1
|
Banerjee U, Misra S, Mitra SK. A versatile multilayer liquid-liquid encapsulation technique. J Colloid Interface Sci 2024; 679:1266-1276. [PMID: 39427581 DOI: 10.1016/j.jcis.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
HYPOTHESIS Generating multi-layer cargo using conventional methods is challenging. We hypothesize that incorporating a Y-junction compound droplet generator to encase a target core inside a second liquid can circumvent the kinetic energy dependence of the impact-driven liquid-liquid encapsulation technique, enabling minimally restrictive multi-layer encapsulation. EXPERIMENTS Stable wrapping is obtained by impinging a compound droplet (generated using Y-junction) on an interfacial layer of another shell-forming liquid floating on a host liquid bath, leading to double-layered encapsulation. The underlying dynamics of the liquid-liquid interfaces are captured using high-speed imaging. To demonstrate the versatility of the technique, we used various liquids as interfacial layers, including magnetoresponsive oil-based ferrofluids. Moreover, we extended the technique to triple-layered encapsulation by overlaying a second interfacial layer atop the first floating interfacial layer. FINDINGS The encapsulating layer(s) effectively protects the water-soluble inner core (ethylene glycol) inside the water bath. A non-dimensional experimental regime is established for successful encapsulation in terms of the impact kinetic energy, interfacial layer thickness, and the viscosity ratio of the interfacial layer and the outer core liquid. Using selective fluorescent tagging, we confirm the presence of individual shell layers wrapped around the core, which presents a promising pathway to visualize the internal morphology of final encapsulated droplets.
Collapse
Affiliation(s)
- Utsab Banerjee
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sirshendu Misra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Micro & Nano-scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
2
|
Oh Y, Kim SH. Concentric Capillary Microfluidic Devices Designed for Robust Production of Multiple-Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19166-19175. [PMID: 39183643 DOI: 10.1021/acs.langmuir.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Multiple emulsions are used as templates for producing functional microcapsules due to their unique core-shell geometry. Employing glass capillary devices with coaxial channels has proven effective in creating uniform multiple-emulsion droplets. However, the use of partially miscible fluids, crucial for microcapsule production, often results in clogging and disrupts the stability of these devices. Here, we introduce innovative capillary microfluidic devices with concentric capillary channels, specifically designed to optimize the production of multiple-emulsion droplets while mitigating issues of precipitation and clogging. The key aspect of these devices is their configuration of two or three concentrically aligned capillaries, which form separate, coaxial microchannels for fluid injection. This unique alignment, achieved through rotational adjustments that leverage the natural off-center positioning of tapered capillaries, facilitates the simultaneous coaxial injection of various fluids into a droplet-forming junction, significantly reducing fluid contact before emulsification. The devices, featuring double and triple concentric capillary channels, consistently produce highly uniform double-, triple-, and quadruple-emulsion droplets with precisely controlled diameters and layer thicknesses. The minimal contact between fluids prior to emulsification in these devices broadens the usable range of fluid combinations, heralding new possibilities in microcapsule development for pharmaceutical and cosmetic applications.
Collapse
Affiliation(s)
- Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Yandrapalli N. Complex Emulsions as an Innovative Pharmaceutical Dosage form in Addressing the Issues of Multi-Drug Therapy and Polypharmacy Challenges. Pharmaceutics 2024; 16:707. [PMID: 38931830 PMCID: PMC11206808 DOI: 10.3390/pharmaceutics16060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the intersection of microfluidic technology and complex emulsion development as a promising solution to the challenges of formulations in multi-drug therapy (MDT) and polypharmacy. The convergence of microfluidic technology and complex emulsion fabrication could herald a transformative era in multi-drug delivery systems, directly confronting the prevalent challenges of polypharmacy. Microfluidics, with its unparalleled precision in droplet formation, empowers the encapsulation of multiple drugs within singular emulsion particles. The ability to engineer emulsions with tailored properties-such as size, composition, and release kinetics-enables the creation of highly efficient drug delivery vehicles. Thus, this innovative approach not only simplifies medication regimens by significantly reducing the number of necessary doses but also minimizes the pill burden and associated treatment termination-issues associated with polypharmacy. It is important to bring forth the opportunities and challenges of this synergy between microfluidic-driven complex emulsions and multi-drug therapy poses. Together, they not only offer a sophisticated method for addressing the intricacies of delivering multiple drugs but also align with broader healthcare objectives of enhancing treatment outcomes, patient safety, and quality of life, underscoring the importance of dosage form innovations in tackling the multifaceted challenges of modern pharmacotherapy.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
4
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
5
|
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022; 11:3727. [PMID: 36429319 PMCID: PMC9689895 DOI: 10.3390/foods11223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The development of novel materials with microstructures is now a trend in food science and technology. These microscale materials may be applied across all steps in food manufacturing, from raw materials to the final food products, as well as in the packaging, transport, and storage processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel (1~100 μm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology allows unit operations to occur in devices that are closer in size to the expected structural elements. Therefore, microfluidics is considered a promising technology to develop micro/nanostructures for delivery purposes to improve the quality and safety of foods. This review concentrates on the recent developments of microfluidic systems and their novel applications in food science and technology, including microfibers/films via microfluidic spinning technology for food packaging, droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
6
|
Chen L, Xiao Y, Zhang Z, Zhao CX, Guo B, Ye F, Chen D. Porous ultrathin-shell microcapsules designed by microfluidics for selective permeation and stimuli-triggered release. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Van Tran V, Wi E, Shin SY, Lee D, Kim YA, Ma BC, Chang M. Microgels based on 0D-3D carbon materials: Synthetic techniques, properties, applications, and challenges. CHEMOSPHERE 2022; 307:135981. [PMID: 35964721 DOI: 10.1016/j.chemosphere.2022.135981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Microgels are three-dimensional (3D) colloidal hydrogel particles with outstanding features such as biocompatibility, good mechanical properties, tunable sizes from submicrometer to tens of nanometers, and large surface areas. Because of these unique qualities, microgels have been widely used in various applications. Carbon-based materials (CMs) with various dimensions (0-3D) have recently been investigated as promising candidates for the design and fabrication of microgels because of their large surface area, excellent conductivity, unique chemical stability, and low cost. Here, we provide a critical review of the specific characteristics of CMs that are being incorporated into microgels, as well as the state-of-the art applications of CM-microgels in pollutant adsorption and photodegradation, H2 evoluation, CO2 capture, soil conditioners, water retention, drug delivery, cell encapsulation, and tissue engineering. Advanced preparation techniques for CM-microgel systems are also summarized and discussed. Finally, challenges related to the low colloidal stability of CM-microgels and development strategies are examined. This review shows that CM-microgels have the potential to be widely used in various practical applications.
