1
|
Jiao S, Han X, Bu X, Huang Z, Li S, Wang W, Wang M, Liu Y, Song WL. d-Orbital Induced Electronic Structure Reconfiguration toward Manipulating Electron Transfer Pathways of Metallo-Porphyrin for Enhanced AlCl 2 + Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409904. [PMID: 39254348 DOI: 10.1002/adma.202409904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/31/2024] [Indexed: 09/11/2024]
Abstract
The positive electrodes of non-aqueous aluminum ion batteries (AIBs) frequently encounter significant issues, for instance, low capacity in graphite (mechanism: anion de/intercalation and large electrode deformation induced) and poor stability in inorganic positive electrodes (mechanism: multi-electron redox reaction and dissolution of active materials induced). Here, metallo-porphyrin compounds (employed Fe2+, Co2+, Ni2+, Cu2+, and Zn2+ as the ion centers) are introduced to effectively enhance both the cycling stability and reversible capacity due to the formation of stable conjugated metal-organic coordination and presence of axially coordinated active sites, respectively. With the regulation of electronic energy levels, the d-orbitals in the redox reactions and electron transfer pathways can be rearranged. The 5,10,15,20-tetraphenyl-21H,23H-porphine nickle(II) (NiTPP) presents the highest specific capacity (177.1 mAh g-1), with an increment of 32.1% and 77.1% in comparison with the capacities of H2TPP and graphite, respectively, which offers a new route for developing high-capacity positive electrodes for stable AIBs.
Collapse
Affiliation(s)
- Shuqiang Jiao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xue Han
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xudong Bu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shijie Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
2
|
Peng X, Zhou Y, Chen B, Cao W, Sun C, Liao Y, Huang X, Tu X, Chen Z, Liu W, Gao P. A Porphyrin-Phenylalkynyl-Based Conjugated Organic Polymer as a High-Performance Cathode for Rechargeable Organic Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361519 DOI: 10.1021/acsami.4c13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Organic electrode materials (OEMs) have attracted much attention for rechargeable batteries due to their low cost, environment friendliness, flexibility, and structural versatility. Despite the above advantages, high solubility in electrolyte and low electronic conductivity remain critical limitations for the application of OEMs. In this work, the conjugated organic polymer (COP) poly([5,10,15,20-tetrakis(4-phenylalkynyl)porphyrin]Cu(II)) (PCuTPEP) is proposed as a cathode for high performance in organic lithium batteries. The polymerization inhibits the dissolution of the organic electrodes in the electrolyte, and the porphyrin and ethynyl-phenyl groups greatly expand the conjugated system and result in a high average discharge plateau at 4.0 V (vs Li+/Li). The PCuTPEP cathode exhibits a reversible discharge capacity of 119 mAh g-1 at a current of 50 mA g-1. Even at a high current density of 2.0 A g-1, excellent cycling stability up to 1000 cycles is achieved with capacity retentions of 88.5 and 90.4% at operating temperatures of 25 and 50 °C in organic lithium batteries, respectively. This study provides the approach for the development of organic cathodes for electrochemical energy storage.
Collapse
Affiliation(s)
- Xi Peng
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| | - Yangmei Zhou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| | - Binhua Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenju Cao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| | - Caihong Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| | - Yao Liao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| | - Xingying Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| | - Xiaojian Tu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wei Liu
- Yiyang Hongyuan Rare Earth Co., Ltd, Yiyang 413001, P. R. China
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan411105, China
| |
Collapse
|
3
|
Jiao S, Han X, Jiang LL, Du X, Huang Z, Li S, Wang W, Wang M, Liu Y, Song WL. Functional Group-Driven Competing Mechanism in Electrochemical Reaction and Adsorption/Desorption Processes toward High-Capacity Aluminum-Porphyrin Batteries. Angew Chem Int Ed Engl 2024; 63:e202410110. [PMID: 38972839 DOI: 10.1002/anie.202410110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Nonaqueous organic aluminum batteries are considered as promising high-safety energy storage devices due to stable ionic liquid electrolytes and Al metals. However, the stability and capacity of organic positive electrodes are limited by their inherent high solubility and low active organic molecules. To address such issues, here porphyrin compounds with rigid molecular structures present stable and reversible capability in electrochemically storing AlCl2 +. Comparison between the porphyrin molecules with electron-donating groups (TPP-EDG) and with electron-withdrawing groups (TPP-EWG) suggests that EDG is responsible for increasing both highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, resulting in decreased redox potentials. On the other hand, EWG is associated with decreasing both HOMO and LUMO energy levels, leading to promoted redox potentials. EDG and EWG play critical roles in regulating electron density of porphyrin π bond and electrochemical energy storage kinetics behavior. The competitive mechanism between electrochemical redox reaction and de/adsorption processes suggests that TPP-OCH3 delivers the highest specific capacity ~171.8 mAh g-1, approaching a record in the organic Al batteries.
Collapse
Affiliation(s)
- Shuqiang Jiao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xue Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Xi'an Jiao Tong University, Xi'an, 710049, P. R. China
| | - Li-Li Jiang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Xueyan Du
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou, 730050, P.R. China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shijie Li
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
4
|
Luo Z, Peng X, Wang L, Luo B. Insights into Mechanistic Aspect of Organic Materials for Aluminum-Ion Batteries. CHEMSUSCHEM 2024:e202401397. [PMID: 39257025 DOI: 10.1002/cssc.202401397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Rechargeable aluminum-ion batteries (AIBs) with organic electrode materials have garnered significant attention due to their excellent safety profile, cost-effectiveness, and eco-friendly nature. This review examines the fundamental properties of organic compounds and their effects on battery performance, with a primary focus on how changes in ion interactions and charge storage mechanisms at active sites influence overall performance. The aim is to propose innovative design approaches for AIBs that overcome the constraints associated with various types of organic materials. The review also discusses the application of advanced analytical tools, providing insights to better understand the electrochemical process of AIBs.
Collapse
Affiliation(s)
- Zhiruo Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
5
|
Luo LW, Zhang C, Ma W, Han C, Ai X, Chen Y, Xu Y, Ji X, Jiang JX. Regulating the Double-Way Traffic of Cations and Anions in Ambipolar Polymer Cathodes for High-Performing Aluminum Dual-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406106. [PMID: 39108043 DOI: 10.1002/adma.202406106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/12/2024] [Indexed: 09/28/2024]
Abstract
The strong Coulombic interactions between Al3+ and traditional inorganic crystalline cathodes present a significant obstacle in developing high-performance rechargeable aluminum batteries (RABs) that hold promise for safe and sustainable stationary energy storage. While accommodating chloroaluminate ions (AlCl4 -, AlCl2+, etc.) in redox-active organic compounds offers a promising solution for RABs, the issues of dissolution and low ionic/electronic conductivities plague the development of organic cathodes. Herein, electron donors are synthetically connected with acceptors to create crosslinked, bipolar-conjugated polymer cathodes. These cathodes exhibit overlapped redox potential ranges for both donors and acceptors in highly concentrated AlCl3-based ionic liquid electrolytes. This approach strategically enables on-site doping of the polymer backbones during redox reactions involving both donor and acceptor units, thereby enhancing the electron/ion transfer kinetics within the resultant polymer cathodes. Based on the optimal donor/acceptor combination, the bipolar polymer cathodes can deliver a high specific capacity of 205 mAh g-1 by leveraging the co-storage of AlCl4 - and AlCl2+. The electrodes exhibit excellent rate performance, a stable cycle life of 60 000 cycles, and function efficiently at high mass loadings, i.e., 100 mg cm-2, and at low temperatures, i.e., -30 °C. The findings exemplify the exploration of high-performing conjugated polymer cathodes for RABs through rational structural design.
Collapse
Affiliation(s)
- Lian-Wei Luo
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Chong Zhang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Wenyan Ma
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Changzhi Han
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| | - Xuan Ai
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yunhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, 97331-4003, USA
| | - Jia-Xing Jiang
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| |
Collapse
|
6
|
Gao Y, Zhang D, Zhang S, Li L. Research Advances of Cathode Materials for Rechargeable Aluminum Batteries. CHEM REC 2024; 24:e202400085. [PMID: 39148161 DOI: 10.1002/tcr.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Indexed: 08/17/2024]
Abstract
Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al3+ ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.
