture medium shared comparable results for intracellular ROS and Ca2+ levels and TREK-1 expression. Higher H2O2 concentrations (e.g., 10 and 20 μM) demonstrated adverse effects on cell differentiation and caused DNA damage. A stronger ES (e.g., 100 mV/mm), being associated with a higher intracellular ROS level, also resulted in weaker enhancement of the neuronal differentiation of PC12 cells. These facts suggested that the intracellular ROS generated under ES might be an intermediate signal transducer involved in cascade reactions relative to cell differentiation.
Collapse
Affiliation(s)
- Wei Jing
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yifan Zhang
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qing Cai
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqiang Chen
- Department of Neurosurgery, Aviation General Hospital of China Medical University, Beijing 100012, PR China
| | - Lin Wang
- Department of Neurosurgery, Aviation General Hospital of China Medical University, Beijing 100012, PR China
| | - Xiaoping Yang
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weihong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
48
|
Shueibi O, Zhou Z, Wang X, Yi B, He X, Zhang Y. Effects of GO and rGO incorporated nanofibrous scaffolds on the proliferation of Schwann cells. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aaf53a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Niu QF, Wang QL, Tong ZX, Tong L, Tong XJ. Adsorptive properties of graphene oxide on vitamin B12 and their effect on the promotion of peripheral nerve regeneration. Neurol Res 2018; 41:282-288. [PMID: 30585138 DOI: 10.1080/01616412.2018.1557868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To observe whether Graphene oxide (GO) can absorb vitamin B12 (VB12) and Decellularized scaffold - acellular nerve allograft (ANA) modified GO-VB12 promote the repair of ischiadic nervus defects in a rat model. METHODS The adsorption of GO on vitamin and the optimum adsorption conditions were investigated by single factor experiment. The adsorption properties of the material were observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) to determine the success of adsorption on VB12. GO-VB12-ANA was prepared by vibration mixing method and bridged to injured ischiadic nervus. The nerve action potential, wet weight ratio of gastrocnemius muscle and the expression of GAP-43 were investigated by contrast test to detect its effect on nerve regeneration. RESULTS The optimized adsorption conditions for GO on VB12 solution were listed as follows: adsorbent dosage was 6 mg, shaking time was 70 min, the pH value was 6, the optimum concentration of VB12 was 50 mg/L and the theoretical saturated adsorption capacity was 21.51 mg/g. The nerve action potential, wet weight ratio of gastrocnemius muscle and the expression of GAP-43 in nerve fiber of GO-VB12-ANA group were close to the normal values and significantly higher than those of ANA and rotation group. CONCLUSIONS Based on the adsorption function of GO on VB12, GO-VB12-ANA can promote regeneration of injured ischiadic nervus, providing the experimental basis for the clinical application of nanomaterials.
Collapse
Affiliation(s)
- Qing-Fei Niu
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| | - Qiao-Ling Wang
- b Department of anatomy , Shenyang Medical College , Shenyang , China
| | - Zhao-Xue Tong
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| | - Lei Tong
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| | - Xiao-Jie Tong
- a Department of anatomy, College of Basic Medical Science , China Medical University , Shenyang , China
| |
Collapse
|
50
|
Yao R, Wang B, Wang G. [Research progress of graphene and its derivatives in repair of peripheral nerve defect]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1483-1487. [PMID: 30417629 DOI: 10.7507/1002-1892.201804096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress of graphene and its derivatives in repair of peripheral nerve defect. Methods The related literature of graphene and its derivatives in repair of peripheral nerve defect in recent years was extensively reviewed. Results It is confirmed by in vitro and in vivo experiments that graphene and its derivatives can promote cell adhesion, proliferation, differentiation and neurite growth effectively. They have good electrical conductivity, excellent mechanical properties, larger specific surface area, and other advantages when compared with traditional materials. The three-dimensional scaffold can improve the effect of nerve repair. Conclusion The metabolic pathways and long-term reaction of graphene and its derivatives in the body are unclear. How to regulate their biodegradation and explain the electric coupling reaction mechanism between cells and materials also need to be further explored.
Collapse
Affiliation(s)
- Ruzhan Yao
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Bingwu Wang
- Department of Spinal Surgery, Weifang People's Hospital, Weifang Shandong, 261000, P.R.China
| | - Guanglin Wang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|