1
|
Xu G, Yu J, Liu S, Cai L, Han XX. In situ surface-enhanced Raman spectroscopy for membrane protein analysis and sensing. Biosens Bioelectron 2024; 267:116819. [PMID: 39362137 DOI: 10.1016/j.bios.2024.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/08/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Membrane proteins are involved in a variety of dynamic cellular processes and exploration of the structural basis of membrane proteins is of significance for a better understanding of their functions. In situ analysis of membrane proteins and their dynamics is, however, challenging for conventional techniques. Surface-enhanced Raman spectroscopy (SERS) is powerful in protein structural characterization, allowing for sensitive, in-situ and real-time identification and dynamic monitoring under physiological conditions. In this review, the applications of SERS in probing membrane proteins are outlined, discussed and prospected. It starts with a brief introduction to membrane proteins, SERS theories and SERS-based strategies that commonly-used for membrane proteins. How to assemble phospholipid biolayers on SERS-active materials is highlighted, followed by respectively discussing about direct and indirect strategies for membrane protein sensing. SERS-based monitoring of protein-ligand interactions is finally introduced and its potential in biomedical applications is discussed in detail. The review ends with critical discussion about current challenges and limitations of this research field, and the promising perspectives in both fundamental and applied sciences.
Collapse
Affiliation(s)
- Guangyang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jiaheng Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shiyi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Linjun Cai
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
2
|
Estévez-Varela C, Núñez-Sánchez S, Piñeiro-Varela P, de Aberasturi DJ, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. Plexcitonic Nanorattles as Highly Efficient SERS-Encoded Tags. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306045. [PMID: 38009519 DOI: 10.1002/smll.202306045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
Plexcitonic nanoparticles exhibit strong light-matter interactions, mediated by localized surface plasmon resonances, and thereby promise potential applications in fields such as photonics, solar cells, and sensing, among others. Herein, these light-matter interactions are investigated by UV-visible and surface-enhanced Raman scattering (SERS) spectroscopies, supported by finite-difference time-domain (FDTD) calculations. Our results reveal the importance of combining plasmonic nanomaterials and J-aggregates with near-zero-refractive index. As plexcitonic nanostructures nanorattles are employed, based on J-aggregates of the cyanine dye 5,5,6,6-tetrachloro-1,1-diethyl-3,3-bis(4-sulfobutyl)benzimidazolocarbocyanine (TDBC) and plasmonic silver-coated gold nanorods, confined within mesoporous silica shells, which facilitate the adsorption of the J-aggregates onto the metallic nanorod surface, while providing high colloidal stability. Electromagnetic simulations show that the electromagnetic field is strongly confined inside the J-aggregate layer, at wavelengths near the upper plexcitonic mode, but it is damped toward the J-aggregate/water interface at the lower plexcitonic mode. This behavior is ascribed to the sharp variation of dielectric properties of the J-aggregate shell close to the plasmon resonance, which leads to a high opposite refractive index contrast between water and the TDBC shell, at the upper and the lower plexcitonic modes. This behavior is responsible for the high SERS efficiency of the plexcitonic nanorattles under both 633 nm and 532 nm laser illumination. SERS analysis showed a detection sensitivity down to the single-nanoparticle level and, therefore, an exceptionally high average SERS intensity per particle. These findings may open new opportunities for ultrasensitive biosensing and bioimaging, as superbright and highly stable optical labels based on the strong coupling effect.