Collapse
Affiliation(s)
- Yanhong Gao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
- School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
7
|
Ma W, Zhang P, Tang L, Ge M, Qi Y, Chen Y, Zhang C, Jiang JX. Towards Durable and High-Rate Rechargeable Aluminum Dual-ion Batteries via a Crosslinked Diphenylphenazine-based Conjugated Polymer Cathode. CHEMSUSCHEM 2024; 17:e202301725. [PMID: 38225682 DOI: 10.1002/cssc.202301725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Rechargeable aluminum battery (RAB) is expected to be a promising energy storage technique for grid-scale energy storage. However, the development of RABs is seriously plagued by the lack of suitable cathode materials. Herein, we report two p-type conjugated polymers of L-PBPz and C-PBPz with the same building blocks of diphenylphenazine but different linkage patterns of linear and crosslinked structures as the cathode materials for Al dual-ion batteries. Compared to the linear polymer skeleton in L-PBPz, the crosslinked structure endows C-PBPz with amorphous nature and low dihedral angles of the polymer chains, which severally contribute to the fast diffusion of AlCl4 - with large size and the electron transfer during the redox reaction of diphenylphenazine. As a result, C-PBPz delivers a much better rate performance than L-PBPz. The crosslinked structure also leads to a stable cyclability with over 80000 cycles for C-PBPz. Benefiting from the fast kinetics, meanwhile, the C-PBPz cathode could realize a high redox activity of 117 mAh g-1, corresponding to an areal capacity of 2.30 mAh cm-2, even under a high mass loading of 19.7 mg cm-2 and a low content of 10 wt% conductive agent. These results might boost the development of polymer cathodes for RABs.
Collapse
Affiliation(s)
- Wenyan Ma
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Pengchao Zhang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Linting Tang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Mantang Ge
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yunpeng Qi
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yu Chen
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Chong Zhang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jia-Xing Jiang
- Institution Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
- Key Laboratory of Optoelectronic Chemical Materials and Devices (Ministry of Education), School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, P. R. China
| |
Collapse
|
8
|
Li S, Wang J, Zhang Y, Cheng A, Cai P, Su J, Shen Y, Zhou M, Jiang K, Wang K. Poly(3-Methylthiophene)/Graphene Composite Cathode for Rechargeable Aluminum-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16744-16753. [PMID: 38502965 DOI: 10.1021/acsami.3c17248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
To reduce the dependence on traditional fossil energy, developing efficient energy storage systems is urgent. The reserves of aluminum resources in the earth's crust are extremely rich, which makes aluminum-ion batteries a promising competitor of new energy storage devices. Here, we report a poly(3-methylthiophene)/graphene (P3TH/Graphene) composite as the cathode of an aluminum-ion battery. The adjustment of polymer chain spacing by the methyl side chain provides a channel conducive to the transport of large-size AlCl4- complexes. The addition of electron donor groups also changes the electron delocalization characteristics of polymers and improves the specific capacity of the material. At the same time, the in situ composite of graphene can enhance the Π-Π interaction to form a favorable electronic transmission channel. At a current density of 200 mA g-1, the P3TH/Graphene composite showed a specific capacity of ∼150 mA g-1. The flexible structure of the polymer also guarantees the excellent rate capability of the composite.
Collapse
Affiliation(s)
- Sihang Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Juan Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Zhang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Anran Cheng
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peng Cai
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinzhao Su
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yi Shen
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Min Zhou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Kai Jiang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| | - Kangli Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- Engineering Research Center of Power Safety and Efficiency, Ministry of Education, Wuhan, Hubei 430074, China
| |
Collapse
|
9
|
Gu S, Chen J, Hussain I, Wang Z, Chen X, Ahmad M, Feng SP, Lu Z, Zhang K. Modulation of Radical Intermediates in Rechargeable Organic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306491. [PMID: 37533193 DOI: 10.1002/adma.202306491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Organic materials have been considered as promising electrodes for next-generation rechargeable batteries in view of their sustainability, structural flexibility, and potential recyclability. The radical intermediates generated during the redox process of organic electrodes have profound effect on the reversible capacity, operation voltage, rate performance, and cycling stability. However, the radicals are highly reactive and have very short lifetime during the redox of organic materials. Great efforts have been devoted to capturing and investigating the radical intermediates in organic electrodes. Herein, this review summarizes the importance, history, structures, and working principles of organic radicals in rechargeable batteries. More importantly, challenges and strategies to track and regulate the radicals in organic batteries are highlighted. Finally, further perspectives of organic radicals are proposed for the development of next-generation high-performance rechargeable organic batteries.
Collapse
Affiliation(s)
- Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jingjing Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqiang Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shien-Ping Feng
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
10
|
Jian L, Wu X, Li R, Zhao F, Liu P, Wang F, Liu D, Yao Q, Deng J. Enhanced Aluminum-Ion Storage Properties of N-Doped Titanium Dioxide Electrode in Aqueous Aluminum-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:472. [PMID: 38470801 DOI: 10.3390/nano14050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Aqueous aluminum-ion batteries (AIBs) have great potential as devices for future large-scale energy storage systems due to the cost efficiency, environmentally friendly nature, and impressive theoretical energy density of Al. However, currently, available materials used as anodes for aqueous AIBs are scarce. In this study, a novel sol-gel method was used to synthesize nitrogen-doped titanium dioxide (N-TiO2) as a potential anode material for AIBs in water. The annealed N-TiO2 showed a high discharge capacity of 43.2 mAh g-1 at a current density of 3 A g-1. Analysis of the electrode kinetics revealed that the N-TiO2 anodes exhibited rapid diffusion of aluminum ions, low resistance to charge transfer, and high electronic conductivity, enabling good rate performance. The successful implementation of a nitrogen-doping strategy provides a promising approach to enhance the electrochemical characteristics of electrode materials for aqueous AIBs.
Collapse
Affiliation(s)
- Le Jian
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Xibing Wu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ruichun Li
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fangzheng Zhao
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Peng Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Feng Wang
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Daosheng Liu
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qingrong Yao
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jianqiu Deng
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
11
|
Yao L, Ju S, Xu T, Wang W, Yu X. MXene-Based Mixed Conductor Interphase for Dendrite-Free Flexible Al Organic Battery. ACS NANO 2023; 17:25027-25036. [PMID: 38059750 DOI: 10.1021/acsnano.3c07611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Al batteries are promising post-Li battery technologies for large-scale energy storage applications owing to their low cost and high theoretical capacity. However, one of the challenges that hinder their development is the unsatisfactory plating/stripping of the Al metal anode. To circumvent this issue, an ultrathin MXene layer is constructed on the surface of Al by in situ chemical reactions at room temperature. The as-prepared flexible MXene film acts like armor to protect the Al-metal by its high ionic conductivity and high mechanical flexibility. The MXene endow the Al anode with a long cyclic life of more than 5000 h at ultrahigh current density of 50 mA cm-2 for Al//Al batteries and a retention of 100% over 200 cycles for 355 Wh kg-1 PTO//Al batteries. This work provides fresh insights into the formation and regulation of stable electrode-electrolyte interfaces as well as effective strategies for improving Al metal batteries.
Collapse
Affiliation(s)
- Long Yao
- Department of Materials Science, Fudan University, Shanghai 200433, China
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shunlong Ju
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Tian Xu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Wenbin Wang
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Das S, Manna S, Pathak B. Unlocking the Potential of Dual-Ion Batteries: Identifying Polycyclic Aromatic Hydrocarbon Cathodes and Intercalating Salt Combinations through Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54520-54529. [PMID: 37973157 DOI: 10.1021/acsami.3c13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Dual-ion batteries (DIBs) represent a promising energy storage technology, offering a cost-effective safe solution with impressive electrochemical performance. The large combinatorial configuration space of the electrode-electrolyte leads to design challenges. We present a machine learning (ML) approach for accurately predicting the voltage and volume changes of polycyclic aromatic hydrocarbon (PAH) cathodes upon intercalation with a variety of DIB salts following different mechanisms. Gradient Boosting and XGBoost Regression models trained on the data set demonstrate exceptional performance in voltage and volume change prediction, respectively. The models are further cross-validated and utilized to predict the properties for ∼700 combinations of PAH and DIB salt intercalations, a subset of which is further validated by density functional theory. Using average voltage and volume change for all combinations of PAHs and salts, preferable combinations for high/low voltage requirements along with long-term stability are obtained. Overall, the study shows the applicability of PAHs in DIBs exhibiting good electrochemical performance with low volume change compared to graphite indicative of its potential to overcome the cycling stability issues of DIBs. This research establishes a reliable and broadly applicable ML-based workflow for efficient screening and accelerated design of advanced PAH cathodes and salts, thus driving progress in the field of DIBs.
