1
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Chen H, Wei YQ, Xu MY, Zhu MW, Liu J, Yong YC, Fang Z. Artificial and Biosynthetic Nanoparticles Boost Bioelectrochemical Reactions via Efficient Bidirectional Electron Transfer of Shewanella loihica. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400962. [PMID: 38511578 DOI: 10.1002/smll.202400962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Bioelectrochemical reactions using whole-cell biocatalysts are promising carbon-neutral approaches because of their easy operation, low cost, and sustainability. Bidirectional (outward or inward) electron transfer via exoelectrogens plays the main role in driving bioelectrochemical reactions. However, the low electron transfer efficiency seriously inhibits bioelectrochemical reaction kinetics. Here, a three dimensional and artificial nanoparticles-constituent inverse opal-indium tin oxide (IO-ITO) electrode is fabricated and employed to connect with exoelectrogens (Shewanella loihica PV-4). The above electrode collected 128-fold higher cell density and exhibited a maximum current output approaching 1.5 mA cm-2 within 24 h at anode mode. By changing the IO-ITO electrode to cathode mode, the exoelectrogens exhibited the attractive ability of extracellular electron uptake to reduce fumarate and 16 times higher reverse current than the commercial carbon electrode. Notably, Fe-containing oxide nanoparticles are biologically synthesized at both sides of the outer cell membrane and probably contributed to direct electron transfer with the transmembrane c-type cytochromes. Owing to the efficient electron exchange via artificial and biosynthetic nanoparticles, bioelectrochemical CO2 reduction is also realized at the cathode. This work not only explored the possibility of augmenting bidirectional electron transfer but also provided a new strategy to boost bioelectrochemical reactions by introducing biohybrid nanoparticles.
Collapse
Affiliation(s)
- Han Chen
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yu-Qing Wei
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Meng-Yuan Xu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Ma-Wei Zhu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Junying Liu
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Fang
- Biofuels Institute, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Vanmathi S, Awasthi H, Pal A, Goel S. IoT enabled carbon cloth-based 3D printed hydrogen fuel cell integrated with supercapacitor for low-power microelectronic devices. Sci Rep 2024; 14:16953. [PMID: 39043777 PMCID: PMC11266664 DOI: 10.1038/s41598-024-67759-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
A Hydrogen fuel cell (HFC) broad range associated with Internet of Things (IoT) technologies that require slightly less and constant electricity made possible by remote climate monitoring connections. Novelty demonstrates a miniature HFC based on carbon cloth electrodes and sealing elements manufactured via 3D printing. Cobalt (II) Oxide (Co3O4)-reduced Graphene Oxide (rGO) and Platinum (Pt) based nanoparticles are coated over carbon cloth to increase the catalytic activity at the anode and cathode. Hydrogen is produced by using an aluminium foil (Al) that is stored in between the filter paper and through capillary action the sodium hydroxide pellets (NaOH) are applied and reacted with Al foil to produce hydrogen. The single HFC device working surface area of 1 × 1 cm2 effectively generates an open circuit voltage (OCV) of 1.3 V, a current density of 1.602 mA/cm2, and a peak power density of 761 mW/cm2. The fuel cell stability performance is monitored for up to 10 h. The power obtained from the HFC is stored in a supercapacitor and used to supply energy to the IoT component. The module includes a built-in sensor that monitors the temperature, pressure, and humidity. The measured data is then transmitted to a smartphone via Bluetooth.
Collapse
Affiliation(s)
- S Vanmathi
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Himanshi Awasthi
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Abhishesh Pal
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
- Department of Mechanical Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India
| | - Sanket Goel
- MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, 500078, India.
| |
Collapse
|
4
|
Lin H, Song X, Wu X, Cao Y, Liu Z, Zhang R, Yao Q, Xie J. Fluorescent Enhancement of [AgS 4] Microplates by Mechanical Force Induced Crystallinity Breaking. J Phys Chem Lett 2024; 15:7118-7124. [PMID: 38959028 DOI: 10.1021/acs.jpclett.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mechanofluorochromic materials are a type of "smart" material because of their adjustable fluorescent properties under external mechanical force, making them significant members of the materials family. However, as the fluorescent characteristics of these materials highly depend on their microstructures, the still insufficiently in-depth research linking molecular structures to light emission motivates researchers to explore the fluorescent properties of these materials under external stimuli. In this work, based on synthetic [AgS4] microplates, we explore a fascinating mechanical-induced photoluminescent enhancement phenomenon. By applying mechanical force to solid-state [AgS4] to damage the surface morphology, a significant enhancement in photoluminescence is observed. Moreover, the emitted intensity increases with the extent of damage, which can be attributed to alterations in crystallinity. This work provides valuable insights into the relationship among photoluminescence, crystallinity, and mechanical force, offering new strategies for designing luminescent devices.
Collapse
Affiliation(s)
- Hongbin Lin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaorong Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology and State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, Science drive 3, Singapore 117543, Singapore
| | - Yitao Cao
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs; Engineering Research Center of MTEES (Ministry of Education), and Key Lab of ETESPG (GHEI), School of Chemistry South China Normal University, Guangzhou, 510006, P. R. China
| | - Zhenghan Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Ruixuan Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Qiaofeng Yao
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences; Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jianping Xie
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
5
|
Maan KS, Gajbhiye P, Sharma A, Al-Gheethi AA. Efficient anode material derived from nutshells for bio-energy production in microbial fuel cell. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121422. [PMID: 38878572 DOI: 10.1016/j.jenvman.2024.121422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Biochar is a carbonaceous solid that is prepared through thermo-chemical decomposition of biomass under an inert atmosphere. The present study compares the performance of biochar prepared from Peanut shell, coconut shell and walnut shell in dual chamber microbial fuel cell. The physicochemical and electrochemical analysis of biochar reveals that prepared biochar is macroporous, amorphous, biocompatible, and electrochemically conductive. Polarization studies show that Peanut shell biochar (PSB) exhibited a maximum power density of 165 mW/m2 followed by Coconut shell biochar (CSB) Activated Charcoal (AC) and Walnut shell biochar (WSB). Enhanced power density of PSB was attributed to its surface area and suitable pore size distribution which proved conducive for biofilm formation. Furthermore, the high electrical capacitance of PSB improved the electron transfer between microbes and anode.
Collapse
Affiliation(s)
- Karan Singh Maan
- Department of Chemical Engineering, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, 144411, India; Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, 144411, India
| | - Pratima Gajbhiye
- Department of Chemical Engineering, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, 144411, India.
| | - Ajit Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Jalandhar, 144411, India.
| | - Adel-Ali Al-Gheethi
- Global Centre for Environmental Remediation (GCER), University of Newcastle and CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Newcastle, Australia
| |
Collapse
|
6
|
Liu S, Wang A, Liu Y, Zhou W, Wen H, Zhang H, Sun K, Li S, Zhou J, Wang Y, Jiang J, Li B. Catalytically Active Carbon for Oxygen Reduction Reaction in Energy Conversion: Recent Advances and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308040. [PMID: 38581142 PMCID: PMC11165562 DOI: 10.1002/advs.202308040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/25/2024] [Indexed: 04/08/2024]
Abstract
The shortage and unevenness of fossil energy sources are affecting the development and progress of human civilization. The technology of efficiently converting material resources into energy for utilization and storage is attracting the attention of researchers. Environmentally friendly biomass materials are a treasure to drive the development of new-generation energy sources. Electrochemical theory is used to efficiently convert the chemical energy of chemical substances into electrical energy. In recent years, significant progress has been made in the development of green and economical electrocatalysts for oxygen reduction reaction (ORR). Although many reviews have been reported around the application of biomass-derived catalytically active carbon (CAC) catalysts in ORR, these reviews have only selected a single/partial topic (including synthesis and preparation of catalysts from different sources, structural optimization, or performance enhancement methods based on CAC catalysts, and application of biomass-derived CACs) for discussion. There is no review that systematically addresses the latest progress in the synthesis, performance enhancement, and applications related to biomass-derived CAC-based oxygen reduction electrocatalysts synchronously. This review fills the gap by providing a timely and comprehensive review and summary from the following sections: the exposition of the basic catalytic principles of ORR, the summary of the chemical composition and structural properties of various types of biomass, the analysis of traditional and the latest popular biomass-derived CAC synthesis methods and optimization strategies, and the summary of the practical applications of biomass-derived CAC-based oxidative reduction electrocatalysts. This review provides a comprehensive summary of the latest advances to provide research directions and design ideas for the development of catalyst synthesis/optimization and contributes to the industrialization of biomass-derived CAC electrocatalysis and electric energy storage.
