1
|
Liu H, Zhang Z, Han H, Xu L, Fu Y, Lang K, Shen F, Zou P, Liu X, Xu J, Yao J. CaF 2 Nanoparticle-Induced γ-CsPbI 2.81Br 0.19 Heterogeneous Crystallization for High-Efficiency Flexible All-Inorganic Perovskite Solar Cells. J Phys Chem Lett 2024; 15:10514-10524. [PMID: 39400281 DOI: 10.1021/acs.jpclett.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
All-inorganic CsPbI3 films necessitate higher annealing temperatures for high-quality crystallization. Consequently, the conventional low-temperature solution approach often results in poor crystallization in flexible CsPbI3 films, significantly degrading the optoelectronic performance and stability of flexible perovskite solar cells (f-PSCs). Herein, a heterogeneous CaF2 nanocrystal seed-induced strategy has been successfully utilized to achieve enhanced crystallization of a flexible CsPbI2.81Br0.19 film. Due to their good lattice match with the perovskite material, CaF2 nanoparticles can decrease the critical Gibbs free energy of CsPbI2.81Br0.19 perovskite nucleation, thereby accelerating γ-phase CsPbI2.81Br0.19 crystallization at low temperatures. This leads to an improved crystalline quality of the flexible perovskite film at low temperatures, which minimizes defects and enhances the stability of f-PSCs. The CsPbI2.81Br0.19 f-PSCs achieved a champion power conversion efficiency of 15.03% and demonstrated mechanical stability, retaining 98.1% of their initial efficiency even after 60 000 bending cycles with a curvature radius of 5 mm.
Collapse
Affiliation(s)
- Huijing Liu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Zhiyu Zhang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Huifang Han
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Lingqi Xu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Yao Fu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Kun Lang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Fan Shen
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Pengchen Zou
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Xuewei Liu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Jia Xu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| | - Jianxi Yao
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Beijing Key Laboratory of Energy Safety and Clean Utilization, North China Electric Power University, Beijing 102206, P. R. China
| |
Collapse
|
2
|
Sang K, Wu D, Zhao S, Zhou H, Zhang J, Tong Z, Ding F, Pang Q, Zhang X, Zhou L, Chen P. Ligand-Induced In Situ Epitaxial Growth of PbI 2 Nanosheets/MAPbI 3 Heterojunction Realizes High-Performance HTM-Free Carbon-Based MAPbI 3 Solar Cells. SMALL METHODS 2024; 8:e2301531. [PMID: 38308413 DOI: 10.1002/smtd.202301531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/15/2024] [Indexed: 02/04/2024]
Abstract
Hole-transporting layer-free carbon-based perovskite solar cells (HTL-free C-PSCs) hold great promise for photovoltaic applications due to their low cost and outstanding stability. However, the low power conversion efficiency (PCE) of HTL-free C-PSCs mainly results from grain boundaries (GBs). Here, epitaxial growth is proposed to rationally design a hybrid nanostructure of PbI2 nanosheets/perovskite with the desired photovoltaic properties. A post-treatment technique using tri(2,2,2-trifluoromethyl) phosphate (TFEP) to induce in situ epitaxial growth of PbI2 nanosheets at the GBs of perovskite films realizes high-performance HTL-free C-PSCs. The structure model and high-resolution transmission electron microscope unravel the epitaxial growth mechanism. The epitaxial growth of oriented PbI2 nanosheets generates the PbI2/perovskite heterojunction, which not only passivates defects but forms type-I band alignment, avoiding carrier loss. Additionally, Fourier-transform infrared spectroscopy, 31P NMR, and 1H NMR spectra reveal the passivation effect and hydrogen bonding interaction between TFEP and perovskite. As a result, the VOC is remarkably boosted from 1.04 to 1.10 V, leading to a substantial gain in PCE from 14.97% to 17.78%. In addition, the unencapsulated PSC maintains the initial PCE of 80.1% for 1440 h under air ambient of 40% RH. The work offers a fresh perspective on the rational design of high-performance HTL-free C-PSCs.
