1
|
Mirgh D, Sonar S, Ghosh S, Adhikari MD, Subramaniyan V, Gorai S, Anand K. Landscape of exosomes to modified exosomes: a state of the art in cancer therapy. RSC Adv 2024; 14:30807-30829. [PMID: 39328877 PMCID: PMC11426072 DOI: 10.1039/d4ra04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants, mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes, exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also highlights exosomes based clinical trials and the challenges and future orientation of exosome research. We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic platforms for precision oncology.
Collapse
Affiliation(s)
- Divya Mirgh
- Vaccine and Immunotherapy Centre, Massachusetts General Hospital Boston USA
| | - Swarup Sonar
- Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu 602105 India
| | - Srestha Ghosh
- Department of Microbiology, Lady Brabourne College Kolkata West Bengal 700017 India
| | - Manab Deb Adhikari
- Department of Biotechnology, University of North Bengal Darjeeling West Bengal India
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University Bandar Sunway Subang Jaya Selangor 47500 Malaysia
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center Chicago IL USA
| | - Krishnan Anand
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Faculty of Health Sciences, University of the Free State Bloemfontein 9300 South Africa
| |
Collapse
|
2
|
Dong Y, Zhao J, Wu L, Chen Y. Cu(II)-induced magnetic resonance tuning and enhanced magnetic relaxation switching immunosensor for sensitive detection of chlorpyrifos and Salmonella. Food Chem 2024; 446:138847. [PMID: 38422644 DOI: 10.1016/j.foodchem.2024.138847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Magnetic relaxation switching (MRS) biosensors have been recognized as useful analytical tools for a range of targets; however, traditional MRS biosensors are limited by the "prozone effect", resulting in a narrow linear range and low sensitivity. Herein, we proposed a paramagnetic Cu2+-induced magnetic resonance tuning (MRET) strategy, based on which Cu2+ ions and magnetic nanoparticles (MNPs) were adopted to construct a Cu-MNP-mediated MRS (Cu-M-MRS) immunosensor with Cu2+ ions acting as a quencher and MNPs as an enhancer. An Fe3O4@polydopamine-secondary antibody conjugate was prepared and used to correlate the amount of Cu2+ ions to the target concentration through an immunoassay. Based on the immunoreaction, the Cu-M-MRS immunosensor enabled the sensitive detection of chlorpyrifos (0.05 ng/mL, a 77-fold enhancement in sensitivity compared with the traditional MRS immunosensor) and Salmonella (50 CFU/mL). The proposed MRET strategy effectively improved the sensitivity and accuracy of the MRS immunosensor, offering a promising and versatile platform for food safety detection.
Collapse
Affiliation(s)
- Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Junpeng Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
3
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
4
|
Wang M, Wang Y, Fu Q. Magneto-optical nanosystems for tumor multimodal imaging and therapy in-vivo. Mater Today Bio 2024; 26:101027. [PMID: 38525310 PMCID: PMC10959709 DOI: 10.1016/j.mtbio.2024.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Multimodal imaging, which combines the strengths of two or more imaging modalities to provide complementary anatomical and molecular information, has emerged as a robust technology for enhancing diagnostic sensitivity and accuracy, as well as improving treatment monitoring. Moreover, the application of multimodal imaging in guiding precision tumor treatment can prevent under- or over-treatment, thereby maximizing the benefits for tumor patients. In recent years, several intriguing magneto-optical nanosystems with both magnetic and optical properties have been developed, leading to significant breakthroughs in the field of multimodal imaging and image-guided tumor therapy. These advancements pave the way for precise tumor medicine. This review summarizes various types of magneto-optical nanosystems developed recently and describes their applications as probes for multimodal imaging and agents for image-guided therapeutic interventions. Finally, future research and development prospects of magneto-optical nanosystems are discussed along with an outlook on their further applications in the biomedical field.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Qingdao University, Jinan, 250014, China
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
5
|
Xu Z, Chen Y, Wang R, Chen M, Zhang J, Cheng Y, Yao B, Yao L, Xu J, Chen W. Preparation of size-tunable Fe 3O 4 magnetic nanoporous carbon composites by MOF pyrolysis regulation for magnetic resonance sensing of aflatoxin B 1 with excellent anti-matrix effect. Food Chem 2024; 430:137061. [PMID: 37562264 DOI: 10.1016/j.foodchem.2023.137061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Magnetic nanoporous materials represent a new emerging category of magnetic materials for construction of magnetic resonance sensors. In this study, we adopted the metal-organic framework materials, MIL-101(Fe), as the precursor to prepare series nanoporous-carbon-Fe3O4 (NPC-Fe3O4) composites. Results showed that Fe3O4 were uniformly distributed in MIL-101(Fe) and the size of MNP was precisely tuned at different pyrolysis temperatures, conferring the optimal NPC-Fe3O4-450 °C composite with dramatically improved T2 relaxivity. The NPC-Fe3O4-450 °C composite was modified with antibodies and antigens, respectively, for detection of aflatoxin B1 in various food samples with complicated matrix. Range from 0.010 ng mL-1 to 2.0 ng mL-1, extreme low detection limit of 5.0 pg mL-1, and satisfied recoveries were successfully achieved, indicating excellent anti-matrix effect. These findings offer a new dimension to engineer novel magnetic materials with improved relaxivity for simple and easy sensing of food hazards in complicated food matrix without any purification or separation procedures.
Collapse
Affiliation(s)
- Zhou Xu
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yanqiu Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Rong Wang
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Maolong Chen
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Jian Zhang
- College of Automotive and Mechanical Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| | - Bangben Yao
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, 230051, China
| | - Li Yao
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China; Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Chen
- Engineering Research Center of Bio-process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Zhang Q, Yin R, Guan G, Liu H, Song G. Renal clearable magnetic nanoparticles for magnetic resonance imaging and guided therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1929. [PMID: 37752407 DOI: 10.1002/wnan.1929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive, radiation-free imaging technique widely used for disease detection and therapeutic evaluation due to its infinite penetration depth. Magnetic nanoparticles (MNPs) have unique magnetic and physicochemical properties, making them ideal as contrast agents for MRI. However, the in vivo toxicity of MNPs, resulting from metal ion leakage and long-term accumulation in the reticuloendothelial system (RES), limits their clinical application. To overcome these challenges, there is considerable interest in the development of renal-clearable MNPs that can be completely cleared through the kidney, reducing retention time and potential toxic risks. In this review, we provide an overview of recent advancements in the development of renal-clearable MNPs for disease imaging and treatment. We discuss the factors influencing renal clearance, summarize the types of renal-clearable MNPs, their synthesis methods, and biomedical applications. This review aims to offer comprehensive information for the design and clinical translation of renal-clearable MNPs. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Qinpeng Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Rui Yin
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, China
| | - Guoqiang Guan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Huiyi Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Guosheng Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| |
Collapse
|
7
|
Wang J, Sun J, Khade RL, Chou T, An H, Zhang Y, Wang H. Liposome-Templated Green Synthesis of Mesoporous Metal Nanostructures with Universal Composition for Biomedical Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304880. [PMID: 37452439 PMCID: PMC10865450 DOI: 10.1002/smll.202304880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Porous noble metal nanoparticles have received particular attention recently for their unique optical, thermal, and catalytic functions in biomedicine. However, limited progress has been made to synthesize such porous metallic nanostructures with large mesopores (≥25 nm). Here, a green yet facile synthesis strategy using biocompatible liposomes as templates to mediate the formation of mesoporous metallic nanostructures in a controllable fashion is reported. Various monodispersed nanostructures with well-defined mesoporous shape and large mesopores (≈ 40 nm) are successfully synthesized from mono- (Au, Pd, and Pt), bi- (AuPd, AuPt, AuRh, PtRh, and PdPt), and tri-noble metals (AuPdRh, AuPtRh, and AuPdPt). Along with a successful demonstration of its effectiveness in synthesis of various mesoporous nanostructures, the possible mechanism of liposome-guided formation of such nanostructures via time sectioning of the synthesis process (monitoring time-resolved growth of mesoporous structures) and computational quantum molecular modeling (analyzing chemical interaction energy between metallic cations and liposomes at the enthalpy level) is also revealed. These mesoporous metallic nanostructures exhibit a strong photothermal effect in the near-infrared region, effective catalytic activities in hydrogen peroxide decomposition reaction, and high drug loading capacity. Thus, the liposome-templated method provides an inspiring and robust avenue to synthesize mesoporous noble metal-based nanostructures for versatile biomedical applications.
