1
|
Liang Q, Xiang H, Xin M, Li R, Zhou Y, Pang D, Jia X, Yuan H, Chao D. A wearable iontophoresis enables dual-responsive transdermal delivery for atopic dermatitis treatment. J Colloid Interface Sci 2025; 678:908-919. [PMID: 39222610 DOI: 10.1016/j.jcis.2024.08.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Atopic dermatitis is a chronic, inflammation skin disease that remains a major public health challenge. The current drug-loading hydrogel dressings offer numerous benefits with enhanced loading capacity and a moist-rich environment. However, their development is still limited by the accessibility of a suitable driven source outside the clinical environment for precise control over transdermal delivery kinetics. Here, we prepare a sulfonated poly(3,4-ethylenedioxythiophene) (PEDOT) polyelectrolyte hydrogel drug reservoir that responds to different stimuli-both endogenous cue (body temperature) and exogenous cue (electrical stimulation), for wearable on-demand transdermal delivery with enhanced efficacy. Functioned as both the drug reservoir and cathode in a Zn battery-powered iontophoresis patch, this dual-responsive hydrogel achieves high drug release efficiency (68.4 %) at 37 °C. Evaluation in hairless mouse skin demonstrates the efficacy of this technology by facilitating transdermal transport of 12.2 μg cm-2 dexamethasone phosphate when discharged with a 103 Ω external resistor for 3 h. The Zn battery-driven iontophoresis results in an effective treatment of atopic dermatitis, displaying reductions in epidermal thickness, mast cell infiltration inhibition, and a decrease in IgE levels. This work provides a new treatment modality for chronic epidermal diseases that require precise drug delivery in a non-invasive way.
Collapse
Affiliation(s)
- Qin Liang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongyong Xiang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Meiying Xin
- Jilin Provincial Key Laboratory of Pediatric Neurology, Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Runan Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun 130062, China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Lee HK, Yang YJ, Koirala GR, Oh S, Kim TI. From lab to wearables: Innovations in multifunctional hydrogel chemistry for next-generation bioelectronic devices. Biomaterials 2024; 310:122632. [PMID: 38824848 DOI: 10.1016/j.biomaterials.2024.122632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
Functional hydrogels have emerged as foundational materials in diagnostics, therapy, and wearable devices, owing to their high stretchability, flexibility, sensing, and outstanding biocompatibility. Their significance stems from their resemblance to biological tissue and their exceptional versatility in electrical, mechanical, and biofunctional engineering, positioning themselves as a bridge between living organisms and electronic systems, paving the way for the development of highly compatible, efficient, and stable interfaces. These multifaceted capability revolutionizes the essence of hydrogel-based wearable devices, distinguishing them from conventional biomedical devices in real-world practical applications. In this comprehensive review, we first discuss the fundamental chemistry of hydrogels, elucidating their distinct properties and functionalities. Subsequently, we examine the applications of these bioelectronics within the human body, unveiling their transformative potential in diagnostics, therapy, and human-machine interfaces (HMI) in real wearable bioelectronics. This exploration serves as a scientific compass for researchers navigating the interdisciplinary landscape of chemistry, materials science, and bioelectronics.
Collapse
Affiliation(s)
- Hin Kiu Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Ji Yang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Gyan Raj Koirala
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suyoun Oh
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Zhao J, Gong S, Mu Y, Jia X, Zhou Y, Tian Y, Chao D. Wearable dual-drug controlled release patch for psoriasis treatment. J Colloid Interface Sci 2024; 669:835-843. [PMID: 38749222 DOI: 10.1016/j.jcis.2024.05.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
Wearable drug delivery systems (DDS) have made significant advancements in the field of precision medicine, offering precise regulation of drug dosage, location, and timing. The performance qualities that wearable DDS has always strived for are simplicity, efficiency, and intelligence. This paper proposes a wearable dual-drug synergistic release patch. The patch is powered by a built-in magnesium battery and utilizes a hydrogel containing viologen-based hyperbranched polyamidoamine as both a cathode material and an integrated drug reservoir. This design allows for the simultaneous release of both dexamethasone and tannic acid, overcoming the limitations of monotherapy and ensuring effective synergy for on-demand therapy. In a mouse model with praziquimod-induced psoriasis, the patch demonstrated therapeutic efficacy at a low voltage. The inflammatory skin returned to normal after 5 days with the on-demand release of dual drugs. This work provides a promising treatment option considering its straightforward construction and the therapeutic advantages of dual-drug synergy.
Collapse
Affiliation(s)
- Jiaxin Zhao
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Shengen Gong
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yueming Mu
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yan Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
| | - Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun 130021, China.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Han J, Choi YJ, Kang SK. Synergistic Strategies of Biomolecular Transport Technologies in Transdermal Healthcare Systems. Adv Healthc Mater 2024:e2401753. [PMID: 39087395 DOI: 10.1002/adhm.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.
Collapse
Affiliation(s)
- Jieun Han
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yi-Jeong Choi
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program of Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Nano Systems Institute SOFT Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
5
|
Sirolli S, Guarnera D, Ricotti L, Cafarelli A. Triggerable Patches for Medical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310110. [PMID: 38860756 DOI: 10.1002/adma.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Medical patches have garnered increasing attention in recent decades for several diagnostic and therapeutic applications. Advancements in material science, manufacturing technologies, and bioengineering have significantly widened their functionalities, rendering them highly versatile platforms for wearable and implantable applications. Of particular interest are triggerable patches designed for drug delivery and tissue regeneration purposes, whose action can be controlled by an external signal. Stimuli-responsive patches are particularly appealing as they may enable a high level of temporal and spatial control over the therapy, allowing high therapeutic precision and the possibility to adjust the treatment according to specific clinical and personal needs. This review aims to provide a comprehensive overview of the existing extensive literature on triggerable patches, emphasizing their potential for diverse applications and highlighting the strengths and weaknesses of different triggering stimuli. Additionally, the current open challenges related to the design and use of efficient triggerable patches, such as tuning their mechanical and adhesive properties, ensuring an acceptable trade-off between smartness and biocompatibility, endowing them with portability and autonomy, accurately controlling their responsiveness to the triggering stimulus and maximizing their therapeutic efficacy, are reviewed.
Collapse
Affiliation(s)
- Sofia Sirolli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
6
|
Wang Z, Xiao M, Li Z, Wang X, Li F, Yang H, Chen Y, Zhu Z. Microneedle Patches-Integrated Transdermal Bioelectronics for Minimally Invasive Disease Theranostics. Adv Healthc Mater 2024; 13:e2303921. [PMID: 38341619 DOI: 10.1002/adhm.202303921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Wearable epidermal electronics with non- or minimally-invasive characteristics can collect, transduce, communicate, and interact with accessible physicochemical health indicators on the skin. However, due to the stratum corneum layer, rich information about body health is buried under the skin stratum corneum layer, for example, in the skin interstitial fluid. Microneedle patches are typically designed with arrays of special microsized needles of length within 1000 µm. Such characteristics potentially enable the access and sample of biomolecules under the skin or give therapeutical treatment painlessly and transdermally. Integrating microneedle patches with various electronics allows highly efficient transdermal bioelectronics, showing their great promise for biomedical and healthcare applications. This comprehensive review summarizes and highlights the recent progress on integrated transdermal bioelectronics based on microneedle patches. The design criteria and state-of-the-art fabrication techniques for such devices are initially discussed. Next, devices with different functions, including but not limited to health monitoring, drug delivery, and therapeutical treatment, are highlighted in detail. Finally, key issues associated with current technologies and future opportunities are elaborated to sort out the state of recent research, point out potential bottlenecks, and provide future research directions.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Fangjie Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Huayuan Yang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- Health Industry Innovation Center, Xin-Huangpu Joint Innovation Institute of Chinese Medicine, 81 Xiangxue Middle Avenue, Huangpu District, Guangzhou, Guangdong Province, 510799, China
| |
Collapse
|
7
|
Song H, Wang L, Wu J, Liu J, Liu C, Guo J, Fang L. A strong, silk protein-inspired tissue adhesive with an enhanced drug release mechanism for transdermal drug delivery. Acta Biomater 2024; 181:133-145. [PMID: 38641185 DOI: 10.1016/j.actbio.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
In transdermal drug delivery system (TDDS) patches, achieving prolonged adhesion, high drug loading, and rapid drug release simultaneously presented a significant challenge. In this study, a PHT-SP-Cu2+ adhesive was synthesized using polyethylene glycol (PEG), hexamethylene diisocyanate (HDI), trimethylolpropane (TMP), and silk protein (SP) as functional monomers which were combined with Cu2+ to improve the adhesion, drug loading, and drug release of the patch. The structure of the adhesion chains and the formation of Cu2+-p-π conjugated network in PHT-SP-Cu2+ were characterized and elucidated using different characterization methods including FT-IR, 13C NMR, XPS, SEM imaging and thermodynamic evaluation. The formulation of pressure-sensitive adhesive (PSA) was optimized through comprehensive research on adhesion, mechanics, rheology, and surface energy. The formulation of 3 wt.% SP and 3 wt.% Cu2+ provided superior adhesion properties compared to commercial standards. Subsequently, the peel strength of PHT-SP-Cu2+ was 7.6 times higher than that of the commercially available adhesive DURO-TAK® 87-4098 in the porcine skin peel test. The adhesion test on human skin confirmed that PHT-SP-Cu2+ could adhere to the human body for more than six days. Moreover, the drug loading, in vitro release test and skin permeation test were investigated using ketoprofen as a model drug, and the results showed that PHT-SP-Cu2+ had the efficacy of improving drug compatibility, promoting drug release and enhancing skin permeation as a TDDS. Among them, the drug loading of PHT-SP-Cu2+ was increased by 6.25-fold compared with PHT, and in the in vivo pharmacokinetic analysis, the AUC was similarly increased by 19.22-fold. The mechanism of α-helix facilitated drug release was demonstrated by Flori-Hawkins interaction parameters, molecular dynamics simulations and FT-IR. Biosafety evaluations highlighted the superior skin cytocompatibility and safety of PHT-SP-Cu2+ for transdermal applications. These results would contribute to the development of TDDS patch adhesives with outstanding adhesion, drug loading and release efficiency. STATEMENT OF SIGNIFICANCE: A new adhesive, PHT-SP-Cu2+, was created for transdermal drug delivery patches. Polyethylene glycol, hexamethylene diisocyanate, trimethylolpropane, silk protein, and Cu2+ were used in synthesis. Characterization techniques confirmed the structure and Cu2+-p-π conjugated networks. Optimal formulation included 3 wt.% SP and 3 wt.% Cu2+, exhibiting superior adhesion. PHT-SP-Cu2+ showed 7.6 times higher peel strength than DURO-TAK® 87-4098 on porcine skin and adhered to human skin for over six days. It demonstrated a 6.25-fold increase in drug loading compared to PHT, with 19.22-fold higher AUC in vivo studies. α-helix facilitated drug release, proven by various analyses. PHT-SP-Cu2+ showed excellent cytocompatibility and safety for transdermal applications. This study contributes to developing efficient TDDS patches.