Collapse
Affiliation(s)
- Kaihang Sang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Dongqi Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Suxin Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Huanyi Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Junfang Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Zhensang Tong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Feifei Ding
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Xinguo Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Dong Y, Zhang J, Zhang H, Wang W, Hu B, Xia D, Lin K, Geng L, Yang Y. Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells. NANO-MICRO LETTERS 2024; 16:171. [PMID: 38602570 PMCID: PMC11009200 DOI: 10.1007/s40820-024-01390-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Although covalent organic frameworks (COFs) with high π-conjugation have recently exhibited great prospects in perovskite solar cells (PSCs), their further application in PSCs is still hindered by face-to-face stacking and aggregation issues. Herein, metal-organic framework (MOF-808) is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle, which could effectively inhibit COF stacking and aggregation. The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored. The complementary utilization of π-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects. The resulting PSCs achieve an impressive power conversion efficiency of 23.61% with superior open circuit voltage (1.20 V) and maintained approximately 90% of the original power conversion efficiency after 2000 h (30-50% RH and 25-30 °C). Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles, the amount of lead leakage from unpackaged PSCs soaked in water (< 5 ppm) satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.
Collapse
Affiliation(s)
- Yayu Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, Jiangxi, People's Republic of China
| | - Jian Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Hongyu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Boyuan Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Lin Geng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Zhang Z, Zhai W, Li G, Zheng W, Li X, Huang L, Chen L, Lin L, Yuan G, Yan Z, Liu JM. Performance Enhancement of Tin-Based Perovskite Photodetectors through Bifunctional Cesium Fluoride Engineering. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38437709 DOI: 10.1021/acsami.3c17687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Tin halide perovskites are rising as promising candidates for next-generation optoelectronic materials due to their good optoelectronic properties and relatively low toxicity. However, the high defect density and the easy oxidation of Sn2+ have limited their optoelectronic performance. Herein, we report the treatment of the FASnI3 (formamidinium tin, FA) perovskite film by a bifunctional cesium fluoride (CsF) additive, which improves the film quality and significantly enhances the photoelectric performance. The responsivity of the perovskite-based photodetector (PD) with an optimal CsF concentration of 15% is over 60 times larger than that of the PD without CsF. It indicates that both the Cs substitution and the fluoride anion additive from CsF inhibit the oxidation of Sn2+, optimize the crystal growth, and passivate the defects, demonstrating the dual roles of the CsF additive in improving the photoelectric performance. This work offers valuable insights into the additive selection for developing high-quality tin-based perovskite films and devices.
Collapse
Affiliation(s)
- Zhihang Zhang
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenjing Zhai
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Guangyuan Li
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenhao Zheng
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xinyu Li
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lin Huang
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Liufang Chen
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lin Lin
- Department of Applied Physics, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhibo Yan
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun-Ming Liu
- National Laboratory of Solid-State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, Hubei, China
| |
Collapse
|
5
|
Bati ASR, Jiang W, Chu R, Mallo N, Burn PL, Gentle IR, Shaw PE. Fluorinated Cation-Based 2D Perovskites for Efficient and Stable 3D/2D Heterojunction Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38049378 DOI: 10.1021/acsami.3c13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Three-dimensional (3D) perovskite solar cells (PSCs) containing additives capable of forming two-dimensional (2D) structures in neat films have attracted attention due to their ability to enhance power conversion efficiency (PCE) in combination with improved operational stability. Herein, a newly designed fluorinated ammonium salt, 2-(perfluorophenyl)ethanaminium bromide:chloride50:50 (FEABr:Cl50:50), is introduced into CsMAFAPbI3-based PSCs with a standard n-i-p architecture. FEABr:Cl50:50 was used as an additive in the tin(IV) oxide (SnO2) electron transporting layer (ETL) as well as a surface treatment for the perovskite film. Used in this dual way, the additive was found to passivate charge-trapping defects within the SnO2 ETL and regulate the crystal growth of the perovskite layer. When FEABr:Cl50:50 was deposited onto the surface of the 3D perovskite film, it formed a thin hydrophobic 2D capping layer. Adopting this dual strategy led to the perovskite film having larger grain sizes, improved quality, and overall better device performance. As a result, the best-performing device exhibited a PCE of over 23% with negligible hysteresis in an n-i-p device architecture with an area of 0.2 cm2. Furthermore, unencapsulated devices with the hydrophobic 2D capping layer showed improved stability compared to the control device when measured under continuous light irradiation at a maximum power point (MPP) at 80 ± 5 °C in a humid (≈50%) environment.