Collapse
Affiliation(s)
- Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Jingyu Sun
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey, 07030, USA
| |
Collapse
|
8
|
Xiao R, Zeng J, Li F, Ling D. Gold-semiconductor nanohybrids as advanced phototherapeutics. Nanomedicine (Lond) 2023; 18:1585-1606. [PMID: 37830425 DOI: 10.2217/nnm-2023-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Phototherapeutics is gaining momentum as a mainstream treatment for cancer, with gold-semiconductor nanocomposites showing promise as potent phototherapeutic agents due to their structural tunability, biocompatibility and functional diversity. Such nanohybrids possess plasmonic characteristics in the presence of gold and the catalytic nature of semiconductor units, as well as the unexpected physicochemical properties arising from the contact interface. This perspective provides an overview of the latest research on gold-semiconductor nanocomposites for photodynamic, photothermal and photocatalytic therapy. The relationship between the spatial configuration of these nanohybrids and their practical performance was explored to deliver comprehensive insights and guidance for the design and fabrication of novel composite nanoplatforms to enhance the efficiency of phototherapeutics, promoting the development of nanotechnology-based advanced biomedical applications.
Collapse
Affiliation(s)
- Ruixue Xiao
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jian Zeng
- Zhejiang Cancer Hospital, Hangzhou, 310022, PR China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry & Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
- World Laureates Association (WLA) Laboratories, Shanghai, 201203, PR China
| |
Collapse
|
9
|
Zhang C, Wang M, Zhang J, Zou B, Wang Y. Self-template synthesis of mesoporous and biodegradable Fe 3O 4 nanospheres as multifunctional nanoplatform for cancer therapy. Colloids Surf B Biointerfaces 2023; 229:113467. [PMID: 37515962 DOI: 10.1016/j.colsurfb.2023.113467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Superparamagnetic Fe3O4 nanospheres have demonstrated great potential as important components in nanomedicine for cancer imaging and therapy. One of the major obstacles that impedes their application is the slow degradation of ingested Fe3O4 nanospheres, which potentially causes long-term health risks. To tackle this issue, we proposed to fabricate Fe3O4 nanospheres with mesoporous structure via a simple self-template etching method. The mesoporous Fe3O4 nanospheres not only offered large specific surface area and weak-acidic responsive degradability, but also exhibited T2-weighted magnetic resonance contrast enhancement and magnetic targeting, which made them possible to serve as excellent cancer therapeutic nanoplatform. Both inorganic photothermal therapeutic Au nanoparticles and organic chemotherapeutic doxorubicin hydrochloride were demonstrated to be successfully loaded onto such kind of nanoplatform, and the hybrid nanomedicine demonstrated synergistic photothermal and chemotherapeutic activity for tumor elimination under near infrared irradiation and improved biodegradability in weak acidic tumor microenvironment. We believe that this study paved a simple way for designing multifunctional Fe3O4-based biodegradable nanomedicine.
Collapse
Affiliation(s)
- Chuanbin Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Meijian Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Jianan Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Bingfang Zou
- School of Physics and Electronics, Henan University, Kaifeng 475004, PR China.
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
10
|
Ma Q, Wang H, Nie Q, Xu S, Wang L. A trade-off between ligand coating and crystallinity of Gd-doped ultrasmall CeO 2 for improving relaxivity. Chem Commun (Camb) 2023. [PMID: 37466352 DOI: 10.1039/d3cc02095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
A Gd-doped ultrasmall CeO2 contrast agent was prepared with high longitudinal relaxivity (r1 = 10.1 mM-1 s-1, 7.0 T) through rationally regulating the crystallinity and surface coatings, providing a new paradigm for optimizing MRI performance. Moreover, responsive photoacoustic imaging (PAI) was established via tumor microenvironment-triggered oxidation, affording dual-modal imaging.
Collapse
Affiliation(s)
- Qian Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qiangqiang Nie
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
11
|
Arosio P, Orsini F, Brero F, Mariani M, Innocenti C, Sangregorio C, Lascialfari A. The effect of size, shape, coating and functionalization on nuclear relaxation properties in iron oxide core-shell nanoparticles: a brief review of the situation. Dalton Trans 2023; 52:3551-3562. [PMID: 36880505 DOI: 10.1039/d2dt03387a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In this perspective article, we present a short selection of some of the most significant case studies on magnetic nanoparticles for potential applications in nanomedicine, mainly magnetic resonance. For almost 10 years, our research activity focused on the comprehension of the physical mechanisms on the basis of the nuclear relaxation of magnetic nanoparticles in the presence of magnetic fields; taking advantage of the insights gathered over this time span, we report on the dependence of the relaxation behaviour on the chemico-physical properties of magnetic nanoparticles and discuss them in full detail. In particular, a critical review is carried out on the correlations between their efficiency as contrast agents in magnetic resonance imaging and the magnetic core of magnetic nanoparticles (mainly iron oxides), their size and shape, and the coating and solvent used for making them biocompatible and well dispersible in physiological media. Finally, the heuristic model proposed by Roch and coworkers is presented, as it was extensively adopted to describe most of the experimental data sets. The large amount of data analyzed allowed us to highlight both the advantages and limitations of the model.
Collapse
Affiliation(s)
- Paolo Arosio
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesco Orsini
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Francesca Brero
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Manuel Mariani
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Claudia Innocenti
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Sangregorio
- Dipartimento di Chimica, Università di Firenze and INSTM, 50019 Sesto Fiorentino (FI), Italy
- ICCOM-CNR, 50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Lascialfari
- Dipartimento di Fisica, INFN and INSTM RU, Università degli Studi di Pavia, 27100 Pavia, Italy
| |
Collapse
|
12
|
Zeng M, Guo D, Fernández-Varo G, Zhang X, Fu S, Ju S, Yang H, Liu X, Wang YC, Zeng Y, Casals G, Casals E. The Integration of Nanomedicine with Traditional Chinese Medicine: Drug Delivery of Natural Products and Other Opportunities. Mol Pharm 2023; 20:886-904. [PMID: 36563052 DOI: 10.1021/acs.molpharmaceut.2c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The integration of progressive technologies such as nanomedicine with the use of natural products from traditional medicine (TM) provides a unique opportunity for the longed-for harmonization between traditional and modern medicine. Although several actions have been initiated decades ago, a disparity of reasons including some misunderstandings between each other limits the possibilities of a truly complementation. Herein, we analyze some common challenges between nanomedicine and traditional Chinese medicine (TCM). These challenges, if solved in a consensual way, can give a boost to such harmonization. Nanomedicine is a recently born technology, while TCM has been used by the Chinese people for thousands of years. However, for these disciplines, the regulation and standardization of many of the protocols, especially related to the toxicity and safety, regulatory aspects, and manufacturing procedures, are under discussion. Besides, both TCM and nanomedicine still need to achieve a wider social acceptance. Herein, we first briefly discuss the strengths and weaknesses of TCM. This analysis serves to focus afterward on the aspects where TCM and nanomedicine can mutually help to bridge the existing gaps between TCM and Western modern medicine. As discussed, many of these challenges can be applied to TM in general. Finally, recent successful cases in scientific literature that merge TCM and nanomedicine are reviewed as examples of the benefits of this harmonization.