Collapse
Affiliation(s)
- Haoyuan Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Liuyang Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jiaxu Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jianpeng Guo
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Nain A, Chakraborty S, Barman SR, Gavit P, Indrakumar S, Agrawal A, Lin ZH, Chatterjee K. Progress in the development of piezoelectric biomaterials for tissue remodeling. Biomaterials 2024; 307:122528. [PMID: 38522326 DOI: 10.1016/j.biomaterials.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Piezoelectric biomaterials have demonstrated significant potential in the past few decades to heal damaged tissue and restore cellular functionalities. Herein, we discuss the role of bioelectricity in tissue remodeling and explore ways to mimic such tissue-like properties in synthetic biomaterials. In the past decade, biomedical engineers have adopted emerging functional biomaterials-based tissue engineering approaches using innovative bioelectronic stimulation protocols based on dynamic stimuli to direct cellular activation, proliferation, and differentiation on engineered biomaterial constructs. The primary focus of this review is to discuss the concepts of piezoelectric energy harvesting, piezoelectric materials, and their application in soft (skin and neural) and hard (dental and bone) tissue regeneration. While discussing the prospective applications as an engineered tissue, an important distinction has been made between piezoceramics, piezopolymers, and their composites. The superiority of piezopolymers over piezoceramics to circumvent issues such as stiffness mismatch, biocompatibility, and biodegradability are highlighted. We aim to provide a comprehensive review of the field and identify opportunities for the future to develop clinically relevant and state-of-the-art biomaterials for personalized and remote health care.
Collapse
Affiliation(s)
- Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | - Srishti Chakraborty
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Snigdha Roy Barman
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Pratik Gavit
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sushma Indrakumar
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Akhilesh Agrawal
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipe, 10617, Taiwan.
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
9
|
Vazquez R, Motovilova E, Winkler SA. Stretchable Sensor Materials Applicable to Radiofrequency Coil Design in Magnetic Resonance Imaging: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:3390. [PMID: 38894182 PMCID: PMC11174967 DOI: 10.3390/s24113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics.
Collapse
Affiliation(s)
- Rigoberto Vazquez
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Simone Angela Winkler
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 10065, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
10
|
Scattolin T, Tonon G, Botter E, Canale VC, Hasanzadeh M, Cuscela DM, Buschini A, Zarepour A, Khosravi A, Cordani M, Rizzolio F, Zarrabi A. Synergistic applications of cyclodextrin-based systems and metal-organic frameworks in transdermal drug delivery for skin cancer therapy. J Mater Chem B 2024; 12:3807-3839. [PMID: 38529820 DOI: 10.1039/d4tb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Denise Maria Cuscela
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
11
|
Hu Q, Du Y, Bai Y, Xing D, Lang S, Li K, Li X, Nie Y, Liu G. Sprayable Zwitterionic Antibacterial Hydrogel With High Mechanical Resilience and Robust Adhesion for Joint Wound Treatment. Macromol Rapid Commun 2024; 45:e2300683. [PMID: 38237945 DOI: 10.1002/marc.202300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB-PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15-38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing.
Collapse
Affiliation(s)
- Qinsheng Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedic Surgery, Yaan People's Hospital, Yaan, 625000, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dandan Xing
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinyun Li
- Dazhou Hospital of Integrated Traditional Chinese and Western Medicine, Dazhou, Sichuan, 635000, China
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Fan P, Fan H, Wang S. From emerging modalities to advanced applications of hydrogel piezoelectrics based on chitosan, gelatin and related biological macromolecules: A review. Int J Biol Macromol 2024; 262:129691. [PMID: 38272406 DOI: 10.1016/j.ijbiomac.2024.129691] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
The rapid development of functional materials and manufacturing technologies is fostering advances in piezoelectric materials (PEMs). PEMs can convert mechanical energy into electrical energy. Unlike traditional power sources, which need to be replaced and are inconvenient to carry, PEMs have extensive potential applications in smart wearable and implantable devices. However, the application of conventional PEMs is limited by their poor flexibility, low ductility, and susceptibility to fatigue failure. Incorporating hydrogels, which are flexible, stretchable, and self-healing, providing a way to overcome these limitations of PEMs. Hydrogel-based piezoelectric materials (H-PEMs) not only resolve the shortcomings of traditional PEMs but also provide biocompatibility and more promising application potential. This paper summarizes the working principle of H-PEMs. Recent advances in the use of H-PEMs as sensors and in vitro energy harvesting devices for smart wearable devices are described in detail, with emphasis on application scenarios in human body like fingers, wrists, ankles, and feet. In addition, the recent progress of H-PEMs in implantable medical devices, especially the potential applications in human body parts such as bones, skin, and heart, are also elaborated. In addition, challenges and potential improvements in H-PEMs are discussed.
Collapse
Affiliation(s)
- Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Hengwei Fan
- Department of Hepatic Surgery Dept I, the Eastern Hepatobiliary Surgery Hospital, Navy Medical University, No. 225 Changhai Road, Shanghai 200438, PR China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, PR China.
| |
Collapse
|
13
|
Lee DH, Lim S, Kwak SS, Kim J. Advancements in Skin-Mediated Drug Delivery: Mechanisms, Techniques, and Applications. Adv Healthc Mater 2024; 13:e2302375. [PMID: 38009520 PMCID: PMC11468599 DOI: 10.1002/adhm.202302375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Indexed: 11/29/2023]
Abstract
Skin-mediated drug delivery methods currently are receiving significant attention as a promising approach for the enhanced delivery of drugs through the skin. Skin-mediated drug delivery offers the potential to overcome the limitations of traditional drug delivery methods, including oral administration and intravenous injection. The challenges associated with drug permeation through layers of skin, which act as a major barrier, are explored, and strategies to overcome these limitations are discussed in detail. This review categorizes skin-mediated drug delivery methods based on the means of increasing drug permeation, and it provides a comprehensive overview of the mechanisms and techniques associated with these methods. In addition, recent advancements in the application of skin-mediated drug delivery are presented. The review also outlines the limitations of ongoing research and suggests future perspectives of studies regarding the skin-mediated delivery of drugs.