Collapse
Affiliation(s)
- Abdulaziz S R Bati
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Wei Jiang
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ronan Chu
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Neil Mallo
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul L Burn
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Ian R Gentle
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Paul E Shaw
- Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Takahashi S, Uchida S, Segawa H. Effect of Chloride Incorporation on the Intermediate Phase and Film Morphology of Methylammonium Lead Halide Perovskites. ACS OMEGA 2023; 8:42711-42721. [PMID: 38024716 PMCID: PMC10652270 DOI: 10.1021/acsomega.3c05463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
The influence of chloride integration on perovskite film deposition, encompassing both the structures of intermediate phases and the properties of the final films, was explored. Our methodology involved the fabrication of perovskite intermediate-phase films with varying concentrations of methylammonium chloride (MACl). Subsequently, we conducted an analysis employing X-ray diffraction and Rietveld refinement, incorporating the March-Dollase correction, to gain insights into how chloride-induced intermediate phases impact film morphology. Remarkably, a distinct preferred orientation was observed in the (020) lattice plane perpendicular to the substrate surface, and this orientation was found to be directly correlated to the MACl concentration. This distinctive arrangement of chloride-induced intermediate-phase complexes facilitated controlled crystallization, leading to highly oriented crystals and an improved film morphology. As a consequence, perovskite solar cell devices incorporating chloride-containing methylammonium lead iodide achieved a power conversion efficiency exceeding 20%. These findings suggest a crucial link between the preferred orientation observed in the final chlorine-derived perovskite films and the intermediate-phase structure formed during the initial stages of perovskite formation. These results suggest a profound impact of intermediate phase compositions and crystal structures on perovskite formation, emphasizing the importance of a comprehensive understanding of these factors to enable precise control over ideal structures and the subsequent transformation into high-quality perovskite films.
Collapse
Affiliation(s)
- Saemi Takahashi
- Research
Association for Technology Innovation of Organic Photovoltaics (RATO), Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Satoshi Uchida
- Research
Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Segawa
- Research
Association for Technology Innovation of Organic Photovoltaics (RATO), Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, Japan
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
7
|
Jiang X, Yang G, Zhang B, Wang L, Yin Y, Zhang F, Yu S, Liu S, Bu H, Zhou Z, Sun L, Pang S, Guo X. Understanding the Role of Fluorine Groups in Passivating Defects for Perovskite Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202313133. [PMID: 37735100 DOI: 10.1002/anie.202313133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/23/2023]
Abstract
Introducing fluorine (F) groups into a passivator plays an important role in enhancing the defect passivation effect for the perovskite film, which is usually attributed to the direct interaction of F and defect states. However, the interaction between electronegative F and electron-rich passivation groups in the same molecule, which may influence the passivation effect, is ignored. We herein report that such interactions can vary the electron cloud distribution around the passivation groups and thus changing their coordination with defect sites. By comparing two fluorinated molecules, heptafluorobutylamine (HFBM) and heptafluorobutyric acid (HFBA), we find that the F/-NH2 interaction in HFBM is stronger than the F/-COOH one in HFBA, inducing weaker passivation ability of HFBM than HFBA. Accordingly, HFBA-based perovskite solar cells (PSCs) provide an efficiency of 24.70 % with excellent long-term stability. Moreover, the efficiency of a large-area perovskite module (14.0 cm2 ) based on HFBA reaches 21.13 %. Our work offers an insight into understanding an unaware role of the F group in impacting the passivation effect for the perovskite film.
