1
|
Li S, Ouyang D, Zhang N, Zhang Y, Murthy A, Li Y, Liu S, Zhai T. Substrate Engineering for Chemical Vapor Deposition Growth of Large-Scale 2D Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211855. [PMID: 37095721 DOI: 10.1002/adma.202211855] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The large-scale production of 2D transition metal dichalcogenides (TMDs) is essential to realize their industrial applications. Chemical vapor deposition (CVD) has been considered as a promising method for the controlled growth of high-quality and large-scale 2D TMDs. During a CVD process, the substrate plays a crucial role in anchoring the source materials, promoting the nucleation and stimulating the epitaxial growth. It thus significantly affects the thickness, microstructure, and crystal quality of the products, which are particularly important for obtaining 2D TMDs with expected morphology and size. Here, an insightful review is provided by focusing on the recent development associated with the substrate engineering strategies for CVD preparation of large-scale 2D TMDs. First, the interaction between 2D TMDs and substrates, a key factor for the growth of high-quality materials, is systematically discussed by combining the latest theoretical calculations. Based on this, the effect of various substrate engineering approaches on the growth of large-area 2D TMDs is summarized in detail. Finally, the opportunities and challenges of substrate engineering for the future development of 2D TMDs are discussed. This review might provide deep insight into the controllable growth of high-quality 2D TMDs toward their industrial-scale practical applications.
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yi Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Akshay Murthy
- Superconducting Quantum Materials and Systems Division, Fermi National Accelerator Laboratory (FNAL), Batavia, IL, 60510, USA
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| | - Shiyuan Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
2
|
Huang PY, Chen HJ, Qin JK, Zhen L, Xu CY. A polarization-sensitive photothermoelectric photodetector based on mixed-dimensional SWCNT-MoS 2 heterostructures. NANOSCALE ADVANCES 2022; 4:5290-5296. [PMID: 36540126 PMCID: PMC9724606 DOI: 10.1039/d2na00609j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 06/17/2023]
Abstract
Mixed-dimensional van der Waals (vdW) integration has been demonstrated to be effective for the modulation of the physical properties of homogeneous materials. Herein, we reported the enhancement of photothermal conversion and decrease of thermal conductivity in metallic single-walled carbon nanotube (SWCNT) films with the integration of chemical vapor deposition-grown monolayer MoS2 films. The induced temperature gradient in SWCNT-MoS2 hybrid films drives carrier diffusion to generate photocurrent via the photothermoelectric (PTE) effect, and a self-powered photodetector working in the visible band range from 405 to 785 nm was demonstrated. The maximum responsivity of the device increases by 6 times compared to that of the SWCNT counterpart. More importantly, the mixed-dimensional device exhibits polarization-dependent photogeneration, showing a large anisotropy ratio of 1.55. This work paves a way for developing high-performance, polarization-sensitive photodetectors by mixed-dimensional integration.
Collapse
Affiliation(s)
- Pei-Yu Huang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Hong-Ji Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Jing-Kai Qin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology Harbin 150080 China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
- MOE Key Laboratory of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology Harbin 150080 China
| |
Collapse
|
3
|
Du M, Cui X, Yoon HH, Das S, Uddin MDG, Du L, Li D, Sun Z. Switchable Photoresponse Mechanisms Implemented in Single van der Waals Semiconductor/Metal Heterostructure. ACS NANO 2022; 16:568-576. [PMID: 34985864 PMCID: PMC8793132 DOI: 10.1021/acsnano.1c07661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/30/2021] [Indexed: 05/19/2023]
Abstract
van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been extensively studied for functional applications, and most of the reported devices work with sole mechanism. The emerging metallic 2D materials provide us new options for building functional vdW heterostructures via rational band engineering design. Here, we investigate the vdW semiconductor/metal heterostructure built with 2D semiconducting InSe and metallic 1T-phase NbTe2, whose electron affinity χInSe and work function ΦNbTe2 almost exactly align. Electrical characterization verifies exceptional diode-like rectification ratio of >103 for the InSe/NbTe2 heterostructure device. Further photocurrent mappings reveal the switchable photoresponse mechanisms of this heterostructure or, in other words, the alternative roles that metallic NbTe2 plays. Specifically, this heterostructure device works in a photovoltaic manner under reverse bias, whereas it turns to phototransistor with InSe channel and NbTe2 electrode under high forward bias. The switchable photoresponse mechanisms originate from the band alignment at the interface, where the band bending could be readily adjusted by the bias voltage. In addition, a conceptual optoelectronic logic gate is proposed based on the exclusive working mechanisms. Finally, the photodetection performance of this heterostructure is represented by an ultrahigh responsivity of ∼84 A/W to 532 nm laser. Our results demonstrate the valuable application of 2D metals in functional devices, as well as the potential of implementing photovoltaic device and phototransistor with single vdW heterostructure.