Collapse
Affiliation(s)
- Dong Ha Lee
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sunyoung Lim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sung Soo Kwak
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Joohee Kim
- Center for Bionics of Biomedical Research DivisionKorea Institute of Science and TechnologySeoul02792Republic of Korea
| |
Collapse
|
14
|
Song H, Cai Y, Nan L, Liu J, Wang J, Wang X, Liu C, Guo J, Fang L. A Rhamnose-PEG-Modified Dendritic Polymer for Long-Term Efficient Transdermal Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9799-9815. [PMID: 38380628 DOI: 10.1021/acsami.3c17363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
This study introduces a dendronized pressure-sensitive adhesive, TMPE@Rha, addressing Food and Drug Administration (FDA) concerns about traditional pressure-sensitive adhesives (PSAs) in transdermal drug delivery systems. The unique formulation, composed of rhamnose, trihydroxypropane, and poly(ethylene glycol), significantly enhances cohesion and tissue adhesion. Leveraging rhamnose improves intermolecular interactions and surface chain mobility, boosting tissue adhesion. Compared to acrylic pressure-sensitive adhesive 87-DT-4098, TMPE@Rha shows substantial advantages, with up to 5 to 6 times higher peel strength on porcine and wood substrates. Importantly, it maintains strong human skin adhesion beyond 7 days without the typical "dark ring" phenomenon. When loaded with diclofenac, the adhesive exhibits 3.12 times greater peeling strength than commercial alternatives, sustaining human adhesion for up to 6 days. Rigorous analyses confirm rhamnose's role in increasing interaction strength. In vitro studies and microscopy demonstrate the polymer's ability to enhance drug loading and distribution on the skin, improving permeability. Biocompatibility tests affirm TMPE@Rha as nonirritating. In summary, TMPE@Rha establishes a new standard for PSAs in transdermal drug delivery systems, offering exceptional adhesion, robustness, and biocompatibility. This pioneering work provides a blueprint for next-generation, highly adhesive, drug-loaded PSAs that meet and exceed FDA criteria.
Collapse
Affiliation(s)
- Haoyuan Song
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yu Cai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jiaqi Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaoxu Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
15
|
Cai J, Shen F, Zhao J, Xiao X. Enzymatic biofuel cell: A potential power source for self-sustained smart textiles. iScience 2024; 27:108998. [PMID: 38333690 PMCID: PMC10850773 DOI: 10.1016/j.isci.2024.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Self-sustained smart textiles require a miniaturized and flexible power source, while the state-of-the-art lithium-ion battery cannot be seamlessly integrated into smart textiles. Enzymatic biofuel cells (EBFC), utilizing physiological glucose or lactate as fuels to convert chemical energy into electricity, are a potential alternative power source. In comparison to other proposed energy harvesters relying on solar and biomechanical energy, EBFCs feature several key properties, including continuous power generation, biocompatible interfaces without using toxic elements, simple configuration without extra packaging, and biodegradability. There is an urgent need to introduce EBFCs to the researchers working on smart textiles, who typically are not expert on bioelectrochemistry. This minireview first introduces the working principle of EBFC and then summarizes its recent progress on fibers, yarns, and textiles. It's expected that this review can help to bridge the knowledge gap and provide the community of smart textiles with information on both the strengths and limitations of EBFCs.
Collapse
Affiliation(s)
- Jingsheng Cai
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Fei Shen
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Jianqing Zhao
- Jiangsu Zoolnasm Technology CO., LTD, Suzhou 215000, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
16
|
Lee J, Hwang GW, Lee BS, Park NJ, Kim SN, Lim D, Kim DW, Lee YS, Park HK, Kim S, Kim JW, Yi GR, Kim KH, Pang C. Artificial Octopus-Limb-Like Adhesive Patches for Cupping-Driven Transdermal Delivery with Nanoscale Control of Stratum Corneum. ACS NANO 2024. [PMID: 38254288 DOI: 10.1021/acsnano.3c09304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Drug delivery through complex skin is currently being studied using various innovative structural and material strategies due to the low delivery efficiency of the multilayered stratum corneum as a barrier function. Existing microneedle-based or electrical stimulation methods have made considerable advances, but they still have technical limitations to reduce skin discomfort and increase user convenience. This work introduces the design, operation mechanism, and performance of noninvasive transdermal patch with dual-layered suction chamber cluster (d-SCC) mimicking octopus-limb capable of wet adhesion with enhanced adhesion hysteresis and physical stimulation. The d-SCC facilitates cupping-driven drug delivery through the skin with only finger pressure. Our device enables nanoscale deformation control of stratum corneum of the engaged skin, allowing for efficient transport of diverse drugs through the stratum corneum without causing skin discomfort. Compared without the cupping effect of d-SCC, applying negative pressure to the porcine, human cadaver, and artificial skin for 30 min significantly improved the penetration depth of liquid-formulated subnanoscale medicines up to 44, 56, and 139%. After removing the cups, an additional acceleration in delivery to the skin was observed. The feasibility of d-SCC was demonstrated in an atopic dermatitis-induced model with thickened stratum corneum, contributing to the normalization of immune response.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Bum Soo Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Science and Technology, 679, Saimdangro, Gangneung-si, Gangwon-do 25451, Republic of Korea
| | - Dohyun Lim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Da Wan Kim
- Department of Electronic Engineering, Korea National University of Transportation, Chungju-si, Chungbuk 27469, Republic of Korea
| | - Yeon Soo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
17
|
Liu S, Huang S, Liu K, Han Y, Xiong F. The novel design of an intelligent anti-depression transdermal drug delivery system. Biomaterials 2023; 303:122362. [PMID: 37931455 DOI: 10.1016/j.biomaterials.2023.122362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Depression is a type of mental disorder with a significant and persistent low mood as the main clinical feature. It is often accompanied by symptoms such as slow thinking, decreased will, loss of appetite, and weight loss. The current treatment methods for depression are mainly medical treatment, psychotherapy, and physical therapy. These treatments are dependent on the patient's autonomy and the patients may suspend treatment due to forgetting or refusing. Therefore, an anti-depressant intelligent drug release system was designed, which can achieve autonomously controlled doses for the treatment of depression by transdermal drug delivery system. The work of this study is as follows: (1) The first module: the electrothermal material heating layer. Several preparation methods were screened, and multiple sets of graphene (GE) electric thermogenic layers were successfully prepared. After increasing the actual energization area to 1 cm × 1 cm, the GE electric thermogenic layer is used as the heating layer of the electrothermal material of the system, and can reach a uniform surface temperature of (45 ± 0.5) °C within 15 s at a voltage of 6 V keeping the temperature fluctuation range not exceeding ±0.03 °C, and the resistance fluctuation range not exceeding ±20 Ω, which plays a role in controlling the temperature and heat treatment of the drug loaded gel layer. (2) The second module: the drug-loaded gel layer. Based on the L16 (45) orthogonal test, the best formulation and process of N-Isopropyl acrylamide-Acrylamide copolymer (P(NIPAAm-co-AAm)) hydrogel was determined. Then, the percutaneous permeability of Selegiline liposome was studied in vitro. (3) A rat model of depression was established using chronic unpredictable mild stress (CUMS) combined with separation. From the aspects of behavior (body weight, sucrose preference test, forced swimming test, open field test) and biochemical indexes (serum proinflammatory cytokines (IL-1β, TNF-α), hippocampus HE staining observation), the therapeutic effect of hyperthermia, Selegiline oral administration and transdermal administration was discussed.
Collapse
Affiliation(s)
- Sijia Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shengxin Huang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kunliang Liu
- Department of Research and Development, Jinan Guoke Medical Technology Development Co., Ltd., China
| | - Yuexia Han
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, 100094, China.
| | - Fei Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
18
|
Lin Z, Zheng K, Zhong J, Zheng X. Advances in microneedle-based therapy for bone disorders. Biomed Pharmacother 2023; 165:115013. [PMID: 37531783 DOI: 10.1016/j.biopha.2023.115013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 08/04/2023] Open
Abstract
Bone-related disorders treatment is a serious public health concern, imposing a significant social and economic burden on patients and healthcare systems. Although conventional drug delivery systems have made advances in bone diseases prevention and management, the limited delivery efficiency and convoluted focal environment lead to inadequate drug absorption and lack of specificity to achieve the intended therapeutic impact. Microneedle-based therapy represents an extraordinarily safe and well-tolerable therapeutic approach for treating bone disorders, providing improved efficacy by breaking down the barriers and delivery of therapeutic components to the target sites with programable release profiles in a less invasive manner. Over the past decades, numerous significant achievements in the development of various types of drug-carried microneedles have been made to address the obstacles encountered in the bone-treating procedure, enabling the microneedle-based therapy to take an important step in practical applications. In this light, this review summarizes these remarkable researches in terms of microneedles types and drug delivery strategies, with the goal of demonstrating the benefits of exploiting microneedle-based therapy as a novel strategy for treating bone-related disorders. The remaining challenges and future perspectives are also discussed in the hope of inspiring more efficient and intelligent bone treatment strategies.