Collapse
Affiliation(s)
- Vinh Van Tran
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Eunsol Wi
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Seo Young Shin
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea
| | - Daeho Lee
- Laser and Thermal Engineering Laboratory, Department of Mechanical Engineering, Gachon University, Seongnam, 13120, South Korea
| | - Yoong Ahm Kim
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea
| | - Byung Chol Ma
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, South Korea.
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju, 61186, South Korea; School of Polymer Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea; Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
8
|
Kim JW, Han SH, Choi YH, Hamonangan WM, Oh Y, Kim SH. Recent advances in the microfluidic production of functional microcapsules by multiple-emulsion templating. LAB ON A CHIP 2022; 22:2259-2291. [PMID: 35608122 DOI: 10.1039/d2lc00196a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-emulsion drops serve as versatile templates to design functional microcapsules due to their core-shell geometry and multiple compartments. Microfluidics has been used for the elaborate production of multiple-emulsion drops with a controlled composition, order, and dimensions, elevating the value of multiple-emulsion templates. Moreover, recent advances in the microfluidic control of the emulsification and parallelization of drop-making junctions significantly enhance the production throughput for practical use. Metastable multiple-emulsion drops are converted into stable microcapsules through the solidification of selected phases, among which solid shells are designed to function in a programmed manner. Functional microcapsules are used for the storage and release of active materials as drug carriers. Beyond their conventional uses, microcapsules can serve as microcompartments responsible for transmembrane communication, which is promising for their application in advanced microreactors, artificial cells, and microsensors. Given that post-processing provides additional control over the composition and construction of multiple-emulsion drops, they are excellent confining geometries to study the self-assembly of colloids and liquid crystals and produce miniaturized photonic devices. This review article presents the recent progress and current state of the art in the microfluidic production of multiple-emulsion drops, functionalization of solid shells, and applications of microcapsules.
Collapse
Affiliation(s)
- Ji-Won Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Wahyu Martumpal Hamonangan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Yoonjin Oh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Chu JO, Choi Y, Kim DW, Jeong HS, Park JP, Weitz DA, Lee SJ, Lee H, Choi CH. Cell-Inspired Hydrogel Microcapsules with a Thin Oil Layer for Enhanced Retention of Highly Reactive Antioxidants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2597-2604. [PMID: 34983184 DOI: 10.1021/acsami.1c20748] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In nature, individual cells are compartmentalized by a membrane that protects the cellular elements from the surrounding environment while simultaneously equipped with an antioxidant defense system to alleviate the oxidative stress resulting from light, oxygen, moisture, and temperature. However, this mechanism has not been realized in cellular mimics to effectively encapsulate and retain highly reactive antioxidants. Here, we report cell-inspired hydrogel microcapsules with an interstitial oil layer prepared by utilizing triple emulsion drops as templates to achieve enhanced retention of antioxidants. We employ ionic gelation for the hydrogel shell to prevent exposure of the encapsulated antioxidants to free radicals typically generated during photopolymerization. The interstitial oil layer in the microcapsule serves as an stimulus-responsive diffusion barrier, enabling efficient encapsulation and retention of antioxidants by providing an adequate pH microenvironment until osmotic pressure is applied to release the cargo on-demand. Moreover, addition of a lipophilic reducing agent in the oil layer induces a complementary reaction with the antioxidant, similar to the nonenzymatic antioxidant defense system in cells, leading to enhanced retention of the antioxidant activity. Furthermore, we show the complete recovery and even further enhancement in antioxidant activity by lowering the storage temperature, which decreases the oxidation rate while retaining the complementary reaction with the lipophilic reducing agent.
Collapse
Affiliation(s)
- Jin-Ok Chu
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Korea
| | - Yoon Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Korea
| | - Do-Wan Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Korea
| | - Hye-Seon Jeong
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Korea
| | - Jong Pil Park
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, 9 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan, Gyeongbuk 38610, Korea
| |
Collapse
|
10
|
Shao C, Chi J, Shang L, Fan Q, Ye F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater 2022; 138:21-33. [PMID: 34718181 DOI: 10.1016/j.actbio.2021.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Droplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e., microsized liquid containers or solid particles that serve as substrates of biomolecules or cells. These microcarriers could be extensively applied in the areas of cell culture, tissue engineering, and drug delivery. In this review, we focus on the fabrication of microcarriers from droplet microfluidics, and discuss their applications in the biomedical field. We start with the basic principle of droplet microfluidics, including droplet generation regimes and its control methods. We then introduce the fabrication of biomedical microcarriers based on single, double, and multiple emulsion droplets, and emphasize the various applications of microcarriers in biomedical field, especially in 3D cell culture, drug development and biomedical detection. Finally, we conclude this review by discussing the limitations and challenges of droplet microfluidics in preparing microcarriers. STATEMENT OF SIGNIFICANCE: Because of its precise control and high throughput, droplet microfluidics has been employed to generate functional microcarriers, which have been widely used in the areas of drug development, tissue engineering, and regenerative medicine. This review is significant because it emphasizes recent progress in research on droplet microfluidics in the preparation and application of biomedical microcarriers. In addition, this review suggests research directions for the future development of biomedical microcarriers based on droplet microfluidics by presenting existing shortcomings and challenges.