Collapse
Affiliation(s)
- Xiaoqing Jiang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Guangyue Yang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bingqian Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yanfeng Yin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, Dongying, 257335, China
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shiwei Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hongkai Bu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhongmin Zhou
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Shuping Pang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xin Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Wang F, Ma X, Huang W, Han J, Luo D, Jia C, Chen Y. The synergistic effect of trap deactivation and hysteresis suppression at grain boundaries in perovskite interfaces via multifunctional groups. Phys Chem Chem Phys 2023; 25:29211-29223. [PMID: 37873576 DOI: 10.1039/d3cp01500a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In spite of the outstanding photoelectric properties of perovskite materials, numerous defects produced in the preparation process eventually result in decomposition of the perovskite layer. To date, the mechanism of defect passivation and hysteresis reduction via additive engineering has still been obscure for perovskite materials, which seriously restricts performance improvement of the devices. Herein, conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM) measurements were applied to probe carbamic acid ethyl ester (EU)-based trap passivation and suppression of hysteresis in perovskite films. The results indicate that the internal interaction between multifunctional bonds ("CO" and "-NH2") of EU and Pb2+ ions of the perovskite may inactivate the trap state and inhibit ion migration within sub-grains and grain boundaries (GBs), resulting in improvement of the long-term stability of the cells. In consequence, the EU-modified champion device prepared in all-air achieved a power conversion efficiency (PCE) of 20.10%, one of the high performances for the devices fabricated in air to date. In short, this work will propose some interesting speculation about ion migration as well as its influence on hysteresis in perovskite materials.
Collapse
Affiliation(s)
- Fei Wang
- School of Physics, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Xiaohu Ma
- School of Physics, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wei Huang
- School of Physics, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Jun Han
- School of Materials Science and Engineering, Hefei University of Technology, No. 193 tunxi Rd., Hefei City, Anhui Province, 230009, People's Republic of China.
| | - Dandan Luo
- School of Materials Science and Engineering, Hefei University of Technology, No. 193 tunxi Rd., Hefei City, Anhui Province, 230009, People's Republic of China.
| | - Chong Jia
- School of Materials Science and Engineering, Hefei University of Technology, No. 193 tunxi Rd., Hefei City, Anhui Province, 230009, People's Republic of China.
| | - Yiqing Chen
- School of Materials Science and Engineering, Hefei University of Technology, No. 193 tunxi Rd., Hefei City, Anhui Province, 230009, People's Republic of China.
| |
Collapse
|
9
|
Li X, Li S, Liu W, Dong P, Zheng G, Peng Y, Mo S, Tian N, Yao D, Long F. Collaborative Passivation for Dual Charge Transporting Layers Based on 4-(chloromethyl)benzonitrile Additive toward Efficient and Stable Inverted Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207445. [PMID: 36840662 DOI: 10.1002/smll.202207445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/01/2023] [Indexed: 05/18/2023]
Abstract
Poor carrier transport capacity and numerous surface defects of charge transporting layers (CTLs), coupled with misalignment of energy levels between perovskites and CTLs, impact photoelectric conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) profoundly. Herein, a collaborative passivation strategy is proposed based on 4-(chloromethyl) benzonitrile (CBN) as a solution additive for fabrication of both [6,6]-phenyl-C61-butyric acid methylester (PCBM) and poly(triarylamine) (PTAA) CTLs. This additive can improve wettability of PTAA and reduce the agglomeration of PCBM particles, which enhance the PCE and device stability of the PSCs. As a result, a PCE exceeding 20% with a remarkable short circuit current of 23.9 mA cm-2 , and an improved fill factor of 81% is obtained for the CBN- modified inverted PSCs. Devices maintain 80% and 70% of the initial PCE after storage under 30% and 85% humidity ambient conditions for 1000 h without encapsulation, as well as negligible light state PCE loss. This strategy demonstrates feasibility of the additive engineering to improve interfacial contact between the CTLs and perovskites for fabrication of efficient and stable inverted PSCs.