Collapse
Affiliation(s)
- Zengping Lin
- Department of Orthopaedics, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China.
| | - Kanghua Zheng
- Department of Rehabilitation, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Jiping Zhong
- Department of Orthopaedics, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China
| | - Xufeng Zheng
- Department of Orthopaedics, Fujian Provincial 2nd People's Hospital, Affiliated Hospital of Fujian University of Traditional Chinese Medicine, China
| |
Collapse
|
19
|
Sharma MB, Kap Ö, Abdelmohsen HAM, Ashton MD, Harper GR, Firlak M, Aaltonen JE, Bolland KA, Bragg R, Deeley S, Francis E, Kazi N, Mapley BL, Oikonomou V, Aljohani AD, Cheneler D, Kilic V, Horzum N, Hardy JG. Poly(2-Hydroxyethyl Methacrylate) Hydrogel-Based Microneedles for Metformin Release. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300002. [PMID: 37635699 PMCID: PMC10448145 DOI: 10.1002/gch2.202300002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/21/2023] [Indexed: 08/29/2023]
Abstract
The release of metformin, a drug used in the treatment of cancer and diabetes, from poly(2-hydroxyethyl methacrylate), pHEMA, hydrogel-based microneedle patches is demonstrated in vitro. Tuning the composition of the pHEMA hydrogels enables preparation of robust microneedle patches with mechanical properties such that they would penetrate skin (insertion force of a single microneedle to be ≈40 N). Swelling experiments conducted at 20, 35, and 60 °C show temperature-dependent degrees of swelling and diffusion kinetics. Drug release from the pHEMA hydrogel-based microneedles is fitted to various models (e.g., zero order, first order, second order). Such pHEMA microneedles have potential application for transdermal delivery of metformin for the treatment of aging, cancer, diabetes, etc.
Collapse
Affiliation(s)
- Manoj B. Sharma
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- School of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Özlem Kap
- Department of Engineering SciencesIzmir Katip Celebi UniversityIzmir35620Turkey
| | - Hend A. M. Abdelmohsen
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of Pharmaceutics and Industrial PharmacyFaculty of PharmacyAin Shams UniversityAfrican Union Organization StreetAbbassiaCairo11566Egypt
| | - Mark D. Ashton
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | - Garry R. Harper
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | - Melike Firlak
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryGebze Technical UniversityGebze41400Turkey
| | | | | | - Ryan Bragg
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | - Sarah Deeley
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | - Ella Francis
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | - Nahin Kazi
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
| | | | | | - Amal D. Aljohani
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of Chemistry (Female Section)Faculty of ScienceKing Abdulaziz UniversityJeddah‐Rabbigh21589Saudi Arabia
| | - David Cheneler
- School of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Volkan Kilic
- Department of Electrical and Electronics EngineeringIzmir Katip Celebi UniversityIzmir35620Turkey
| | - Nesrin Horzum
- Department of Engineering SciencesIzmir Katip Celebi UniversityIzmir35620Turkey
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
20
|
Choi D, Lee Y, Lin ZH, Cho S, Kim M, Ao CK, Soh S, Sohn C, Jeong CK, Lee J, Lee M, Lee S, Ryu J, Parashar P, Cho Y, Ahn J, Kim ID, Jiang F, Lee PS, Khandelwal G, Kim SJ, Kim HS, Song HC, Kim M, Nah J, Kim W, Menge HG, Park YT, Xu W, Hao J, Park H, Lee JH, Lee DM, Kim SW, Park JY, Zhang H, Zi Y, Guo R, Cheng J, Yang Z, Xie Y, Lee S, Chung J, Oh IK, Kim JS, Cheng T, Gao Q, Cheng G, Gu G, Shim M, Jung J, Yun C, Zhang C, Liu G, Chen Y, Kim S, Chen X, Hu J, Pu X, Guo ZH, Wang X, Chen J, Xiao X, Xie X, Jarin M, Zhang H, Lai YC, He T, Kim H, Park I, Ahn J, Huynh ND, Yang Y, Wang ZL, Baik JM, Choi D. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS NANO 2023; 17:11087-11219. [PMID: 37219021 PMCID: PMC10312207 DOI: 10.1021/acsnano.2c12458] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Serious climate changes and energy-related environmental problems are currently critical issues in the world. In order to reduce carbon emissions and save our environment, renewable energy harvesting technologies will serve as a key solution in the near future. Among them, triboelectric nanogenerators (TENGs), which is one of the most promising mechanical energy harvesters by means of contact electrification phenomenon, are explosively developing due to abundant wasting mechanical energy sources and a number of superior advantages in a wide availability and selection of materials, relatively simple device configurations, and low-cost processing. Significant experimental and theoretical efforts have been achieved toward understanding fundamental behaviors and a wide range of demonstrations since its report in 2012. As a result, considerable technological advancement has been exhibited and it advances the timeline of achievement in the proposed roadmap. Now, the technology has reached the stage of prototype development with verification of performance beyond the lab scale environment toward its commercialization. In this review, distinguished authors in the world worked together to summarize the state of the art in theory, materials, devices, systems, circuits, and applications in TENG fields. The great research achievements of researchers in this field around the world over the past decade are expected to play a major role in coming to fruition of unexpectedly accelerated technological advances over the next decade.
Collapse
Affiliation(s)
- Dongwhi Choi
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Younghoon Lee
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Engineering, Soft Robotics Research Center, Seoul National University, Seoul 08826, South Korea
- Department
of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Zong-Hong Lin
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
- Frontier
Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sumin Cho
- Department
of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, South Korea
| | - Miso Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Chi Kit Ao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Siowling Soh
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Changwan Sohn
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Chang Kyu Jeong
- Division
of Advanced Materials Engineering, Jeonbuk
National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
- Department
of Energy Storage/Conversion Engineering of Graduate School (BK21
FOUR), Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, South Korea
| | - Jeongwan Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Minbaek Lee
- Department
of Physics, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Seungah Lee
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Jungho Ryu
- School
of Materials Science & Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, South Korea
| | - Parag Parashar
- Department
of Biomedical Engineering, National Taiwan
University, Taipei 10617, Taiwan
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Feng Jiang
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Flexible
Electronics Technology of Tsinghua, Jiaxing, Zhejiang 314000, China
| | - Pooi See Lee
- School
of Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Gaurav Khandelwal
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
- School
of Engineering, University of Glasgow, Glasgow G128QQ, U. K.
| | - Sang-Jae Kim
- Nanomaterials
and System Lab, Major of Mechatronics Engineering, Faculty of Applied
Energy System, Jeju National University, Jeju 632-43, South Korea
| | - Hyun Soo Kim
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Hyun-Cheol Song
- Electronic
Materials Research Center, Korea Institute
of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Minje Kim
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Junghyo Nah
- Department
of Electrical Engineering, College of Engineering, Chungnam National University, 34134, Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea
| | - Wook Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Habtamu Gebeyehu Menge
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Yong Tae Park
- Department
of Mechanical Engineering, College of Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi 17058, Republic of Korea
| | - Wei Xu
- Research
Centre for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China
| | - Jianhua Hao
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hong Kong, P.R. China
| | - Hyosik Park
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Ju-Hyuck Lee
- Department
of Energy Science and Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Sang-Woo Kim
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- Samsung
Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06351, South Korea
- SKKU
Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ji Young Park
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Haixia Zhang
- National
Key Laboratory of Science and Technology on Micro/Nano Fabrication;
Beijing Advanced Innovation Center for Integrated Circuits, School
of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yunlong Zi
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Ru Guo
- Thrust
of Sustainable Energy and Environment, The
Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangdong 511400, China
| | - Jia Cheng
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Ze Yang
- State
Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical
Engineering, Tsinghua University, Beijing 100084, China
| | - Yannan Xie
- College
of Automation & Artificial Intelligence, State Key Laboratory
of Organic Electronics and Information Displays & Institute of
Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu
National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jihoon Chung
- Department
of Mechanical Design Engineering, Kumoh
National Institute of Technology (KIT), 61 Daehak-ro, Gumi, Gyeongbuk 39177, South Korea
| | - Il-Kwon Oh
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Ji-Seok Kim
- National
Creative Research Initiative for Functionally Antagonistic Nano-Engineering,
Department of Mechanical Engineering, School of Mechanical and Aerospace
Engineering, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Tinghai Cheng
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Qi Gao
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Gang Cheng
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Guangqin Gu
- Key
Lab for Special Functional Materials, Ministry of Education, National
& Local Joint Engineering Research Center for High-efficiency
Display and Lighting Technology, School of Materials Science and Engineering,
and Collaborative Innovation Center of Nano Functional Materials and
Applications, Henan University, Kaifeng 475004, China
| | - Minseob Shim
- Department
of Electronic Engineering, College of Engineering, Gyeongsang National University, 501, Jinjudae-ro, Gaho-dong, Jinju 52828, South Korea
| | - Jeehoon Jung
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Changwoo Yun
- Department
of Electrical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology
(UNIST), 50, UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, South Korea
| | - Chi Zhang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxu Liu
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufeng Chen
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Suhan Kim
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiangyu Chen
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Jun Hu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xiong Pu
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Zi Hao Guo
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- CAS
Center for Excellence in Nanoscience, Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, 100083 Beijing, China
| | - Xudong Wang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jun Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xiao Xiao
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Xing Xie
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mourin Jarin
- School
of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hulin Zhang
- College
of Information and Computer, Taiyuan University
of Technology, Taiyuan 030024, P. R. China
| | - Ying-Chih Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung 40227, Taiwan
- i-Center
for Advanced Science and Technology, National
Chung Hsing University, Taichung 40227, Taiwan
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tianyiyi He
- Department
of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore
| | - Hakjeong Kim
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Inkyu Park
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junseong Ahn
- Department
of Mechanical Engineering, Korea Advanced
Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nghia Dinh Huynh
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| | - Ya Yang
- CAS
Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano
Energy and Sensor, Beijing Institute of
Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Center
on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Zhong Lin Wang
- Beijing
Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jeong Min Baik
- School
of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- KIST-SKKU
Carbon-Neutral Research Center, Sungkyunkwan
University (SKKU), Suwon 16419, Republic
of Korea
| | - Dukhyun Choi
- SKKU
Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
- School
of Mechanical Engineering, College of Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, South Korea
| |
Collapse
|
21
|
He J, Zhang Y, Yu X, Xu C. Wearable patches for transdermal drug delivery. Acta Pharm Sin B 2023; 13:2298-2309. [PMID: 37425057 PMCID: PMC10326306 DOI: 10.1016/j.apsb.2023.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023] Open
Abstract
Transdermal drug delivery systems (TDDs) avoid gastrointestinal degradation and hepatic first-pass metabolism, providing good drug bioavailability and patient compliance. One emerging type of TDDs is the wearable patch worn on the skin surface to deliver medication through the skin. They can generally be grouped into passive and active types, depending on the properties of materials, design principles and integrated devices. This review describes the latest advancement in the development of wearable patches, focusing on the integration of stimulus-responsive materials and electronics. This development is deemed to provide a dosage, temporal, and spatial control of therapeutics delivery.