Collapse
Affiliation(s)
- Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongdong Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guillermo Fernández-Varo
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain.,Department of Biomedicine, University of Barcelona, 08007 Barcelona, Spain
| | - Xu Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital Central South University, Changsha 410011, China
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Huiling Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ya-Chao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha 410008, China.,First Clinical Department of Changsha Medical University, Changsha 410219, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
13
|
Wang J, Qu C, Shao X, Song G, Sun J, Shi D, Jia R, An H, Wang H. Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS. Bioact Mater 2023; 20:404-417. [PMID: 35784636 PMCID: PMC9218170 DOI: 10.1016/j.bioactmat.2022.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 02/09/2023] Open
Abstract
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Collapse
Affiliation(s)
- Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China.,Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Chang Qu
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Guoqiang Song
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| | - Donghong Shi
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China.,State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130, PR China
| | - Ran Jia
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States.,Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States.,Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
| |
Collapse
|
14
|
Yu CH, Betrehem UM, Ali N, Khan A, Ali F, Nawaz S, Sajid M, Yang Y, Chen T, Bilal M. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. CHEMOSPHERE 2022; 306:135656. [PMID: 35820475 DOI: 10.1016/j.chemosphere.2022.135656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Inorganic nanoparticles (NPs) have a tunable shape, size, surface morphology, and unique physical properties like catalytic, magnetic, electronic, and optical capabilities. Unlike inorganic nanomaterials, organic polymers exhibit excellent stability, biocompatibility, and processability with a tailored response to external stimuli, including pH, heat, light, and degradation properties. Nano-sized assemblies derived from inorganic and polymeric NPs are combined in a functionalized composite form to import high strength and synergistically promising features not reflected in their part as a single constituent. These new properties of polymer/inorganic functionalized materials have led to emerging applications in a variety of fields, such as environmental remediation, drug delivery, and imaging. This review spotlights recent advances in the design and construction of polymer/inorganic functionalized materials with improved attributes compared to single inorganic and polymeric materials for environmental sustainability. Following an introduction, a comprehensive review of the design and potential applications of polymer/inorganic materials for removing organic pollutants and heavy metals from wastewater is presented. We have offered valuable suggestions for piloting, and scaling-up polymer functionalized nanomaterials using simple concepts. This review is wrapped up with a discussion of perspectives on future research in the field.
Collapse
Affiliation(s)
- Chun-Hao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Uwase Marie Betrehem
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Tiantian Chen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
15
|
Schemberg J, Abbassi AE, Lindenbauer A, Chen LY, Grodrian A, Nakos X, Apte G, Khan N, Kraupner A, Nguyen TH, Gastrock G. Synthesis of Biocompatible Superparamagnetic Iron Oxide Nanoparticles (SPION) under Different Microfluidic Regimes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48011-48028. [PMID: 36223272 PMCID: PMC9615998 DOI: 10.1021/acsami.2c13156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have a great potential in both diagnostic and therapeutic applications as they provide contrast in magnetic resonance imaging techniques and allow magnetic hyperthermia and drug delivery. Though various types of SPION are commercially available, efforts to improve the quality of SPION are highly in demand. Here, we describe a strategy for optimization of SPION synthesis under microfluidics using the coprecipitation approach. Synthesis parameters such as temperature, pH, iron salt concentration, and coating materials were investigated in continuous and segmented flows. Continuous flow allowed synthesizing particles of a smaller size and higher stability than segmented flow, while both conditions improved the quality of particles compared to batch synthesis. The most stable particles were obtained at a synthesis condition of 6.5 M NH4OH base, iron salt (Fe2+/Fe3+) concentration ratio of 4.3/8.6, carboxymethyl dextran coating of 20 mg/mL, and temperature of 70 °C. The synthesized SPION exhibited a good efficiency in labeling of human platelets and did not impair cells. Our study under flow conditions provides an optimal protocol for the synthesis of better and biocompatible SPION that contributes to the development of nanoparticles for medical applications.
Collapse
Affiliation(s)
- Jörg Schemberg
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Abdelouahad El Abbassi
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Annerose Lindenbauer
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Li-Yu Chen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Department
of Infection Biology, Leibniz Institute
for Natural Product Research and Infection Biology, 07745Jena, Germany
| | - Andreas Grodrian
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Xenia Nakos
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| | - Gurunath Apte
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
of Nanotechnology (INT) and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76131Karlsruhe, Germany
| | - Nida Khan
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | | | - Thi-Huong Nguyen
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
- Institute
for Chemistry and Biotechnology, Faculty of Mathematics and Natural
Sciences, Technische Universität
Ilmenau, 98694Ilmenau, Germany
| | - Gunter Gastrock
- Institute
for Bioprocessing and Analytical Measurement Techniques (iba), 37308Heiligenstadt, Germany
| |
Collapse
|
16
|
Lim J, Kumari N, Mete TB, Kumar A, Lee IS. Magnetic-Plasmonic Multimodular Hollow Nanoreactors for Compartmentalized Orthogonal Tandem Catalysis. NANO LETTERS 2022; 22:6428-6434. [PMID: 35748753 DOI: 10.1021/acs.nanolett.2c01817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In tandem catalytic systems, controlling the reaction steps and side reactions is extremely challenging. Here, we demonstrate a nanoreactor platform comprising magnetic- and plasmonic-coupled catalytic modules that synchronizes reaction steps at unconnected neighboring reaction sites via decoupled nanolocalized energy harvested using distinct antennae reactors while minimizing the interconflicting effects. As was desired, the course of the reaction and product yields can be controlled by a convenient remote operation of alternating magnetic field (AMF) and near-infrared light (NIR). Following this strategy, a tandem reaction involving [Pd]-catalyzed Suzuki-Miyaura C-C cross-coupling and [Pt]-catalyzed aerobic alcohol oxidation enabled an excellent yield of cinnamaldehyde (ca. 95%) by overcoming the risk of side reactions. The customization scope for using different catalytic metals (Pt, Pd, Ru, and Rh) with in situ control over product release through remotely operable benign energy sources opens avenues for designing diverse catalytic schemes for targeted applications.
Collapse
Affiliation(s)
- Jongwon Lim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Trimbak B Mete
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
17
|
Le TT, Nguyen TNL, Nguyen HD, Phan THT, Pham HN, Le DG, Hoang TP, Nguyen TQH, Le TL, Tran LD. Multimodal Imaging Contrast Property of Nano Hybrid Fe
3
O
4
@Ag Fabricated by Seed‐Growth for Medicinal Diagnosis. ChemistrySelect 2022. [DOI: 10.1002/slct.202201374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- The Tam Le
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - Thi Ngoc Linh Nguyen
- Thai Nguyen University of Sciences Tan Thinh Ward Thai Nguyen City 250000 Vietnam
| | - Hoa Du Nguyen
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | | | - Hong Nam Pham
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| | - Duc Giang Le
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - Thanh Phong Hoang
- Department of Education and Training in Nghe An 67 Nguyen Thi Minh Khai Vinh City 460000 Vietnam
| | | | - Trong Lu Le
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| | - Lam Dai Tran
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| |
Collapse
|
18
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
19
|
Li Q, Liu L, Huo H, Su L, Wu Y, Lin H, Ge X, Mu J, Zhang X, Zheng L, Song J. Nanosized Janus AuNR-Pt Motor for Enhancing NIR-II Photoacoustic Imaging of Deep Tumor and Pt 2+ Ion-Based Chemotherapy. ACS NANO 2022; 16:7947-7960. [PMID: 35536639 DOI: 10.1021/acsnano.2c00732] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic micro/nanomotors have great potential in deep tissue imaging and in vivo drug delivery because of their active motion ability. However, applying nanomotors with a size less than 100 nm to in vivo imaging and therapy is one of the core changes in this field. Herein, a nanosized hydrogen peroxide (H2O2)-driven Janus gold nanorod-platinum (JAuNR-Pt) nanomotor is developed for enhancing the second near-infrared region (NIR-II) photoacoustic (PA) imaging of deep tissues of tumors and for effective tumor treatment. The JAuNR-Pt nanomotor is prepared by depositing platinum (Pt) on one end of a gold nanorod with varying proportions of Pt shell coverage, including 10%, 25%, 50%, 75%, and 100%. The JAuNR-Pt nanomotor with Pt shell coverage proportions of 50% exhibits the highest diffusion coefficient (De), and it can rapidly move in the presence of H2O2. The self-propulsion of JAuNR-Pt nanomotor enhances cellular uptake, accelerates lysosomal escape, and facilitates continuous release of cytotoxic Pt2+ ions to the nucleus, causing DNA damage and cell apoptosis. The JAuNR-Pt nanomotor presents deep penetration and enhanced accumulation in tumors as well as high tumor treatment effect. Therefore, this work displays deep tumor imaging and an excellent antitumor effect, providing an effective tool for accurate diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Luntao Liu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital, Handan, Hebei 056001, P. R. China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongxin Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007 P. R. China
| | - Xiaoguang Ge
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
20
|
Peng H, Wang D, Ma D, Zhou Y, Zhang J, Kang Y, Yue Q. Multifunctional Yolk-Shell Structured Magnetic Mesoporous Polydopamine/Carbon Microspheres for Photothermal Therapy and Heterogenous Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23888-23895. [PMID: 35549006 DOI: 10.1021/acsami.2c04689] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Yolk-shell structure with magnetic core, interior void and mesoporous polymer/carbon shell demonstrate potential applications in biocatalysis, magnetic biological separation, biomedicine, and magnetic resonance imaging due to their comprehensive benefits of magnetic and mesoporous shells. Herein, yolk-shell structured magnetic mesoporous polydopamine microspheres (Fe3O4@Void@mPDA) and the corresponding derivatives of carbon-based microspheres (Fe3O4@Void@mCN) are successfully fabricated through an interface assembly and selective etching approach. The obtained monodisperse Fe3O4@Void@mPDA microspheres consist of a magnetic core, a mesoporous polydopamine shell, and the large void formed between them, with perpendicular mesopores (5.2 nm), high surface area (303.3 m2g-1), and richness of functional groups. The Fe3O4@Void@mPDA microspheres show a remarkable inhibitory effect on tumor cells. Moreover, the Fe3O4@Void@mCN microspheres can immobilize ultrafine Au nanoparticles for hydrogenation of 4-nitrophenol with superb catalytic activity and excellent magnetic reusability.