Collapse
Affiliation(s)
- Mingde Du
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Xiaoqi Cui
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Hoon Hahn Yoon
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Susobhan Das
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - MD Gius Uddin
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Luojun Du
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Diao Li
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
| | - Zhipei Sun
- Department
of Electronics and Nanoengineering, Aalto
University, Espoo FI-02150, Finland
- QTF
Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| |
Collapse
|
4
|
Huang PY, Qin JK, Zhu CY, Zhen L, Xu CY. 2D-1D mixed-dimensional heterostructures: progress, device applications and perspectives. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:493001. [PMID: 34479213 DOI: 10.1088/1361-648x/ac2388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials have attracted broad interests and been extensively exploited for a variety of functional applications. Moreover, one-dimensional (1D) atomic crystals can also be integrated into 2D templates to create mixed-dimensional heterostructures, and the versatility of combinations provides 2D-1D heterostructures plenty of intriguing physical properties, making them promising candidate to construct novel electronic and optoelectronic nanodevices. In this review, we first briefly present an introduction of relevant fabrication methods and structural configurations for 2D-1D heterostructures integration. We then discuss the emerged intriguing physics, including high optical absorption, efficient carrier separation, fast charge transfer and plasmon-exciton interconversion. Their potential applications such as electronic/optoelectronic devices, photonic devices, spintronic devices and gas sensors, are also discussed. Finally, we provide a brief perspective for the future opportunities and challenges in this emerging field.
Collapse
Affiliation(s)
- Pei-Yu Huang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Jing-Kai Qin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Cheng-Yi Zhu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Liang Zhen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Cheng-Yan Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
5
|
Wu Y, Zhao X, Shang Y, Chang S, Dai L, Cao A. Application-Driven Carbon Nanotube Functional Materials. ACS NANO 2021; 15:7946-7974. [PMID: 33988980 DOI: 10.1021/acsnano.0c10662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carbon nanotube functional materials (CNTFMs) represent an important research field in transforming nanoscience and nanotechnology into practical applications, with potential impact in a wide realm of science, technology, and engineering. In this review, we combine the state-of-the-art research activities of CNTFMs with the application prospect, to highlight critical issues and identify future challenges. We focus on macroscopic long fibers, thin films, and bulk sponges which are typical CNTFMs in different dimensions with distinct characteristics, and also cover a variety of derived composite/hierarchical materials. Critical issues related to their structures, properties, and applications as robust conductive skeletons or high-performance flexible electrodes in mechanical and electronic devices, advanced energy conversion and storage systems, and environmental areas have been discussed specifically. Finally, possible solutions and directions are proposed for overcoming current obstacles and promoting future efforts in the field.
Collapse
Affiliation(s)
- Yizeng Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xuewei Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuanyuan Shang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Shulong Chang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Linxiu Dai
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
6
|
Li L, Shang Y, Lv S, Li Y, Fang Y, Li H. Flexible and highly responsive photodetectors based on heterostructures of MoS 2and all-carbon transistors. NANOTECHNOLOGY 2021; 32:315209. [PMID: 33831847 DOI: 10.1088/1361-6528/abf5ff] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Heterostructures of graphene and transition-metal dichalcogenides (TMDCs) are promising candidates for high-performance flexible photodetectors because of their high photoresponsivity and detectivity. However, the mechanical stability of current flexible photodetectors is limited, due to a mechanical mismatch between their two-dimensional channel materials and metallic contacts. Herein, we develop a type of mechanically stable, highly responsive, and flexible photodetector by integrating MoS2and all-carbon transistors. By combining the high mobility of graphene with the strong light-matter interactions of MoS2, our heterostructure photodetector exhibits a greatly improved photoresponse performance, compared with individual graphene or MoS2photodetectors. In addition, the mechanical properties of the all-carbon electrodes are a good match for those of the active two-dimensional channels, resulting in greatly improved electrical stability of the heterostructure photodetector under mechanical deformation. These capabilities make our heterostructure photodetector a promising candidate for flexible photodetection and photoimaging applications.