Collapse
Affiliation(s)
| | - Sara Núñez-Sánchez
- CINBIO, Universidade de Vigo, Vigo, 36310, Spain
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP), Universidade do Minho, Braga, 4710-057, Portugal
| | - Paula Piñeiro-Varela
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Dorleta Jiménez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Luis M Liz-Marzán
- CINBIO, Universidade de Vigo, Vigo, 36310, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Miramon Pasealekua, 194, Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN, ISCIII), Donostia-San Sebastián, Gipuzkoa, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | | | | |
Collapse
|
3
|
Li M, Luo A, Xu W, Wang H, Qiu Y, Xiao Z, Cui K. A Visual Raman Nano-Delivery System Based on Thiophene Polymer for Microtumor Detection. Pharmaceutics 2024; 16:655. [PMID: 38794317 PMCID: PMC11125006 DOI: 10.3390/pharmaceutics16050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
A visual Raman nano-delivery system (NS) is a widely used technique for the visualization and diagnosis of tumors and various biological processes. Thiophene-based organic polymers exhibit excellent biocompatibility, making them promising candidates for development as a visual Raman NS. However, materials based on thiophene face limitations due to their absorption spectra not matching with NIR (near-infrared) excitation light, which makes it difficult to achieve enhanced Raman properties and also introduces potential fluorescence interference. In this study, we introduce a donor-acceptor (D-A)-structured thiophene-based polymer, PBDB-T. Due to the D-A molecular modulation, PBDB-T exhibits a narrow bandgap of Eg = 2.63 eV and a red-shifted absorption spectrum, with the absorption edge extending into the NIR region. Upon optimal excitation with 785 nm light, it achieves ultra-strong pre-resonant Raman enhancement while avoiding fluorescence interference. As an intrinsically sensitive visual Raman NS for in vivo imaging, the PBDB-T NS enables the diagnosis of microtumor regions with dimensions of 0.5 mm × 0.9 mm, and also successfully diagnoses deeper tumor tissues, with an in vivo circulation half-life of 14.5 h. This research unveils the potential application of PBDB-T as a NIR excited visual Raman NS for microtumor diagnosis, introducing a new platform for the advancement of "Visualized Drug Delivery Systems". Moreover, the aforementioned platform enables the development of a more diverse range of targeted visual drug delivery methods, which can be tailored to specific regions.
Collapse
Affiliation(s)
- Meng Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Aoxiang Luo
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Wei Xu
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Haoze Wang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Yuanyuan Qiu
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Zeyu Xiao
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200233, China; (M.L.); (H.W.)
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| | - Kai Cui
- Department of Pharmacology and Chemical Biology, Translational Medicine Collaborative Innovation Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (A.L.); (W.X.); (Y.Q.)
| |
Collapse
|
4
|
Kralova K, Kral M, Vrtelka O, Setnicka V. Comparative study of Raman spectroscopy techniques in blood plasma-based clinical diagnostics: A demonstration on Alzheimer's disease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123392. [PMID: 37716043 DOI: 10.1016/j.saa.2023.123392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Nowadays, there are still many diseases with limited or no reliable methods of early diagnosis. A popular approach in clinical diagnostic research is Raman spectroscopy, as a relatively simple, cost-effective, and high-throughput method for searching for disease-specific alterations in the composition of blood plasma. However, the high variability of the experimental designs, targeted diseases, or statistical processing in the individual studies makes it challenging to compare and compile the results to critically assess the applicability of Raman spectroscopy in real clinical practice. This study aimed to compare data from a single series of blood plasma samples of patients with Alzheimer's disease and non-demented elderly controls obtained by four different techniques/experimental setups - Raman spectroscopy with excitation at 532 and 785 nm, Raman optical activity, and surface-enhanced Raman scattering spectroscopy. The obtained results showed that the spectra from each Raman spectroscopy technique contain different information about biomolecules of blood plasma or their conformation and may, therefore, offer diverse points of view on underlying biochemical processes of the disease. The classification models based on the datasets generated by the three non-chiroptical variants of Raman spectroscopy exhibited comparable diagnostic performance, all reaching an accuracy close to or equal to 80%. Raman optical activity achieved only 60% classification accuracy, suggesting its limited applicability in the specific case of Alzheimer's disease diagnostics. The described differences in the outputs of the four utilized techniques/setups of Raman spectroscopy imply that their choice may crucially affect the acquired results and thus should be approached carefully concerning the specific purpose.
Collapse
Affiliation(s)
- Katerina Kralova
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Kral
- Department of Physical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ondrej Vrtelka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimir Setnicka
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
5
|
Vidal A, Molina-Prados S, Cros A, Garro N, Pérez-Martínez M, Álvaro R, Mata G, Megías D, Postigo PA. Facile and Low-Cost Fabrication of SiO 2-Covered Au Nanoislands for Combined Plasmonic Enhanced Fluorescence Microscopy and SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2729. [PMID: 37836370 PMCID: PMC10574186 DOI: 10.3390/nano13192729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
An easy and low-cost way to fabricate monometallic Au nanoislands for plasmonic enhanced spectroscopy is presented. The method is based on direct thermal evaporation of Au on glass substrates to form nanoislands, with thicknesses between 2 and 15 nm, which are subsequently covered by a thin layer of silicon dioxide. We have used HR-SEM and AFM to characterize the nanoislands, and their optical transmission reveals strong plasmon resonances in the visible. The plasmonic performance of the fabricated substrates has been tested in fluorescence and Raman scattering measurements of two probe materials. Enhancement factors up to 1.8 and 9×104 are reported for confocal fluorescence and Raman microscopies, respectively, which are comparable to others obtained by more elaborated fabrication procedures.