Collapse
Affiliation(s)
- Hong Peng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Duan Wang
- Orthopedic Research Institution, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongsheng Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yu Zhou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiahao Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yijin Kang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
21
|
Zhao X, Guo K, Zhang K, Duan S, Chen M, Zhao N, Xu FJ. Orchestrated Yolk-Shell Nanohybrids Regulate Macrophage Polarization and Dendritic Cell Maturation for Oncotherapy with Augmented Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108263. [PMID: 35018679 DOI: 10.1002/adma.202108263] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The protumoral and immunosuppressive tumor microenvironments greatly limit the antitumor immune responses of nanoparticles for cancer immunotherapy. Here, the intrinsic immunomodulatory effects of orchestrated nanoparticles and their ability to simultaneously trigger tumor antigen release, thereby reversing immunosuppression and achieving potent antitumor immunity and augmented cancer therapy, are explored. By optimizing both the composition and morphology, a facile strategy is proposed to construct yolk-shell nanohybrids (Fe3 O4 @C/MnO2 -PGEA, FCMP). The intrinsic immunomodulatory effects of FCMP are utilized to reprogram macrophages to M1 phenotype and induce the maturation of dendritic cells. In addition, the chemical, magnetic, and optical properties of FCMP contribute to amplified immunogenic cell death induced by multiaugmented chemodynamic therapy (CDT) and synergistic tumor treatment. Taking advantage of the unique yolk-shell structure, accurate T1 -T2 dual-mode magnetic resonance imaging can be realized and CDT can be maximized through sufficient exposure of both the Fe3 O4 core and MnO2 shell. Potent antitumor effects are found to substantially inhibit the growth of both primary and distant tumors. Furthermore, the strategy can be extended to the synthesis of other yolk-shell nanohybrids with tailored properties. This work establishes a novel strategy for the fabrication of multifunctional nanoplatforms with yolk-shell structure for effective cancer therapy with immunomodulation-enhanced antitumor immunity.
Collapse
Affiliation(s)
- Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kangli Guo
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing Laboratory of Biomedical Materials, College of Materials Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
22
|
Dong J, Ma K, Pei Y, Pei Z. Core–shell metal–organic frameworks with pH/GSH dual-responsiveness for combined chemo–chemodynamic therapy. Chem Commun (Camb) 2022; 58:12341-12344. [DOI: 10.1039/d2cc04218e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel core-shell metal-organic framework (MOFs), Cu-MOF@SMON/DOX-HA, was fabricated for chemo-chemodynamic combined therapy to achieve efficient drug targeting delivery and induce cells ferroptosis.
Collapse
Affiliation(s)
- Junliang Dong
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Ke Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China
| |
Collapse
|
23
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
24
|
Nguyen HD, Le TT, Nguyen TNL, Phan THT, Ho DQ, Pham HN, Nguyen TV, Le TL, Tran LD. Molecular Imaging Contrast Properties of Fe
3
O
4
‐Au Hybrid Nanoparticles for Dual‐Mode MR/CT Imaging Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202102791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hoa Du Nguyen
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - The Tam Le
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - Thi Ngoc Linh Nguyen
- Thai Nguyen University of Sciences Tan Thinh Ward Thai Nguyen City 250000 Vietnam
| | | | - Dinh Quang Ho
- Vinh University, 182 Le Duan Vinh City 460000 Vietnam
| | - Hong Nam Pham
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| | - Thien Vuong Nguyen
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| | - Trong Lu Le
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| | - Lam Dai Tran
- Institute for Tropical Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road Hanoi 100000 Vietnam
| |
Collapse
|
25
|
Huang R, Zhang C, Bu Y, Li Z, Zheng X, Qiu S, Machuki JO, Zhang L, Yang Y, Guo K, Gao F. A multifunctional nano-therapeutic platform based on octahedral yolk-shell Au NR@CuS: Photothermal/photodynamic and targeted drug delivery tri-combined therapy for rheumatoid arthritis. Biomaterials 2021; 277:121088. [PMID: 34464824 DOI: 10.1016/j.biomaterials.2021.121088] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
Rheumatoid arthritis (RA) is a common chronic autoimmune disease that results from synovial hyperplasia. The hyperplasia of synovium directly degrades cartilage by secreting matrix-degrading enzymes and inducing cartilage degradation and even loss of joint function. In this study, a metal/semiconductor composite, octahedral copper sulfide shell, and gold nanorod core (Au NR@CuS) is designed for, photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy (CT) combination therapy for RA to remove hyperplasia of the synovium. Upon laser irradiation, the coupling of the local surface electromagnetic field improves the electromagnetic field of the Au NR core and the absorption of light of the CuS shell, whereby the photothermal effect is enhanced. Due to the Fenton-like reactions and the integration of Au NR and CuS semiconductor photocatalyst inhibits hole recombination and provides a reaction site for photocatalysis, which introduces additional •OH to photodynamics therapy. In addition, the large octahedral void space in Au NR@CuS NPs can be used for loading a high quantity of drugs for chemotherapy, and modified with vasoactive intestinal peptide and hyaluronic acid (HA) formation VIP-HA-Au NR@CuS NPs to target synovial cells in RA. Under combination therapy, VIP-HA-Au NR@CuS NPs were shown to effectively inhibit the synovial cells and the edema degree of the CIA mouse was alleviated apparently. Both in vitro and in vivo studies indicate that the VIP-HA-Au NR@CuS NPs can provide a potential possibility for the treatment of RA.
Collapse
Affiliation(s)
- Ruqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Caiyi Zhang
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, 221004, Xuzhou, China
| | - Yeyang Bu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Xin Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Shang Qiu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China
| | - Lijie Zhang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, 325027, Wenzhou, China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, 325027, Wenzhou, China
| | - Kaijin Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China; Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, China.
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
26
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
27
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
28
|
Zhang X, Wang S, Cheng G, Yu P, Chang J, Chen X. Cascade Drug-Release Strategy for Enhanced Anticancer Therapy. MATTER 2021; 4:26-53. [PMID: 33718863 PMCID: PMC7945719 DOI: 10.1016/j.matt.2020.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chemotherapy serves as one of the most effective approaches in numerous tumor treatments but also suffers from the limitations of low bioavailability and adverse side effects due to premature drug leakage. Therefore, it is crucial to realize accurate on-demand drug release for promoting the application of chemotherapeutic agents. To achieve this, stimuli-responsive nanomedicines that can be activated by delicately designed cascade reactions have been developed in recent years. In general, the nanomedicines are triggered by an internal or external stimulus, generating an intermediate stimulus at tumor site, which can intensify the differences between tumor and normal tissues; the drug release process is then further activated by the intermediate stimulus. In this review, the latest progress made in cascade reactions-driven drug-release modes, based on the intermediate stimuli of heat, hypoxia, and reactive oxygen species, is systematically summarized. The perspectives and challenges of cascade strategy for drug delivery are also discussed.
Collapse
Affiliation(s)
- Xu Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Sheng Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
- Correspondence: (S.W.), (J.C.), (X.C.)
| | - Guohui Cheng
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China
- Correspondence: (S.W.), (J.C.), (X.C.)