Collapse
Affiliation(s)
- Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yuyue Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
22
|
Khadka B, Lee B, Kim KT. Drug Delivery Systems for Personal Healthcare by Smart Wearable Patch System. Biomolecules 2023; 13:929. [PMID: 37371509 DOI: 10.3390/biom13060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Smart wearable patch systems that combine biosensing and therapeutic components have emerged as promising approaches for personalized healthcare and therapeutic platforms that enable self-administered, noninvasive, user-friendly, and long-acting smart drug delivery. Sensing components can continuously monitor physiological and biochemical parameters, and the monitoring signals can be transferred to various stimuli using actuators. In therapeutic components, stimuli-responsive carrier-based drug delivery systems (DDSs) provide on-demand drug delivery in a closed-loop manner. This review provides an overview of the recent advances in smart wearable patch systems, focusing on sensing components, stimuli, and therapeutic components. Additionally, this review highlights the potential of fully integrated smart wearable patch systems for personalized medicine. Furthermore, challenges associated with the clinical applications of this system and future perspectives are discussed, including issues related to drug loading and reloading, biocompatibility, accuracy of sensing and drug delivery, and largescale fabrication.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four), Biomedical and Healthcare Research Institute (BHRI), Mokpo National University, Muan-gun 58554, Jeonnam, Republic of Korea
| | - Byeongmoon Lee
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four), Biomedical and Healthcare Research Institute (BHRI), Mokpo National University, Muan-gun 58554, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun 58554, Jeonnam, Republic of Korea
| |
Collapse
|
23
|
Chen Q, Wu C, Wang S, Wang Q, Wu P, Wang L, Yan P, Xie Y. Glycyrrhizic acid modified Poria cocos polyscaccharide carbon dots dissolving microneedles for methotrexate delivery to treat rheumatoid arthritis. Front Chem 2023; 11:1181159. [PMID: 37288078 PMCID: PMC10243470 DOI: 10.3389/fchem.2023.1181159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Rheumatoid arthritis is an autoimmune disease characterized by chronic joint inflammation. Methotrexate is one of the most effective drugs for rheumatoid arthritis, but the adverse reactions caused by oral methotrexate greatly limit its clinical application. Transdermal drug delivery system is an ideal alternative to oral methotrexate by absorbing drugs into the human body through the skin. However, methotrexate in the existing methotrexate microneedles is mostly used alone, and there are few reports of combined use with other anti-inflammatory drugs. Methods: In this study, glycyrrhizic acid was first modified onto carbon dots, and then methotrexate was loaded to construct a nano-drug delivery system with fluorescence and dual anti-inflammatory effects. Then hyaluronic acid was combined with nano-drug delivery system to prepare biodegradable soluble microneedles for transdermal drug delivery of rheumatoid arthritis. The prepared nano-drug delivery system was characterized by transmission electron microscopy, fluorescence spectroscopy, laser nanoparticle size analyzer, ultraviolet-visible absorption spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimeter and nuclear magnetic resonance spectrometer. The results showed that glycyrrhizic acid and methotrexate were successfully loaded on carbon dots, and the drug loading of methotrexate was 49.09%. The inflammatory cell model was constructed by lipopolysaccharide-induced RAW264.7 cells. In vitro cell experiments were used to explore the inhibitory effect of the constructed nano-drug delivery system on the secretion of inflammatory factors by macrophages and the cell imaging ability. The drug loading, skin penetration ability, in vitro transdermal delivery and in vivo dissolution characteristics of the prepared microneedles were investigated. The rat model of rheumatoid arthritis was induced by Freund's complete adjuvant. Results: The results of in vivo animal experiments showed that the soluble microneedles of the nano drug delivery system designed and prepared in this study could significantly inhibit the secretion of pro-inflammatory cytokines and had a significant therapeutic effect on arthritis. Discussion: The prepared glycyrrhizic acid-carbon dots-methotrexate soluble microneedle provides a feasible solution for the treatment of Rheumatoid arthritis.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Chengyuan Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Siwei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qiang Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peiyun Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peiyu Yan
- Macau University of Science and Technology, Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macao, China
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
24
|
Lago B, Brito M, Almeida CMM, Ferreira I, Baptista AC. Functionalisation of Electrospun Cellulose Acetate Membranes with PEDOT and PPy for Electronic Controlled Drug Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091493. [PMID: 37177038 PMCID: PMC10180495 DOI: 10.3390/nano13091493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Controlled drug release via electrical stimulation from drug-impregnated fibres was studied using electrospun cellulose acetate (CA) membranes and encapsulated ibuprofen (IBU). This research outlines the influence of polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)-functionalised CA membranes and their suitability for dermal electronic-controlled drug release. Micro Raman analysis confirmed polymer functionalisation of CA membranes and drug incorporation. Scanning electron microscopy (SEM) images evidenced the presence of PPy and PEDOT coatings. The kinetic of drug release was analysed, and the passive and active release was compared. In the proposed systems, the drug release is controlled by very low electrical potentials. A potential of -0.3 V applied to membranes showed the ibuprofen retention, and a positive potential of +0.3 V, +0.5 V, or +0.8 V, depending on the conductive polymer and membrane configuration, enhanced the drug release. A small adhesive patch was constructed to validate this system for cutaneous application and verified an "ON/OFF" ibuprofen release pattern from membranes.
Collapse
Affiliation(s)
- Beatriz Lago
- CENIMAT|I3N, Materials Science Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Miguel Brito
- CENIMAT|I3N, Materials Science Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Cristina M M Almeida
- Laboratory of Bromatology and Water Quality, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
- iMed.UL (Institute for Medicines and Pharmaceutical Sciences, Portugal), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Isabel Ferreira
- CENIMAT|I3N, Materials Science Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana Catarina Baptista
- CENIMAT|I3N, Materials Science Department, School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
25
|
Zhang Z, Wang L, Zhang Q, Li H, Xiang Y, Wang X, Hu X. Effective Electrical Stimulation by a Poly(l-lactic acid)/Vitamin B2-Based Piezoelectric Generator Promotes Wound Healing. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
26
|
Sun X, Wu T, Duan M, Yuan B, Zhu X, Wang H, Liu J. Flexible Skin Patch Enabled Tumor Hybrid Thermophysical Therapy and Adaptive Antitumor Immune Response. Adv Healthc Mater 2023; 12:e2202872. [PMID: 36515112 DOI: 10.1002/adhm.202202872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Innovations on materials and technologies have greatly promoted the rapid development of wearable electronics from disease diagnosis to therapeutics. For superficial skin tumors, skin-attachable patches possess the advantages of minimally invasive property, alleviative side effects, and high efficiency. The development of noninvasive techniques and devices is still in urgent demands. Here, a flexible skin patch fabricated through a facile preparation method is reported for noninvasive hybrid thermophysical therapy and adaptative immune function enhancement. The liquid metal enabled skin patch is demonstrated with high conductivity, certain stability, biocompatibility, and an enhanced adhesive merit on skin surfaces for cryoablation therapy and magnetic hyperthermia therapy. The skin patch exhibits remarkably conformable heating and cooling performance toward the treatment of 4T1 breast tumors. The magnetic resonance images also indicate the significant tumor ablation effect. Interestingly, a relatively stable proportion of both CD8+ T and CD4+ T cells in the peripheral blood is identified after tumor therapy in comparison with the decreased trend in the untreated group, representing an efficient antitumor immune response induced by the skin patch. The developed skin patch would provide a promising noninvasive approach for tumor therapies by direct tumor destruction and maintenance of the antitumor immune response.