Collapse
Affiliation(s)
- Xingyu Li
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Songbo Li
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Weiting Liu
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Pengpeng Dong
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Guoyuan Zheng
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Yong Peng
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Shuyi Mo
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Nan Tian
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Disheng Yao
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| | - Fei Long
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi, 541004, P. R. China
| |
Collapse
|
10
|
He J, Wang S, Li X, Zhang F. Seeding Agents in Metal Halide Perovskite Solar Cells: From Material to Mechanism. CHEMSUSCHEM 2023; 16:e202202109. [PMID: 36624051 DOI: 10.1002/cssc.202202109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Metal halide perovskite solar cells (PSCs) have been showing up in the commercial field, with an inspiring power conversion efficiency (PCE) of over 26 % in the laboratory. The quality of perovskite films is still a bottleneck due to the random and fast crystallization of ionic perovskite materials. Seeding agent-mediated crystallization has consistently been recognized as an efficient method for preparing bulk single crystals and high-quality films. Herein, we summarized the seeding mechanism, characterization techniques, and seeding agents working in different locations during PSC device fabrication. This Review could further facilitate researchers with a deeper understanding of seeding agents and enhance more choices for seeding crystallization to improve the performance further and the device's large-scale fabrication toward commercialization.
Collapse
Affiliation(s)
- Jun He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Shirong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Xianggao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P. R. China
| |
Collapse
|
11
|
Xiao Y, Cui X, Xiang B, Chen Y, Zhao C, Wang L, Yang C, Zhang G, Xie C, Han Y, Qiu M, Li S, You P. MDACl 2-Modified SnO 2 Film for Efficient Planar Perovskite Solar Cells. Molecules 2023; 28:2668. [PMID: 36985640 PMCID: PMC10056177 DOI: 10.3390/molecules28062668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
The electron transport layer (ETL) with excellent charge extraction and transport ability is one of the key components of high-performance perovskite solar cells (PSCs). SnO2 has been considered as a more promising ETL for the future commercialization of PSCs due to its excellent photoelectric properties and easy processing. Herein, we propose a facile and effective ETL modification strategy based on the incorporation of methylenediammonium dichloride (MDACl2) into the SnO2 precursor colloidal solution. The effects of MDACl2 incorporation on charge transport, defect passivation, perovskite crystallization, and PSC performance are systematically investigated. First, the surface defects of the SnO2 film are effectively passivated, resulting in the increased conductivity of the SnO2 film, which is conducive to electron extraction and transport. Second, the MDACl2 modification contributes to the formation of high-quality perovskite films with improved crystallinity and reduced defect density. Furthermore, a more suitable energy level alignment is achieved at the ETL/perovskite interface, which facilitates the charge transport due to the lower energy barrier. Consequently, the MDACl2-modified PSCs exhibit a champion efficiency of 22.30% compared with 19.62% of the control device, and the device stability is also significantly improved.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mingxia Qiu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Shunpu Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| | - Peng You
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
12
|
Lehner LE, Demchyshyn S, Frank K, Minenkov A, Kubicki DJ, Sun H, Hailegnaw B, Putz C, Mayr F, Cobet M, Hesser G, Schöfberger W, Sariciftci NS, Scharber MC, Nickel B, Kaltenbrunner M. Elucidating the Origins of High Preferential Crystal Orientation in Quasi-2D Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208061. [PMID: 36305028 PMCID: PMC11475220 DOI: 10.1002/adma.202208061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Incorporating large organic cations to form 2D and mixed 2D/3D structures significantly increases the stability of perovskite solar cells. However, due to their low electron mobility, aligning the organic sheets to ensure unimpeded charge transport is critical to rival the high performances of pure 3D systems. While additives such as methylammonium chloride (MACl) can enable this preferential orientation, so far, no complete description exists explaining how they influence the nucleation process to grow highly aligned crystals. Here, by investigating the initial stages of the crystallization, as well as partially and fully formed perovskites grown using MACl, the origins underlying this favorable alignment are inferred. This mechanism is studied by employing 3-fluorobenzylammonium in quasi-2D perovskite solar cells. Upon assisting the crystallization with MACl, films with a degree of preferential orientation of 94%, capable of withstanding moisture levels of 97% relative humidity for 10 h without significant changes in the crystal structure are achieved. Finally, by combining macroscopic, microscopic, and spectroscopic studies, the nucleation process leading to highly oriented perovskite films is elucidated. Understanding this mechanism will aid in the rational design of future additives to achieve more defect tolerant and stable perovskite optoelectronics.