Collapse
Affiliation(s)
- Sandeep Das
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Souvik Manna
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
13
|
Shinde SS, Wagh NK, Kim S, Lee J. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid-State Electrolytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304235. [PMID: 37743719 PMCID: PMC10646287 DOI: 10.1002/advs.202304235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/30/2023] [Indexed: 09/26/2023]
Abstract
Solid-state batteries (SSBs) have received significant attention due to their high energy density, reversible cycle life, and safe operations relative to commercial Li-ion batteries using flammable liquid electrolytes. This review presents the fundamentals, structures, thermodynamics, chemistries, and electrochemical kinetics of desirable solid electrolyte interphase (SEI) required to meet the practical requirements of reversible anodes. Theoretical and experimental insights for metal nucleation, deposition, and stripping for the reversible cycling of metal anodes are provided. Ion transport mechanisms and state-of-the-art solid-state electrolytes (SEs) are discussed for realizing high-performance cells. The interface challenges and strategies are also concerned with the integration of SEs, anodes, and cathodes for large-scale SSBs in terms of physical/chemical contacts, space-charge layer, interdiffusion, lattice-mismatch, dendritic growth, chemical reactivity of SEI, current collectors, and thermal instability. The recent innovations for anode interface chemistries developed by SEs are highlighted with monovalent (lithium (Li+ ), sodium (Na+ ), potassium (K+ )) and multivalent (magnesium (Mg2+ ), zinc (Zn2+ ), aluminum (Al3+ ), calcium (Ca2+ )) cation carriers (i.e., lithium-metal, lithium-sulfur, sodium-metal, potassium-ion, magnesium-ion, zinc-metal, aluminum-ion, and calcium-ion batteries) compared to those of liquid counterparts.
Collapse
Affiliation(s)
- Sambhaji S. Shinde
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Nayantara K. Wagh
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Sung‐Hae Kim
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| | - Jung‐Ho Lee
- Department of Materials Science and Chemical EngineeringHanyang UniversityAnsanGyeonggi‐do15588Republic of Korea
- FLEXOLYTE Inc.Ansan15588Republic of Korea
| |
Collapse
|
14
|
Lu Y, Chen M, Wang Y, Hu Y, Wang X, Zhang W, Li Z. Interaction Mechanism between Cyano-Organic Molecular Structures and Energy Storage of Aluminum Complex Ions in Aluminum Batteries. SMALL METHODS 2023; 7:e2300663. [PMID: 37462249 DOI: 10.1002/smtd.202300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Indexed: 10/20/2023]
Abstract
Aluminum ion batteries (AIBs) are widely regarded as the most potential large-scale metal ion battery because of its high safety and environment-friendly characteristics. To solve the problem of weak electrical conductivity of organic materials, different structures of cyano organic molecules with electrophilic properties are selected as the cathode materials of aluminum batteries. Through experimental characterization and density functional theory theoretical calculation, Phthalonitrile is the best cathode material among the five organic molecules and proved that the C≡N group is the active site for insertion/extraction of AlCl2 + ions. The first cycle-specific capacity of the assembled flexible package battery is as high as 191.92 mAh g-1 , the discharge-specific capacity is 112.67 mAh g-1 after 1000 cycles, and the coulombic efficiency is ≈97%. At the same time, the influences of different molecular structures and functional groups on the battery are also proved. These research results lay a foundation for selecting safe and stable organic aluminum batteries and provide a new reference for developing high-performance AIBs.
Collapse
Affiliation(s)
- Yong Lu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Mingjun Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Yi Wang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Yunhai Hu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Xiaoxu Wang
- Deep Potential Technology, Beijing, 100080, China
- AI for Science Institute, Beijing, 100080, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| |
Collapse
|
15
|
Zhong L, Zhang Y, Li J, Fang L, Liu C, Wang X, Zhang Z, Yu D. Unveiling the Role of Charge Dilution and Anionic Chemistry in Enabling High-Rate p-Type Polymer Cathodes for Dual-Ion Batteries. ACS NANO 2023; 17:18190-18199. [PMID: 37706655 DOI: 10.1021/acsnano.3c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Herein, we introduce a p-type redox conjugated covalent organic polymer (p-PNZ) as a universal and high-rate cathode for diverse dual-ion batteries. By constructing an n-type redox counterpart (n-PNZ) with an analogous reticular structure and redox-site composition, we also attain a comparative platform to probe how the redox-site nature and counterion chemistry affect the rate performance of polymer cathodes. It is disclosed that the charge dilution in p-type redox sites and bulky anions engenders their weak interaction and rapid anion diffusion in electrodes, while the trivial interaction of the solvent with anions facilitates anion desolvation and interfacial charge transfer. Thus, p-PNZ possesses rapid surface-controlled redox kinetics with a high anion diffusion coefficient regardless of its inferior porosity and conductivity relative to n-PNZ. Along with a long cycle life of over 50000 cycles, the p-PNZ-engaged Zn-based dual-ion battery with a dilute electrolyte delivers nearly constant capacities of ∼149 mAh g-1 at various rates of ≤10 A g-1─such an unusual rate capability has rarely been observed previously─and retains ∼99 mAh g-1 at 40 A g-1, surpassing the n-PNZ counterpart and most existing p-type organic cathodes. The p-PNZ cathode can also be applied to build high-rate Li-based batteries, signifying its universality, while the "ready-to-charge" character of p-PNZ enables anode-free dual-ion batteries with a high-rate capability and long lifespan.
Collapse
Affiliation(s)
- Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yang Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jing Li
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR 999078, People's Republic of China
| | - Long Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zishou Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-based Composites of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- GBRCE for Functional Molecular Engineering, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
16
|
Huang Z, Li X, Chen Z, Li P, Ji X, Zhi C. Anion chemistry in energy storage devices. Nat Rev Chem 2023; 7:616-631. [PMID: 37316580 DOI: 10.1038/s41570-023-00506-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/16/2023]
Abstract
Anions serve as an essential component of electrolytes, whose effects have long been ignored. However, since the 2010s, we have seen a considerable increase of anion chemistry research in a range of energy storage devices, and it is now understood that anions can be well tuned to effectively improve the electrochemical performance of such devices in many aspects. In this Review, we discuss the roles of anion chemistry across various energy storage devices and clarify the correlations between anion properties and their performance indexes. We highlight the effects of anions on surface and interface chemistry, mass transfer kinetics and solvation sheath structure. Finally, we conclude with a perspective on the challenges and opportunities of anion chemistry for enhancing specific capacity, output voltage, cycling stability and anti-self-discharge ability of energy storage devices.
Collapse
Affiliation(s)
- Zhaodong Huang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR, USA.
| | - Chunyi Zhi
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR, China.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
17
|
Zhang W, Li Y, Wu Y, Huang W, Wang S, Fu Y, Ma W, Li X, Ma H. Polypyrene Porous Organic Framework for Efficiently Capturing Electron Specialty Gases. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37300495 DOI: 10.1021/acsami.3c05398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The polypyrene polymer with an extended π-conjugated skeleton is attractive for perfluorinated electron specialty gas (F-gas) capture as the high electronegativity of fluorine atoms makes F-gases strongly electronegative gases. Herein, a polypyrene porous organic framework (termed as Ppy-POF) with an extended π-conjugated structure and excellent acid resistance was constructed. Systematic studies have shown that the abundant π-conjugated structures and gradient electric field distribution in Ppy-POF can endow it exceptional adsorption selectivity for high polarizable F-gases and xenon (Xe), which has been collaboratively confirmed by single-component gas adsorption experiments, time-dependent adsorption rate tests, dynamic breakthrough experiments, etc. Electrostatic potential distribution and charge density difference based on Grand Canonical Monte Carlo simulations and density functional theory calculations demonstrate that the selective adsorption of F-gases and Xe in Ppy-POF is attributed to the strong charge-transfer effect and polarization effect between Ppy-POF and gases. These results manifest that the POF with an extended π-conjugated structure and gradient electric field distribution has great potential in efficiently capturing electron specialty gases.
Collapse
Affiliation(s)
- Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yinhui Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yue Wu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wenbo Huang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shanshan Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wuju Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoyu Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
18
|
Greco G, Elia GA, Hermida-Merino D, Hahn R, Raoux S. A Direct Real-Time Observation of Anion Intercalation in Graphite Process and Its Fully Reversibility by SAXS/WAXS Techniques. SMALL METHODS 2023; 7:e2201633. [PMID: 36895075 DOI: 10.1002/smtd.202201633] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/15/2023] [Indexed: 06/09/2023]
Abstract
The process of anion intercalation in graphite and its reversibility plays a crucial role in the next generation energy-storage devices. Herein the reaction mechanism of the aluminum graphite dual ion cell by operando X-ray scattering from small angles to wide angles is investigated. The staging behavior of the graphite intercalation compound (GIC) formation, its phase transitions, and its reversible process are observed for the first time by directly measuring the repeated intercalation distance, along with the microporosity of the cathode graphite. The investigation demonstrates complete reversibility of the electrochemical intercalation process, alongside nano- and micro-structural reorganization of natural graphite induced by intercalation. This work represents a new insight into thermodynamic aspects taking place during intermediate phase transitions in the GIC formation.