Collapse
Affiliation(s)
- Xuyang Sun
- School of Engineering Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Tao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Minghui Duan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Bo Yuan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
27
|
Ghate V, Renjith A, Badnikar K, Pahal S, Jayadevi SN, Nayak MM, Vemula PK, Subramanyam DN. Single step fabrication of hollow microneedles and an experimental package for controlled drug delivery. Int J Pharm 2023; 632:122546. [PMID: 36574913 DOI: 10.1016/j.ijpharm.2022.122546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022]
Abstract
Hollow microneedle arrays (HMNs) are an excellent choice for managing chronic diseases requiring the administration of multiple drug doses over a prolonged duration. However, HMNs have gained partial success due to limitations in their manufacturing capabilities, and cumbersome processes. In the present study, polymeric HMNs were fabricated using a novel single-step drop-casting process without needing cleanroom facilities, and sophisticated instrumentation. When drop casted on the pyramidal tip stainless steel needles, the optimized polymer solution allowed the reproducible formation of desired height HMMs on a detachable acrylic base. To enable broader applications, the base with HMNs was integrated into an experimental package built to deliver a dose of ∼ 5 µL per 30° clockwise rotation of the actuator, allowing multiple metered drug dose administrations. The fabricated HMNs were optically imaged, and tested for mechanical integrity and stability. The working and functional utility of the HMNs package in delivering metered drug doses was demonstrated by delivering vitamin B12 (ex vivo) and insulin (in vivo), respectively. The optimized process can be used for the large-scale manufacturing of HMNs and the experimental package shows the potential to be further developed into a wearable device.
Collapse
Affiliation(s)
- Vivek Ghate
- Department of Electronic Systems Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Anu Renjith
- Department of Electronic Systems Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kedar Badnikar
- Department of Electronic Systems Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Suman Pahal
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, Karnataka 560065, India
| | - Shreyas N Jayadevi
- Department of Electronic Systems Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Manjunatha M Nayak
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Praveen K Vemula
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bengaluru, Karnataka 560065, India.
| | - Dinesh N Subramanyam
- Department of Electronic Systems Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
28
|
Zhou Y, Jia X, Pang D, Jiang S, Zhu M, Lu G, Tian Y, Wang C, Chao D, Wallace G. An integrated Mg battery-powered iontophoresis patch for efficient and controllable transdermal drug delivery. Nat Commun 2023; 14:297. [PMID: 36653362 PMCID: PMC9849227 DOI: 10.1038/s41467-023-35990-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Wearable transdermal iontophoresis eliminating the need for external power sources offers advantages for patient-comfort when deploying epidermal diseases treatments. However, current self-powered iontophoresis based on energy harvesters is limited to support efficient therapeutic administration over the long-term operation, owing to the low and inconsistent energy supply. Here we propose a simplified wearable iontophoresis patch with a built-in Mg battery for efficient and controllable transdermal delivery. This system decreases the system complexity and form factors by using viologen-based hydrogels as an integrated drug reservoir and cathode material, eliminating the conventional interface impedance between the electrode and drug reservoir. The redox-active polyelectrolyte hydrogel offers a high energy density of 3.57 mWh cm-2, and an optimal bioelectronic interface with ultra-soft nature and low tissue-interface impedance. The delivery dosage can be readily manipulated by tuning the viologen hydrogel and the iontophoresis stimulation mode. This iontophoresis patch demonstrates an effective treatment of an imiquimod-induced psoriasis mouse. Considering the advantages of being a reliable and efficient energy supply, simplified configuration, and optimal electrical skin-device interface, this battery-powered iontophoresis may provide a new non-invasive treatment for chronic epidermal diseases.
Collapse
Affiliation(s)
- Yan Zhou
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shan Jiang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Meihua Zhu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.,International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Yaping Tian
- Department of Dermatology and Venerology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Caiyun Wang
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, Australia.
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, North Wollongong, NSW, Australia
| |
Collapse
|
29
|
Ikram M, Mahmud MAP. Advanced triboelectric nanogenerator-driven drug delivery systems for targeted therapies. Drug Deliv Transl Res 2023; 13:54-78. [PMID: 35713781 DOI: 10.1007/s13346-022-01184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
In the current decade, remarkable efforts have been made to develop a self-regulated, on-demand and controlled release drug delivery system driven by triboelectric nanogenerators (TENGs). TENGs have great potential to convert biomechanical energy into electricity and are suitable candidates for self-powered drug delivery systems (DDSs) with exciting features such as small size, easy fabrication, biocompatible, high power output and economical. This review exclusively explains the development and implementation process of TENG-mediated, self-regulated, on-demand and targeted DDSs. It also highlights the recently used TENG-driven DDSs for cancer therapy, infected wounds healing, tissue regeneration and many other chronic disorders. Moreover, it summarises the crucial challenges that are needed to be addressed for their universal applications. Finally, a roadmap to advance the TENG-based drug delivery system developments is depicted for the targeted therapies and personalised healthcare.
Collapse
Affiliation(s)
- Muhammad Ikram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - M A Parvez Mahmud
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
30
|
Gu N, Sheng J. Introduction to Nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
31
|
Zhao YP, Han JF, Zhang FY, Liao TT, Na R, Yuan XF, He GB, Ye W. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for rheumatoid arthritis therapy. Drug Deliv 2022; 29:2269-2282. [PMID: 35815790 PMCID: PMC9275483 DOI: 10.1080/10717544.2022.2096718] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory immune-mediated disease that can lead to synovitis, cartilage destruction, and even joint damage. Dexamethasone (DEX) is a commonly used agent for RA therapy on inflammation manage. However, the traditional administering DEX is hampered by low efficiency and obvious adverse effects. Therefore, in order to efficiently deliver DEX to RA inflamed joints and overcome existing deficiencies, we developed transdermal formation dextran sulfate (DS) modified DEX-loaded flexible liposome hydrogel (DS-FLs/DEX hydrogel), validated their transdermal efficiency, evaluated its ability to target activated macrophages, and its anti-inflammatory effect. The DS-FLs/DEX exhibited excellent biocompatibility, sustainable drug release, and high uptake by lipopolysaccharide (LPS)-activated macrophages. Furthermore, the DS-FLs/DEX hydrogel showed desired skin permeation as compared with regular liposome hydrogel (DS-RLs/DEX hydrogel) due to its good deformability. In vivo, when used the AIA rats as RA model, the DS-FLs/DEX hydrogel can effectively penetrate and accumulate in inflamed joints, significantly improve joint swelling in RA rats, and reduce the destructive effect of RA on bone. Importantly, the expression of inflammatory cytokines in joints was inhibited and the system toxicity did not activate under DS-FLs/DEX hydrogel treatment. Overall, these data revealed that the dextran sulfate (DS) modified DEX-loaded flexible liposome hydrogel (DS-FLs/DEX hydrogel) can prove to be an excellent drug delivery vehicle against RA.
Collapse
Affiliation(s)
- Yi-Pu Zhao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Jiang-Fan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fei-Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tian-Tian Liao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ren Na
- Department of Epidemiology and Health Statistics, Faculty of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiao-Feng Yuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Guang-Bin He
- Department of Ultrasound Diagnosis, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weiliang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Long Y, Bai M, Liu X, Lu W, Zhong C, Tian S, Xu S, Ma Y, Tian Y, Zhang H, Zhang L, Yang J. A zwitterionic cellulose-based skin sensor for the real-time monitoring and antibacterial sensing wound dressing. Carbohydr Polym 2022; 297:119974. [DOI: 10.1016/j.carbpol.2022.119974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 11/02/2022]
|
33
|
Wang S, Wang L, Qu X, Lei B, Zhao Y, Wang Q, Wang W, Shao J, Dong X. Ultrasonic-Induced Synthesis of Underwater Adhesive and Antiswelling Hydrogel for Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50256-50265. [PMID: 36317653 DOI: 10.1021/acsami.2c16388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To perceive the human body's multienvironmental mobility, intelligent flexible electronic equipment with an underwater motion monitoring function has potential research value in the field of intelligent detection. Hydrogels are widely used in the field of flexible electronics for their unique three-dimensional polymer networks. Due to the instinctive hydrophilicity of hydrogels, the swelling of hydrogels underwater and the formation of hydration coating on the surface become the primary obstacles to underwater applications. Herein, a hydrogel sensor that can achieve underwater utilization was prepared through copolymerization between hydrophobic and hydrophilic polymer monomers. The synergistic impact of electrostatic interaction, metal coordination, and hydrogen bonding ensured the hydrogel's remarkable underwater adhesive ability to a variety of substrates. The hydrophobic micelles and self-hydrophobization process induced from ultrasonic dispersion in the polymer matrix gave an outstanding hydrophobic performance (water contact angle of 130.4°) and antiswelling property (swelling ratio of 26% after 72 h of immersion), presenting unprecedented underwater adaptability. The above-mentioned hydrogel could be assembled into a flexible hydrogel sensor with satisfactory sensitivity (gauge factor of 0.44), ultrafast response rate (106 ms), and excellent cyclic stability, demonstrating accurate monitoring of complex human motions in water and air.