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Correspondence: (S.W.), (J.C.), (X.C.)
| |
Collapse
|
29
|
Biglione C, Glitscher EA, Arora S, Klemke B, Giulbudagian M, Laux P, Luch A, Bergueiro J, Calderón M. Galvanic Replacement as a Synthetic Tool for the Construction of Anisotropic Magnetoplasmonic Nanocomposites with Synergistic Phototransducing and Magnetic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56839-56849. [PMID: 33290035 DOI: 10.1021/acsami.0c18096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetoplasmonic nanomaterials, which combine light and magnetic field responsiveness in an advantageous manner, are attractive candidates for bio-nanoapplications. However, the synthetic access to such hybrid particles has been limited by the incompatibility of the iron- and gold-based lattices. In this work, we provide the first insights into a new synthetic strategy for developing magnetoplasmonic anisotropic nanocomposites with prominent phototransducing properties. In our approach, magnetic nanocubes based on an alloy of iron oxide, zinc, and silver were constructed. In a key second stage, the galvanic replacement of silver with gold atoms yielded satellite-like magnetoplasmonic anisotropic structures. Superior magnetic and photoconverting properties were observed for the novel magnetoplasmonic nanocomposites when compared with the pure parent structures. Moreover, the synergy between the magnetic and optical stimuli was examined, showing shape-dependent contributions in the magnetization experiments. More importantly, an excellent cell ablation capability upon laser irradiation was observed for the magnetoplasmonic nanocomposites compared to the pure magnetic or plasmonic controls. Further demonstration of these novel theragnostic agents as MRI contrast agents is also reported even during the light-irradiation event. Thus, the described particles showed promising properties for bioapplications emerging from the novel synthetic methodology.
Collapse
Affiliation(s)
- Catalina Biglione
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Emanuel A Glitscher
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Smriti Arora
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Bastian Klemke
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meiter Platz 1, 14109 Berlin, Germany
| | - Michael Giulbudagian
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Julian Bergueiro
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Marcelo Calderón
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
30
|
Brennan G, Bergamino S, Pescio M, Tofail SAM, Silien C. The Effects of a Varied Gold Shell Thickness on Iron Oxide Nanoparticle Cores in Magnetic Manipulation, T 1 and T 2 MRI Contrasting, and Magnetic Hyperthermia. NANOMATERIALS 2020; 10:nano10122424. [PMID: 33291591 PMCID: PMC7761797 DOI: 10.3390/nano10122424] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Fe3O4–Au core–shell magnetic-plasmonic nanoparticles are expected to combine both magnetic and light responsivity into a single nanosystem, facilitating combined optical and magnetic-based nanotheranostic (therapeutic and diagnostic) applications, for example, photothermal therapy in conjunction with magnetic resonance imaging (MRI) imaging. To date, the effects of a plasmonic gold shell on an iron oxide nanoparticle core in magnetic-based applications remains largely unexplored. For this study, we quantified the efficacy of magnetic iron oxide cores with various gold shell thicknesses in a number of popular magnetic-based nanotheranostic applications; these included magnetic sorting and targeting (quantifying magnetic manipulability and magnetophoresis), MRI contrasting (quantifying benchtop nuclear magnetic resonance (NMR)-based T1 and T2 relaxivity), and magnetic hyperthermia therapy (quantifying alternating magnetic-field heating). We observed a general decrease in magnetic response and efficacy with an increase of the gold shell thickness, and herein we discuss possible reasons for this reduction. The magnetophoresis speed of iron oxide nanoparticles coated with the thickest gold shell tested here (ca. 42 nm) was only ca. 1% of the non-coated bare magnetic nanoparticle, demonstrating reduced magnetic manipulability. The T1 relaxivity, r1, of the thick gold-shelled magnetic particle was ca. 22% of the purely magnetic counterpart, whereas the T2 relaxivity, r2, was 42%, indicating a reduced MRI contrasting. Lastly, the magnetic hyperthermia heating efficiency (intrinsic loss power parameter) was reduced to ca. 14% for the thickest gold shell. For all applications, the efficiency decayed exponentially with increased gold shell thickness; therefore, if the primary application of the nanostructure is magnetic-based, this work suggests that it is preferable to use a thinner gold shell or higher levels of stimuli to compensate for losses associated with the addition of the gold shell. Moreover, as thinner gold shells have better magnetic properties, have previously demonstrated superior optical properties, and are more economical than thick gold shells, it can be said that “less is more”.
Collapse
|
31
|
Massoumi B, Farnudiyan-Habibi A, Derakhshankhah H, Samadian H, Jahanban-Esfahlan R, Jaymand M. A novel multi-stimuli-responsive theranostic nanomedicine based on Fe 3O 4@Au nanoparticles against cancer. Drug Dev Ind Pharm 2020; 46:1832-1843. [PMID: 32897756 DOI: 10.1080/03639045.2020.1821052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A novel multi-stimuli-responsive theranostic nanomedicine was designed and fabricated by the conjugation of a thiol end-capped poly(N-isopropylacrylamide-block-acrylic acid) (HS-PNIPAAm-b-PAA) onto Fe3O4@Au nanoparticles (NPs) followed by physical loading of doxorubicin hydrochloride (Dox) as a general anticancer drug. For this purpose, Fe3O4@Au NPs were fabricated through small Au nanolayer grown on larger magnetic NPs. A HS-PNIPAAm-b-PAA was synthesized through an atom transfer radical polymerization (ATRP) approach, and then conjugated with as-synthesized Fe3O4@Au NPs by Au-S bonding. The Dox loading capacity of the synthesized Fe3O4@Au/Polymer theranostic NPs was calculated to be 81%. The theranostic nanomedicine exhibited excellent in vitro drug release behavior under pH and thermal stimuli. The anticancer activity evaluation using MTT assay (against MCF7 cells) revealed that the fabricated Fe3O4@Au/Polymer has high potential as theranostic nanomedicine for cancer therapy of solid tumors. This nanosystem can also applied in photothermal therapy, hyperthermia therapy, and their combination with chemotherapy due to presence of gold and Fe3O4 nanomaterials in its structure.
Collapse
Affiliation(s)
| | - Amir Farnudiyan-Habibi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Samadian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Ding X, Li D, Jiang J. Gold-based Inorganic Nanohybrids for Nanomedicine Applications. Theranostics 2020; 10:8061-8079. [PMID: 32724458 PMCID: PMC7381751 DOI: 10.7150/thno.42284] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Noble metal Au nanoparticles have attracted extensive interests in the past decades, due to their size and morphology dependent localized surface plasmon resonances. Their unique optical property, high chemical stability, good biocompatibility, and easy functionalization make them promising candidates for a variety of biomedical applications, including bioimaging, biosensing, and cancer therapy. With the intention of enhancing their optical response in the near infrared window and endowing them with additional magnetic properties, Au nanoparticles have been integrated with other functional nanomaterials that possess complementary attributes, such as copper chalcogenides and magnetic metal oxides. The as constructed hybrid nanostructures are expected to exhibit unconventional properties compared to their separate building units, due to nanoscale interactions between materials with different physicochemical properties, thus broadening the application scope and enhancing the overall performance of the hybrid nanostructures. In this review, we summarize some recent progresses in the design and synthesis of noble metal Au-based hybrid inorganic nanostructures for nanomedicine applications, and the potential and challenges for their clinical translations.