Collapse
Affiliation(s)
- Lukas E Lehner
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Stepan Demchyshyn
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Kilian Frank
- Soft Condensed Matter Group, Faculty of Physics, Ludwig-Maximilian University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Alexey Minenkov
- Center for Surface and Nanoanalytics, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | | | - He Sun
- Institute of Organic Chemistry, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Bekele Hailegnaw
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Christoph Putz
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Felix Mayr
- Linz Institute for Organic Solar Cells (LIOS) and Institute for Physical Chemistry, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Munise Cobet
- Linz Institute for Organic Solar Cells (LIOS) and Institute for Physical Chemistry, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Günter Hesser
- Center for Surface and Nanoanalytics, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Wolfgang Schöfberger
- Institute of Organic Chemistry, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS) and Institute for Physical Chemistry, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Markus Clark Scharber
- Linz Institute for Organic Solar Cells (LIOS) and Institute for Physical Chemistry, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| | - Bert Nickel
- Soft Condensed Matter Group, Faculty of Physics, Ludwig-Maximilian University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Martin Kaltenbrunner
- Division of Soft Matter Physics, Institute of Experimental Physics, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
- Soft Materials Lab, Linz Institute of Technology, Johannes Kepler University, Altenberger Str. 69, 4040, Linz, Austria
| |
Collapse
|
13
|
Recent progress in perovskite solar cells: from device to commercialization. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1426-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Zhang H, Ren Z, Liu K, Qin M, Wu Z, Shen D, Zhang Y, Chandran HT, Hao J, Lee CS, Lu X, Zheng Z, Huang J, Li G. Controllable Heterogenous Seeding-Induced Crystallization for High-Efficiency FAPbI 3 -Based Perovskite Solar Cells Over 24. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204366. [PMID: 35867885 DOI: 10.1002/adma.202204366] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The addition of small seeding particles into a supersaturated solution is one among the most effective approaches to obtain high-quality semiconductor materials via increased crystallization rates. However, limited study is conducted on this approach for the fabrication of perovskite solar cells. Here, a new strategy-"heterogenous seeding-induced crystallization (hetero-SiC)" to assist the growth of FAPbI3 -based perovskite is proposed. In this work, di-tert-butyl(methyl)phosphonium tetrafluoroborate is directly introduced into the precursor, which forms a low-solubility complex with PbI2 . The low-solubility complex can serve as the seed to induce crystallization of the perovskite during the solvent-evaporation process. Various in situ measurement tools are used to visualize the hetero-SiC process, which is shown to be an effective way of manipulating the nucleation and crystal growth of perovskites. The hetero-SiC process greatly improves the film quality, reduces film defects, and suppresses nonradiative recombination. A hetero-SIC proof-of-concept device exhibits outstanding performance with 24.0% power conversion efficiency (PCE), well over the control device with 22.2% PCE. Additionally, hetero-SiC perovskite solar cell (PSC) stability under light illumination is enhanced and the PSC retains 84% of its initial performance after 1400 h of light illumination.