Collapse
Affiliation(s)
- Alejandro Vidal
- Instituto de Micro y Nanotecnología de Madrid (IMN-CSIC), Tres Cantos, 28760 Madrid, Spain; (A.V.); (R.Á.)
| | - Sergio Molina-Prados
- GROC-UJI, Institut de Noves Tecnologíes de la Imatge (INIT), Universitat Jamue I, 28760 Tres Cantos, Spain;
| | - Ana Cros
- Institut de Ciència dels Materials (ICMUV), Universitat de València, 46071 Valencia, Spain; (A.C.); (N.G.)
| | - Núria Garro
- Institut de Ciència dels Materials (ICMUV), Universitat de València, 46071 Valencia, Spain; (A.C.); (N.G.)
| | - Manuel Pérez-Martínez
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain; (M.P.-M.); (G.M.); (D.M.)
| | - Raquel Álvaro
- Instituto de Micro y Nanotecnología de Madrid (IMN-CSIC), Tres Cantos, 28760 Madrid, Spain; (A.V.); (R.Á.)
| | - Gadea Mata
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain; (M.P.-M.); (G.M.); (D.M.)
| | - Diego Megías
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain; (M.P.-M.); (G.M.); (D.M.)
| | - Pablo A. Postigo
- Instituto de Micro y Nanotecnología de Madrid (IMN-CSIC), Tres Cantos, 28760 Madrid, Spain; (A.V.); (R.Á.)
- The Institute of Optics, University of Rochester, Rochester, New York, NY 14627, USA
| |
Collapse
|
6
|
Peruffo N, Bruschi M, Fresch B, Mancin F, Collini E. Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12793-12806. [PMID: 37641919 PMCID: PMC10501205 DOI: 10.1021/acs.langmuir.3c01642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Colloidal plexcitonic materials (CPMs) are a class of nanosystems where molecular dyes are strongly coupled with colloidal plasmonic nanoparticles, acting as nanocavities that enhance the light field. As a result of this strong coupling, new hybrid states are formed, called plexcitons, belonging to the broader family of polaritons. With respect to other families of polaritonic materials, CPMs are cheap and easy to prepare through wet chemistry methodologies. Still, clear structure-to-properties relationships are not available, and precise rules to drive the materials' design to obtain the desired optical properties are still missing. To fill this gap, in this article, we prepared a dataset with all CPMs reported in the literature, rationalizing their design by focusing on their three main relevant components (the plasmonic nanoparticles, the molecular dyes, and the capping layers) and identifying the most used and efficient combinations. With the help of statistical analysis, we also found valuable correlations between structure, coupling regime, and optical properties. The results of this analysis are expected to be relevant for the rational design of new CPMs with controllable and predictable photophysical properties to be exploited in a vast range of technological fields.
Collapse
Affiliation(s)
- Nicola Peruffo
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Matteo Bruschi
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Barbara Fresch
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| | - Fabrizio Mancin
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department
of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
- Padua
Quantum Technologies Research Center, via Gradenigo 6/A, 35122 Padova, Italy
| |
Collapse
|
7
|
Yu JH, Jeong MS, Cruz EO, Alam IS, Tumbale SK, Zlitni A, Lee SY, Park YI, Ferrara K, Kwon SH, Gambhir SS, Rao J. Highly Excretable Gold Supraclusters for Translatable In Vivo Raman Imaging of Tumors. ACS NANO 2023; 17:2554-2567. [PMID: 36688431 DOI: 10.1021/acsnano.2c10378] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Raman spectroscopy provides excellent specificity for in vivo preclinical imaging through a readout of fingerprint-like spectra. To achieve sufficient sensitivity for in vivo Raman imaging, metallic gold nanoparticles larger than 10 nm were employed to amplify Raman signals via surface-enhanced Raman scattering (SERS). However, the inability to excrete such large gold nanoparticles has restricted the translation of Raman imaging. Here we present Raman-active metallic gold supraclusters that are biodegradable and excretable as nanoclusters. Although the small size of the gold nanocluster building blocks compromises the electromagnetic field enhancement effect, the supraclusters exhibit bright and prominent Raman scattering comparable to that of large gold nanoparticle-based SERS nanotags due to high loading of NIR-resonant Raman dyes and much suppressed fluorescence background by metallic supraclusters. The bright Raman scattering of the supraclusters was pH-responsive, and we successfully performed in vivo Raman imaging of acidic tumors in mice. Furthermore, in contrast to large gold nanoparticles that remain in the liver and spleen over 4 months, the supraclusters dissociated into small nanoclusters, and 73% of the administered dose to mice was excreted during the same period. The highly excretable Raman supraclusters demonstrated here offer great potential for clinical applications of in vivo Raman imaging.