Collapse
Affiliation(s)
- Giorgia Greco
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
- Chemistry Department, Sapienza University of Rome, P.le Aldo Moro 5, Roma, 00185, Italy
| | - Giuseppe Antonio Elia
- Technical University of Berlin, Research Center of Microperipheric Technologies, Gustav-Meyer-Allee 25, D-13355, Berlin, Germany
| | - Daniel Hermida-Merino
- DUBBLE-Dutch Belgian Beamline (BM26), ESRF, 6 Rue Jules Horowitz, BP 220, 38043, Grenoble, CEDEX 9, France
| | - Robert Hahn
- Technical University of Berlin, Research Center of Microperipheric Technologies, Gustav-Meyer-Allee 25, D-13355, Berlin, Germany
- Fraunhofer IZM, Institut für Zuverlässigkeit und Mikrointegration, Gustav-Meyer-Allee 25, D-13355, Berlin, Germany
| | - Simone Raoux
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109, Berlin, Germany
| |
Collapse
|
19
|
Huang Z, Du X, Ma M, Wang S, Xie Y, Meng Y, You W, Xiong L. Organic Cathode Materials for Rechargeable Aluminum-Ion Batteries. CHEMSUSCHEM 2023; 16:e202202358. [PMID: 36732888 DOI: 10.1002/cssc.202202358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 05/06/2023]
Abstract
Organic electrode materials (OEMs) have shown enormous potential in ion batteries because of their varied structural components and adaptable construction. As a brand-new energy-storage device, rechargeable aluminum-ion batteries (RAIBs) have also received a lot of attention due to their high safety and low cost. OEMs are expected to stand out among many traditional RAIB cathode materials. However, how to improve the electrochemical performance of OEMs in RAIBs on a laboratory scale is still challenging. This work reviews and discusses the uses of conductive polymers, carbonyl compounds, imine polymers, polycyclic aromatic hydrocarbons, organic frameworks, and other organic materials as the cathodes of RAIBs, as well as energy-storage mechanisms and research progress. It is hoped that this Review can provide the design guidelines for organic cathode materials with high capacity and great stability used in aluminum-organic batteries and develop more efficient organic energy storage cathodes.
Collapse
Affiliation(s)
- Zhen Huang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xianfeng Du
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingbo Ma
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shixin Wang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuehong Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yi Meng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzhi You
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lilong Xiong
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
Feng S, Xing L, Li K, Wang H, An Q, Zhou L, Mai L. Solvent-Free Synthesis of Polymer Spheres and the Activation to Porous Carbon Spheres for Advanced Aluminum-Ion Hybrid Capacitors. SMALL METHODS 2023:e2300150. [PMID: 37035960 DOI: 10.1002/smtd.202300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Porous carbon spheres (PCSs) characteristic of perfect symmetry and ideal rheological property have great potential in electrochemical energy storage (EES). However, conventional synthesis of PCSs heavily relies on solution-based methods that may lead to environmental issues. Herein, an environment-friendly solvent-free method toward the facile and mass production of m-phenylenediamine-formaldehyde (MPF) resin spheres, which can be converted into PCSs after carbonization and activation is reported. An ultrahigh productivity of 25.89 g in a 100-mL container and an impressive percent yield of 98.89% can be achieved for the MPF resin spheres, which are further converted into carbon spheres with a reasonable yield of 14.5% after carbonization. When employed as the cathode material for aluminum-ion hybrid capacitors, the obtained PCSs afford a double-layer capacity of ≈200 mAh g-1 , the highest value among reported porous carbon materials for Al-based EES devices. It is anticipated that the solvent-free synthesis method for PCSs developed here may play a significant role in other EES devices, such as magnesium-ion and calcium-ion hybrid capacitors.
Collapse
Affiliation(s)
- Shihao Feng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Lingli Xing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Kun Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Hong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
| | - Liang Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
| |
Collapse
|
21
|
Yang Z, Huang X, Meng P, Jiang M, Wang Y, Yao Z, Zhang J, Sun B, Fu C. Phenoxazine Polymer-based p-type Positive Electrode for Aluminum-ion Batteries with Ultra-long Cycle Life. Angew Chem Int Ed Engl 2023; 62:e202216797. [PMID: 36545849 DOI: 10.1002/anie.202216797] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133 mAh g-1 at 0.2 A g-1 . More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000 cycles. The charge storage mechanism is that the AlCl4 - ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.
Collapse
Affiliation(s)
- Zhaohui Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, P. R. China
| | - Pengyu Meng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Min Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yibo Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhenpeng Yao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiao Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Baode Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
22
|
Zhang J, Wu Y, Liu M, Huang L, Li Y, Wu Y. Self-Adaptive Re-Organization Enables Polythiophene as an Extraordinary Cathode Material for Aluminum-Ion Batteries with a Cycle Life of 100 000 Cycles. Angew Chem Int Ed Engl 2023; 62:e202215408. [PMID: 36515631 DOI: 10.1002/anie.202215408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Aluminum-ion batteries (AIBs) have attracted great attentions in recent years. Organic materials such as polythiophene (PT) are promising cathode for AIBs. However, the capacity and cyclic stability of conventional organic cathode such as PT are limited by the inadequate degree of reaction and the unstable nature of organic materials. To obtain high-performance organic cathode, a new PT with the ability of self-adaptive re-organization was prepared. During cycling, its molecular chain can be re-organized, and the polymerization mode will change from Cα -Cα (α-PT) to Cβ -Cβ (β-PT). This change leads to smaller steric hindrance and faster kinetics during ion insertion which can lower the reaction energy barrier and stabilize the molecular structure. Benefited by this, AIBs with this cathode can deliver a specific capacity of 180 mAh g-1 (@2 A g-1 ) and a superb stability of 100 000 cycles at 10 A g-1 . High energy density and power density can also be achieved with this cathode.
Collapse
Affiliation(s)
- Junfei Zhang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yunling Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Miao Liu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lu Huang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yingpeng Wu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
23
|
Lu Y, Zhang Q, Li F, Chen J. Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries. Angew Chem Int Ed Engl 2023; 62:e202216047. [PMID: 36445787 DOI: 10.1002/anie.202216047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Organic electrode materials have application potential in lithium batteries owing to their high capacity, abundant resources, and structural designability. However, most reported organic cathodes are at oxidized states (namely unlithiated compounds) and thus need to couple with Li-rich anodes. In contrast, lithiated organic cathode materials could act as a Li reservoir and match with Li-free anodes such as graphite, showing great promise for practical full-battery applications. Here we summarize the synthesis, stability, and battery applications of lithiated organic cathode materials, including synthetic methods, stability against O2 and H2 O in air, and strategies to improve comprehensive electrochemical performance. Future research should be focused on new redox chemistries and the construction of full batteries with lithiated organic cathodes and commercial anodes under practical conditions. This Minireview will encourage more efforts on lithiated organic cathode materials and finally promote their commercialization.
Collapse
Affiliation(s)
- Yong Lu
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiu Zhang
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fujun Li
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
24
|
Abstract
Organic batteries using redox-active polymers and small organic compounds have become promising candidates for next-generation energy storage devices due to the abundance, environmental benignity, and diverse nature of organic resources. To date, tremendous research efforts have been devoted to developing advanced organic electrode materials and understanding the material structure-performance correlation in organic batteries. In contrast, less attention was paid to the correlation between electrolyte structure and battery performance, despite the critical roles of electrolytes for the dissolution of organic electrode materials, the formation of the electrode-electrolyte interphase, and the solvation/desolvation of charge carriers. In this review, we discuss the prospects and challenges of organic batteries with an emphasis on electrolytes. The differences between organic and inorganic batteries in terms of electrolyte property requirements and charge storage mechanisms are elucidated. To provide a comprehensive and thorough overview of the electrolyte development in organic batteries, the electrolytes are divided into four categories including organic liquid electrolytes, aqueous electrolytes, inorganic solid electrolytes, and polymer-based electrolytes, to introduce different components, concentrations, additives, and applications in various organic batteries with different charge carriers, interphases, and separators. The perspectives and outlook for the future development of advanced electrolytes are also discussed to provide a guidance for the electrolyte design and optimization in organic batteries. We believe that this review will stimulate an in-depth study of electrolytes and accelerate the commercialization of organic batteries.
Collapse
Affiliation(s)
- Mengjie Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Robert Paul Hicks
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
| | - Zifeng Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
25
|
Chen Y, Fan K, Gao Y, Wang C. Challenges and Perspectives of Organic Multivalent Metal-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200662. [PMID: 35364614 DOI: 10.1002/adma.202200662] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Rechargeable organic multivalent metal-ion batteries (MMIBs) have attracted a surge of interest as promising alternatives for large-scale energy storage applications because they can combine the advantages of both organic electrodes and multivalent metal-ion batteries. However, the development of organic MMIBs is hampered by many factors, which mean they lag far behind organic alkali-metal- (e.g., Li-, Na-, and K-) ion batteries. Herein, the challenges that are specifically faced by organic MMIBs are analyzed and the strategies that can probably solve such challenges are then discussed. As a special challenge that organic MMIBs are facing, the charge-storage mechanism is particularly underlined to deeply understand the structure-property relationships for guiding the future design of high-performance organic electrodes for MMIBs. The perspectives are thereby elaborated in this review with the outlook of practical applications of organic MMIBs.