Collapse
Affiliation(s)
- Shuling Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Ao Wang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Yanyan Liu
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Wenshu Zhou
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Hao Wen
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Huanhuan Zhang
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Shuqi Li
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Jingjing Zhou
- College of ScienceHenan Agricultural University95 Wenhua RoadZhengzhou450002P. R. China
| | - Yongfeng Wang
- Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesSchool of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest ProductsCAFNational Engineering Lab for Biomass Chemical UtilizationKey and Open Lab on Forest Chemical EngineeringSFA16 SuojinwucunNanjing210042P. R. China
| | - Baojun Li
- College of ChemistryZhengzhou University100 Science RoadZhengzhou450001P. R. China
| |
Collapse
|
7
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
8
|
Wan W, Zhao Y, Meng J, Allen CS, Zhou Y, Patzke GR. Tailoring C─N Containing Compounds into Carbon Nanomaterials with Tunable Morphologies for Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304663. [PMID: 37821413 DOI: 10.1002/smll.202304663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/26/2023] [Indexed: 10/13/2023]
Abstract
Carbon materials with unique sp2 -hybridization are extensively researched for catalytic applications due to their excellent conductivity and tunable physicochemical properties. However, the development of economic approaches to tailoring carbon materials into desired morphologies remains a challenge. Herein, a convenient "bottom-up" strategy by pyrolysis of graphitic carbon nitride (g-C3 N4 ) (or other carbon/nitrogen (C, N)-enriched compounds) together with selected metal salts and molecules is reported for the construction of different carbon-based catalysts with tunable morphologies, including carbon nano-balls, carbon nanotubes, nitrogen/sulfur (S, N) doped-carbon nanosheets, and single-atom catalysts, supported by carbon layers. The catalysts are systematically investigated through various microscopic, spectroscopic, and diffraction methods and they demonstrate promising and broad applications in electrocatalysis such as in the oxygen reduction reaction and water splitting. Mechanistic monitoring of the synthesis process through online thermogravimetric-gas chromatography-mass spectrometry measurements indicates that the release of C─N-related moieties, such as dicyan, plays a key role in the growth of carbon products. This enables to successfully predict other widely available precursor compounds beyond g-C3 N4 such as caffeine, melamine, and urea. This work develops a novel and economic strategy to generate morphologically diverse carbon-based catalysts and provides new, essential insights into the growth mechanism of carbon nanomaterials syntheses.
Collapse
Affiliation(s)
- Wenchao Wan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, D-45470, Mülheim an der Ruhr, Germany
| | - Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| | - Jie Meng
- Division of Chemical Physics, Lund University, Box 124, Lund, 22100, Sweden
| | - Christopher S Allen
- Electron Physical Science Imaging Center, Diamond Light Source Ltd, Didcot, Oxfordshire, OX11 0DE, UK
- Department of Materials, University of Oxford, Oxford, OX1 3HP, UK
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- Institute of Carbon Neutrality & School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland
| |
Collapse
|
9
|
Villora-Picó JJ, González-Arias J, Baena-Moreno FM, Reina TR. Renewable Carbonaceous Materials from Biomass in Catalytic Processes: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:565. [PMID: 38591382 PMCID: PMC10856170 DOI: 10.3390/ma17030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
This review paper delves into the diverse ways in which carbonaceous resources, sourced from renewable and sustainable origins, can be used in catalytic processes. Renewable carbonaceous materials that come from biomass-derived and waste feedstocks are key to developing more sustainable processes by replacing traditional carbon-based materials. By examining the potential of these renewable carbonaceous materials, this review aims to shed light on their significance in fostering environmentally conscious and sustainable practices within the realm of catalysis. The more important applications identified are biofuel production, tar removal, chemical production, photocatalytic systems, microbial fuel cell electrodes, and oxidation applications. Regarding biofuel production, biochar-supported catalysts have proved to be able to achieve biodiesel production with yields exceeding 70%. Furthermore, hydrochars and activated carbons derived from diverse biomass sources have demonstrated significant tar removal efficiency. For instance, rice husk char exhibited an increased BET surface area from 2.2 m2/g to 141 m2/g after pyrolysis at 600 °C, showcasing its effectiveness in adsorbing phenol and light aromatic hydrocarbons. Concerning chemical production and the oxidation of alcohols, the influence of biochar quantity and pre-calcination temperature on catalytic performance has been proven, achieving selectivity toward benzaldehyde exceeding 70%.
Collapse
Affiliation(s)
- Juan J. Villora-Picó
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| | - Judith González-Arias
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| | - Francisco M. Baena-Moreno
- Chemical and Environmental Engineering Department, Technical School of Engineering, University of Seville, C/Camino de los Descubrimientos s/n, 41092 Sevilla, Spain
| | - Tomás R. Reina
- Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain; (J.J.V.-P.); (T.R.R.)
| |
Collapse
|
10
|
Barakat NAM, Gamal S, Ghouri ZK, Fadali OA, Abdelraheem OH, Hashem M, Moustafa HM. Graphitized mango seed as an effective 3D anode in batch and continuous mode microbial fuel cells for sustainable wastewater treatment and power generation. RSC Adv 2024; 14:3163-3177. [PMID: 38249675 PMCID: PMC10797328 DOI: 10.1039/d3ra05084j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Herein, we explored the utilization of graphitized mango seeds as 3D-packed anodes in microbial fuel cells (MFCs) powered by sewage wastewater. Mango seeds were graphitized at different temperatures (800 °C, 900 °C, 1000 °C, and 1100 °C) and their effectiveness as anodes was evaluated. Surface morphology analysis indicated that the proposed anode was characterized by layered branches and micro-sized deep holes, facilitating enhanced biofilm formation and microorganism attachment. Maximum power densities achieved in the MFCs utilizing the mango seed-packed anodes graphitized at 1100 °C and 1000 °C were 2170.8 ± 90 and 1350.6 ± 125 mW m-2, respectively. Furthermore, the weight of the graphitized seed anode demonstrated a positive correlation with the generated power density and cell potential. Specifically, MFCs fabricated with 9 g and 6 g anodes achieved maximum power densities of 2170.8 ± 90 and 1800.5 ± 40 mW m-2, respectively. A continuous mode air cathode MFC employing the proposed graphitized mango anode prepared at 1100 °C and operated at a flow rate of 2 L h-1 generated a stable current density of approximately 12 A m-2 after 15 hours of operation, maintaining its stability for 75 hours. Furthermore, a chemical oxygen demand (COD) removal efficiency of 85% was achieved in an assembled continuous mode MFC. Considering that the proposed MFC was driven by sewage wastewater without the addition of external microorganisms, atmospheric oxygen was used as the electron acceptor through an air cathode mode, agricultural biomass waste was employed for the preparation of the anode, and a higher power density was achieved (2170.8 mW m-2) compared to reported values; it is evident that the proposed graphitized mango seed anode exhibits high efficiency for application in MFCs.