Collapse
|
11
|
Zhang X, Qu Q, Zhou A, Wang Y, Zhang J, Xiong R, Lenders V, Manshian BB, Hua D, Soenen SJ, Huang C. Core-shell microparticles: From rational engineering to diverse applications. Adv Colloid Interface Sci 2022; 299:102568. [PMID: 34896747 DOI: 10.1016/j.cis.2021.102568] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022]
Abstract
Core-shell microparticles, composed of solid, liquid, or gas bubbles surrounded by a protective shell, are gaining considerable attention as intelligent and versatile carriers that show great potential in biomedical fields. In this review, an overview is given of recent developments in design and applications of biodegradable core-shell systems. Several emerging methodologies including self-assembly, gas-shearing, and coaxial electrospray are discussed and microfluidics technology is emphasized in detail. Furthermore, the characteristics of core-shell microparticles in artificial cells, drug release and cell culture applications are discussed and the superiority of these advanced multi-core microparticles for the generation of artificial cells is highlighted. Finally, the respective developing orientations and limitations inherent to these systems are addressed. It is hoped that this review can inspire researchers to propel the development of this field with new ideas.
Collapse
|
12
|
Hayaei Tehrani RS, Hajari MA, Ghorbaninejad Z, Esfandiari F. Droplet microfluidic devices for organized stem cell differentiation into germ cells: capabilities and challenges. Biophys Rev 2021; 13:1245-1271. [PMID: 35059040 PMCID: PMC8724463 DOI: 10.1007/s12551-021-00907-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022] Open
Abstract
Demystifying the mechanisms that underlie germline development and gamete production is critical for expanding advanced therapies for infertile couples who cannot benefit from current infertility treatments. However, the low number of germ cells, particularly in the early stages of development, represents a serious challenge in obtaining sufficient materials required for research purposes. In this regard, pluripotent stem cells (PSCs) have provided an opportunity for producing an unlimited source of germ cells in vitro. Achieving this ambition is highly dependent on accurate stem cell niche reconstitution which is achievable through applying advanced cell engineering approaches. Recently, hydrogel microparticles (HMPs), as either microcarriers or microcapsules, have shown promising potential in providing an excellent 3-dimensional (3D) biomimetic microenvironment alongside the systematic bioactive agent delivery. In this review, recent studies of utilizing various HMP-based cell engineering strategies for appropriate niche reconstitution and efficient in vitro differentiation are highlighted with a special focus on the capabilities of droplet-based microfluidic (DBM) technology. We believe that a deep understanding of the current limitations and potentials of the DBM systems in integration with stem cell biology provides a bright future for germ cell research. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12551-021-00907-5.
Collapse
Affiliation(s)
- Reyhaneh Sadat Hayaei Tehrani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Mohammad Amin Hajari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zeynab Ghorbaninejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16635-148, 1665659911 Tehran, Iran
| |
Collapse
|
13
|
Yu W, Li B, Liu X, Chen Y. Hydrodynamics of triple emulsion droplet generation in a flow-focusing microfluidic device. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Liu EY, Choi Y, Yi H, Choi CH. Triple Emulsion-Based Rapid Microfluidic Production of Core-Shell Hydrogel Microspheres for Programmable Biomolecular Conjugation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11579-11587. [PMID: 33651584 DOI: 10.1021/acsami.0c20081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a simple and rapid microfluidic approach to produce core-shell hydrogel microspheres in a single step. We exploit triple emulsion drops with sacrificial oil layers that separate two prepolymer phases, forming poly(ethylene glycol)-based core-shell microspheres via photopolymerization followed by spontaneous removal of the oil layer. Our technique enables the production of monodisperse core-shell microspheres with varying dimensions of each compartment by independently and precisely controlled flow rates. This leads to stable and uniform incorporation of functional moieties in the core compartment with negligible cross-contamination into the shell layer. Selective conjugation of biomolecules is enabled through a rapid bioorthogonal reaction with functional groups in the core compartment with minimal non-specific adsorption. Finally, in-depth protein conjugation kinetics studies using microspheres with varying shell porosities highlight the capability to provide tunable size-selective diffusion barriers by simple tuning of prepolymer compositions for the shell layer. Combined, these results illustrate a significant step forward for programmable high-throughput fabrication of multifunctional hydrogel microspheres, which possess substantial potential in a large array of biomedical and biochemical applications.
Collapse
Affiliation(s)
- Eric Y Liu
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yoon Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| | - Hyunmin Yi
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chang-Hyung Choi
- Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
15
|
|
16
|
Zhang H, Wu J, Jiang J, Cui Z, Xia W. Redox-Responsive Oil-In-Dispersion Emulsions Stabilized by Similarly Charged Ferrocene Surfactants and Alumina Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14589-14596. [PMID: 33226816 DOI: 10.1021/acs.langmuir.0c02350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A redox-responsive oil-in-dispersion emulsion was developed by using a cationic ferrocene surfactant (FcCOC10N) and Al2O3 nanoparticles, in which the required concentrations of FcCOC10N and Al2O3 nanoparticles are as low as 0.001 mM (≈0.005 cmc) and 0.006 wt %, respectively. Rapid demulsification can be successfully achieved through a redox trigger, resulting from the transition of FcCOC10N from a normal cationic surfactant form into a strongly hydrophilic Bola type form (Fc+COC10N). Moreover, Fc+COC10N together with the particles almost resides in the aqueous phase and can be recovered after the reduction reaction. Not only the amount of surfactant and nanoparticles are significantly reduced but also the emulsifier (surfactant and alumina) can be recycled and reused from the aqueous phase, which is a sustainable and economical strategy for various applications.