Collapse
Affiliation(s)
- Yuan Chen
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kun Fan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanbo Gao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
26
|
Qiao J, Tao F, Wei G, Zhang X, Xie W, Li X, Yang J. Electrochemical properties of aluminum ion batteries with emeraldine base polyaniline as cathode material. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High Performance and Long-cycle Life Rechargeable Aluminum Ion Battery: Recent Progress, Perspectives and Challenges. CHEM REC 2022; 22:e202200181. [PMID: 36094785 DOI: 10.1002/tcr.202200181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Indexed: 12/14/2022]
Abstract
The rising energy crisis and environmental concerns caused by fossil fuels have accelerated the deployment of renewable and sustainable energy sources and storage systems. As a result of immense progress in the field, cost-effective, high-performance, and long-life rechargeable batteries are imperative to meet the current and future demands for sustainable energy sources. Currently, lithium-ion batteries are widely used, but limited lithium (Li) resources have caused price spikes, threatening progress toward cleaner energy sources. Therefore, post-Li, batteries that utilize highly abundant materials leading to cost-effective energy storage solutions while offering desirable performance characteristics are urgently needed. Aluminum-ion battery (AIB) is an attractive concept that uses highly abundant aluminum while offering a high theoretical gravimetric and volumetric capacity of 2980 mAh g-1 and 8046 mAh cm-3 , respectively. As a result, intensified efforts have been made in recent years to utilize numerous electrolytes, anodes, and cathode materials to improve the electrochemical performance of AIBs, and potentially create high-performance, low-cost, and safe energy storage devices. Herein, recent progress in the electrolyte, anode, and cathode active materials and their utilization in AIBs and their related characteristics are summarized. Finally, the main challenges facing AIBs along with future directions are highlighted.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Aziz Ahmad
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
28
|
Guan W, Huang Z, Wang W, Song WL, Tu J, Luo Y, Lei H, Wang M, Jiao S. The Negative-Charge-Triggered "Dead Zone" between Electrode and Current Collector Realizes Ultralong Cycle Life of Aluminum-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2205489. [PMID: 36342304 DOI: 10.1002/adma.202205489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Typically, volume expansion of the electrodes after intercalation of active ions is highly undesirable yet inetvitable, and it can significantly reduce the adhesion force between the electrodes and current collectors. Especially in aluminum-ion batteries (AIBs), the intercalation of large-sized AlCl4 - can greatly weaken this adhesion force and result in the detachment of the electrodes from the current collectors, which seems an inherent and irreconcilable problem. Here, an interesting concept, the "dead zone", is presented to overcome the above challenge. By incorporating a large number of OH- and COOH- groups onto the surface of MXene film, a rich negative-charge region is formed on its surface. When used as the current collector for AIBs, it shields a tiny area of the positive electrode (adjacent to the current collector side) from AlCl4 - intercalation due to the repulsion force, and a tiny inert layer (dead zone) at the interface of the positive electrode is formed, preventing the electrode from falling off the current collector. This helps to effectively increase the battery's cycle life to as high as 50 000 times. It is believed that the proposed concept can be an important reference for future development of current collectors in rocking chair batteries.
Collapse
Affiliation(s)
- Wei Guan
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Zheng Huang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Wei Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei-Li Song
- Institute of Advanced Structural Technology, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Yiwa Luo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P.R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Institute of Advanced Structural Technology, Beijing Institute of Technology, Beijing, 100081, P.R. China
| |
Collapse
|
29
|
Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractOrganic electrode materials (OEMs) can deliver remarkable battery performance for metal-ion batteries (MIBs) due to their unique molecular versatility, high flexibility, versatile structures, sustainable organic resources, and low environmental costs. Therefore, OEMs are promising, green alternatives to the traditional inorganic electrode materials used in state-of-the-art lithium-ion batteries. Before OEMs can be widely applied, some inherent issues, such as their low intrinsic electronic conductivity, significant solubility in electrolytes, and large volume change, must be addressed. In this review, the potential roles, energy storage mechanisms, existing challenges, and possible solutions to address these challenges by using molecular and morphological engineering are thoroughly summarized and discussed. Molecular engineering, such as grafting electron-withdrawing or electron-donating functional groups, increasing various redox-active sites, extending conductive networks, and increasing the degree of polymerization, can enhance the electrochemical performance, including its specific capacity (such as the voltage output and the charge transfer number), rate capability, and cycling stability. Morphological engineering facilitates the preparation of different dimensional OEMs (including 0D, 1D, 2D, and 3D OEMs) via bottom-up and top-down methods to enhance their electron/ion diffusion kinetics and stabilize their electrode structure. In summary, molecular and morphological engineering can offer practical paths for developing advanced OEMs that can be applied in next-generation rechargeable MIBs.
Graphical abstract
Collapse
|
30
|
Li T, Hu H, Cai T, Liu X, Zhang Y, Zhao L, Xing W, Yan Z. Ultrafast and Long-Cycle Stable Aluminum Polyphenylene Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30927-30936. [PMID: 35776526 DOI: 10.1021/acsami.2c07222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rechargeable aluminum-ion batteries (RAIBs) are highly sought after due to the extremely high resource reserves and theoretical capacity (2980 mA h/g) of metal aluminum. However, the lack of ideal cathode materials restricts its practical advancement. Here, we report a conductive polymer, polyphenylene, which is produced by the polymerization of molecular benzene as a cathode material for RAIBs with an excellent electrochemical performance. In electrochemical redox, polyphenylene is oxidized and loses electrons to form radical cations [C6H4]3n+ and intercalates with [AlCl4]- anion to achieve electrical neutrality and realize electrochemical energy storage. The stable structure of polyphenylene makes its discharge specific capacity reach 92 mA h/g at 100 mA/g; the discharge plateau is about 1.4 V and exhibits an excellent rate performance and long cycle stability. Under the super high current density of 10 A/g (∼85 C), the charging can be completed in 25 s, and the capacities have almost no decay after 30,000 cycles. Aluminum polyphenylene batteries have the potential to be used as low-cost, easy-to-process, lightweight, and high-capacity superfast rechargeable batteries for large-scale stationary power storage.
Collapse
Affiliation(s)
- Tongge Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Haoyu Hu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Tonghui Cai
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Xiaoqi Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Yu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Lianming Zhao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Wei Xing
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, P. R. China
| |
Collapse
|
31
|
Tu J, Wang W, Lei H, Wang M, Chang C, Jiao S. Design Strategies of High-Performance Positive Materials for Nonaqueous Rechargeable Aluminum Batteries: From Crystal Control to Battery Configuration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201362. [PMID: 35620966 DOI: 10.1002/smll.202201362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Rechargeable aluminum batteries (RABs) have been paid considerable attention in the field of electrochemical energy storage batteries due to their advantages of low cost, good safety, high capacity, long cycle life, and good wide-temperature performance. Unlike traditional single-ion rocking chair batteries, more than two kinds of active ions are electrochemically participated in the reaction processes on the positive and negative electrodes for nonaqueous RABs, so the reaction kinetics and battery electrochemistries need to be given more comprehensive assessments. In addition, although nonaqueous RABs have made significant breakthroughs in recent years, they are still facing great challenges in insufficient reaction kinetics, low energy density, and serious capacity attenuation. Here, the research progresses of positive materials are comprehensively summarized, including carbonaceous materials, oxides, elemental S/Se/Te and chalcogenides, as well as organic materials. Later, different modification strategies are discussed to improve the reaction kinetics and battery performance, including crystal structure control, morphology and architecture regulation, as well as flexible design. Finally, in view of the current research challenges faced by nonaqueous RABs, the future development trend is proposed. More importantly, it is expected to gain key insights into the development of high-performance positive materials for nonaqueous RABs to meet practical energy storage requirements.
Collapse
Affiliation(s)
- Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wei Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haiping Lei
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Cheng Chang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
32
|
Wang G, Dmitrieva E, Kohn B, Scheler U, Liu Y, Tkachova V, Yang L, Fu Y, Ma J, Zhang P, Wang F, Ge J, Feng X. An Efficient Rechargeable Aluminium-Amine Battery Working Under Quaternization Chemistry. Angew Chem Int Ed Engl 2022; 61:e202116194. [PMID: 35029009 PMCID: PMC9306608 DOI: 10.1002/anie.202116194] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 12/20/2022]
Abstract
Rechargeable aluminium (Al) batteries (RABs) have long-been pursued due to the high sustainability and three-electron-transfer properties of Al metal. However, limited redox chemistry is available for rechargeable Al batteries, which restricts the exploration of cathode materials. Herein, we demonstrate an efficient Al-amine battery based on a quaternization reaction, in which nitrogen (radical) cations (R3 N.+ or R4 N+ ) are formed to store the anionic Al complex. The reactive aromatic amine molecules further oligomerize during cycling, inhibiting amine dissolution into the electrolyte. Consequently, the constructed Al-amine battery exhibits a high reversible capacity of 135 mAh g-1 along with a superior cycling life (4000 cycles), fast charge capability and a high energy efficiency of 94.2 %. Moreover, the Al-amine battery shows excellent stability against self-discharge, far beyond conventional Al-graphite batteries. Our findings pave an avenue to advance the chemistry of RABs and thus battery performance.