Collapse
Affiliation(s)
- Nasser A M Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University El-Minia 61516 Egypt +20862364420 +20862348005
| | - Shimaa Gamal
- Chemical Engineering Department, Faculty of Engineering, Minia University El-Minia 61516 Egypt +20862364420 +20862348005
| | - Zafar Khan Ghouri
- School of Computing, Engineering and Digital Technologies, Teesside University UK
| | - Olfat A Fadali
- Chemical Engineering Department, Faculty of Engineering, Minia University El-Minia 61516 Egypt +20862364420 +20862348005
| | - Omnia H Abdelraheem
- Sciences Engineering Department, Faculty of Engineering, Beni-Suef University Beni-Suef 62511 Egypt
| | - Mohamed Hashem
- Dental Health Department, College of Applied Medical Sciences, King Saud University Riyadh 11433 Saudi Arabia
| | - Hager M Moustafa
- Chemical Engineering Department, Faculty of Engineering, Minia University El-Minia 61516 Egypt +20862364420 +20862348005
| |
Collapse
|
11
|
Saha P, Shaheen Shah S, Ali M, Nasiruzzaman Shaikh M, Aziz MA, Saleh Ahammad AJ. Cobalt Oxide-Based Electrocatalysts with Bifunctionality for High-Performing Rechargeable Zinc-Air Batteries. CHEM REC 2024; 24:e202300216. [PMID: 37651034 DOI: 10.1002/tcr.202300216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
In recent years, the rapid growth in renewable energy applications has created a significant demand for efficient energy storage solutions on a large scale. Among the various options, rechargeable zinc-air batteries (ZABs) have emerged as an appealing choice in green energy storage technology due to their higher energy density, sustainability, and cost-effectiveness. Regarding this fact, a spotlight is shaded on air electrode for constructing high-performance ZABs. Cobalt oxide-based electrocatalysts on the air electrode have gained significant attention due to their extraordinary features. Particularly, exploration and integration of bifunctional behavior for energy storage has remarkably promoted both ORR and OER to facilitate the overall performance of the battery. The plot of this review is forwarded towards in-depth analysis of the latest advancements in electrocatalysts that are based on cobalt oxide and possess bifunctional properties along with an introduction of the fundamental aspects of ZABs, Additionally, the topic entails an examination of the morphological variations and mechanistic details mentioning about the synthesis processes. Finally, a direction is provided for future research endeavors through addressing the challenges and prospects in the advancement of next-generation bifunctional electrocatalysts to empower high-performing ZABs with bifunctional cobalt oxide.
Collapse
Affiliation(s)
- Protity Saha
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
- present address: Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka, 1216, Bnagladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
12
|
Yu Y, Liu H, Jin H, Chen J, Chen D. Metal-organic framework derived bio-anode enhances chlorobenzene removal and electricity generation: Special Ru 4+/Ru 3+-bridged intracellular electron transfer. WATER RESEARCH 2023; 245:120578. [PMID: 37688857 DOI: 10.1016/j.watres.2023.120578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Efficient removal of chlorinated organic contaminants using the microbial fuel cell (MFC) provides a promising strategy to alleviate water pollution and energy crisis. However, bio-degradation is challenged by poor biofilm formation and sluggish intracellular electron transfer, causing unsatisfactory electricity generation. To address those problems, a metal-organic framework derivative, Ru-porous TiO2 (Ru-PT) bio-anode has been artfully designed herein for chlorobenzene removal. The Ru-PT bio-anode not only formed a compact anodic biofilm due to the large specific surface area of PT, but more importantly, it introduced special pseudocapacitance-enhanced intracellular electron transfer by slowly implanting Ru4+/Ru3+ redox pair into bacteria. Such a Ru4+/Ru3+ implantation was then found to directionally induce the enrichment of a dual-functional genus (degrader & exoelectrogen), Pseudomonas, thereby enhancing the conversion of bio-refractory chlorophenols towards biodegradable carboxylic acids. These features allowed our MFC to have a resilient chlorobenzene removal and accompanied satisfactory electricity generation, with power density, coulombic efficiency, and turnover frequency reaching 662 mW m-2, 8.7%, and 386,622 s-1, which outcompeted those of other MFCs reported. Further, benefiting from the reversible pseudocapacitance, the Ru-PT bio-anode intriguingly functioned as an internal capacitor for electricity storage. This work provided important insights into cost-effective bio-anode development and offered an avenue for engineering MFC.
Collapse
Affiliation(s)
- Yang Yu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Haoyang Liu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Huachang Jin
- National and Local Joint Engineering Research Center, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jianmeng Chen
- College of Environmental and Resources Science, Zhejiang University of Science & Technology, Hangzhou 310032, China
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, College of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
13
|
Zhang P, Zhou X, Wang X, Li Z. Enhanced bidirectional extracellular electron transfer based on biointerface interaction of conjugated polymers-bacteria biohybrid system. Colloids Surf B Biointerfaces 2023; 228:113383. [PMID: 37295125 DOI: 10.1016/j.colsurfb.2023.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
The low bacteria loading capacity and low extracellular electron transfer (EET) efficiency are two major bottlenecks restricting the performance of the bioelectrochemical systems from practical applications. Herein, we demonstrated that conjugated polymers (CPs) could enhance the bidirectional EET efficiency through the intimate biointerface interactions of CPs-bacteria biohybrid system. Upon the formation of CPs/bacteria biohybrid, thick and intact CPs-biofilm formed which ensured close biointerface interactions between bacteria-to-bacteria and bacteria-to-electrode. CPs could promote the transmembrane electron transfer through intercalating into the cell membrane of bacteria. Utilizing the CPs-biofilm biohybrid electrode as anode in microbial fuel cell (MFC), the power generation and lifetime of MFC had greatly improved based on accelerated outward EET. Moreover, using the CPs-biofilm biohybrid electrode as cathode in electrochemical cell, the current density was increased due to the enhanced inward EET. Therefore, the intimate biointerface interaction between CPs and bacteria greatly enhanced the bidirectional EET, indicating that CPs exhibit promising applications in both MFC and microbial electrosynthesis.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Xin Zhou
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Zhengping Li
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing 100083, PR China.
| |
Collapse
|
14
|
Hirsch LO, Dubrovin IA, Gandu B, Emanuel E, Kjellerup BV, Ugur GE, Schechter A, Cahan R. Anode amendment with kaolin and activated carbon increases electricity generation in a microbial fuel cell. Bioelectrochemistry 2023; 153:108486. [PMID: 37302334 DOI: 10.1016/j.bioelechem.2023.108486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
The bacterial anode is a key factor for microbial fuel cell (MFC) performance. This study examined the potential of kaolin (fine clay) to enhance bacteria and conductive particle attachment to the anode. The bio-electroactivity of MFCs based on a carbon-cloth anode modified by immobilization with kaolin, activated carbon, and Geobacter sulfurreducens (kaolin-AC), with only kaolin (kaolin), and a bare carbon-cloth (control) anodes were examined. When the MFCs were fed with wastewater, the MFCs based on the kaolin-AC, kaolin, and bare anodes produced a maximum voltage of 0.6 V, 0.4 V, and 0.25 V, respectively. The maximum power density obtained by the MFC based on the kaolin-AC anode was 1112 mW‧m-2 at a current density of 3.33 A‧m-2, 12% and 56% higher than the kaolin and the bare anodes, respectively. The highest Coulombic efficiency was obtained by the kaolin-AC anode (16%). The relative microbial diversity showed that Geobacter displayed the highest relative distribution of 64% in the biofilm of the kaolin-AC anode. This result proved the advantage of preserving the bacterial anode exoelectrogens using kaolin. To our knowledge, this is the first study evaluating kaolin as a natural adhesive for immobilizing exoelectrogenic bacteria to anode material in MFCs.