Collapse
Affiliation(s)
- Siying Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Leichen Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Bing Lei
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ye Zhao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qian Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
34
|
Chen G, Shen S, Tat T, Zhao X, Zhou Y, Fang Y, Chen J. Wearable respiratory sensors for COVID-19 monitoring. VIEW 2022; 3:20220024. [PMID: 36710943 PMCID: PMC9874505 DOI: 10.1002/viw.20220024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022] Open
Abstract
Since its outbreak in 2019, COVID-19 becomes a pandemic, severely burdening the public healthcare systems and causing an economic burden. Thus, societies around the world are prioritizing a return to normal. However, fighting the recession could rekindle the pandemic owing to the lightning-fast transmission rate of SARS-CoV-2. Furthermore, many of those who are infected remain asymptomatic for several days, leading to the increased possibility of unintended transmission of the virus. Thus, developing rigorous and universal testing technologies to continuously detect COVID-19 for entire populations remains a critical challenge that needs to be overcome. Wearable respiratory sensors can monitor biomechanical signals such as the abnormities in respiratory rate and cough frequency caused by COVID-19, as well as biochemical signals such as viral biomarkers from exhaled breaths. The point-of-care system enabled by advanced respiratory sensors is expected to promote better control of the pandemic by providing an accessible, continuous, widespread, noninvasive, and reliable solution for COVID-19 diagnosis, monitoring, and management.
Collapse
Affiliation(s)
- Guorui Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Sophia Shen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Trinny Tat
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Xun Zhao
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Yihao Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Yunsheng Fang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| | - Jun Chen
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCalifornia90095USA
| |
Collapse
|
35
|
Phatale V, Vaiphei KK, Jha S, Patil D, Agrawal M, Alexander A. Overcoming skin barriers through advanced transdermal drug delivery approaches. J Control Release 2022; 351:361-380. [PMID: 36169040 DOI: 10.1016/j.jconrel.2022.09.025] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022]
Abstract
Upon exhaustive research, the transdermal drug delivery system (TDDS) has appeared as a potential, well-accepted, and popular approach to a novel drug delivery system. Ease of administration, easy handling, minimum systemic exposure, least discomfort, broad flexibility and tunability, controlled release, prolonged therapeutic effect, and many more perks make it a promising approach for effective drug delivery. Although, the primary challenge associated is poor skin permeability. Skin is an intact barrier that serves as a primary defense mechanism to preclude any foreign particle's entry into the body. Owing to the unique anatomical framework, i.e., compact packing of stratum corneum with tight junction and fast anti-inflammatory responses, etc., emerged as a critical physiological barrier for TDDS. Fusion with other novel approaches like nanocarriers, specially designed transdermal delivery devices, permeation enhancers, etc., can overcome the limitations. Utilizing such strategies, some of the products are under clinical trials, and many are under investigation. This review explores all dimensions that overcome poor permeability and allows the drug to attain maximum potential. The article initially compiles fundamental features, components, and design of TDDS, followed by critical aspects and various methods, including in vitro, ex vivo, and in vivo methods of assessing skin permeability. The work primarily aimed to highlight the recent advancement in novel strategies for effective transdermal drug delivery utilizing active methods like iontophoresis, electroporation, sonophoresis, microneedle, needleless jet injection, etc., and passive methods such as the use of liposomes, SLN, NLC, micro/nanoemulsions, dendrimers, transferosomes, and many more nanocarriers. In all, this compilation will provide a recent insight on the novel updates along with basic concepts, the current status of clinical development, and challenges for the clinical translation of TDDS.
Collapse
Affiliation(s)
- Vivek Phatale
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Shikha Jha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Dnyaneshwar Patil
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India
| | - Mukta Agrawal
- SVKM's Narsee Monjee Institute of Management Studies (NMIMS), School of Pharmacy & Technology Management, Hyderabad 509301, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati (NIPER-G), Changsari, Guwahati 781101, India.
| |
Collapse
|
36
|
Nan L, Liu J, Liu C, Quan P, Guo J, Fang L. Fe(III)-coordinated N-[tris(hydroxymethyl)methyl]acrylamide-modified acrylic pressure-sensitive adhesives with enhanced adhesion and cohesion for efficient transdermal application. Acta Biomater 2022; 152:186-196. [PMID: 36064108 DOI: 10.1016/j.actbio.2022.08.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Pressure-sensitive adhesives are critical to the product's safety, efficacy, and quality in transdermal drug delivery systems. However, many defects of transdermal patches (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) remain. Herein, the N-[tris(hydroxymethyl)methyl]acrylamide (NAT)-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) (AA-NAT/Fe3+) was creatively proposed. Results demonstrated that the adhesiveness and cohesiveness of the optimized AA-NAT/Fe3+ were higher by 1.8- and 9.7-fold, respectively, than those of commercially available DURO-TAK® 87-4098 due to the hydrogen bonding interaction of NAT-skin interface and coordination of NAT-Fe3+. Moreover, compared with that of DURO-TAK® 87-4098, the adhesion time of AA-NAT/Fe3+ on the human forearm was remarkably prolonged, and no "dark ring" phenomenon was observed for AA-NAT/Fe3+ after removal. After clonidine (CLO) was loaded into AA-NAT/Fe3+, controlled drug release and a drug transdermal behavior were endowed for CLO@AA-NAT/Fe3+in vitro and in vivo. AA-NAT/Fe3+ still maintained superiority in adhesion and cohesion properties after CLO loading. These observations would contribute to the development of pressure-sensitive adhesives with outstanding adhesion and cohesion for transdermal patches. STATEMENT OF SIGNIFICANCE: This N-[tris(hydroxymethyl)methyl]acrylamide-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) has enhanced adhesion and cohesion properties, which provide a simple but effective strategy to solve the problems (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) in existing transdermal patches.
Collapse
Affiliation(s)
- Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| |
Collapse
|
37
|
Rubina MS, Pestrikova AA, Kazaryan PS, Nikolaev AY, Chaschin IS, Arkharova NA, Shulenina AV, Pigaleva MA. Supercritical impregnation of chitosan sponges with 17β-estradiol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Li X, Chen H, Peng X, Li D, Wang W, Chen M, Hu D, Long S, Huang Y. One‐Pot Synthesis of Polyelectrolyte‐triazine Gels Using Cation‐
π
Interactions and Multiple Hydrogen Bonds for Adjustable Interfacial Adhesion. Macromol Rapid Commun 2022; 43:e2200464. [DOI: 10.1002/marc.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Xuefeng Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Hanyu Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Xueyin Peng
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dapeng Li
- College of Engineering University of Massachusetts Dartmouth MA 02747 United States
| | - Wei Wang
- School and Hospital of Stomatology China Medical University Shenyang 110002 China
| | - Mengfan Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Dezheng Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry Hubei University of Technology Wuhan 430068 China
| | - Shijun Long
- Hubei Province Innovation Center for Talent Introduction of New Materials and Green Manufacturing Hubei University of Technology Wuhan 430068 China
| | - Yiwan Huang
- Hubei Province Innovation Center for Talent Introduction of New Materials and Green Manufacturing Hubei University of Technology Wuhan 430068 China
| |
Collapse
|
39
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
40
|
Babu VJ, Anusha M, Sireesha M, Sundarrajan S, Abdul Haroon Rashid SSA, Kumar AS, Ramakrishna S. Intelligent Nanomaterials for Wearable and Stretchable Strain Sensor Applications: The Science behind Diverse Mechanisms, Fabrication Methods, and Real-Time Healthcare. Polymers (Basel) 2022; 14:2219. [PMID: 35683893 PMCID: PMC9182624 DOI: 10.3390/polym14112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
It has become a scientific obligation to unveil the underlying mechanisms and the fabrication methods behind wearable/stretchable strain sensors based on intelligent nanomaterials in order to explore their possible potential in the field of biomedical and healthcare applications. This report is based on an extensive literature survey of fabrication of stretchable strain sensors (SSS) based on nanomaterials in the fields of healthcare, sports, and entertainment. Although the evolution of wearable strain sensors (WSS) is rapidly progressing, it is still at a prototype phase and various challenges need to be addressed in the future in special regard to their fabrication protocols. The biocalamity of COVID-19 has brought a drastic change in humans' lifestyles and has negatively affected nations in all capacities. Social distancing has become a mandatory rule to practice in common places where humans interact with each other as a basic need. As social distancing cannot be ruled out as a measure to stop the spread of COVID-19 virus, wearable sensors could play a significant role in technologically impacting people's consciousness. This review article meticulously describes the role of wearable and strain sensors in achieving such objectives.