Collapse
Affiliation(s)
- Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Jia Wu
- China Tobacco Jiangsu Industrial Co. LTD, No. 29 Xinglong Street, Nanjing, Jiangsu 210000, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
17
|
Nguyen T, Peng Y, Seekell RP, Kheir JN, Polizzotti BD. Hyperbaric polymer microcapsules for tunable oxygen delivery. J Control Release 2020; 327:420-428. [PMID: 32798637 DOI: 10.1016/j.jconrel.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023]
Abstract
Over the past decade, there have been many attempts to engineer systems capable of delivering oxygen to overcome the effects of both systemic and local hypoxia that occurs as a result of traumatic injury, cell transplantation, or tumor growth, among many others. Despite progress in this field, which has led to a new class of oxygen-generating biomaterials, most reported techniques lack the tunability necessary for independent control over the oxygen flux (volume per unit time) and the duration of delivery, both of which are key parameters for overcoming tissue hypoxia of varying etiologies. Here, we show that these critical parameters can be effectively manipulated using hyperbarically-loaded polymeric microcapsules (PMC). PMCs are micron-sized particles with hollow cores and polymeric shells. We show that oxygen delivery through PMCs is dependent on its permeability through the polymeric shell, the shell thickness, and the pressure gradient across the shell. We also demonstrate that incorporating an intermediate oil layer between the polymeric shell and the gas core prevents rapid outgassing by effectively lowering the resultant pressure gradient across the polymeric membrane following depressurization.
Collapse
Affiliation(s)
- Tien Nguyen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yifeng Peng
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond P Seekell
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Brian D Polizzotti
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Wang Y, Cheng Q, Liu J, Tariq Z, Zheng Z, Li G, Kaplan DL, Wang X. Tuning Microcapsule Shell Thickness and Structure with Silk Fibroin and Nanoparticles for Sustained Release. ACS Biomater Sci Eng 2020; 6:4583-4594. [PMID: 33455196 DOI: 10.1021/acsbiomaterials.0c00835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microcapsules have attracted widespread interest for their unique properties in encapsulation, protection, and separation of active ingredients from the surrounding environment. However, microcapsule carriers with controllable shell thickness, permeability, good mechanical properties, and thermostability are challenging to obtain. Herein, robust and versatile composite microcapsules were fabricated using SiO2 nanoparticle-stabilized (Pickering) oil emulsions as core templates, while silk fibroin (SF) was assembled at the oil/water interface. This process resulted in the formation of physically and chemically stable microcapsules with a thick (∼800 nm) shell that protected the encapsulated ingredient from high shear forces and high temperatures during spray-drying. SiO2 nanoparticles were randomly distributed in the shell matrix after preparation, making the microcapsules mechanically robust (4.48 times higher than control samples prepared using surfactant Tween 80 instead of the SiO2 nanoparticles), as well as thermostable (retained shape to 900 °C). The microcapsules displayed tunable drug release by adjusting the SF content in the shell. Under optimal conditions (weight ratio of SiO2/SF = 7:10, corn oil content about 55 wt %), a model drug (curcumin) was encapsulated in the SF microcapsules with an encapsulation efficiency up to 95%. The in vitro drug release from these SF microcapsules lasted longer than control microcapsules, demonstrating the capability of these novel microcapsules in sustaining drug release.
Collapse
Affiliation(s)
- Yongfeng Wang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Qingqing Cheng
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Jian Liu
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Zeeshan Tariq
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
19
|
Yandrapalli N, Robinson T, Antonietti M, Kumru B. Graphitic Carbon Nitride Stabilizers Meet Microfluidics: From Stable Emulsions to Photoinduced Synthesis of Hollow Polymer Spheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001180. [PMID: 32614519 DOI: 10.1002/smll.202001180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Indexed: 05/21/2023]
Abstract
Graphitic carbon nitride (g-CN) has been utilized as a heterogeneous catalyst, but is usually not very well dispersible. The amphiphilic character of g-CN can be altered by surface modifications of g-CN nanopowders. Introducing hydrophilicity or hydrophobicity is a promising avenue for producing advanced emulsion systems. In this study, a special surface-modified g-CN is used to form stable Pickering emulsions. Using a PDMS-based microfluidic device designed for stable production of both single and double emulsions, it is shown that surface-modified g-CNs allow the manufacture of unconventionally stable and precise Pickering emulsions. Shell thickness of the double emulsions is varied to emphasize the robustness of the device and also to demonstrate the extraordinary stabilization brought by the surface-modified carbon nitride used in this study. Due to the electrostatic stabilization also in the oil phase, double emulsions are centered. Finally, when produced from polymerizable styrene, hollow polymer microparticles are formed with precise and tunable sizes, where g-CN is utilized as the only stabilizer and photoinitiator.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14424, Germany
| | - Tom Robinson
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14424, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14424, Germany
| | - Baris Kumru
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam, 14424, Germany
| |
Collapse
|
20
|
Sattari A, Hanafizadeh P, Hoorfar M. Multiphase flow in microfluidics: From droplets and bubbles to the encapsulated structures. Adv Colloid Interface Sci 2020; 282:102208. [PMID: 32721624 DOI: 10.1016/j.cis.2020.102208] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Abstract
Microfluidic technologies have a unique ability to control more precisely and effectively on two-phase flow systems in comparison with macro systems. Controlling the size of the droplets and bubbles has led to an ever-increasing expansion of this technology in two-phase systems. Liquid-liquid and gas-liquid two-phase flows because of their numerous applications in different branches such as reactions, synthesis, emulsions, cosmetic, food, drug delivery, etc. have been the most critical two-phase flows in microfluidic systems. This review highlights recent progress in two-phase flows in microfluidic devices. The fundamentals of two-phase flows, including some essential dimensionless numbers, governing equations, and some most well-known numerical methods are firstly introduced, followed by a review of standard methods for producing segmented flows such as emulsions in microfluidic systems. Then various encapsulated structures, a common two-phase flow structure in microfluidic devices, and different methods of their production are reviewed. Finally, applications of two-phase microfluidic flows in drug-delivery, biotechnology, mixing, and microreactors are briefly discussed.