Collapse
|
33
|
Wang J, Sun J, Hu W, Wang Y, Chou T, Zhang B, Zhang Q, Ren L, Wang H. A Porous Au@Rh Bimetallic Core-Shell Nanostructure as an H 2 O 2 -Driven Oxygenerator to Alleviate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001862. [PMID: 32329171 PMCID: PMC7386557 DOI: 10.1002/adma.202001862] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 05/19/2023]
Abstract
In treatment of hypoxic tumors, oxygen-dependent photodynamic therapy (PDT) is considerably limited. Herein, a new bimetallic and biphasic Rh-based core-shell nanosystem (Au@Rh-ICG-CM) is developed to address tumor hypoxia while achieving high PDT efficacy. Such porous Au@Rh core-shell nanostructures are expected to exhibit catalase-like activity to efficiently catalyze oxygen generation from endogenous hydrogen peroxide in tumors. Coating Au@Rh nanostructures with tumor cell membrane (CM) enables tumor targeting via homologous binding. As a result of the large pores of Rh shells and the trapping ability of CM, the photosensitizer indocyanine green (ICG) is successfully loaded and retained in the cavity of Au@Rh-CM. Au@Rh-ICG-CM shows good biocompatibility, high tumor accumulation, and superior fluorescence and photoacoustic imaging properties. Both in vitro and in vivo results demonstrate that Au@Rh-ICG-CM is able to effectively convert endogenous hydrogen peroxide into oxygen and then elevate the production of tumor-toxic singlet oxygen to significantly enhance PDT. As noted, the mild photothermal effect of Au@Rh-ICG-CM also improves PDT efficacy. By integrating the superiorities of hypoxia regulation function, tumor accumulation capacity, bimodal imaging, and moderate photothermal effect into a single nanosystem, Au@Rh-ICG-CM can readily serve as a promising nanoplatform for enhanced cancer PDT.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Qiang Zhang
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
34
|
Yang Z, Li L, Jin AJ, Huang W, Chen X. Rational design of semiconducting polymer brushes as cancer theranostics. MATERIALS HORIZONS 2020; 7:1474-1494. [PMID: 33777400 PMCID: PMC7990392 DOI: 10.1039/d0mh00012d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photonic theranostics (PTs) generally contain optical agents for the optical sensing of biomolecules and therapeutic components for converting light into heat or chemical energy. Semiconducting polymer nanoparticles (SPNs) as advanced PTs possessing good biocompatibility, stable photophysical properties, and sensitive and tunable optical responses from the ultraviolet to near-infrared (NIR) II window (300-1700 nm) have recently aroused great interest. Although semiconducting polymers (SPs) with various building blocks have been synthesized and developed to meet the demands of biophotonic applications, most of the SPNs were made by a nanoprecipitation method that used amphiphilic surfactants to encapsulate SPs. Such binary SP micelles usually exhibit weakened photophysical properties of SPs and undergo dissociation in vivo. SP brushes (SPBs) are products of functional post-modification of SP backbones, which endows unique features to SPNs (e.g. enhanced optical properties and multiple chemical reaction sites for the conjunction of organic/inorganic imaging agents and therapeutics). Furthermore, the SPB-based SPNs can be highly stable due to supramolecular self-assembly and/or chemical crosslinking. In this review, we highlight the recent progress in the development of SPBs for advanced theranostics.
Collapse
Affiliation(s)
- Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ling Li
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Albert J. Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Huang
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
35
|
Maleki A, Shahbazi M, Alinezhad V, Santos HA. The Progress and Prospect of Zeolitic Imidazolate Frameworks in Cancer Therapy, Antibacterial Activity, and Biomineralization. Adv Healthc Mater 2020; 9:e2000248. [PMID: 32383250 DOI: 10.1002/adhm.202000248] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Indexed: 12/27/2022]
Abstract
The progressive development of zeolitic imidazolate frameworks (ZIFs), as a subfamily of metal-organic frameworks (MOFs), and their unique features, including tunable pore size, large surface area, high thermal stability, and biodegradability/biocompatibility, have made them attractive in the field of biomedicine, especially for drug delivery and biomineralization applications. The high porosity of ZIFs gives them the opportunity for encapsulating a high amount of therapeutic drugs, proteins, imaging cargos, or a combination of them to construct advanced multifunctional drug delivery systems (DDSs) with combined therapeutic and imaging capabilities. This review summarizes recent strategies on the design and fabrication of ZIF-based nansystems and their exploration in the biomedical field. First, recent developments for the adjustment of particle size, functionality, and morphology of ZIFs are discussed, which are important for achieving optimized therapeutic/theranostic nanosystems. Second, recent trends on the application of ZIF nanocarriers for the loading of diverse cargos, including anticancer medicines, antibiotic drugs, enzymes, proteins, photosensitizers, as well as imaging and photothermal agents, are investigated in order to understand how multifunctional DDSs can be designed based on the ZIF nanoparticles to treat different diseases, such as cancer and infection. Finally, prospects on the future research direction and applications of ZIF-based nanomedicines are discussed.
Collapse
Affiliation(s)
- Aziz Maleki
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical Sciences Zanjan 45139‐56184 Iran
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| | - Mohammad‐Ali Shahbazi
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical Sciences Zanjan 45139‐56184 Iran
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki Helsinki FI‐00014 Finland
| | - Vajiheh Alinezhad
- Department of Pharmaceutical NanotechnologySchool of PharmacyZanjan University of Medical Sciences Zanjan 45139‐56184 Iran
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki Helsinki FI‐00014 Finland
- Helsinki Institute of Life SciencesHiLIFEUniversity of Helsinki Helsinki FI‐00014 Finland
| |
Collapse
|
36
|
Niu H, Li J, Wang X, Qiang Z, Ren J. Au-Fe 3O 4 decorated polydopamine hollow nanoparticles as high performance catalysts with magnetic responsive properties. NANOTECHNOLOGY 2020; 31:215606. [PMID: 32031990 DOI: 10.1088/1361-6528/ab73ba] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrated a simple approach for fabricating Au-Fe3O4/PDA hollow nanoparticles as high-performance catalysts for water purification. The polydopamine (PDA) shell was in situ formed on the silica surface from self-polymerization, which acts as a medium support for coupling with metal ions (for Fe3O4 nanoparticle deposition) as well as a reducing agent and stabilizer for Au nanoparticle reduction and deposition. A step of simultaneous Fe3O4 nanoparticle deposition and silica core removal under alkaline conditions is first introduced in this study. This process significantly simplifies previous strategies which typically require the use of poisonous agents such as hydrogen fluoride or additional complicated post-treatment steps. Under optimized conditions, the Au-Fe3O4/PDA hollow nanoparticles show a high saturation magnetization of 18.8 emu g-1 and an excellent catalytic performance for the rapid reduction of p-nitrophenol with the reaction kinetic constant of 0.34 min-1. This catalyst can be easily recovered using a permanent magnet and recycled eight times with a high catalytic cycle stability. The strategy presented in this work provides a facile and versatile approach towards designing complicated Au-Fe3O4/PDA hollow nanostructures, which might have great potential for many applications within biological, energy, and environmental technologies.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda Maryland 20892 USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
38
|
Lin X, Song J, Chen X, Yang H. Ultrasound-Activated Sensitizers and Applications. Angew Chem Int Ed Engl 2020; 59:14212-14233. [PMID: 31267634 DOI: 10.1002/anie.201906823] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Modalities for photo-triggered anticancer therapy are usually limited by their low penetrative depth. Sonotheranostics especially sonodynamic therapy (SDT), which is different from photodynamic therapy (PDT) by the use of highly penetrating acoustic waves to activate a class of sound-responsive materials called sonosensitizers, has gained significant interest in recent years. The effect of SDT is closely related to the structural and physicochemical properties of the sonosensitizers, which has led to the development of new sound-activated materials as sonosensitizers for various biomedical applications. This Review provides a summary and discussion of the types of novel sonosensitizers developed in the last few years and outlines their specific designs and the potential challenges. The applications of sonosensitizers with various functions such as for imaging and drug delivery as well as in combination with other treatment modalities would provide new strategies for disease therapy.