Collapse
Affiliation(s)
- Gang Wang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Evgenia Dmitrieva
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V.Helmholtzstraße 2001069DresdenGermany
| | - Benjamin Kohn
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V.01069DresdenGermany
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Valeriya Tkachova
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Panpan Zhang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- State Key Laboratory of Materials Processing and Die & Mould TechnologySchool of Materials Science and EngineeringHuazhong University of Science and Technology430074WuhanChina
| | - Faxing Wang
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Jin Ge
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V.Helmholtzstraße 2001069DresdenGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed)Faculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| |
Collapse
|
33
|
Qi Y, Westphal M, Khayya N, Ennen I, Peters T, Cremer J, Anselmetti D, Reiss G, Hütten A, Gölzhäuser A, Dementyev P. Thickness-Varied Carbon Nanomembranes from Polycyclic Aromatic Hydrocarbons. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9433-9441. [PMID: 35157431 DOI: 10.1021/acsami.1c22406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the prospects of intrinsically porous planar nanomaterials in separation applications, their synthesis on a large scale remains challenging. In particular, preparing water-selective carbon nanomembranes (CNMs) from self-assembled monolayers (SAMs) is limited by the cost of epitaxial metal substrates and molecular precursors with specific chemical functionalities. In this work, we present a facile fabrication of CNMs from polycyclic aromatic hydrocarbons (PAHs) that are drop-cast onto arbitrary supports, including foils and metalized films. The electron-induced carbonization is shown to result in continuous membranes of variable thickness, and the material is characterized with a number of spectroscopic and microscopic techniques. Permeation measurements with freestanding membranes reveal a high degree of porosity, but the selectivity is found to strongly depend on the thickness. While the permeance of helium remains almost the same for 6.5 and 3.0 nm thick CNMs, water permeance increases by 2 orders of magnitude. We rationalize the membrane performance with the help of kinetic modeling and vapor adsorption experiments.
Collapse
Affiliation(s)
- Yubo Qi
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Michael Westphal
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Neita Khayya
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Inga Ennen
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Tobias Peters
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Cremer
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Günter Reiss
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Hütten
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Armin Gölzhäuser
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Petr Dementyev
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
34
|
Wang G, Dmitrieva E, Kohn B, Scheler U, Liu Y, Tkachova V, Yang L, Fu Y, Ma J, Zhang P, Wang F, Ge J, Feng X. An Efficient Rechargeable Aluminium–Amine Battery Working Under Quaternization Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gang Wang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Evgenia Dmitrieva
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V. Helmholtzstraße 20 01069 Dresden Germany
| | - Benjamin Kohn
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Ulrich Scheler
- Leibniz-Institut für Polymerforschung Dresden e.V. 01069 Dresden Germany
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Valeriya Tkachova
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Panpan Zhang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering Huazhong University of Science and Technology 430074 Wuhan China
| | - Faxing Wang
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| | - Jin Ge
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (IFW) e.V. Helmholtzstraße 20 01069 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) Faculty of Chemistry and Food Chemistry Technische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
35
|
Kong D, Cai T, Fan H, Hu H, Wang X, Cui Y, Wang D, Wang Y, Hu H, Wu M, Xue Q, Yan Z, Li X, Zhao L, Xing W. Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminum‐Ion Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongqing Kong
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
- Weifang Key Lab of Advanced Light Materials Manufacturing and Forming Weifang University of Science and Technology Weifang 262700 P. R. China
| | - Tonghui Cai
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Haodong Fan
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Haoyu Hu
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Xiaohui Wang
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Yongpeng Cui
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Dandan Wang
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Yesheng Wang
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Han Hu
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Mingbo Wu
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Qingzhong Xue
- Department of Materials Physics School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| | - Xuejin Li
- Department of Materials Chemistry School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Lianming Zhao
- Department of Materials Physics School of Materials Science and Engineering China University of Petroleum Qingdao 266580 P. R. China
| | - Wei Xing
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Qingdao 266580 P. R. China
| |
Collapse
|
36
|
Bian Y, Jiang W, Zhang Y, Zhao L, Wang X, Lv Z, Zhou S, Han Y, Chen H, Lin MC. Understanding the Oxidation and Reduction Reactions of Sulfur in Rechargeable Aluminum-Sulfur Batteries with Deep Eutectic Solvent and Ionic Liquid Electrolytes. CHEMSUSCHEM 2022; 15:e202101398. [PMID: 34532988 DOI: 10.1002/cssc.202101398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Al-based batteries are promising next-generation rechargeable batteries owing to the abundance of raw materials and their high potential energy density. The Al-S system has attracted considerable attention because of its high energy density and low cost. However, its low discharge voltage plateau (0.6-1.2 V) hampers its practical application. Herein, eight ionic liquids or deep eutectic solvents were studied as electrolyte candidates for an Al-S cell. This was the first study to demonstrate that an Al-S cell based on an AlCl3 /acetamide electrolyte (1.3 molar ratio) showed high discharge voltage plateaus (1.65-1.95 V) and a charging cut-off voltage of 2.5 V in Al-S cells. An Al-S cell of 0.33 mAh capacity with the AlCl3 /acetamide electrolyte successfully lit up a red LED (forward voltage 1.6-2.0 V) for around 2 h. This work may help in promoting the development of high-performance and low-cost Al-S cells.
Collapse
Affiliation(s)
- Yinghui Bian
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Weichuan Jiang
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Yonglei Zhang
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Lishun Zhao
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Xiaohang Wang
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Zichuan Lv
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Shuai Zhou
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Yuqing Han
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Hui Chen
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| | - Meng-Chang Lin
- Key Laboratory for Robot and Intelligent Technology of Shandong Province, College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, 266590, P.R. China
| |
Collapse
|
37
|
Tuttle MR, Walter C, Brackman E, Moore CE, Espe M, Rasik C, Adams P, Zhang S. Redox-active zinc thiolates for low-cost aqueous rechargeable Zn-ion batteries. Chem Sci 2021; 12:15253-15262. [PMID: 34976345 PMCID: PMC8635210 DOI: 10.1039/d1sc04231a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022] Open
Abstract
Aqueous zinc-ion batteries (AZIBs) are promising candidates for large-scale electrical energy storage due to the inexpensive, safe, and non-toxic nature of zinc. One key area that requires further development is electrode materials that store Zn2+ ions with high reversibility and fast kinetics. To determine the viability of low-cost organosulfur compounds as OEMs for AZIBs, we investigate how structural modification affects electrochemical performance in Zn-thiolate complexes 1 and 2. Remarkably, modification of one thiolate in 1 to sulfide in 2 reduces the voltage hysteresis from 1.04 V to 0.15 V. While 1 exhibits negligible specific capacity due to the formation of insulating DMcT polymers, 2 delivers a capacity of 107 mA h g−1 with a primary discharge plateau at 1.1 V vs. Zn2+/Zn. Spectroscopic studies of 2 suggest a Zn2+ and H+ co-insertion mechanism with Zn2+ as the predominant charge carrier. Capacity fading in Zn-2 cells likely results from the formation of (i) soluble H+ insertion products and (ii) non-redox-active side products. Increasing electrolyte concentration and using a Nafion membrane significantly enhances the stability of 2 by suppressing H+ insertion. Our findings provide insight into the molecular design strategies to reduce the polarization potential and improve the cycling stability of the thiolate/disulfide redox couple in aqueous battery systems. This study demonstrates the viability of the thiolate/disulfide redox couple in AZIB applications, and provides an in-depth study on the electrochemical mechanism of Zn-thiolates electrode materials.![]()
Collapse
Affiliation(s)
- Madison R Tuttle
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Christopher Walter
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Emma Brackman
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| | - Matthew Espe
- Lubrizol Corporation 29400 Lakeland Blvd Wickliffe OH USA
| | - Chris Rasik
- Lubrizol Corporation 29400 Lakeland Blvd Wickliffe OH USA
| | - Paul Adams
- Lubrizol Corporation 29400 Lakeland Blvd Wickliffe OH USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH 43210 USA
| |
Collapse
|
38
|
Kong D, Cai T, Fan H, Hu H, Wang X, Cui Y, Wang D, Wang Y, Hu H, Wu M, Xue Q, Yan Z, Li X, Zhao L, Xing W. Polycyclic Aromatic Hydrocarbons as a New Class of Promising Cathode Materials for Aluminum-Ion Batteries. Angew Chem Int Ed Engl 2021; 61:e202114681. [PMID: 34755421 DOI: 10.1002/anie.202114681] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/20/2022]
Abstract
As an emerging post-lithium battery technology, aluminum ion batteries (AIBs) have the advantages of large Al reserves and high safety, and have great potential to be applied to power grid energy storage. But current graphite cathode materials are limited in charge storage capacity due to the formation of stage-4 graphite-intercalated compounds (GICs) in the fully charged state. Herein, we propose a new type of cathode materials for AIBs, namely polycyclic aromatic hydrocarbons (PAHs), which resemble graphite in terms of the large conjugated π bond, but do not form GICs in the charge process. Quantum chemistry calculations show that PAHs can bind AlCl4 - through the interaction between the conjugated π bond in the PAHs and AlCl4 - , forming on-plane interactions. The theoretical specific capacity of PAHs is negatively correlated with the number of benzene rings in the PAHs. Then, under the guidance of theoretical calculations, anthracene, a three-ring PAH, was evaluated as a cathode material for AIBs. Electrochemical measurements show that anthracene has a high specific capacity of 157 mAh g-1 (at 100 mA g-1 ) and still maintains a specific capacity of 130 mAh g-1 after 800 cycles. This work provides a feasible "theory guides practice" research model for the development of energy storage materials, and also provides a new class of promising cathode materials for AIBs.