Collapse
|
21
|
Microfluidic-Assisted Fabrication of Monodisperse Core-Shell Microcapsules for Pressure-Sensitive Adhesive with Enhanced Performance. NANOMATERIALS 2020; 10:nano10020274. [PMID: 32041264 PMCID: PMC7075162 DOI: 10.3390/nano10020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 01/14/2023]
Abstract
Microcapsule-based adhesives hold special properties offered by encapsulation via an interfacial shell. Microencapsulation provides the possibility of combining the materials with opposite properties for which co-existence is commonly difficult. In this work, we report on a high performance pressure-sensitive adhesive (PSA) based on monodisperse and size-controllable core–shell microcapsules, which are prepared from double-emulsion droplets constructed using microfluidic devices. Monodisperse microcapsules containing oxalic acid are prepared with a coefficient of variation (CV) size of <5% and the core-material encapsulation efficiency of >90%. The microcapsules and urea-formaldehyde resin are mixed to obtain capsules-based PSA. The overall size uniformity achieved from droplet microfluidics and the rigid interfacial shells from photopolymerized materials ensure high rupture efficiency and sufficient curing reaction during the process. The microcapsules with proper shell thickness can well encapsulate the core material with an even distribution in the center, separating the curing agent from the matrix resin to form a latent adhesive, which is released at the right place and the right time. The bonding strength of >0.7 MPa has been achieved for plywood boards bonding using the prepared PSAs. The capsule-based PSA could encapsulate active components to achieve an extended lifetime for storage, controlled release to achieve on-demand operation, and pressurized mechanical rupture for ease of use. These would be expected to promote the use of PSAs in modern industries such as micro- and nano-optoelectronic devices by further tuning the size and materials of the microcapsules.
Collapse
|
22
|
Jeyhani M, Thevakumaran R, Abbasi N, Hwang DK, Tsai SSH. Microfluidic Generation of All-Aqueous Double and Triple Emulsions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906565. [PMID: 31985166 DOI: 10.1002/smll.201906565] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Indexed: 05/22/2023]
Abstract
Higher order emulsions are used in a variety of different applications in biomedicine, biological studies, cosmetics, and the food industry. Conventional droplet generation platforms for making higher order emulsions use organic solvents as the continuous phase, which is not biocompatible and as a result, further washing steps are required to remove the toxic continuous phase. Recently, droplet generation based on aqueous two-phase systems (ATPS) has emerged in the field of droplet microfluidics due to their intrinsic biocompatibility. Here, a platform to generate all-aqueous double and triple emulsions by introducing pressure-driven flows inside a microfluidic hybrid device is presented. This system uses a conventional microfluidic flow-focusing geometry coupled with a coaxial microneedle and a glass capillary embedded in flow-focusing junctions. The configuration of the hybrid device enables the focusing of two coaxial two-phase streams, which helps to avoid commonly observed channel-wetting problems. It is shown that this approach achieves the fabrication of higher-order emulsions in a poly(dimethylsiloxane)-based microfluidic device, and controls the structure of the all-aqueous emulsions. This hybrid microfluidic approach allows for facile higher-order biocompatible emulsion formation, and it is anticipated that this platform will find utility for generating biocompatible materials for various biotechnological applications.
Collapse
Affiliation(s)
- Morteza Jeyhani
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Risavarshni Thevakumaran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
- Department of Electrical, Computer and Biomedical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Niki Abbasi
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - Dae Kun Hwang
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
- Department of Chemical Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
| | - Scott S H Tsai
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST)-a Partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| |
Collapse
|
23
|
Chen XW, Ning XY, Yang XQ. Fabrication of Novel Hierarchical Multicompartment Highly Stable Triple Emulsions for the Segregation and Protection of Multiple Cargos by Spatial Co-encapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10904-10912. [PMID: 31508953 DOI: 10.1021/acs.jafc.9b03509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-order multiple emulsions are of great interest in both fundamental research and industrial applications as vehicles for their encapsulation capability of actives. In this work, we report a hierarchically multicompartmental highly stable triple emulsion by emulsifying and assembling of natural Quillaja saponin. Water-in-oil-in-(oil-in-water) (W2/O2/(O1/W1)) triple emulsion indicates that the compartmented system consisted of surfaced saponin-coated nanodroplets (SNDs) and dispersed oil globules, which in turn contained smaller aqueous droplets. The effects of formulation parameters, including lipophilic emulsifier content, oil fraction, and SND concentration, on the formation of multiple emulsions were systematically investigated. The assembly into fibrillar network of SNDs at the outer oil-water interface effectively protected the triple emulsion droplets against flocculation and coalescence, and strongly prevented the osmotic-driven water diffusion between the internal water droplets and the external water phase, thus contributing to superior stability during 180 days storage. All of these characteristics make the multicompartmentalized emulsions suitable to co-encapsulate a hydrophilic bioactive (gardenia blue) and two hydrophobic bioactives (eapsanthin and curcumin) in a single emulsion droplet hierarchically for the segregation and protection of multiple cargos. This approach offers a promising route toward accessing the next generation of functional deliveries and encapsulation strategies.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Lipid Technology and Engineering, School of Food Science and Engineering , Henan University of Technology , Lianhua Road 100 , Zhengzhou 450001 , Henan Province , P. R. China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Laboratory of Food Proteins and Colloids, Department of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R China
| | - Xue-Ying Ning
- Lipid Technology and Engineering, School of Food Science and Engineering , Henan University of Technology , Lianhua Road 100 , Zhengzhou 450001 , Henan Province , P. R. China