Collapse
Affiliation(s)
- Veluru Jagadeesh Babu
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Merum Anusha
- Department of Pharmacology, S V Medical College, Dr NTR University of Health Sciences, Vijayawada 517501, India;
| | - Merum Sireesha
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Subramanian Sundarrajan
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| | - Syed Sulthan Alaudeen Abdul Haroon Rashid
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - A. Senthil Kumar
- Advanced Manufacturing Laboratory, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Seeram Ramakrishna
- NUS Centre for Nanotechnology and Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (M.S.); (S.S.A.A.H.R.); (S.R.)
| |
Collapse
|
41
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
42
|
Chen Y, An Q, Teng K, Zhang Y, Zhao Y. Latest development and versatile applications of highly integrating drug delivery patch. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Wearable and implantable devices for drug delivery: Applications and challenges. Biomaterials 2022; 283:121435. [DOI: 10.1016/j.biomaterials.2022.121435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
|
44
|
Jet injectors: Perspectives for small volume delivery with lasers. Adv Drug Deliv Rev 2022; 182:114109. [PMID: 34998902 DOI: 10.1016/j.addr.2021.114109] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 12/27/2022]
Abstract
Needle-free jet injectors have been proposed as an alternative to injections with hypodermic needles. Currently, a handful of commercial needle-free jet injectors already exist. However, these injectors are designed for specific injections, typically limited to large injection volumes into the deeper layers beneath the skin. There is growing evidence of advantages when delivering small volumes into the superficial skin layers, namely the epidermis and dermis. Injections such as vaccines and insulin would benefit from delivery into these superficial layers. Furthermore, the same technology for small volume needle-free injections can serve (medical) tattooing as well as other personalized medicine treatments. The research dedicated to needle-free jet injectors actuated by laser energy has increased in the last decade. In this case, the absorption of the optical energy by the liquid results in an explosively growing bubble. This bubble displaces the rest of the liquid, resulting in a fast microfluidic jet which can penetrate the skin. This technique allows for precise control over volumes (pL to µL) and penetration depths (µm to mm). Furthermore, these injections can be tuned without changing the device, by varying parameters such as laser power, beam diameter and filling level of the liquid container. Despite the published research on the working principles and capabilities of individual laser-actuated jet injectors, a thorough overview encompassing all of them is lacking. In this perspective, we will discuss the current status of laser-based jet injectors and contrast their advantages and limitations, as well as their potential and challenges.
Collapse
|
45
|
Recent Development of Drug Delivery Systems through Microfluidics: From Synthesis to Evaluation. Pharmaceutics 2022; 14:pharmaceutics14020434. [PMID: 35214166 PMCID: PMC8880124 DOI: 10.3390/pharmaceutics14020434] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Conventional drug administration usually faces the problems of degradation and rapid excretion when crossing many biological barriers, leading to only a small amount of drugs arriving at pathological sites. Therapeutic drugs delivered by drug delivery systems to the target sites in a controlled manner greatly enhance drug efficacy, bioavailability, and pharmacokinetics with minimal side effects. Due to the distinct advantages of microfluidic techniques, microfluidic setups provide a powerful tool for controlled synthesis of drug delivery systems, precisely controlled drug release, and real-time observation of drug delivery to the desired location at the desired rate. In this review, we present an overview of recent advances in the preparation of nano drug delivery systems and carrier-free drug delivery microfluidic systems, as well as the construction of in vitro models on-a-chip for drug efficiency evaluation of drug delivery systems. We firstly introduce the synthesis of nano drug delivery systems, including liposomes, polymers, and inorganic compounds, followed by detailed descriptions of the carrier-free drug delivery system, including micro-reservoir and microneedle drug delivery systems. Finally, we discuss in vitro models developed on microfluidic devices for the evaluation of drug delivery systems, such as the blood–brain barrier model, vascular model, small intestine model, and so on. The opportunities and challenges of the applications of microfluidic platforms in drug delivery systems, as well as their clinical applications, are also discussed.
Collapse
|
46
|
Chen W, Wang Z, Wang L, Chen X. Smart Chemical Engineering-Based Lightweight and Miniaturized Attachable Systems for Advanced Drug Delivery and Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106701. [PMID: 34643302 DOI: 10.1002/adma.202106701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Smart attachable systems have attracted much attention owing to their capabilities in terms of body performance evaluation, disease diagnostics, and drug delivery. Recent advances in chemical and engineering techniques provide many opportunities to improve device fabrication and applications owing to the advantages of being lightweight and easy to control as well as their battery absence and functional diversity. This review highlights the latest developments in the field of chemical engineering-based lightweight and miniaturized attachable systems, which are mainly inspired by the natural world. Their applications for real-time monitoring, point-of-care sampling, biomarker detection, and controlled release are discussed thoroughly with respect to specific products/prototypes. The perspectives of the field, including persistence guarantee, burden reduction, and personality improvement, are also discussed. It is believed that chemical engineering-based lightweight and miniaturized attachable systems have good potential in both clinical and industrial fields, indicating a large potential to improve human lives in the near future.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering and Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
47
|
Li WD, Ke K, Jia J, Pu JH, Zhao X, Bao RY, Liu ZY, Bai L, Zhang K, Yang MB, Yang W. Recent Advances in Multiresponsive Flexible Sensors towards E-skin: A Delicate Design for Versatile Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103734. [PMID: 34825473 DOI: 10.1002/smll.202103734] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/16/2021] [Indexed: 05/07/2023]
Abstract
Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.
Collapse
Affiliation(s)
- Wu-Di Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jin Jia
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Jun-Hong Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xing Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zheng-Ying Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Lu Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Kai Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
48
|
Applications of choline-based ionic liquids in drug delivery. Int J Pharm 2022; 612:121366. [PMID: 34896216 DOI: 10.1016/j.ijpharm.2021.121366] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
Ionic liquids (ILs) usually refer to kinds of salts with melting point below 100 °C and are composed of definite anions and cations. In recent years, in addition to the field of material engineering, the applications of ILs have been extended to biomedical application. As a solubilizer, skin penetration enhancer, antibacterial agent, and macromolecular stabilizer of poorly soluble active pharmaceutical ingredients, ILs have attracted great attention in the field of pharmaceutical research. Among them, choline-based ILs are very popular in the field of drug delivery due to their biocompatibility, biodegradability, low toxicity or non-toxicity and other characteristics. This article mainly reviews the applications of choline-based ILs formed by choline and organic acid and choline-based ionic liquids-pharmaceutical active ingredients in transdermal delivery, topical delivery and oral delivery.
Collapse
|
49
|
Gu N, Sheng J. Introduction to Nanomedicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_1-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
Ye T, Wang J, Jiao Y, Li L, He E, Wang L, Li Y, Yun Y, Li D, Lu J, Chen H, Li Q, Li F, Gao R, Peng H, Zhang Y. A Tissue-Like Soft All-Hydrogel Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105120. [PMID: 34713511 DOI: 10.1002/adma.202105120] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/24/2021] [Indexed: 06/13/2023]
Abstract
To develop wearable and implantable bioelectronics accommodating the dynamic and uneven biological tissues and reducing undesired immune responses, it is critical to adopt batteries with matched mechanical properties with tissues as power sources. However, the batteries available cannot reach the softness of tissues due to the high Young's moduli of components (e.g., metals, carbon materials, conductive polymers, or composite materials). The fabrication of tissue-like soft batteries thus remains a challenge. Here, the first ultrasoft batteries totally based on hydrogels are reported. The ultrasoft batteries exhibit Young's moduli of 80 kPa, perfectly matching skin and organs (e.g., heart). The high specific capacities of 82 mAh g-1 in all-hydrogel lithium-ion batteries and 370 mAh g-1 in all-hydrogel zinc-ion batteries at a current density of 0.5 A g-1 are achieved. Both high stability and biocompatibility of the all-hydrogel batteries have been demonstrated upon the applications of wearable and implantable. This work illuminates a pathway for designing power sources for wearable and implantable electronics with matched mechanical properties.
Collapse
Affiliation(s)
- Tingting Ye
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Lie Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yanjing Yun
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Dan Li
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiang Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hao Chen
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qianming Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Rui Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|