Collapse
Affiliation(s)
- Lea Ouaknin Hirsch
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| | | | - Bharath Gandu
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel; Department of Environmental Studies, University of Delhi, New Delhi 110007, India
| | - Efrat Emanuel
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel
| | - Birthe Veno Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, 1147 Glenn L Martin Hall, College Park, MD 20742, USA
| | - Gizem Elif Ugur
- Imaging and Chemical Analysis Laboratory, Montana State University, Montana 59715, USA
| | - Alex Schechter
- Department of Chemical Sciences, Ariel University, Ariel 40700, Israel
| | - Rivka Cahan
- Department of Chemical Engineering, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
15
|
Klein EM, Knoll MT, Gescher J. Microbe-Anode Interactions: Comparing the impact of genetic and material engineering approaches to improve the performance of microbial electrochemical systems (MES). Microb Biotechnol 2023; 16:1179-1202. [PMID: 36808480 PMCID: PMC10221544 DOI: 10.1111/1751-7915.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023] Open
Abstract
Microbial electrochemical systems (MESs) are a highly versatile platform technology with a particular focus on power or energy production. Often, they are used in combination with substrate conversion (e.g., wastewater treatment) and production of value-added compounds via electrode-assisted fermentation. This rapidly evolving field has seen great improvements both technically and biologically, but this interdisciplinarity sometimes hampers overseeing strategies to increase process efficiency. In this review, we first briefly summarize the terminology of the technology and outline the biological background that is essential for understanding and thus improving MES technology. Thereafter, recent research on improvements at the biofilm-electrode interface will be summarized and discussed, distinguishing between biotic and abiotic approaches. The two approaches are then compared, and resulting future directions are discussed. This mini-review therefore provides basic knowledge of MES technology and the underlying microbiology in general and reviews recent improvements at the bacteria-electrode interface.
Collapse
Affiliation(s)
- Edina M. Klein
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| | - Melanie T. Knoll
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| | - Johannes Gescher
- Institute of Technical MicrobiologyUniversity of Technology HamburgHamburgGermany
| |
Collapse
|
16
|
Li J, Han H, Chang Y, Wang B. The material-microorganism interface in microbial hybrid electrocatalysis systems. NANOSCALE 2023; 15:6009-6024. [PMID: 36912348 DOI: 10.1039/d3nr00742a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review presents a comprehensive summary of the material-microorganism interface in microbial hybrid electrocatalysis systems. Microbial hybrid electrocatalysis has been developed to combine the advantages of inorganic electrocatalysis and microbial catalysis. However, electron transfer at the interfaces between microorganisms and materials is a very critical issue that affects the efficiency of the system. Therefore, this review focuses on the electron transfer at the material-microorganism interface and the strategies for building efficient microorganism and material interfaces. We begin with a brief introduction of the electron transfer mechanism in both the bioanode and biocathode of bioelectrochemical systems to understand the material-microorganism interface. Next, we summarise the strategies for constructing efficient material-microorganism interfaces including material design and modification and bacterial engineering. We also discuss emerging studies on the bio-inorganic hybrid electrocatalysis system. Understanding the interface between electrode/active materials and the microorganisms, especially the electron transfer processes, could help to drive the evolution of material-microorganism hybrid electrocatalysis systems towards maturity.
Collapse
Affiliation(s)
- Jiyao Li
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hexing Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
17
|
Mejía-López M, Lastres O, Alemán-Ramirez J, Lobato-Peralta DR, Verde A, Gámez JM, de Paz PL, Verea L. Conductive Carbon-polymer Composite for Bioelectrodes and Electricity Generation in a Sedimentary Microbial Fuel Cell. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
18
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
19
|
Jiang YJ, Hui S, Jiang LP, Zhu JJ. Functional Nanomaterial-Modified Anodes in Microbial Fuel Cells: Advances and Perspectives. Chemistry 2023; 29:e202202002. [PMID: 36161734 DOI: 10.1002/chem.202202002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 01/05/2023]
Abstract
Microbial fuel cell (MFC) is a promising approach that could utilize microorganisms to oxidize biodegradable pollutants in wastewater and generate electrical power simultaneously. Introducing advanced anode nanomaterials is generally considered as an effective way to enhance MFC performance by increasing bacterial adhesion and facilitating extracellular electron transfer (EET). This review focuses on the key advances of recent anode modification materials, as well as the current understanding of the microbial EET process occurring at the bacteria-electrode interface. Based on the difference in combination mode of the exoelectrogens and nanomaterials, anode surface modification, hybrid biofilm construction and single-bacterial surface modification strategies are elucidated exhaustively. The inherent mechanisms may help to break through the performance output bottleneck of MFCs by rational design of EET-related nanomaterials, and lead to the widespread application of microbial electrochemical systems.
Collapse
Affiliation(s)
- Yu-Jing Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Su Hui
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
20
|
Ouzi ZA, Aber S, Nofouzi K, Khajeh RT, Rezaei A. Carbon paste/LDH/bacteria biohybrid for the modification of the anode electrode of a microbial fuel cell. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Influence of Nanomaterials and Other Factors on Biohydrogen Production Rates in Microbial Electrolysis Cells-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238594. [PMID: 36500687 PMCID: PMC9739545 DOI: 10.3390/molecules27238594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Microbial Electrolysis Cells (MECs) are one of the bioreactors that have been used to produce bio-hydrogen by biological methods. The objective of this comprehensive review is to study the effects of MEC configuration (single-chamber and double-chamber), electrode materials (anode and cathode), substrates (sodium acetate, glucose, glycerol, domestic wastewater and industrial wastewater), pH, temperature, applied voltage and nanomaterials at maximum bio-hydrogen production rates (Bio-HPR). The obtained results were summarized based on the use of nanomaterials as electrodes, substrates, pH, temperature, applied voltage, Bio-HPR, columbic efficiency (CE) and cathode bio-hydrogen recovery (C Bio-HR). At the end of this review, future challenges for improving bio-hydrogen production in the MEC are also discussed.
Collapse
|
22
|
Yang C, Xiao N, Yang S, Huang JJ. Micro response mechanism of mini MFC sensor performance to temperature and its applicability to actual wastewater. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Recent Progress and Design Principles for Rechargeable Lithium Organic Batteries. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Liang D, He W, Li C, Liu G, Li Z, Wang F, Yu Y, Feng Y. Electron-pool promotes interfacial electron transfer efficiency between pyrogenic carbon and anodic microbes. BIORESOURCE TECHNOLOGY 2022; 366:128177. [PMID: 36283670 DOI: 10.1016/j.biortech.2022.128177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Relying on surface functional groups and graphitized structure, pyrogenic carbon (PC) was reported to facilitate microbial extracellular electron transfer (EET), which plays a crucial role in diverse biogeochemical reactions. However, little is known about the role of electrical capacitance on EET between microbes and PCs. Here, PCs were obtained from fermented steam bread after carbonization at different temperatures from 700 °C to 1100 °C. PC-900 exhibited the lowest charge transfer resistance and highest electrical capacitance, ascribed to combined effects of graphitic structure and hierarchical porous structure. The interfacial EET was further investigated by enriching electroactive biofilms on PC surface. Faster interfacial EET was demonstrated in PC-900. Maximum power density was proportional to electrical capacitance rather than conductivity. PC-900 enriched the most Geobacter sp., which was positively correlated with electrical capacitance according to the distance-based redundancy analysis. Electrical capacitance was suggested to act as electron pool to facilitate interfacial EET efficiency.