| | - Xiao-Quan Yang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Laboratory of Food Proteins and Colloids, Department of Food Science and Engineering , South China University of Technology , Guangzhou 510640 , P. R China
| |
Collapse
|
24
|
Chen XW, Ning XY, Zou Y, Liu X, Yang XQ. Multicompartment emulsion droplets for programmed release of hydrophobic cargoes. Food Funct 2019; 10:4522-4532. [PMID: 31355399 DOI: 10.1039/c9fo00558g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Delivery systems with multicompartmental structures that allow simultaneous delivery of several cargos are of great interest in both fundamental research and industrial applications. Here, we report a facile and easily scalable approach to fabricate multi-compartmentalized microdroplets for achieving programmed release of hydrophobic cargoes. Well-dispersed nanodroplets stabilized by natural Quillaja saponin served as an effective colloid stabilizer for fabricating microscale emulsion droplets with multicompartment architectures comprising many nanoscale droplets as a shell and single microscale core. Control of the number of nanodroplets allows accurate manipulation of the interface permeability for flexible and controllable release of volatile compounds (e.g., 2,3-butanedione, cis-3-hexen-1-ol, ethyl butyrate, d-limonene). More interestingly, the multicompartment microdroplets exhibited a higher flexibility for programmed release of different volatile compounds, as well as curcumin, during in vitro digestion by introducing cargos into the shell subcompartments or core microcompartment. The promising results highlight the power of this multi-compartmentalized system toward accessing a powerful platform for functional cargo delivery strategies.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Department of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | | | | | | | | |
Collapse
|
25
|
Azizi M, Zaferani M, Cheong SH, Abbaspourrad A. Pathogenic Bacteria Detection Using RNA-Based Loop-Mediated Isothermal-Amplification-Assisted Nucleic Acid Amplification via Droplet Microfluidics. ACS Sens 2019; 4:841-848. [PMID: 30908029 DOI: 10.1021/acssensors.8b01206] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleic acid amplifications, such as polymerase chain reaction (PCR), are very beneficial for diagnostic applications, especially in the context of bacterial or viral outbreaks due to their high specificity and sensitivity. However, the need for bulky instrumentation and complicated protocols makes these methods expensive and slow, particularly for low numbers of RNA or DNA templates. In addition, implementing conventional nucleic acid amplification in a high-throughput manner is both reagent- and time-consuming. We bring droplet-based microfluidics and loop-mediated isothermal amplification (LAMP) together in an optimized operational condition to provide a sensitive biosensor for amplifying extracted RNA templates for the detection of Salmonella typhimurium (targeting the invA gene). By simultaneously performing ∼106 LAMP-assisted amplification reactions in picoliter-sized droplets and applying a new mathematical model for the number of droplets necessary to screen for the first positive droplet, we study the detection limit of our platform with pure culture and real samples (bacterial contaminated milk samples). Our LAMP-assisted droplet-based microfluidic technique was simple in operation, sensitive, specific, and rapid for the detection of pathogenic bacteria Salmonella typhimurium in comparison with well-established conventional methods. More importantly, the high-throughput nature of this technique makes it suitable for many applications in biological assays.
Collapse
Affiliation(s)
- Morteza Azizi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Meisam Zaferani
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Soon Hon Cheong
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
26
|
Ding Y, Yan Y, Wang H, Wang X, Hu T, Tao S, Li G. Preparation of Hollow Cu and CuO x Microspheres with a Hierarchical Structure for Heterogeneous Catalysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41793-41801. [PMID: 30444113 DOI: 10.1021/acsami.8b16246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diffusion is one of the most critical factors which affect the performance of porous catalysts in heterogeneous reactions. Hollow spheres with a hierarchical structure could significantly improve the mass transfer in the spherical catalyst. Therefore, preparation of such kind of microspheres is an important work in the field of inorganic synthesis. Herein, we combine microfluidic technology and electroless deposition to prepare hollow Cu and CuO x microspheres with a hierarchically porous structure. These microspheres have a controllable diameter (100-500 μm) and shell thickness (10-60 μm). Numerical simulation and experimental results indicate that the hollow structure is beneficial for the diffusion and utilization of the catalyst in heterogeneous reactions. The Cu and CuO x microspheres were used to catalyze the hydrogenation and Fenton-like reactions in a flow reactor, respectively. The conversion of all reactants can reach more than 95%, and catalysts can maintain their reactivity in long reaction times. Thus, the strategy in the present research should apply in the construction of other porous catalysts with high performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangtao Li
- Department of Chemistry, Key Lab of Organic Optoelectronics & Molecular Engineering , Tsinghua University , Beijing 100084 , PR China
| |
Collapse
|
27
|
Li W, Zhang L, Ge X, Xu B, Zhang W, Qu L, Choi CH, Xu J, Zhang A, Lee H, Weitz DA. Microfluidic fabrication of microparticles for biomedical applications. Chem Soc Rev 2018; 47:5646-5683. [PMID: 29999050 PMCID: PMC6140344 DOI: 10.1039/c7cs00263g] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Droplet microfluidics offers exquisite control over the flows of multiple fluids in microscale, enabling fabrication of advanced microparticles with precisely tunable structures and compositions in a high throughput manner. The combination of these remarkable features with proper materials and fabrication methods has enabled high efficiency, direct encapsulation of actives in microparticles whose features and functionalities can be well controlled. These microparticles have great potential in a wide range of bio-related applications including drug delivery, cell-laden matrices, biosensors and even as artificial cells. In this review, we briefly summarize the materials, fabrication methods, and microparticle structures produced with droplet microfluidics. We also provide a comprehensive overview of their recent uses in biomedical applications. Finally, we discuss the existing challenges and perspectives to promote the future development of these engineered microparticles.