Collapse
Affiliation(s)
- Li Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuanyuan Shang
- School of Physical Engineering, Zhengzhou University, Henan 450052, People's Republic of China
| | - Suye Lv
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yunxing Li
- School of Physical Engineering, Zhengzhou University, Henan 450052, People's Republic of China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, 320 Yue Yang Road, Shanghai 200031, People's Republic of China
| | - Hongbian Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
7
|
Lv S, Shang Y, Li Y, Li L, Li H, Fang Y. Carbon nanotube spiderweb promoted growth of hierarchical transition metal dichalcogenide nanostructures for seamless devices. NANOTECHNOLOGY 2020; 31:365601. [PMID: 32428881 DOI: 10.1088/1361-6528/ab9476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical transition metal dichalcogenide (h-TMDC) nanostructures with abundant active edge sites and good electrical conductivity hold great promise for numerous applications. Here, we report a general method for the chemical synthesis of a series of large-area, free-standing h-TMDC films and their devices by using carbon nanotube (CNT) spiderwebs as both growth promoters and electrical/mechanical reinforcement networks. Our approach allows the seamless integration of h-TMDC nanostructures with abundant active edge sites and CNT networks with good electrical conductivity and mechanical flexibility. As a proof of concept, h-MoSe2/CNT hybrid films with CNT contacts have been chemically synthesized and applied as flexible electrocatalytic devices for hydrogen evolution reaction (HER). Owing to the seamless connection between the CNT contacts and the electroactive h-TMDC/CNT nanostructures, the flexible electrocatalytic devices exhibited excellent mechanical stability and maintained stable electrocatalytic performance under cyclic bendings. Our method can be readily extended to the large-scale production of various h-TMDC/CNT hybrid films and their seamless devices.
Collapse
Affiliation(s)
- Suye Lv
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | |
Collapse
|
8
|
Nalwa HS. A review of molybdenum disulfide (MoS 2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv 2020; 10:30529-30602. [PMID: 35516069 PMCID: PMC9056353 DOI: 10.1039/d0ra03183f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures (vdWHs) with other materials. Molybdenum disulfide (MoS2) atomic layers which exhibit high carrier mobility and optical transparency are very suitable for developing ultra-broadband photodetectors to be used from surveillance and healthcare to optical communication. This review provides a brief introduction to TMD-based photodetectors, exclusively focused on MoS2-based photodetectors. The current research advances show that the photoresponse of atomic layered MoS2 can be significantly improved by boosting its charge carrier mobility and incident light absorption via forming MoS2 based plasmonic nanostructures, halide perovskites-MoS2 heterostructures, 2D-0D MoS2/quantum dots (QDs) and 2D-2D MoS2 hybrid vdWHs, chemical doping, and surface functionalization of MoS2 atomic layers. By utilizing these different integration strategies, MoS2 hybrid heterostructure-based photodetectors exhibited remarkably high photoresponsivity raging from mA W-1 up to 1010 A W-1, detectivity from 107 to 1015 Jones and a photoresponse time from seconds (s) to nanoseconds (10-9 s), varying by several orders of magnitude from deep-ultraviolet (DUV) to the long-wavelength infrared (LWIR) region. The flexible photodetectors developed from MoS2-based hybrid heterostructures with graphene, carbon nanotubes (CNTs), TMDs, and ZnO are also discussed. In addition, strain-induced and self-powered MoS2 based photodetectors have also been summarized. The factors affecting the figure of merit of a very wide range of MoS2-based photodetectors have been analyzed in terms of their photoresponsivity, detectivity, response speed, and quantum efficiency along with their measurement wavelengths and incident laser power densities. Conclusions and the future direction are also outlined on the development of MoS2 and other 2D TMD-based photodetectors.
Collapse
Affiliation(s)
- Hari Singh Nalwa
- Advanced Technology Research 26650 The Old Road Valencia California 91381 USA
| |
Collapse
|
9
|
Balbom ÉB, Gritzenco F, Sperança A, Godoi M, Alves D, Barcellos T, Godoi B. Copper-catalyzed Csp-chalcogen bond formation: Versatile approach to N-(3-(organochalcogenyl)prop-2-yn-1-yl)amides. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
You J, Hossain MD, Luo Z. Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. NANO CONVERGENCE 2018; 5:26. [PMID: 30467647 PMCID: PMC6160381 DOI: 10.1186/s40580-018-0158-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/10/2018] [Indexed: 05/08/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have stimulated the modern technology due to their unique and tunable electronic, optical, and chemical properties. Therefore, it is very important to study the control parameters for material preparation to achieve high quality thin films for modern electronics, as the performance of TMDs-based device largely depends on their layer number, grain size, orientation, and morphology. Among the synthesis methods, chemical vapor deposition (CVD) is an excellent technique, vastly used to grow controlled layer of 2D materials in recent years. In this review, we discuss the different growth routes and mechanisms to synthesize high quality large size TMDs using CVD method. We highlight the recent advances in the controlled growth of mono- and few-layer TMDs materials by varying different growth parameters. Finally, different strategies to control the grain size, boundaries, orientation, morphology and their application for various field of are also thoroughly discussed.