Collapse
Affiliation(s)
- Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China.
| | - Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Fei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yanling Yu
- School of Chemistry & Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| |
Collapse
|
25
|
Abd-Elrahman NK, Al-Harbi N, Basfer NM, Al-Hadeethi Y, Umar A, Akbar S. Applications of Nanomaterials in Microbial Fuel Cells: A Review. Molecules 2022; 27:7483. [PMID: 36364309 PMCID: PMC9655766 DOI: 10.3390/molecules27217483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/02/2023] Open
Abstract
Microbial fuel cells (MFCs) are an environmentally friendly technology and a source of renewable energy. It is used to generate electrical energy from organic waste using bacteria, which is an effective technology in wastewater treatment. The anode and the cathode electrodes and proton exchange membranes (PEM) are important components affecting the performance and operation of MFC. Conventional materials used in the manufacture of electrodes and membranes are insufficient to improve the efficiency of MFC. The use of nanomaterials in the manufacture of the anode had a prominent effect in improving the performance in terms of increasing the surface area, increasing the transfer of electrons from the anode to the cathode, biocompatibility, and biofilm formation and improving the oxidation reactions of organic waste using bacteria. The use of nanomaterials in the manufacture of the cathode also showed the improvement of cathode reactions or oxygen reduction reactions (ORR). The PEM has a prominent role in separating the anode and the cathode in the MFC, transferring protons from the anode chamber to the cathode chamber while preventing the transfer of oxygen. Nanomaterials have been used in the manufacture of membrane components, which led to improving the chemical and physical properties of the membranes and increasing the transfer rates of protons, thus improving the performance and efficiency of MFC in generating electrical energy and improving wastewater treatment.
Collapse
Affiliation(s)
| | - Nuha Al-Harbi
- Department of Physics, Umm AL-Qura University, Makkah 24382, Saudi Arabia
| | - Noor M. Basfer
- Department of Physics, Umm AL-Qura University, Makkah 24382, Saudi Arabia
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Zhao X, Yang J, Deng W, Tan Y, Xie Q. Construction of a high power-density microbial fuel cell based on lipopolysaccharide-lectin interactions and its application for detecting heavy metal toxicity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Boosting bioelectricity generation in microbial fuel cells via biomimetic Fe-N-S-C nanozymes. Biosens Bioelectron 2022; 220:114895. [DOI: 10.1016/j.bios.2022.114895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
28
|
Liu C, Li Y, Zhuang J, Xiang Z, Jiang W, He S, Xiao H. Conductive Hydrogels Based on Industrial Lignin: Opportunities and Challenges. Polymers (Basel) 2022; 14:polym14183739. [PMID: 36145882 PMCID: PMC9501220 DOI: 10.3390/polym14183739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The development of green materials, especially the preparation of high-performance conductive hydrogels from biodegradable biomass materials, is of great importance and has received worldwide attention. As an aromatic polymer found in many natural biomass resources, lignin has the advantage of being renewable, biodegradable, non-toxic, widely available, and inexpensive. The unique physicochemical properties of lignin, such as the presence of hydroxyl, carboxyl, and sulfonate groups, make it promising for use in composite conductive hydrogels. In this review, the source, structure, and reaction characteristics of industrial lignin are provided. Description of the preparation method (physical and chemical strategies) of lignin-based conductive hydrogel is elaborated along with their several important properties, such as electrical conductivity, mechanical properties, and porous structure. Furthermore, we provide insights into the latest research advances in industrial lignin conductive hydrogels, including biosensors, strain sensors, flexible energy storage devices, and other emerging applications. Finally, the prospects and challenges for the development of lignin-conductive hydrogels are presented.
Collapse
Affiliation(s)
- Chao Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
- Correspondence: (C.L.); (S.H.)
| | - Yu Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jingshun Zhuang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhouyang Xiang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weikun Jiang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
- Correspondence: (C.L.); (S.H.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
29
|
Roy AS, Sharma A, Thapa BS, Pandit S, Lahiri D, Nag M, Sarkar T, Pati S, Ray RR, Shariati MA, Wilairatana P, Mubarak MS. Microbiomics for enhancing electron transfer in an electrochemical system. Front Microbiol 2022; 13:868220. [PMID: 35966693 PMCID: PMC9372394 DOI: 10.3389/fmicb.2022.868220] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized.
Collapse
Affiliation(s)
- Ayush Singha Roy
- Amity Institute of Biotechnology, Amity University, Mumbai, Maharashtra, India
| | - Aparna Sharma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Bhim Sen Thapa
- Department of Biological Sciences, WEHR Life Sciences, Marquette University, Milwaukee, WI, United States
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- *Correspondence: Soumya Pandit,
| | - Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, WB, India
| | - Tanmay Sarkar
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Siddhartha Pati
- NatNov Bioscience Private Ltd., Balasore, India
- Association for Biodiversity Conservation and Research Balasore (ABC), Balasore, India
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Haringhata, WB, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Polrat Wilairatana,
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman, Jordan
- Mohammad S. Mubarak,
| |
Collapse
|
30
|
Atomic modulation of Fe-Co pentlandite coupled with nitrogen-doped carbon sphere for boosting oxygen catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63932-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Radinger H, Trouillet V, Bauer F, Scheiba F. Work Function Describes the Electrocatalytic Activity of Graphite for Vanadium Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hannes Radinger
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Vanessa Trouillet
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Felix Bauer
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Frieder Scheiba
- Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
32
|
Boosting microfluidic microbial fuel cells performance via investigating electron transfer mechanisms, metal-based electrodes, and magnetic field effect. Sci Rep 2022; 12:7417. [PMID: 35523838 PMCID: PMC9076923 DOI: 10.1038/s41598-022-11472-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
The presented paper fundamentally investigates the influence of different electron transfer mechanisms, various metal-based electrodes, and a static magnetic field on the overall performance of microfluidic microbial fuel cells (MFCs) for the first time to improve the generated bioelectricity. To do so, as the anode of microfluidic MFCs, zinc, aluminum, tin, copper, and nickel were thoroughly investigated. Two types of bacteria, Escherichia coli and Shewanella oneidensis MR-1, were used as biocatalysts to compare the different electron transfer mechanisms. Interaction between the anode and microorganisms was assessed. Finally, the potential of applying a static magnetic field to maximize the generated power was evaluated. For zinc anode, the maximum open circuit potential, current density, and power density of 1.39 V, 138,181 mA m-2 and 35,294 mW m-2 were obtained, respectively. The produced current density is at least 445% better than the values obtained in previously published studies so far. The microfluidic MFCs were successfully used to power ultraviolet light-emitting diodes (UV-LEDs) for medical and clinical applications to elucidate their application as micro-sized power generators for implantable medical devices.