Collapse
Affiliation(s)
- Wen Li
- School of Materials Science & Engineering, Department of Polymer Materials, Shanghai University, 333 Nanchen Street, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
He T, Xu X, Ni B, Lin H, Li C, Hu W, Wang X. Metal-Organic Framework Based Microcapsules. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ting He
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Sciences; Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
- School of Chemistry and Chemical Engineering; Qinghai Normal University; Xining 810000 China
| | - Xiaobin Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Bing Ni
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Haifeng Lin
- College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Chaozhong Li
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Sciences; Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|
29
|
He T, Xu X, Ni B, Lin H, Li C, Hu W, Wang X. Metal-Organic Framework Based Microcapsules. Angew Chem Int Ed Engl 2018; 57:10148-10152. [DOI: 10.1002/anie.201804792] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ting He
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Sciences; Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
- School of Chemistry and Chemical Engineering; Qinghai Normal University; Xining 810000 China
| | - Xiaobin Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Bing Ni
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Haifeng Lin
- College of Chemistry and Molecular Engineering; Qingdao University of Science and Technology; Qingdao 266042 China
| | - Chaozhong Li
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Sciences; Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering; Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|
30
|
Water-in-oil emulsification in a bifurcated tree-like network: Flow distribution properties and their impact on the emulsion polydispersity. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Guo H, Liu P, Li H, Cheng C, Gao Y. Responsive Emulsions Stabilized by Amphiphilic Supramolecular Graft Copolymers Formed in Situ at the Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5750-5758. [PMID: 29738255 DOI: 10.1021/acs.langmuir.8b00476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphilic supramolecular graft copolymers which can stabilize oil-in-water (o/w) emulsions and enable responsive demulsification were demonstrated in this study. Linear poly[( N, N-dimethylacrylmide)- stat-(3-acrylamidophenylboronic acid)] (PDMA- stat-PAPBA) copolymers with phenylboronic acid (PBA) groups and linear polystyrene homopolymers with cis-diol terminals (PS(OH)2) were synthesized by reversible addition-fragmentation chain transfer polymerization. By the homogenization of the biphasic mixtures of an alkaline water solution of PDMA- stat-PAPBA copolymer and a toluene solution of PS(OH)2 homopolymer, stable o/w emulsions could be generated, although neither PDMA- stat-PAPBA nor PS(OH)2 alone was able to stabilize the emulsion. It was verified that the dispersed oil droplets in the emulsions were stabilized by the amphiphilic PDMA- stat-PAPBA- g-PS supramolecular graft copolymers, which were formed in situ at the oil-water interface by the complexation between the lateral PBA groups of PDMA- stat-PAPBA and the diol terminals of PS(OH)2 during homogenization. These emulsions showed pH- and glucose-responsive demulsification because of the reversible B-O bonds between the PDMA- stat-PAPBA backbones and the PS side chains. The effects of polymer concentrations on emulsion formation were also investigated. The current study provides an alternative method for the facile preparation of responsive polymeric emulsifiers, which potentially may be extended to other polymer pairs containing PBA and cis-diol groups.
Collapse
Affiliation(s)
| | | | | | - Chong Cheng
- Department of Chemical and Biological Engineering , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| | | |
Collapse
|
32
|
Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. Food Chem 2018; 246:448-456. [DOI: 10.1016/j.foodchem.2017.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/30/2017] [Accepted: 12/05/2017] [Indexed: 12/27/2022]
|
33
|
Bonat Celli G, Abbaspourrad A. Tailoring Delivery System Functionality Using Microfluidics. Annu Rev Food Sci Technol 2018; 9:481-501. [DOI: 10.1146/annurev-food-030117-012545] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Ravanfar R, Comunian TA, Dando R, Abbaspourrad A. Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. Food Chem 2018; 241:460-467. [DOI: 10.1016/j.foodchem.2017.09.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
|
35
|
Jeoffroy E, Demirörs AF, Schwendimann P, Dos Santos S, Danzi S, Hauser A, Partl MN, Studart AR. One-Step Bulk Fabrication of Polymer-Based Microcapsules with Hard-Soft Bilayer Thick Shells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37364-37373. [PMID: 28967256 DOI: 10.1021/acsami.7b09371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microcapsules are important for the protection, transport, and delivery of cargo in a variety of fields but are often too weak to withstand the high mechanical stresses that arise during the preparation and formulation of products. Although thick-shell strong capsules have been developed to circumvent this issue, the microfluidic or multistep methods utilized thus far limit the ease of fabrication and encapsulation throughput. Here, we exploit the phase separation of ternary liquid mixtures to achieve a high-throughput fabrication of strong bilayer microcapsules using a one-step bulk emulsification process. Phase separation is induced by the diffusion of water from the continuous phase into droplets that initially contain a mixture of monomers, cross-linkers, an initiator, and cosolvent γ-butyrolactone. The double emulsions generated via such a phase separation are converted into microcapsules through a polymerization reaction triggered by UV illumination. Surprisingly, the shells of the consolidated capsules exhibit a hard-soft bilayer structure that can be designed to show a resilient eggshell-like fracture behavior. Our method allows for the production of large volumes of microcapsules with such a strong bilayer shell within a time scale of only a few minutes, thus offering an enticing pathway toward the high-throughput fabrication of mechanically robust encapsulation systems.