Collapse
Affiliation(s)
- Jiawen You
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Md Delowar Hossain
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
11
|
Agarwal V, Chatterjee K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. NANOSCALE 2018; 10:16365-16397. [PMID: 30151537 DOI: 10.1039/c8nr04284e] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanosheets of transition metal dichalcogenide (TMDs), the graphene-like two-dimensional (2D) materials, exhibit a unique combination of properties and have attracted enormous research interest for a wide range of applications including catalysis, functional electronics, solid lubrication, photovoltaics, energy materials and most recently in biomedical applications. Their potential for use in biosensors, drug delivery, multimodal imaging, antimicrobial agents and tissue engineering is being actively studied. However, the commercial translation of exfoliated TMDs has been limited due to the low aqueous solubility, non-uniformity, lack of control over the layer thickness, and the long-term colloidal stability of the exfoliated material. There is wide interest in the synthesis and exfoliation of TMDs resulting in the reporting of increasing numbers of new methods and their biomedical applications. The unique physicochemical characteristics of the TMD nanosheets have been exploited to tether them with biological payload to achieve selective localized delivery in vivo. The large surface-to-volume ratio, good cytocompatibility, ease of surface modification, tunable bandgap, strong spin-orbit coupling, and high optical and thermal conversion efficiency of TMD nanosheets make them favorable over traditional nanomaterials for biomedical research. Moreover, the presence of abundant active edge sites on the 2D TMDs makes them suitable for catalytic activities, while the large surface area and the interspace between layers are particularly conducive to ion or small molecule intercalation, making them useful for energy storage applications with rapid redox reaction capabilities. One of the major limitations of the exfoliated TMDs has been their limited colloidal stability in aqueous media. In this review, we summarize the recent advances in the exfoliation and synthesis of single-layered TMDs, their biomedical efficacy in terms of cytotoxicity, combinatorial therapy and diagnostic imaging, as well as antimicrobial activity. We highlight the current challenges in the field and propose strategies for the future.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | | |
Collapse
|
12
|
Yoder MA, Yan Z, Han M, Rogers JA, Nuzzo RG. Semiconductor Nanomembrane Materials for High-Performance Soft Electronic Devices. J Am Chem Soc 2018; 140:9001-9019. [PMID: 29950089 DOI: 10.1021/jacs.8b04225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of methods to synthesize and physically manipulate extremely thin, single-crystalline inorganic semiconductor materials, so-called nanomembranes, has led to an almost explosive growth of research worldwide into uniquely enabled opportunities for their use in new "soft" and other unconventional form factors for high-performance electronics. The unique properties that nanomembranes afford, such as their flexibility and lightweight characteristics, allow them to be integrated into electronic and optoelectronic devices that, in turn, adopt these unique attributes. For example, nanomembrane devices are able to make conformal contact to curvilinear surfaces and manipulate strain to induce the self-assembly of various 3D nano/micro device architectures. Further, thin semiconductor materials (e.g., Si-nanomembranes, transition metal dichalcogenides, and phosphorene) are subject to the impacts of quantum and other size-dependent effects that in turn enable the manipulation of their bandgaps and the properties of electronic and optoelectronic devices fabricated from them. In this Perspective, nanomembrane synthesis techniques and exemplary applications of their use are examined. We specifically describe nanomembrane chemistry exploiting high-performance materials, along with precise/high-throughput techniques for their manipulation that exemplify their growing capacities to shape outcomes in technology. Prominent challenges in the chemistry of these materials are presented along with future directions that might guide the development of next generation nanomembrane-based devices.
Collapse
Affiliation(s)
- Mikayla A Yoder
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Zheng Yan
- Department of Chemical Engineering and Department of Mechanical & Aerospace Engineering , University of Missouri , Columbia , Missouri 65211 , United States
| | - Mengdi Han
- Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
| | - John A Rogers
- Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Center for Bio-Integrated Electronics , Northwestern University , Evanston , Illinois 60208 , United States
| | - Ralph G Nuzzo
- School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Frederick Seitz Materials Research Laboratory and Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , SE-100 44 Stockholm , Sweden
| |
Collapse
|