Collapse
|
33
|
Li J, Song B, Yao C, Zhang Z, Wang L, Zhang J. S-Doped NiFe2O4 Nanosheets Regulated Microbial Community of Suspension for Constructing High Electroactive Consortia. NANOMATERIALS 2022; 12:nano12091496. [PMID: 35564204 PMCID: PMC9103806 DOI: 10.3390/nano12091496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022]
Abstract
Iron-based nanomaterials (NMs) are increasingly used to promote extracellular electron transfer (EET) for energy production in bioelectrochemical systems (BESs). However, the composition and roles of planktonic bacteria in the solution regulated by iron-based NMs have rarely been taken into account. Herein, the changes of the microbial community in the solution by S-doped NiFe2O4 anodes have been demonstrated and used for constructing electroactive consortia on normal carbon cloth anodes, which could achieve the same level of electricity generation as NMs-mediated biofilm, as indicated by the significantly high voltage response (0.64 V) and power density (3.5 W m−2), whereas with different microbial diversity and connections. Network analysis showed that the introduction of iron-based NMs made Geobacter positively interact with f_Rhodocyclaceae, improving the competitiveness of the consortium (Geobacter and f_Rhodocyclaceae). Additionally, planktonic bacteria regulated by S-doped anode alone cannot hinder the stimulation of Geobacter by electricity and acetate, while the assistance of lining biofilm enhanced the cooperation of sulfur-oxidizing bacteria (SOB) and fermentative bacteria (FB), thus promoting the electroactivity of microbial consortia. This study reveals the effect of S-doped NiFe2O4 NMs on the network of microbial communities in MFCs and highlights the importance of globality of microbial community, which provides a feasible solution for the safer and more economical environmental applications of NMs.
Collapse
Affiliation(s)
- Jiaxin Li
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chongchao Yao
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
| | - Zhihao Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- Correspondence: (L.W.); (J.Z.)
| | - Jing Zhang
- National Engineering Laboratory for VOCs Pollution Control Material and Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; (J.L.); (C.Y.); (Z.Z.)
- Correspondence: (L.W.); (J.Z.)
| |
Collapse
|
34
|
Zerrouki A, Kameche M, Ait Amer A, Tayeb A, Moussaoui D, Innocent C. Platinum nanoparticles embedded into polyaniline on carbon cloth: improvement of oxygen reduction at cathode of microbial fuel cell used for conversion of medicinal plant wastes into bio-energy. ENVIRONMENTAL TECHNOLOGY 2022; 43:1359-1369. [PMID: 32975495 DOI: 10.1080/09593330.2020.1829088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
A microbial fuel cell is a biological electrochemical system that extracts electrons stored in organic matter by oxidation using catalytic properties of microorganisms at bioanode. The major problem in such device, is however limited power production due to slow kinetic of oxygen reduction at cathode. It is worthwhile to develop new materials that fulfil these requirements. The polymerization of aniline onto carbon cloth for effective electrodeposition of platinum nanoparticles has been carried out by chronoamperometry and cyclic voltammetry. Three materials were thus elaborated, namely pristine carbon cloth, carbon cloth modified with platinum and carbon cloth modified by polymerization of aniline for immobilization of Pt-nanoparticles. The FTIR spectroscopy analysis revealed characteristic band located in 1720-1650 cm-1, attributed to imine function, main component in skeleton of polymer PANI chain. The modified materials have been utilized as cathode in cell inoculated with medicinal plant wastes for improvement of oxygen reduction. Modified cathode with CC-PANI-Pt proved higher performances in all respects: increase of cell voltage from 338 to 765 mV and power density from 862 to 1510 mW/m2 and abatement of COD of microbial inoculum leachate to 88%. Another feature of cell with modified cathode CC-PANI-Pt, was the enormous electric charge density harvested upon oxidation of 1 mL of acetate 7.62 C/cm2 compared to that of cell with pristine CC cathode 0.54 C/cm2. Nevertheless, coulombic efficiency for conversion of medicinal plant wastes into bioenergy was relatively lower 9%, making in evidence that elaborated electrochemical device was rather efficient and benificial environmentally than energetically.
Collapse
Affiliation(s)
- Aicha Zerrouki
- Laboratory of Chemistry and Electrochemistry of Metallic Complexes, University of Sciences and Technology of Oran - Mohamed Boudiaf Oran, Algeria
| | - Mostefa Kameche
- Laboratoiry of Physico-Chemistry of Materials, Catalysis and Environnement, University of Sciences and Technology of Oran - Mohamed Boudiaf Oran, Algeria
| | - Ahcene Ait Amer
- Laboratory of Chemistry and Electrochemistry of Metallic Complexes, University of Sciences and Technology of Oran - Mohamed Boudiaf Oran, Algeria
| | - Ahlem Tayeb
- Laboratory of Chemistry and Electrochemistry of Metallic Complexes, University of Sciences and Technology of Oran - Mohamed Boudiaf Oran, Algeria
| | - Douniazeed Moussaoui
- Laboratory of Chemistry and Electrochemistry of Metallic Complexes, University of Sciences and Technology of Oran - Mohamed Boudiaf Oran, Algeria
| | - Christophe Innocent
- European Institute of Membranes, University of Montpellier, Montpellier, France
| |
Collapse
|
35
|
Abstract
Microbial Fuel Cell (MFC) is a bio-electrochemical system that generates electricity by anaerobic oxidation of substrates. An anode is the most critical component because the primary conversion of wastewater into electrons and protons takes place on the surface of the anode, where a biofilm is formed. This paper describes the essential properties of the anode and classifies its types according to the material used to make it. Anode material is responsible for the flow of electrons generated by the microorganism; hence biocompatibility and conductivity can considered to be the two most important properties. In this paper, the various modification strategies to improve the performance of anodes of MFC are explained through the review of researchers’ published work in this field. The shape and size of the anode turned out to be very significant as the microbial growth depends on the available surface area. The attachment of biofilm on the surface of an anode largely depends on the interfacial surface chemistry. Methods for improving MFC performance by altering the anode material, architecture, biocompatibility, and longevity are discussed with a future perspective giving special importance to the cost.
Collapse
|
36
|
Qiang F, Feng J, Wang H, Yu J, Shi J, Huang M, Shi Z, Liu S, Li P, Dong L. Oxygen Engineering Enables N-Doped Porous Carbon Nanofibers as Oxygen Reduction/Evolution Reaction Electrocatalysts for Flexible Zinc–Air Batteries. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fuqiang Qiang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianguang Feng
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jianhua Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhicheng Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shuai Liu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ping Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
37
|
Comparative Study of Different Production Methods of Activated Carbon Cathodic Electrodes in Single Chamber MFC Treating Municipal Landfill Leachate. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The treatment of real waste extracts with simultaneous energy production is currently under research. One method of addressing this dual task is using biochemical reactors named microbial fuel cells (MFCs). MFCs consist of a bioanode and a cathode where the oxygen reduction reaction (ORR) occurs. Cathodes are currently under optimization regarding the nature of their support, their catalytic efficiency and their configurations. In this work, we present facile preparation methods for the production of activated carbon ceramic-supported cathodic electrodes produced with three different techniques (wash-coat, brush-coat, and ultrasound-assisted deposition/infiltration). The produced cathodic electrodes were tested in a single-chamber MFC, filled with the concentrated liquid residue, after the reverse osmosis (RO-CLR) treatment of leachate from a municipal waste landfill, in order to exploit their electrochemical potential for simultaneous waste treatment and energy production. The electrode produced utilizing 20 kHz ultrasounds proved to be more effective in terms of energy harvesting (10.7 mW/g·L of leachate) and wastewater treatment (COD removal 85%). Internal resistances of the ultrasound-produced electrodes are lower, as compared to the other two methods, opening new exploitation pathways in the use of ultrasound as a means in producing electrodes for microbial fuel cells.