Collapse
Affiliation(s)
- Etienne Jeoffroy
- Road Engineering/Sealing Components, Empa Dübendorf , CH 8600 Dübendorf, Switzerland
| | | | | | - Salomé Dos Santos
- Road Engineering/Sealing Components, Empa Dübendorf , CH 8600 Dübendorf, Switzerland
| | | | | | - Manfred N Partl
- Road Engineering/Sealing Components, Empa Dübendorf , CH 8600 Dübendorf, Switzerland
| | | |
Collapse
|
36
|
Postek W, Kaminski TS, Garstecki P. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. LAB ON A CHIP 2017; 17:1323-1331. [PMID: 28271118 DOI: 10.1039/c7lc00014f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel geometry of microfluidic channels that allows us to passively generate monodisperse emulsions of hundreds of droplets smaller than 1 nL from collections of larger (ca. 0.4 μL) mother droplets. We introduce a new microfluidic module for the generation of droplets via passive break-up at a step. The module alleviates a common problem in step emulsification with efficient removal of the droplets from the vicinity of the step. In our solution, the droplets are pushed away from the step by a continuous liquid that bypasses the mother droplets via specially engineered bypasses that lead to the step around the main channel. We show that the bypasses tighten the distribution of volume of daughter droplets and eliminate subpopulations of daughter droplets. Clearing away the just produced droplets from the vicinity of the step provides for similar conditions of break-up for every subsequent droplet and, consequently, leads to superior monodispersity of the generated emulsions. Importantly, this function is realized autonomously (passively) in a protocol in which only a sequence of large mother droplets is forced through the module. Our system features the advantage of step emulsification systems in that the volumes of the generated droplets depend very weakly on the rate of flow through the module - an increase in the flow rate by 300% causes only a slight increase of the average diameter of generated droplets by less than 5%. We combined our geometry with a simple T-junction and a simple trap-based microdroplet dilutor to produce a collection of libraries of droplets of gradually changing and known concentrations of a sample. The microfluidic system can be operated with only two syringe pumps set at constant rates of flow during the experiment.
Collapse
Affiliation(s)
- W Postek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - T S Kaminski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - P Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
37
|
Li M, Jiang W, Chen Z, Suryaprakash S, Lv S, Tang Z, Chen X, Leong KW. A versatile platform for surface modification of microfluidic droplets. LAB ON A CHIP 2017; 17:635-639. [PMID: 28154857 PMCID: PMC5328679 DOI: 10.1039/c7lc00079k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To advance emulsion droplet technology, we synthesize functional derivatives of Pluronic F127 that can simultaneously act as surfactants and as reactive sites for droplet surface decoration. The amine-, carboxyl-, N-hydroxysuccinimide ester-, maleimide- and biotin-terminated Pluronic F127 allows ligand immobilization on single-emulsion or double-emulsion droplets via electrostatic adsorption, covalent conjugation or site-specific avidin-biotin interaction.
Collapse
Affiliation(s)
- Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Weiqian Jiang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Shixian Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
38
|
Chen XW, Wang JM, Guo J, Wan ZL, Yin SW, Yang XQ. Hierarchical high internal phase emulsions and transparent oleogels stabilized by quillaja saponin-coated nanodroplets for color performance. Food Funct 2017; 8:823-831. [DOI: 10.1039/c6fo01752e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report novel high internal phase emulsions and transparent oleogels that exhibit a hierarchical configuration by manipulating the spatial assembly of a natural small molecular-weight quillaja saponin for color performance.
Collapse
Affiliation(s)
- Xiao-Wei Chen
- Food Protein Research and Development Center
- Department of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Jin-Mei Wang
- Food Protein Research and Development Center
- Department of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Jian Guo
- Food Protein Research and Development Center
- Department of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Zhi-Li Wan
- Food Protein Research and Development Center
- Department of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Shou-Wei Yin
- Food Protein Research and Development Center
- Department of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| | - Xiao-Quan Yang
- Food Protein Research and Development Center
- Department of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R China
| |
Collapse
|
39
|
Lee H, Choi CH, Abbaspourrad A, Wesner C, Caggioni M, Zhu T, Nawar S, Weitz DA. Fluorocarbon Oil Reinforced Triple Emulsion Drops. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8425-8430. [PMID: 27479940 DOI: 10.1002/adma.201602804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/10/2016] [Indexed: 06/06/2023]
Abstract
Fluorocarbon oil reinforced triple emulsion drops are prepared to encapsulate a broad range of polar and non-polar cargoes in a single platform. In addition, it is demonstrated that the fluorocarbon oil within the emulsion drop acts as an effective diffusion barrier, as well as a non-adhesive layer, enabling highly efficient encapsulation and retention of small molecules and active biomolecules in microcapsules.
Collapse
Affiliation(s)
- Hyomin Lee
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Chang-Hyung Choi
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | | | - Chris Wesner
- Corporate Engineering, The Procter & Gamble Company, Cincinnati, OH, 45069, USA
| | - Marco Caggioni
- Corporate Engineering, The Procter & Gamble Company, Cincinnati, OH, 45069, USA
| | - Taotao Zhu
- Corporate Engineering, The Procter & Gamble Company, Cincinnati, OH, 45069, USA
| | - Saraf Nawar
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - David A Weitz
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
40
|
Lee TY, Choi TM, Shim TS, Frijns RAM, Kim SH. Microfluidic production of multiple emulsions and functional microcapsules. LAB ON A CHIP 2016; 16:3415-40. [PMID: 27470590 DOI: 10.1039/c6lc00809g] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent advances in microfluidics have enabled the controlled production of multiple-emulsion drops with onion-like topology. The multiple-emulsion drops possess an intrinsic core-shell geometry, which makes them useful as templates to create microcapsules with a solid membrane. High flexibility in the selection of materials and hierarchical order, achieved by microfluidic technologies, has provided versatility in the membrane properties and microcapsule functions. The microcapsules are now designed not just for storage and release of encapsulants but for sensing microenvironments, developing structural colours, and many other uses. This article reviews the current state of the art in the microfluidic-based production of multiple-emulsion drops and functional microcapsules. The three main sections of this paper discuss distinct microfluidic techniques developed for the generation of multiple emulsions, four representative methods used for solid membrane formation, and various applications of functional microcapsules. Finally, we outline the current limitations and future perspectives of microfluidics and microcapsules.
Collapse
Affiliation(s)
- Tae Yong Lee
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, South Korea.
| | | | | | | | | |
Collapse
|