Collapse
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
39
|
Wang J, Sun J, Wang Y, Chou T, Zhang Q, Zhang B, Ren L, Wang H. Gold Nanoframeworks with Mesopores for Raman-Photoacoustic Imaging and Photo-Chemo Tumor Therapy in the Second Near-Infrared Biowindow. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908825. [PMID: 34163312 PMCID: PMC8218930 DOI: 10.1002/adfm.201908825] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 05/20/2023]
Abstract
Gold-based nanostructures with tunable wavelength of localized surface plasmon resonance (LSPR) in the second near-infrared (NIR-II) biowindow receive increasing attention in phototheranostics. In view of limited progress on NIR-II gold nanostructures, a particular liposome template-guided route is explored to synthesize novel gold nanoframeworks (AuNFs) with large mesopores (≈40 nm) for multimodal imaging along with therapeutic robustness. The synthesized AuNFs exhibit strong absorbance in NIR-II region, affording their capacity of NIR-II photothermal therapy (PTT) and photoacoustic (PA) imaging for deep tumors. Functionalization of AuNFs with hyaluronic acid (HA) endows the targeting capacity for CD44-overexpressed tumor cells while gatekeeping doxorubicin (DOX) loaded into mesopores. Conjugation of Raman reporter 4-aminothiophenol (4-ATP) onto AuNFs yields a surface-enhanced Raman scattering (SERS) fingerprint for Raman spectroscopy/imaging. In vivo evaluation of HA-4-ATP-AuNFs-DOX on tumor-bearing xenografts demonstrates its high efficacy in eradication of solid tumors in NIR-II under PA-Raman dual image-guided photo-chemotherapy. Thus, current AuNFs offer versatile capabilities for phototheranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tsengming Chou
- Laboratory for Multiscale Imaging, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Qiang Zhang
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Lab of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, Fujian 361005, P. R. China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
40
|
He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu WG, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics 2020; 10:2453-2462. [PMID: 32194812 PMCID: PMC7052883 DOI: 10.7150/thno.42981] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Manganese-based nanomaterials have piqued great interest in cancer nanotheranostics, owing to their excellent physicochemical properties. Here we report a facile wet-chemical synthesis of size-controllable, biodegradable, and metastable γ-phase manganese sulfide nanotheranostics, which is employed for tumor pH-responsive traceable gas therapy primed chemodynamic therapy (CDT), using bovine serum albumin (BSA) as a biological template (The final product was denoted as MnS@BSA). The as-prepared MnS@BSA can be degraded in response to the mildly acidic tumor microenvironment, releasing hydrogen sulfide (H2S) for gas therapy and manganese ions for magnetic resonance imaging (MRI) and CDT. In vitro experiments validated the pH-responsiveness of MnS@BSA at pH 6.8 and both H2S gas and •OH radicals were detected during its degradation. In vivo experiments showed efficiently tumor turn-on T1-weighted MRI, significantly suppressed tumor growth and greatly prolonged survival of tumor-bearing mice following intravenous administration of MnS@BSA. Our findings indicated that MnS@BSA nanotheranostics hold great potential for traceable H2S gas therapy primed CDT of cancer.
Collapse
Affiliation(s)
- Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xialing Qin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chao Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Dawei Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Shan Lei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry and Molecular Biology, Shenzhen
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
41
|
Kong W, Wang Q, Deng G, Zhao H, Zhao L, Lu J, Liu X. Se@SiO2@Au-PEG/DOX NCs as a multifunctional theranostic agent efficiently protect normal cells from oxidative damage during photothermal therapy. Dalton Trans 2020; 49:2209-2217. [PMID: 32003374 DOI: 10.1039/c9dt04867g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multifunctional theranostic agent was exploited, which can efficiently prevent healthy cells from oxidative damage during photothermal therapy, thus solving the problem of hyperthermia therapy by introducing selenium.
Collapse
Affiliation(s)
- Wenyan Kong
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Qi Wang
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Guoying Deng
- Trauma Center
- Shanghai General Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
- China
| | - Hang Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Linjing Zhao
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Jie Lu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai
- China
| |
Collapse
|
42
|
Biologically Benign Multi-functional Mesoporous Silica Encapsulated Gold/Silver Nanorods for Anti-bacterial Applications by On-demand Release of Silver Ions. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3407-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Wang C, Fan W, Zhang Z, Wen Y, Xiong L, Chen X. Advanced Nanotechnology Leading the Way to Multimodal Imaging-Guided Precision Surgical Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904329. [PMID: 31538379 DOI: 10.1002/adma.201904329] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Surgical resection is the primary and most effective treatment for most patients with solid tumors. However, patients suffer from postoperative recurrence and metastasis. In the past years, emerging nanotechnology has led the way to minimally invasive, precision and intelligent oncological surgery after the rapid development of minimally invasive surgical technology. Advanced nanotechnology in the construction of nanomaterials (NMs) for precision imaging-guided surgery (IGS) as well as surgery-assisted synergistic therapy is summarized, thereby unlocking the advantages of nanotechnology in multimodal IGS-assisted precision synergistic cancer therapy. First, mechanisms and principles of NMs to surgical targets are briefly introduced. Multimodal imaging based on molecular imaging technologies provides a practical method to achieve intraoperative visualization with high resolution and deep tissue penetration. Moreover, multifunctional NMs synergize surgery with adjuvant therapy (e.g., chemotherapy, immunotherapy, phototherapy) to eliminate residual lesions. Finally, key issues in the development of ideal theranostic NMs associated with surgical applications and challenges of clinical transformation are discussed to push forward further development of NMs for multimodal IGS-assisted precision synergistic cancer therapy.
Collapse
Affiliation(s)
- Cong Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zijian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
44
|
Zhao Y, Ke W, Shao J, Zheng F, Liu H, Shi L. Rational Design of Multisite Trielement Ru-Ni-Fe Alloy Nanocatalysts with Efficient and Durable Catalytic Hydrogenation Performances. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41204-41214. [PMID: 31588721 DOI: 10.1021/acsami.9b10398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The co-decomposition of non-noble metals into Ru nanoparticles (NPs) would provide multiple active centers as well as synergistically alter the reaction pathway, enhancing the catalytic hydrogenation performance. Herein, a facile route for synthesizing trielement Ru-Ni-Fe alloy NPs was proposed. The catalytic hydrogenation performance of NPs was measured using p-nitrophenol as a model. The synergistic effect of these three elements (Ru, Ni, and Fe) and synergistic catalysis of multiple crystal faces greatly improved the catalytic hydrogenation performance of Ru44Ni28Fe28 alloy NPs. Ru with more vacant orbitals showed a strong coordination with BH4- for the generation of active H species. Ni played a major role in transporting electrons and active H species, increasing the accessibility of catalytically active sites. Fe could cooperate with BH4- to produce active H species and promote electrons transfer. Ru44Ni28Fe28 alloy NPs could be reused and applied for the fabrication of films at the oil-water (ethyl acetate-water) interface. The densely packed Ru44Ni28Fe28 NP films were good Raman substrates for monitoring the complete conversion of 4-nitrothiophenol into 4-aminothiophenol. The rational design of Ru44Ni28Fe28 will broaden the application range of Ru-based catalysts and provide new insights into the rational design of other multisite alloy catalysts.
Collapse
Affiliation(s)
- Yuan Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Wei Ke
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Juanjuan Shao
- College of Science and Technology , Hebei Agricultural University , Cangzhou , Hebei 061100 , China
| | - Fangjie Zheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Han Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Lixia Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
45
|
Shi X, Wang C, Ma Y, Liu H, Wu S, Shao Q, He Z, Guo L, Ding T, Guo Z. Template-free microwave-assisted synthesis of FeTi coordination complex yolk-shell microspheres for superior catalytic removal of arsenic and chemical degradation of methylene blue from polluted water. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Yang B, Liu Q, Yao X, Zhang D, Dai Z, Cui P, Zhang G, Zheng X, Yu D. FePt@MnO-Based Nanotheranostic Platform with Acidity-Triggered Dual-Ions Release for Enhanced MR Imaging-Guided Ferroptosis Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38395-38404. [PMID: 31554396 DOI: 10.1021/acsami.9b11353] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Reactive oxygen species (ROS)-based anticancer therapy methods were heavily dependent on specific tumor microenvironments such as acidity and excess hydrogen peroxide (H2O2). In this work, an acidity-sensitive nanotheranostic agent (FePt@MnO)@DSPE-PEG5000-FA (FMDF NPs) was successfully constructed for MR imaging guided ferroptosis chemodynamic therapy (FCDT) of cancer. The FMDF NPs could specifically target folic acid (FA) receptor-positive tumor cells (HeLa etc.) and induce ferroptosis efficiently by rapidly releasing active Fe2+ to catalyze intracellular H2O2 into ROS based on Fenton reaction. On the other hand, the Mn2+ could also be released due to acidity and further coordinate with GSH to enhance the longitudinal-transverse relaxivity (T1/T2-weighted MR imaging), which could obviously strengthen the contrast distinction between solid tumors and the surrounding tissue to accurately real-time monitor the tumor location. Furthermore, the in vivo anticancer study revealed that the growth of solid tumor models could be suppressed remarkably after treating with FMDF NPs and no obvious damage to other major organs. Therefore, the FMDF NPs were competent simultaneously as an enhanced imaging diagnosis contrast agent and efficient therapy agent for promoting more precise and effective treatment in the bionanomedicine field.