Collapse
|
38
|
Agrahari R, Bayar B, Abubackar HN, Giri BS, Rene ER, Rani R. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. CHEMOSPHERE 2022; 290:133184. [PMID: 34890618 DOI: 10.1016/j.chemosphere.2021.133184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are an emerging technology for converting organic waste into electricity, thus providing potential solution to energy crises along with eco-friendly wastewater treatment. The electrode properties and biocatalysts are the major factors affecting electricity production in MFC. The electrons generated during microbial metabolism are captured by the anode and transferred towards the cathode via an external circuit, causing the flow of electricity. This flow of electrons is greatly influenced by the electrode properties and thus, much effort has been made towards electrode modification to improve the MFC performance. Different semiconductors, nanostructured metal oxides and their composite materials have been used to modify the anode as they possess high specific surface area, good biocompatibility, chemical stability and conductive properties. The cathode materials have also been modified using metals like platinum and nano-composites for increasing the redox potential, electrical conductivity and surface area. Therefore, this paper reviews the recent developments in the modification of electrodes towards improving the power generation capacity of MFCs.
Collapse
Affiliation(s)
- Roma Agrahari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India
| | - Büşra Bayar
- Faculty of Sciences, University of A Coruña, E-15008, A Coruña, Spain
| | | | - Balendu Shekher Giri
- Aquatic Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, Uttar Pradesh, 226001, India
| | - Eldon R Rene
- Department of Water Supply Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest, 2601DA Delft 7, Delft, the Netherlands
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
39
|
Zhu Y, Feng Y, Zhang L, Wang N, Yang P, Liu J, He W. Economic affordable carbonized phenolic foam anode with controlled structure for microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151314. [PMID: 34756897 DOI: 10.1016/j.scitotenv.2021.151314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
In microbial fuel cells (MFCs), the anode electrode is a core structure as the catalytic area of exoelectrogens. The anode material for large-scale MFCs needs excellent bioelectrochemical performance and low fabrication costs. Herein, carbonized phenolic foam with controllable porous structures was developed as the bio-capacitor of MFCs. The proportion of sodium dodecylbenzene sulfonate (SDBS), which improved mixing and dissolution between the resin liquid and the foaming agent, was adjusted to form open pores on the foam film and skeletons, which promoted both the capacitance and biocompatibility of the anode. Within SDBS proportion from 0 to 1.2 wt%, the anode SPF-9 (0.9 wt%) obtained the best capacitance (37 ± 0.13 F g-1), electrochemical active surface area (87 ± 0.38 cm2) and hydrophilia (contact angle 79 ± 0.2°). The MFCs with SPF-9 obtained the highest power density of 3980 ± 178 mW m-2, while those of carbon-cloth anodes were 1600 ± 28 mW m-2. The biofilm of SPF-9 also demonstrated higher activity and obtained larger abundance of exoelectrogens (68 ± 0.38%). The increased capacitance and biocompatibility mainly resulted in the good performance of SPF-9. The carbonized phenolic foam anode material was worth considering for the future application of MFCs due to its superior electrochemical performance and large-quantity fabrication capability.
Collapse
Affiliation(s)
- Yujie Zhu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Lijuan Zhang
- School of Environmental and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, P.R. China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Pinpin Yang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
40
|
Ji B, Zhao Y, Yang Y, Tang C, Dai Y, Zhang X, Tai Y, Tao R, Ruan W. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152078. [PMID: 34863746 DOI: 10.1016/j.scitotenv.2021.152078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Constructed wetland-microbial fuel cell (CW-MFC) has exhibited the performance discrepancy between using granular activated carbon (GAC) and columnar activated carbon (CAC) as air-cathode materials. No doubt, this is linked with electrochemical performance and decontaminants characteristics in the CW-MFC system. To provide insight into this performance discrepancy, three CW-MFCs were designed with different carbon-material to construct varied shapes of air-cathodes. The results showed that the ring-shaped cathode filled with GAC yielded a highest voltage of 458 mV with maximum power density of 13.71 mW m-2 and >90% COD removal in the CW-MFC system. The electrochemical characteristics and the electron transport system activity (ETSA) are the driven force to bring the GAC a better electron transportation and oxygen reduction reaction (ORR). This will help elucidating underlying mechanisms of different activated carbon for air-cathode and thus promote its large application.
Collapse
Affiliation(s)
- Bin Ji
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China.
| | - Yang Yang
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China.
| | - Cheng Tang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yunyu Dai
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Xiaomeng Zhang
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Yiping Tai
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ran Tao
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Weifeng Ruan
- Department of Ecology, Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| |
Collapse
|
41
|
Li G, Li C, Li G, Yu D, Song Z, Wang H, Liu X, Liu H, Liu W. Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101518. [PMID: 34658130 DOI: 10.1002/smll.202101518] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Conductive hydrogels can be prepared by incorporating various conductive materials into polymeric network hydrogels. In recent years, conductive hydrogels have been developed and applied in the field of strain sensors owing to their unique properties, such as electrical conductivity, mechanical properties, self-healing, and anti-freezing properties. These remarkable properties allow conductive hydrogel-based strain sensors to show excellent performance for identifying external stimuli and detecting human body movement, even at subzero temperatures. This review summarizes the properties of conductive hydrogels and their application in the fabrication of strain sensors working in different modes. Finally, a brief prospectus for the development of conductive hydrogels in the future is provided.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Chenglong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Guodong Li
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan (iAIR), Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Wenxia Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, Shandong, 250353, China
| |
Collapse
|
42
|
Wu X, Xiao S, Long Y, Ma T, Shao W, Cao S, Xiang X, Ma L, Qiu L, Cheng C, Zhao C. Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design. SMALL 2022; 18:e2105831. [PMID: 35102688 DOI: 10.1002/smll.202105831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/23/2021] [Indexed: 02/05/2023]
Abstract
Currently, the development of advanced 2D nanomaterials has become an interdisciplinary subject with extensive studies due to their extraordinary physicochemical performances. Beyond graphene, the emerging 2D-material-derived electrocatalysts (2D-ECs) have aroused great attention as one of the best candidates for heterogeneous electrocatalysis. The tunable physicochemical compositions and characteristics of 2D-ECs enable rational structural engineering at the molecular/atomic levels to meet the requirements of different catalytic applications. Due to the lack of instructive and comprehensive reviews, here, the most recent advances in the nanostructure and catalytic center design and the corresponding structure-function relationships of emerging 2D-ECs are systematically summarized. First, the synthetic pathways and state-of-the-art strategies in the multifaceted structural engineering and catalytic center design of 2D-ECs to promote their electrocatalytic activities, such as size and thickness, phase and strain engineering, heterojunctions, heteroatom doping, and defect engineering, are emphasized. Then, the representative applications of 2D-ECs in electrocatalytic fields are depicted and summarized in detail. Finally, the current breakthroughs and primary challenges are highlighted and future directions to guide the perspectives for developing 2D-ECs as highly efficient electrocatalytic nanoplatforms are clarified. This review provides a comprehensive understanding to engineer 2D-ECs and may inspire many novel attempts and new catalytic applications across broad fields.