Collapse
Affiliation(s)
- Jung Ho Yu
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Myeong Seon Jeong
- Korea Basic Science Institute, Seoul02841South Korea
- Department of Biochemistry, Kangwon National University, Chuncheon24341South Korea
| | - Emma Olivia Cruz
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Israt S Alam
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Spencer K Tumbale
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Aimen Zlitni
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Song Yeul Lee
- School of Chemical Engineering, Chonnam National University, Gwangju61186South Korea
| | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju61186South Korea
| | - Katherine Ferrara
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | | | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| | - Jianghong Rao
- Department of Radiology, Stanford University School of Medicine, Stanford, California94305United States
- Molecular Imaging Program at Stanford (MIPS) and Bio-X Program, Stanford University, Stanford, California94305United States
| |
Collapse
|
8
|
Liang Q, Gong X, Liu J, Ke C, Dong J, Song G, Feng P, Yu H, Yang X, Cui J, Deng C, Li Z, Liu S, Zhang G. Ionic-Wind-Enhanced Raman Spectroscopy without Enhancement Substrates. Anal Chem 2023; 95:1318-1326. [PMID: 36577742 DOI: 10.1021/acs.analchem.2c04189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Raman spectra are often masked by strong fluorescence, which severely hinders the applications of Raman spectroscopy. Herein, for the first time, we report ionic-wind-enhanced Raman spectroscopy (IWERS) incorporated with photobleaching (PB) as a noninvasive approach to detect fluorescent and vulnerable samples without a substrate. In this study, ionic wind (IW) generated by needle-net electrodes transfers charges to the sample surface in air on the scale of millimeters rather than nanometers in surface-enhanced Raman spectroscopy. Density functional theory calculations reveal that the ionic particles in IW increase the susceptibility of the sample molecules, thus enhancing the Raman signals. Meanwhile, the incorporation of IW with PB yields a synergistic effect to quench fluorescence. Therefore, this approach can improve the signal-to-noise ratio of Raman peaks up to three times higher than that with only PB. At the same time, IWERS can avoid sample pollution and destruction without substrates as well as high laser power. For archeological samples and a red rock as an analogue to Mars geological samples, IWERS successfully identified weak but key Raman peaks, which were masked by strong florescence. It suggests that IWERS is a promising tool for characterizations in the fields of archeology, planetary science, biomedicine, and soft matter.
Collapse
Affiliation(s)
- Qingyou Liang
- Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China.,School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangjun Gong
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinchao Liu
- Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China.,School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Changming Ke
- School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jie Dong
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Guosheng Song
- Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
| | - Pu Feng
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huakang Yu
- School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Xianfeng Yang
- Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
| | - Jie Cui
- Analytical and Testing Center, South China University of Technology, Guangzhou 510640, China
| | - Chunlin Deng
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiyuan Li
- School of Physics, South China University of Technology, Guangzhou 510640, China
| | - Shi Liu
- School of Science, Westlake University, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Guangzhao Zhang
- School of Material Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Mousavi SM, Hashemi SA, Rahmanian V, Kalashgrani MY, Gholami A, Omidifar N, Chiang WH. Highly Sensitive Flexible SERS-Based Sensing Platform for Detection of COVID-19. BIOSENSORS 2022; 12:bios12070466. [PMID: 35884269 PMCID: PMC9312648 DOI: 10.3390/bios12070466] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/26/2023]
Abstract