Collapse
Affiliation(s)
- Dongqing Kong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China.,Weifang Key Lab of Advanced Light Materials Manufacturing and Forming, Weifang University of Science and Technology, Weifang, 262700, P. R. China
| | - Tonghui Cai
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Haodong Fan
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Haoyu Hu
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xiaohui Wang
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Yongpeng Cui
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Dandan Wang
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Yesheng Wang
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Han Hu
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Mingbo Wu
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Qingzhong Xue
- Department of Materials Physics, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Xuejin Li
- Department of Materials Chemistry, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Lianming Zhao
- Department of Materials Physics, School of Materials Science and Engineering, China University of Petroleum, Qingdao, 266580, P. R. China
| | - Wei Xing
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao, 266580, P. R. China
| |
Collapse
|
39
|
Kong D, Fan H, Ding X, Hu H, Zhou L, Li B, Chi C, Wang X, Wang Y, Wang X, wang D, Shen Y, Qiu Z, Cai T, Cui Y, Ren Y, Li X, Xing W. Realizing a long lifespan aluminum-ion battery through the anchoring effect between Polythiophene and carboxyl modified carbon nanotube. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Yang SY, Sencadas V, You SS, Jia NZX, Srinivasan SS, Huang HW, Ahmed AE, Liang JY, Traverso G. Powering Implantable and Ingestible Electronics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009289. [PMID: 34720792 PMCID: PMC8553224 DOI: 10.1002/adfm.202009289] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 05/28/2023]
Abstract
Implantable and ingestible biomedical electronic devices can be useful tools for detecting physiological and pathophysiological signals, and providing treatments that cannot be done externally. However, one major challenge in the development of these devices is the limited lifetime of their power sources. The state-of-the-art of powering technologies for implantable and ingestible electronics is reviewed here. The structure and power requirements of implantable and ingestible biomedical electronics are described to guide the development of powering technologies. These powering technologies include novel batteries that can be used as both power sources and for energy storage, devices that can harvest energy from the human body, and devices that can receive and operate with energy transferred from exogenous sources. Furthermore, potential sources of mechanical, chemical, and electromagnetic energy present around common target locations of implantable and ingestible electronics are thoroughly analyzed; energy harvesting and transfer methods befitting each energy source are also discussed. Developing power sources that are safe, compact, and have high volumetric energy densities is essential for realizing long-term in-body biomedical electronics and for enabling a new era of personalized healthcare.
Collapse
Affiliation(s)
- So-Yoon Yang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Vitor Sencadas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; School of Mechanical, Materials & Mechatronics Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Siheng Sean You
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Neil Zi-Xun Jia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shriya Sruthi Srinivasan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hen-Wei Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Abdelsalam Elrefaey Ahmed
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jia Ying Liang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Kim J, Raj MR, Lee G. High-Defect-Density Graphite for Superior-Performance Aluminum-Ion Batteries with Ultra-Fast Charging and Stable Long Life. NANO-MICRO LETTERS 2021; 13:171. [PMID: 34370082 PMCID: PMC8353050 DOI: 10.1007/s40820-021-00698-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Rechargeable aluminum-ion batteries (AIBs) are a new generation of low-cost and large-scale electrical energy storage systems. However, AIBs suffer from a lack of reliable cathode materials with insufficient intercalation sites, poor ion-conducting channels, and poor diffusion dynamics of large chloroaluminate anions (AlCl4- and Al2Cl7-). To address these issues, surface-modified graphitic carbon materials [i.e., acid-treated expanded graphite (AEG) and base-etched graphite (BEG)] are developed as novel cathode materials for ultra-fast chargeable AIBs. AEG has more turbostratically ordered structure covered with abundant micro- to nano-sized pores on the surface structure and expanded interlayer distance (d002 = 0.3371 nm) realized by surface treatment of pristine graphite with acidic media, which can be accelerated the diffusion dynamics and efficient AlCl4- ions (de)-intercalation kinetics. The AIB system employing AEG exhibits a specific capacity of 88.6 mAh g-1 (4 A g-1) and ~ 80 mAh g-1 at an ultra-high current rate of 10 A g-1 (~ 99.1% over 10,000 cycles). BEG treated with KOH solution possesses the turbostratically disordered structure with high density of defective sites and largely expanded d-spacing (d002 = 0.3384 nm) for attracting and uptaking more AlCl4- ions with relatively shorter penetration depth. Impressively, the AIB system based on the BEG cathode delivers a high specific capacity of 110 mAh g-1 (4 A g-1) and ~ 91 mAh g-1 (~ 99.9% over 10,000 cycles at 10 A g-1). Moreover, the BEG cell has high energy and power densities of 247 Wh kg-1 and 44.5 kW kg-1. This performance is one of the best among the AIB graphitic carbon materials reported for chloroaluminate anions storage performance. This finding provides great significance for the further development of rechargeable AIBs with high energy, high power density, and exceptionally long life.
Collapse
Affiliation(s)
- Jisu Kim
- Advanced Energy Materials Design Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Michael Ruby Raj
- Advanced Energy Materials Design Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Gibaek Lee
- Advanced Energy Materials Design Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
42
|
Zheng X, Zhao F, Ma L, Tang R, Dong Y, Kong G, Zhang Y, Niu S, Tang G, Wang Y, Pang A, Li W, Wei L. Flexible, binder-free and high-loading graphite paper cathodes for ultra-high capacity and long-life Al-graphite dual-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Thangaraj B, Solomon PR, Chuangchote S, Wongyao N, Surareungchai W. Biomass‐derived Carbon Quantum Dots – A Review. Part 2: Application in Batteries. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Baskar Thangaraj
- King Mongkut's University of Technology Thonburi Pilot Plant Development and Training Institute Bangkhuntien-chaitalay Road, Tha Kham 10150 Bangkok Thailand
| | - Pravin Raj Solomon
- SASTRA-Deemed University School of Chemical and Biotechnology 613 402 Thanjavur- India
| | - Surawut Chuangchote
- King Mongkut's University of Technology Thonburi Research Center of Advanced Materials for Energy and Environmental Technology 126 Prachauthit Road, Bangmod 10140 Bangkok Thailand
- King Mongkut's University of Technology Thonburi Department of Tool and Materials Engineering, Faculty of Engineering 126 Prachauthit Road, Bangmod, Thungkru 10140 Bangkok Thailand
| | - Nutthapon Wongyao
- King Mongkut's University of Technology Thonburi Fuel Cells and Hydrogen Research and Engineering Center, Pilot Plant Development and Training Institute 10140 Bangkok Thailand
| | - Werasak Surareungchai
- King Mongkut's University of Technology Thonburi School of Bioresources and Technology, Nanoscience & Nanotechnology Graduate Programme, Faculty of Science Bangkhuntien-chaitalay Road, Tha Kham 10150 Bangkok Thailand
| |
Collapse
|
44
|
Dou Q, Wu N, Yuan H, Shin KH, Tang Y, Mitlin D, Park HS. Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chem Soc Rev 2021; 50:6734-6789. [PMID: 33955977 DOI: 10.1039/d0cs00721h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrochemical capacitors charge and discharge more rapidly than batteries over longer cycles, but their practical applications remain limited due to their significantly lower energy densities. Pseudocapacitors and hybrid capacitors have been developed to extend Ragone plots to higher energy density values, but they are also limited by the insufficient breadth of options for electrode materials, which require materials that store alkali metal cations such as Li+ and Na+. Herein, we report a comprehensive and systematic review of emerging anion storage materials for performance- and functionality-oriented applications in electrochemical and battery-capacitor hybrid devices. The operating principles and types of dual-ion and whole-anion storage in electrochemical and hybrid capacitors are addressed along with the classification, thermodynamic and kinetic aspects, and associated interfaces of anion storage materials in various aqueous and non-aqueous electrolytes. The charge storage mechanism, structure-property correlation, and electrochemical features of anion storage materials are comprehensively discussed. The recent progress in emerging anion storage materials is also discussed, focusing on high-performance applications, such as dual-ion- and whole-anion-storing electrochemical capacitors in a symmetric or hybrid manner, and functional applications including micro- and flexible capacitors, desalination, and salinity cells. Finally, we present our perspective on the current impediments and future directions in this field.