Collapse
Affiliation(s)
- Baochan Yang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , P. R. China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , P. R. China
| | - Xiuxiu Yao
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266590 , P. R. China
| | - Dongsheng Zhang
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China
| | - Zhichao Dai
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China
| | - Ping Cui
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China
| | - Gaorui Zhang
- Radiology Departments , Qilu Hospital of Shandong University , Jinan 250000 , P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China
| | - Dexin Yu
- Radiology Departments , Qilu Hospital of Shandong University , Jinan 250000 , P. R. China
| |
Collapse
|
47
|
Deng X, Liang S, Cai X, Huang S, Cheng Z, Shi Y, Pang M, Ma P, Lin J. Yolk-Shell Structured Au Nanostar@Metal-Organic Framework for Synergistic Chemo-photothermal Therapy in the Second Near-Infrared Window. NANO LETTERS 2019; 19:6772-6780. [PMID: 31496257 DOI: 10.1021/acs.nanolett.9b01716] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Light-sensitive yolk-shell nanoparticles (YSNs) as remote-controlled and stimuli-responsive theranostic platforms provide an attractive method for synergistic cancer therapy. Herein, a kind of novel stimuli-responsive multifunctional YSNs has been successfully constructed by integrating star-shaped gold (Au star) nanoparticles as the second near-infrared (NIR-II) photothermal yolks and biodegradable crystalline zeolitic imidazolate framework-8 (ZIF-8) as the shells. In this platform, a chemotherapeutic drug (doxorubicin hydrochloride, DOX) was encapsulated into the cavity, which can show the behavior of controlled release due to the degradation process of ZIF-8 in the mildly acidic tumor microenvironment. Upon the 1064 nm (NIR-II biowindow) laser irradiation, gold nanostar@ZIF-8 (Au@MOF) nanoparticles exhibited outstanding synergistic anticancer effect based on their photothermal and promoted cargo release properties. Moreover, the strong NIR region absorbance endows the Au@MOF of NIR thermal imaging and photoacoustic (PA) imaging properties. This work contributes to design a stimuli-responsive "all-in-one" nanocarrier that realizes bimodal imaging diagnosis and chemo-photothermal synergistic therapy.
Collapse
Affiliation(s)
- Xiaoran Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei 230026 , P.R. China
| | - Xuechao Cai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Shanshan Huang
- School of Chemistry and Pharmaceutical Engineering , Huanghuai University , Zhumadian 463000 , China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei 230026 , P.R. China
| | - Yanshu Shi
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P.R. China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei 230026 , P.R. China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei 230026 , P.R. China
| |
Collapse
|
48
|
Lin LS, Wang JF, Song J, Liu Y, Zhu G, Dai Y, Shen Z, Tian R, Song J, Wang Z, Tang W, Yu G, Zhou Z, Yang Z, Huang T, Niu G, Yang HH, Chen ZY, Chen X. Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy. Theranostics 2019; 9:7200-7209. [PMID: 31695762 PMCID: PMC6831298 DOI: 10.7150/thno.39831] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/04/2019] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS)-generating anticancer agents can act through two different mechanisms: (i) elevation of endogenous ROS production in mitochondria, or (ii) formation/delivery of exogenous ROS within cells. However, there is a lack of research on the development of ROS-generating nanosystems that combine endogenous and exogenous ROS to enhance oxidative stress-mediated cancer cell death. Methods: A ROS-generating agent based on polymer-modified zinc peroxide nanoparticles (ZnO2 NPs) was presented, which simultaneously delivered exogenous H2O2 and Zn2+ capable of amplifying endogenous ROS production for synergistic cancer therapy. Results: After internalization into tumor cells, ZnO2 NPs underwent decomposition in response to mild acidic pH, resulting in controlled release of H2O2 and Zn2+. Intriguingly, Zn2+ could increase the production of mitochondrial O2·- and H2O2 by inhibiting the electron transport chain, and thus exerted anticancer effect in a synergistic manner with the exogenously released H2O2 to promote cancer cell killing. Furthermore, ZnO2 NPs were doped with manganese via cation exchange, making them an activatable magnetic resonance imaging contrast agent. Conclusion: This study establishes a ZnO2-based theranostic nanoplatform which achieves enhanced oxidative damage to cancer cells by a two-pronged approach of combining endogenous and exogenous ROS.
Collapse
Affiliation(s)
- Li-Sen Lin
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Jun-Feng Wang
- Department of Ultrasound, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150076, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Justin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Tao Huang
- Department of Radiology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang 150076, China
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi-Yi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
49
|
Yang Z, Fan W, Zou J, Tang W, Li L, He L, Shen Z, Wang Z, Jacobson O, Aronova MA, Rong P, Song J, Wang W, Chen X. Precision Cancer Theranostic Platform by In Situ Polymerization in Perylene Diimide-Hybridized Hollow Mesoporous Organosilica Nanoparticles. J Am Chem Soc 2019; 141:14687-14698. [PMID: 31466436 DOI: 10.1021/jacs.9b06086] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phototheranostics refers to advanced photonics-mediated theranostic methods for cancer and includes imaging-guided photothermal/chemotherapy, photothermal/photodynamic therapy, and photodynamic/chemotherapy, which are expected to provide a paradigm of modern precision medicine. In this regard, various phototheranostic drug delivery systems with excellent photonic performance, controlled drug delivery/release, and precise photoimaging guidance have been developed. In this study, we reported a special "in situ framework growth" method to synthesize novel phototheranostic hollow mesoporous nanoparticles by ingenious hybridization of perylene diimide (PDI) within the framework of small-sized hollow mesoporous organosilica (HMO). The marriage of PDI and HMO endowed the phototheranostic silica nanoparticles (HMPDINs) with largely amplified fluorescence and photoacoustic signals, which can be used for enhanced fluorescence and photoacoustic imaging. The organosilica shell can be chemically chelated with isotope 64Cu for positron emission tomography imaging. Moreover, in situ polymer growth was introduced in the hollow structure of the HMPDINs to produce thermosensitive polymer (TP) in the cavity of HMPDINs to increase the loading capacity and prevent unexpected leakage of the hydrophobic drug SN38. Furthermore, the framework-hybridized PDI generated heat under near-infrared laser irradiation to trigger the deformation of TP for controlled drug release in the tumor region. The fabricated hybrid nanomedicine with organic-inorganic characteristic not only increases the cancer theranostic efficacy but also offers an attractive solution for designing powerful theranostic platforms.
Collapse
Affiliation(s)
- Zhen Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital , Central South University , Changsha , Hunan 410083 , China
| | | | | | | | | | | | | | | | | | | | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital , Central South University , Changsha , Hunan 410083 , China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province , Changsha , Hunan 410000 , China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry , Fuzhou University , Fuzhou 350108 , China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital , Central South University , Changsha , Hunan 410083 , China.,Engineering and Technology Research Center for Xenotransplantation of Hunan Province , Changsha , Hunan 410000 , China
| | | |
Collapse
|
50
|
Su H, Hurd Price CA, Jing L, Tian Q, Liu J, Qian K. Janus particles: design, preparation, and biomedical applications. Mater Today Bio 2019; 4:100033. [PMID: 32159157 PMCID: PMC7061647 DOI: 10.1016/j.mtbio.2019.100033] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Janus particles with an anisotropic structure have emerged as a focus of intensive research due to their diverse composition and surface chemistry, which show excellent performance in various fields, especially in biomedical applications. In this review, we briefly introduce the structures, composition, and properties of Janus particles, followed by a summary of their biomedical applications. Then we review several design strategies including morphology, particle size, composition, and surface modification, that will affect the performance of Janus particles. Subsequently, we explore the synthetic methodologies of Janus particles, with an emphasis on the most prevalent synthetic method (surface nucleation and seeded growth). Following this, we highlight Janus particles in biomedical applications, especially in drug delivery, bio-imaging, and bio-sensing. Finally, we will consider the current challenges the materials face with perspectives in the future directions.
Collapse
Affiliation(s)
- H. Su
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - C.-A. Hurd Price
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - L. Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Q. Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - J. Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, University of Surrey Guildford, Surrey, GU2 7XH, United Kingdom
| | - K. Qian
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|