COVID-19 continues to spread and has been declared a global emergency. Individuals with current or past infection should be identified as soon as possible to prevent the spread of disease. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique that has the potential to be used to detect viruses at the site of therapy. In this context, SERS is an exciting technique because it provides a fingerprint for any material. It has been used with many COVID-19 virus subtypes, including Deltacron and Omicron, a novel coronavirus. Moreover, flexible SERS substrates, due to their unique advantages of sensitivity and flexibility, have recently attracted growing research interest in real-world applications such as medicine. Reviewing the latest flexible SERS-substrate developments is crucial for the further development of quality detection platforms. This article discusses the ultra-responsive detection methods used by flexible SERS substrate. Multiplex assays that combine ultra-responsive detection methods with their unique biomarkers and/or biomarkers for secondary diseases triggered by the development of infection are critical, according to this study. In addition, we discuss how flexible SERS-substrate-based ultrasensitive detection methods could transform disease diagnosis, control, and surveillance in the future. This study is believed to help researchers design and manufacture flexible SERS substrates with higher performance and lower cost, and ultimately better understand practical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | - Vahid Rahmanian
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | | | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz 71468-64685, Iran;
| | - Navid Omidifar
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan;
| |
Collapse
|
10
|
Lin S, Cheng Z, Li Q, Wang R, Yu F. Toward Sensitive and Reliable Surface-Enhanced Raman Scattering Imaging: From Rational Design to Biomedical Applications. ACS Sens 2021; 6:3912-3932. [PMID: 34726891 DOI: 10.1021/acssensors.1c01858] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early specific detection through indicative biomarkers and precise visualization of lesion sites are urgent requirements for clinical disease diagnosis. However, current detection and optical imaging methods are insufficient for these demands. Molecular imaging technologies are being intensely studied for reliable medical diagnosis. In the past several decades, molecular imaging with surface-enhanced Raman scattering (SERS) has significant advances from analytical chemistry to medical science. SERS is the inelastic scattering generated from the interaction between photons and substances, presenting molecular structure information. The outstanding SERS virtues of high sensitivity, high specificity, and resistance to biointerference are highly advantageous for biomarker detection in a complex biological matrix. In this work, we review recent progress on the applications of SERS imaging in clinical diagnostics. With the assistance of SERS imaging, the detection of disease-related proteins, nucleic acids, small molecules, and pH of the cellular microenvironment can be implemented for adjuvant medical diagnosis. Moreover, multimodal imaging integrates the high penetration and high speed of other imaging modalities and imaging precision of SERS imaging, resulting in final complete and accurate imaging outcomes and exhibiting robust potential in the discrimination of pathological tissues and surgical navigation. As a promising molecular imaging technology, SERS imaging has achieved remarkable performance in clinical diagnostics and the biomedical realm. It is expected that this review will provide insights for further development of SERS imaging and promote the rapid progress and successful translation of advanced molecular imaging with clinical diagnostics.
Collapse
Affiliation(s)
- Shanshan Lin
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Ziyi Cheng
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Qifu Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
| | - Rui Wang
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, Laboratory of Neurology, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Pharmacy, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
11
|
Abstract
Surface-enhanced Raman scattering (SERS) nanoparticles (NPs) are ideal multiplexing probes for in vivo imaging and tissue staining. Their remarkable sensitivity and unique Raman molecular fingerprint results in minimal background compared to other optical modalities. These characteristics also allow multiplexing down to the attomolar concentration. Here we describe the synthesis and in vivo multiplexing application of a SERS NP library.
Collapse
|
12
|
Rasskazov IL, Moroz A, Carney PS. Extraordinary Fluorescence Enhancement in Metal-Dielectric Core-Shell Nanoparticles. J Phys Chem Lett 2021; 12:6425-6430. [PMID: 34236195 DOI: 10.1021/acs.jpclett.1c01368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We show that in metal-dielectric core-shell nanoparticles, unusually thick dielectric coatings can produce extreme fluorescence enhancement with an enhancement factor F̅ ≳ 3000 for emitters located on the surface or in the interior of the shell of Au@dielectric spherical particles under realistic conditions, even for the emitters with 100% intrinsic quantum yield. Thick dielectric coatings facilitate high-quality transverse electric (TE) multipole (l = 7) resonances which are shown as the major cause for the reported extraordinary values of F̅.