Collapse
Affiliation(s)
- Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Sutong Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yanping Long
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xi Xiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Li Qiu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China.,College of Biomedical Engineering, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.,College of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
43
|
Chen TW, Kalimuthu P, Veerakumar P, Lin KC, Chen SM, Ramachandran R, Mariyappan V, Chitra S. Recent Developments in Carbon-Based Nanocomposites for Fuel Cell Applications: A Review. Molecules 2022; 27:761. [PMID: 35164025 PMCID: PMC8915178 DOI: 10.3390/molecules27030761] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon-based nanocomposites have developed as the most promising and emerging materials in nanoscience and technology during the last several years. They are microscopic materials that range in size from 1 to 100 nanometers. They may be distinguished from bulk materials by their size, shape, increased surface-to-volume ratio, and unique physical and chemical characteristics. Carbon nanocomposite matrixes are often created by combining more than two distinct solid phase types. The nanocomposites that were constructed exhibit unique properties, such as significantly enhanced toughness, mechanical strength, and thermal/electrochemical conductivity. As a result of these advantages, nanocomposites have been used in a variety of applications, including catalysts, electrochemical sensors, biosensors, and energy storage devices, among others. This study focuses on the usage of several forms of carbon nanomaterials, such as carbon aerogels, carbon nanofibers, graphene, carbon nanotubes, and fullerenes, in the development of hydrogen fuel cells. These fuel cells have been successfully employed in numerous commercial sectors in recent years, notably in the car industry, due to their cost-effectiveness, eco-friendliness, and long-cyclic durability. Further; we discuss the principles, reaction mechanisms, and cyclic stability of the fuel cells and also new strategies and future challenges related to the development of viable fuel cells.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia;
| | - Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - King-Chuen Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan;
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bio-electrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan;
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidhya Nagar, T.P.K. Road, Madurai 625011, India
| | - Vinitha Mariyappan
- Electroanalysis and Bio-electrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan;
| | - Selvam Chitra
- Department of Chemistry, Alagappa Government Arts College, Karaikudi 630003, India;
| |
Collapse
|
44
|
Chen LF, Yu H, Zhang J, Qin HY. A short review of graphene in the microbial electrosynthesis of biochemicals from carbon dioxide. RSC Adv 2022; 12:22770-22782. [PMID: 36105988 PMCID: PMC9376761 DOI: 10.1039/d2ra02038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
Microbial electrosynthesis (MES) is a potential energy transformation technology for the reduction of the greenhouse gas carbon oxide (CO2) into commercial chemicals.
Collapse
Affiliation(s)
- L. F. Chen
- New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - H. Yu
- New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - J. Zhang
- New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - H. Y. Qin
- New Energy Materials Research Center, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
45
|
Gao X, Xie X, Sun K, Lei X, Hou T, Peng H, Ma G. Molten salt-assisted synthesis of special open-cell Fe, N co-doped porous carbon as an efficient electrocatalyst for zinc–air batteries. NEW J CHEM 2022. [DOI: 10.1039/d1nj04582b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe, N co-doped porous carbon (Fe–N–C) with open frame structure is prepared by molten salt-assisted pyrolysis strategy, which exhibits superior ORR performance and high specific capacity.
Collapse
Affiliation(s)
- Xiaoying Gao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xuan Xie
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Kanjun Sun
- College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Xiaofei Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tianyu Hou
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hui Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Guofu Ma
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
46
|
Yang N, Zhan G, Luo H, Xiong X, Li D. Integrated simultaneous nitrification/denitrification and comammox consortia as efficient biocatalysts enhance treatment of domestic wastewater in different up-flow bioelectrochemical reactors. BIORESOURCE TECHNOLOGY 2021; 339:125604. [PMID: 34303104 DOI: 10.1016/j.biortech.2021.125604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Simultaneous nitrification/denitrification (SND) can efficiently deplete NH4+ by using air-exposed biocathode (AEB) in bioelectrochemical reactors. However, the fluctuation of wastewater adversely affects the functional biofilms and therefore the performance. In this work, four up-flow bioelectrochemical reactors (UBERs) with some novel inocula were investigated to improve domestic wastewater treatment. The UBERs exhibited favorable removal of chemical oxygen demand (COD, 95%), NH4+-N (99%), and total nitrogen (TN, 99%). The maximum of current (2.7 A/m3), power density (136 mW/m3) and coulombic efficiency (20.5%) were obtained. Cyclic voltammetry analysis showed all the electrodes were of diversified catalytic reactions. Illumina pyrosequencing showed the predominant Ignavibacterium, Thauera, Nitrosomonas, Geminicoccus and Nitrospira were in all electrodes, contributing functional biofilms performing SND, comammox, and bioelectrochemical reactions. FAPROTAX analysis confirmed twenty-one functional groups with obvious changes related to chemoheterotrophy, respiration/oxidation/denitrification of nitrite and nitrate. Comfortingly, such novel diversified consortia in UBERs enhance the microbial metabolisms to treat domestic wastewater.
Collapse
Affiliation(s)
- Nuan Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Huiqin Luo
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xia Xiong
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs (BIOMA), Chengdu 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
47
|
Degradation of cephalexin by persulfate activated with magnetic loofah biochar: Performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118971] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Effect of Anolyte pH on the Performance of a Dual-Chambered Microbial Fuel Cell Operated with Different Biomass Feed. J CHEM-NY 2021. [DOI: 10.1155/2021/5465680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.
Collapse
|
49
|
Ratheesh A, Elias L, Aboobakar Shibli SM. Tuning of Electrode Surface for Enhanced Bacterial Adhesion and Reactions: A Review on Recent Approaches. ACS APPLIED BIO MATERIALS 2021; 4:5809-5838. [PMID: 35006924 DOI: 10.1021/acsabm.1c00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The study of bacterial adhesion and its consequences has great significance in different fields such as marine science, renewable energy sectors, soil and plant ecology, food industry, and the biomedical field. Generally, the adverse effects of microbial surface interactions have attained wide visibility. However, herein, we present distinct approaches to highlight the beneficial aspects of microbial surface interactions for various applications rather than deal with the conventional negative aspects or prevention strategies. The surface microbial reactions can be tuned for useful biochemical or bio-electrochemical applications, which are otherwise unattainable through conventional routes. In this context, the present review is a comprehensive approach to highlight the basic principles and signature parameters that are responsible for the useful microbial-electrode interactions. It also proposes various surface tuning strategies, which are useful for tuning the electrode characteristics particularly suitable for the enhanced bacterial adhesion and reactions. The tuning of surface characteristics of electrodes is discussed with a special reference to the Microbial Fuel Cell as an example.
Collapse
Affiliation(s)
- Anjana Ratheesh
- Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Liju Elias
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| | - Sheik Muhammadhu Aboobakar Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India.,Centre for Renewable Energy and Materials, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala 695 581, India
| |
Collapse
|
50
|
Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock. SUSTAINABILITY 2021. [DOI: 10.3390/su13168796] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon constraints, as well as the growing hazard of greenhouse gas emissions, have accelerated research into all possible renewable energy and fuel sources. Microbial electrolysis cells (MECs), a novel technology able to convert soluble organic matter into energy such as hydrogen gas, represent the most recent breakthrough. While research into energy recovery from wastewater using microbial electrolysis cells is fascinating and a carbon-neutral technology that is still mostly limited to lab-scale applications, much more work on improving the function of microbial electrolysis cells would be required to expand their use in many of these applications. The present limiting issues for effective scaling up of the manufacturing process include the high manufacturing costs of microbial electrolysis cells, their high internal resistance and methanogenesis, and membrane/cathode biofouling. This paper examines the evolution of microbial electrolysis cell technology in terms of hydrogen yield, operational aspects that impact total hydrogen output in optimization studies, and important information on the efficiency of the processes. Moreover, life-cycle assessment of MEC technology in comparison to other technologies has been discussed. According to the results, MEC is at technology readiness level (TRL) 5, which means that it is ready for industrial development, and, according to the techno-economics, it may be commercialized soon due to its carbon-neutral qualities.
Collapse
|