Collapse
Affiliation(s)
- Qingyun Dou
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seoburo, Jangan-gu, Suwon 440-746, Korea.
| | | | | | | | | | | | | |
Collapse
|
45
|
Yoo DJ, Heeney M, Glöcklhofer F, Choi JW. Tetradiketone macrocycle for divalent aluminium ion batteries. Nat Commun 2021; 12:2386. [PMID: 33888712 PMCID: PMC8062564 DOI: 10.1038/s41467-021-22633-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Contrary to early motivation, the majority of aluminium ion batteries developed to date do not utilise multivalent ion storage; rather, these batteries rely on monovalent complex ions for their main redox reaction. This limitation is somewhat frustrating because the innate advantages of metallic aluminium such as its low cost and high air stability cannot be fully taken advantage of. Here, we report a tetradiketone macrocycle as an aluminium ion battery cathode material that reversibly reacts with divalent (AlCl2+) ions and consequently achieves a high specific capacity of 350 mAh g−1 along with a lifetime of 8000 cycles. The preferred storage of divalent ions over their competing monovalent counterparts can be explained by the relatively unstable discharge state when using monovalent AlCl2+ ions, which exert a moderate resonance effect to stabilise the structure. This study opens an avenue to realise truly multivalent aluminium ion batteries based on organic active materials, by tuning the relative stability of discharged states with carrier ions of different valence states. Aluminium ion batteries have been developed based on the storage of monovalent complex ions, impairing their original motivation of storing multivalent ions. Here, the authors demonstrate the divalent ion storage of tetradiketone macrocycles by tuning the relative stability of discharged states.
Collapse
Affiliation(s)
- Dong-Joo Yoo
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Florian Glöcklhofer
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK.
| | - Jang Wook Choi
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea. .,Department of Materials Science and Engineering, Seoul National University, Gwanak-Gu, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Tu J, Song WL, Lei H, Yu Z, Chen LL, Wang M, Jiao S. Nonaqueous Rechargeable Aluminum Batteries: Progresses, Challenges, and Perspectives. Chem Rev 2021; 121:4903-4961. [PMID: 33728899 DOI: 10.1021/acs.chemrev.0c01257] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For significantly increasing the energy densities to satisfy the growing demands, new battery materials and electrochemical chemistry beyond conventional rocking-chair based Li-ion batteries should be developed urgently. Rechargeable aluminum batteries (RABs) with the features of low cost, high safety, easy fabrication, environmental friendliness, and long cycling life have gained increasing attention. Although there are pronounced advantages of utilizing earth-abundant Al metals as negative electrodes for high energy density, such RAB technologies are still in the preliminary stage and considerable efforts will be made to further promote the fundamental and practical issues. For providing a full scope in this review, we summarize the development history of Al batteries and analyze the thermodynamics and electrode kinetics of nonaqueous RABs. The progresses on the cutting-edge of the nonaqueous RABs as well as the advanced characterizations and simulation technologies for understanding the mechanism are discussed. Furthermore, major challenges of the critical battery components and the corresponding feasible strategies toward addressing these issues are proposed, aiming to guide for promoting electrochemical performance (high voltage, high capacity, large rate capability, and long cycling life) and safety of RABs. Finally, the perspectives for the possible future efforts in this field are analyzed to thrust the progresses of the state-of-the-art RABs, with expectation of bridging the gap between laboratory exploration and practical applications.
Collapse
Affiliation(s)
- Jiguo Tu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Haiping Lei
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China.,School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Zhijing Yu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Li-Li Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Mingyong Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China
| | - Shuqiang Jiao
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, P.R. China.,School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
47
|
Peterson BM, Gannett CN, Melecio-Zambrano L, Fors BP, Abruña H. Effect of Structural Ordering on the Charge Storage Mechanism of p-Type Organic Electrode Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7135-7141. [PMID: 33543926 DOI: 10.1021/acsami.0c19622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding the properties that govern the kinetics of charge storage will enable informed design strategies and improve the rate performance of future battery materials. Herein, we study the effects of structural ordering in organic electrode materials on their charge storage mechanisms. A redox active unit, N,N'-diphenyl-phenazine, was incorporated into three materials which exhibited varying degrees of ordering. From cyclic voltammetry analysis, the crystalline small molecule exhibited diffusion-limited behavior, likely arising from structural rearrangements that occur during charge/discharge. Conversely, a branched polymer network displayed surface-controlled kinetics, attributed to the amorphous structure which enabled fast ionic transport throughout charge/discharge, unimpeded by sluggish structural rearrangements. These results suggest a method for designing new materials for battery electrodes with battery-like energy densities and pseudocapacitor-like rate capabilities.
Collapse
Affiliation(s)
- Brian M Peterson
- Department of Chemistry, Cornell University, Ithaca, New York 14850, United States
| | - Cara N Gannett
- Department of Chemistry, Cornell University, Ithaca, New York 14850, United States
| | | | - Brett P Fors
- Department of Chemistry, Cornell University, Ithaca, New York 14850, United States
| | - Héctor Abruña
- Department of Chemistry, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
48
|
Das S, Manna SS, Pathak B. Recent Trends in Electrode and Electrolyte Design for Aluminum Batteries. ACS OMEGA 2021; 6:1043-1053. [PMID: 33490763 PMCID: PMC7818116 DOI: 10.1021/acsomega.0c04163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/04/2020] [Indexed: 05/22/2023]
Abstract
Due to the drawbacks in commercially known lithium-ion batteries (LIB) such as safety, availability, and cost issues, aluminum batteries are being hotly pursued in the research field of energy storage. Al being abundant, stable, and possessing high volumetric capacity has been found to be attractive among the next generation secondary batteries. Various unwanted side reactions in the case of aqueous electrolytes have shifted the attention toward nonaqueous electrolytes for Al batteries. Unlike LIBs, Al batteries are based on intercalation/deintercalation of ions on the cathode side and deposition/stripping of Al on the anodic side during the charge/discharge cycle of the battery. Hence, to provide a clear understanding of the recent developments in Al batteries, we have presented an overview concentrating on the choice of suitable cathodes and electrolytes involving aluminum chloride derived ions (AlCl4 -, AlCl2 +, AlCl2+, etc.). We elaborate the importance of innovation in terms of structure and morphology to improve the cathode materials as well as the necessary properties to look for in a suitable nonaqueous electrolyte. The significance of computational modeling is also discussed. The future perspectives are discussed which can improve the performance and reduce the manufacturing cost simultaneously to conceive Al batteries for a wide range of applications.
Collapse
Affiliation(s)
- Sandeep Das
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, India
| | - Surya Sekhar Manna
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, India
| | - Biswarup Pathak
- Discipline of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Indore 453552, India
| |
Collapse
|
49
|
Wang H, Li Z, Meng Z, Guo X, Du Y, Yang H. An easily obtained hypercrosslinked pyrene-based porous organic polymer as a high performance electrode material for lithium-ion batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj00089f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hypercrosslinked pyrene-based porous organic polymer was achieved in one step as an excellent electrode material.
Collapse
Affiliation(s)
- Huiqin Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Zhen Li
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Zhiying Meng
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xinya Guo
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| | - Ya Du
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Haishen Yang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power
- College of Environmental and Chemical Engineering
- Shanghai University of Electric Power
- Shanghai 200090
- China
| |
Collapse
|
50
|
Wang G, Yu M, Feng X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem Soc Rev 2021; 50:2388-2443. [DOI: 10.1039/d0cs00187b] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of carbon electrode materials for rechargeable batteries is reviewed from the perspective of structural features, electrochemistry, and devices.
Collapse
Affiliation(s)
- Gang Wang
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed)
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Minghao Yu
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed)
- Technische Universität Dresden
- 01062 Dresden
- Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed)
- Technische Universität Dresden
- 01062 Dresden
- Germany
| |
Collapse
|