Collapse
Affiliation(s)
- Ilia L Rasskazov
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | | | - P Scott Carney
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
13
|
Yin Y, Mei R, Wang Y, Zhao X, Yu Q, Liu W, Chen L. Silica-Coated, Waxberry-like Surface-Enhanced Raman Resonant Scattering Tag-Pair with Near-Infrared Raman Dye Encoding: Toward In Vivo Duplexing Detection. Anal Chem 2020; 92:14814-14821. [PMID: 33045167 DOI: 10.1021/acs.analchem.0c03674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface-enhanced Raman resonant scattering (SERRS) tags encoded with near-infrared (NIR) Raman reporters showed great potential for in vivo detection owing to their ultrasensitivity. However, in vivo signal stability of such tags is a remaining problem due to the lack of suitable silica coating method because the weakly adsorbed NIR reporters tend to detach from traditional gold nanosubstrates in the ethanol-rich and high pH conditions, which are commonly used for silica coating. Herein, we propose a silica coating method for NIR SERRS tags by using waxberry-like gold nanoparticles (NPs) as substrates. The lipid bilayer of the NPs played a crucial role in the coating, which can encapsulate the NIR Raman reporter via hydrophobic interactions and prevent the interference from a harsh medium. Thus, the silica-coated tags well preserved ultrasensitivity of bare tags and simultaneously gained satisfactory signal stability in vivo. Moreover, the coating method is compatible for the encapsulation of a variety of thiol group-free NIR reporters (as exemplified by DTTC, Cy7, IR792, and DIR), relying on which a tag-pair with distinguishable peaks can be screened (labeling with DTTC and Cy7, respectively). In vivo duplexing detection revealed that the tag-pair-labeled liposome was cleared faster in the liver than polydopamine NPs within one mouse. The developed method paves an easy way for gaining high-quality SERRS tags and will promote their in vivo multiplex analysis and diagnostics applications.
Collapse
Affiliation(s)
- Yingchao Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xizhen Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Qian Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Wanhui Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.,School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
14
|
Hendel T, Krivenkov V, Sánchez-Iglesias A, Grzelczak M, Rakovich YP. Strongly coupled exciton-plasmon nanohybrids reveal extraordinary resistance to harsh environmental stressors: temperature, pH and irradiation. NANOSCALE 2020; 12:16875-16883. [PMID: 32766626 DOI: 10.1039/d0nr04298f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybridized plexcitonic states have unique properties which have been widely studied in recent decades in many research fields targeted at both fundamental science and innovative applications. However, to make these applications come true one needs to ensure the stabilization and preservation of electronic states and optical transitions in hybrid nanostructures, especially under the influence of external stressors, in regimes, that have not yet been comprehensively investigated. The present work shows that the nanohybrid system, composed of plasmonic nanoparticles and J-aggregates of organic molecules, displays outstanding resistance to harsh environmental stressors such as temperature, pH and strong light irradiation as well as demonstrates long-term stability and processability of the nanostructures both in weak and strong coupling regimes. These findings contribute to a deeper understanding of the physicochemical properties of plexcitonic nanoparticles and may find important implications for the development of potential applications in optoelectronics, optical imaging and chemo-bio-sensing and, in general, in the field of optical materials science.
Collapse
Affiliation(s)
- Thomas Hendel
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia - San Sebastián, Spain.
| | - Victor Krivenkov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31 Kashirskoe shosse, 115409 Moscow, Russian Federation
| | - Ana Sánchez-Iglesias
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia-San Sebastián, Spain
| | - Marek Grzelczak
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia - San Sebastián, Spain. and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Yury P Rakovich
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia - San Sebastián, Spain. and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain and Departamento de Física de Materiales UPV-EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastian, Spain and IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
15
|
Castro-Palacio JC, Ladutenko K, Prada A, González-Rubio G, Díaz-Núñez P, Guerrero-Martínez A, Fernández de Córdoba P, Kohanoff J, Perlado JM, Peña-Rodríguez O, Rivera A. Hollow Gold Nanoparticles Produced by Femtosecond Laser Irradiation. J Phys Chem Lett 2020; 11:5108-5114. [PMID: 32515961 DOI: 10.1021/acs.jpclett.0c01233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metallic hollow nanoparticles exhibit interesting optical properties that can be controlled by geometrical parameters. Irradiation with femtosecond laser pulses has emerged recently as a valuable tool for reshaping and size modification of plasmonic metal nanoparticles, thereby enabling the synthesis of nanostructures with unique morphologies. In this Letter, we use classical molecular dynamics simulations to investigate the solid-to-hollow conversion of gold nanoparticles upon femtosecond laser irradiation. Here, we suggest an efficient method for producing hollow nanoparticles under certain specific conditions, namely that the particles should be heated to a maximum temperature between 2500 and 3500 K, followed by a fast quenching to room temperature, with cooling rates lower than 120 ps. Therefore, we describe the experimental conditions for efficiently producing hollow nanoparticles, opening a broad range of possibilities for applications in key areas, such as energy storage and catalysis.
Collapse
Affiliation(s)
- Juan Carlos Castro-Palacio
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
- Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain
| | - Konstantin Ladutenko
- Department of Physics and Engineering, ITMO University, 49 Kronverskii Ave., St. Petersburg 197101, Russian Federation
| | - Alejandro Prada
- Departamento de Computación e Ingenierías, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca 3480112, Chile
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Guillermo González-Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Pablo Díaz-Núñez
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Andrés Guerrero-Martínez
- Departamento de Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Pedro Fernández de Córdoba
- Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain
| | - Jorge Kohanoff
- ASC, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - José Manuel Perlado
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
- Departamento de Ingeniería Energética, ETSII Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Ovidio Peña-Rodríguez
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
- Departamento de Ingeniería Energética, ETSII Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| | - Antonio Rivera
- Instituto de Fusión Nuclear "Guillermo Velarde", Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
- Departamento de Ingeniería Energética, ETSII Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, E-28006 Madrid, Spain
| |
Collapse
|
16
|
Bhaskar S, Kowshik NCSS, Chandran SP, Ramamurthy SS. Femtomolar Detection of Spermidine Using Au Decorated SiO 2 Nanohybrid on Plasmon-Coupled Extended Cavity Nanointerface: A Smartphone-Based Fluorescence Dequenching Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2865-2876. [PMID: 32159962 DOI: 10.1021/acs.langmuir.9b03869] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Coupling of photons with molecular emitters in different nanocavities have resulted in transformative plasmonic applications. The rapidly expanding field of surface plasmon-coupled emission (SPCE) has synergistically employed subwavelength optical properties of localized surface plasmon resonance (LSPR) supported by nanoparticles (NPs) and propagating surface plasmon polaritons assisted by metal thin films for diagnostic and point-of-care analysis. Gold nanoparticles (AuNPs) significantly quench the molecular emission from fluorescent molecules (at close distances <5 nm). More often, complex strategies are employed for providing a spacer layer around the AuNPs to avoid direct contact with fluorescent molecules, thereby preventing quenching. In this study we demonstrate a rapid and facile strategy with the use of Au-decorated SiO2 NPs (AuSil), a metal (Au)-dielectric (SiO2) hybrid material for dequenching the otherwise quenched fluorescence emission from radiating dipoles and to realize 88-fold enhancement using the SPCE platform. Different loading of AuNPs were studied to tailor fluorescence emission enhancements in spacer, cavity, and extended (ext.) cavity nanointerfaces. We also present femtomolar detection of spermidine using this nanohybrid in a highly desirable ext. cavity interface. This interface serves as an efficient coupling configuration with dual benefits of spacer and cavity architectures that has been widely explored hitherto. The multifold hot-spots rendered by the AuSil nanohybrids assist in augmented electromagnetic (EM)-field intensity that can be captured using a smartphone-based SPCE platform presenting excellent reliability and reproducibility in spermidine detection.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh India, 515134
| | - N Charan S S Kowshik
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh India, 515134
| | - S Prathap Chandran
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh India, 515134
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, Anantapur, Andhra Pradesh India, 515134
| |
Collapse
|
17
|
Kaushal S, Nanda SS, Samal S, Yi DK. Strategies for the Development of Metallic‐Nanoparticle‐Based Label‐Free Biosensors and Their Biomedical Applications. Chembiochem 2019; 21:576-600. [DOI: 10.1002/cbic.201900566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sandeep Kaushal
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Sitansu Sekhar Nanda
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| | - Shashadhar Samal
- Department of Materials Science and EngineeringGIST 123 Cheomdangwagi-ro Buk-gu 61005 Gwangju Republic of Korea
| | - Dong Kee Yi
- Department of ChemistryMyongji University Myong Ji Road 116 17058 Yongin Republic of Korea
| |
Collapse
|
18
|
Cui L, Zhang D, Yang K, Zhang X, Zhu YG. Perspective on Surface-Enhanced Raman Spectroscopic Investigation of Microbial World. Anal Chem 2019; 91:15345-15354. [DOI: 10.1021/acs.analchem.9b03996] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - DanDan Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Yakubovskaya E, Zaliznyak T, Martínez Martínez J, Taylor GT. Tear Down the Fluorescent Curtain: A New Fluorescence Suppression Method for Raman Microspectroscopic Analyses. Sci Rep 2019; 9:15785. [PMID: 31673106 PMCID: PMC6823364 DOI: 10.1038/s41598-019-52321-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/16/2019] [Indexed: 01/30/2023] Open
Abstract
The near exponential proliferation of published Raman microspectroscopic applications over the last decade bears witness to the strengths and versatility of this technology. However, laser-induced fluorescence often severely impedes its application to biological samples. Here we report a new approach for near complete elimination of laser-induced background fluorescence in highly pigmented biological specimens (e.g., microalgae) enabling interrogation by Raman microspectroscopy. Our simple chemiphotobleaching method combines mild hydrogen peroxide oxidation with broad spectrum visible light irradiation of the entire specimen. This treatment permits observing intracellular distributions of macromolecular pools, isotopic tracers, and even viral propagation within cells previously not amenable to Raman microspectroscopic examination. Our approach demonstrates the potential for confocal Raman microspectroscopy becoming an indispensable tool to obtain spatially-resolved data on the chemical composition of highly fluorescent biological samples from individual cells to environmental samples.
Collapse
Affiliation(s)
- Elena Yakubovskaya
- School Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tatiana Zaliznyak
- School Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | | | - Gordon T Taylor
- School Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
20
|
Yu Q, Wang Y, Mei R, Yin Y, You J, Chen L. Polystyrene Encapsulated SERS Tags as Promising Standard Tools: Simple and Universal in Synthesis; Highly Sensitive and Ultrastable for Bioimaging. Anal Chem 2019; 91:5270-5277. [DOI: 10.1021/acs.analchem.9b00038] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qian Yu
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Rongchao Mei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingchao Yin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Jinmao You
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Lingxin Chen
- Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
21
|
Taylor GT. Windows into Microbial Seascapes: Advances in Nanoscale Imaging and Application to Marine Sciences. ANNUAL REVIEW OF MARINE SCIENCE 2019; 11:465-490. [PMID: 30134123 DOI: 10.1146/annurev-marine-121916-063612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Geochemical cycles of all nonconservative elements are mediated by microorganisms over nanometer spatial scales. The pelagic seascape is known to possess microstructure imposed by heterogeneous distributions of particles, polymeric gels, biologically important chemicals, and microbes. While indispensable, most traditional oceanographic observational approaches overlook this heterogeneity and ignore subtleties, such as activity hot spots, symbioses, niche partitioning, and intrapopulation phenotypic variations, that can provide a deeper mechanistic understanding of planktonic ecosystem function. As part of the movement toward cultivation-independent tools in microbial oceanography, techniques to examine the ecophysiology of individual populations and their role in chemical transformations at spatial scales relevant to microorganisms have been developed. This review presents technologies that enable geochemical and microbiological interrogations at spatial scales ranging from 0.02 to a few hundred micrometers, particularly focusing on atomic force microscopy, nanoscale secondary ion mass spectrometry, and confocal Raman microspectroscopy and introducing promising approaches for future applications in marine sciences.
Collapse
Affiliation(s)
- Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794, USA;
| |
Collapse
|
22
|
Lin Q, Yang Y, Ma Y, Zhang R, Wang J, Chen X, Shao Z. Bandgap Engineered Polypyrrole-Polydopamine Hybrid with Intrinsic Raman and Photoacoustic Imaging Contrasts. NANO LETTERS 2018; 18:7485-7493. [PMID: 30444622 DOI: 10.1021/acs.nanolett.8b02901] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intrinsically multimodal nanomaterials have revealed their great potential as a new class of contrast agents. We herein report a bandgap engineering strategy to develop an intrinsically Raman-photoacoustic (PA) active probe that is based on semiconducting conjugated polymers. This dual modal probe is prepared by doping a semiconducting conjugated polymer with polydopamine (PDA) through a one-pot reaction. When applied in the polypyrrole (PPy), this strategy can enhance Raman scattering and the PA amplitude of PPy-PDA hybrid by 3.2 and 2.4 times, respectively, so that both signals can be further applied in bioimaging. In the hybrid, such a dual-enhancement effect is achieved by infusing these two macromolecules at the nanoscale to reduce the optical bandgap energy. This work not only introduces a dual modal contrast agent but also provides a new method of manipulating semiconducting polymer's inherent optical features for bioimaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhengzhong Shao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , Nanjing Normal University , Nanjing 210046 , China
| |
Collapse
|