Collapse
Affiliation(s)
- Hengkai Zhang
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Zhiwei Ren
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Kuan Liu
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Minchao Qin
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zehan Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dong Shen
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hrisheekesh Thachoth Chandran
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gang Li
- Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
15
|
Tang X, Chen M, Jiang L, Li M, Tang G, Liu H. Improvements in Efficiency and Stability of Perovskite Solar Cells Using a Cesium Chloride Additive. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26866-26872. [PMID: 35658419 DOI: 10.1021/acsami.2c07425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite films with few defects play a key role in preparing high-performance perovskite solar cells (PSCs). Here, cesium chloride (CsCl) was introduced as a modulator into a perovskite precursor for manipulating the crystallization of perovskite films. By introducing CsCl, dense homogeneous perovskite films with high crystallinity, preferential orientation, and a pure black perovskite phase were prepared. In addition, the carrier lifetime of perovskite films was significantly increased because of the suppressed nonradiative recombination. Correspondingly, the power conversion efficiency (PCE) of small-area devices using CsCl regulation was increased from 20.56 to 22.86%. The 1 cm2 PSCs present a PCE of 21.53%, demonstrating their reliability for mass production. Furthermore, the device showed excellent stability maintaining 93.8% of its initial PCE after 500 h of continuous irradiation. Also, 95.3% of its PCE was kept after storage in ambient air for 2100 h. This study demonstrates that CsCl doping is a reliable way to prepare PSCs for practical applications.
Collapse
Affiliation(s)
- Xiaodan Tang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Mengmeng Chen
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Lulu Jiang
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Miao Li
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guanqi Tang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Hairui Liu
- School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
16
|
Cai Q, Lin Z, Zhang W, Xu X, Dong H, Yuan S, Liang C, Mu C. Efficient and Stable Perovskite Solar Cells via CsPF 6 Passivation of Perovskite Film Defects. J Phys Chem Lett 2022; 13:4598-4604. [PMID: 35584450 DOI: 10.1021/acs.jpclett.2c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polycrystalline perovskite films have many fatal defects; defect passivation can improve the performance of perovskite solar cells (PSCs). In this study, the defects in perovskite films are passivated by introducing the pseudohalide salt CsPF6 into the films. Because the ionic radii of Cs+ and PF6- are close to those of FA+ and I-, respectively, they can be uniformly doped into perovskite films to passivate the bulk, surface, and grain boundary defects. The photovoltaic performance of the PSCs significantly improved after passivation. Moreover, the photoelectric conversion efficiency increased significantly from 21.36% to 23.15% after passivation. Because of defect passivation, PSCs also exhibit good environmental stability. This study introduces a scheme for improving the photovoltaic performance of PSCs via passivation.
Collapse
Affiliation(s)
- Qingbin Cai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Zhichao Lin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Wenqi Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Xiangning Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Hongye Dong
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Shuai Yuan
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cheng Mu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
17
|
Yang Y, Liang J, Zhang Z, Tian C, Wu X, Zheng Y, Huang Y, Wang J, Zhou Z, He M, Chen Z, Chen CC. Suppressing Residual Lead Iodide and Defects in Sequential-Deposited Perovskite Solar Cell via Bidentate Potassium Dichloroacetate Ligand. CHEMSUSCHEM 2022; 15:e202102474. [PMID: 35023623 DOI: 10.1002/cssc.202102474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In sequential-deposited polycrystalline perovskite solar cells, the unreacted lead iodide due to incomplete conversion of lead iodide to perovskite phase, can contribute to ionic defects, such as residual lead ions (Pb2+ ). At present, passivation of interfacial and grain boundary defects has become an effective strategy to suppress charge recombination. Here, we introduced potassium acetate (KAc) and potassium dichloroacetate (KAcCl2 ) as additives in the sequential deposition of polycrystalline perovskite thin films and found that acetate ions (Ac- ) can effectively reduce the residual lead iodide. Compared with acetate (Ac), dichloroacetate (AcCl2 ) can form Pb-Cl and Pb-O bonding as "dual anchoring" bonds with residual Pb2+ , resulting in strong binding force and effective passivation of residual Pb2+ defects. Furthermore, K+ can enlarge grain size and restrain ion migration at the grain boundaries. Consequently, perovskite solar cells with KAcCl2 additive show power conversion efficiencies (PCE) from 19.67 % to 22.12 %, with the open-circuit voltage increasing from 1.06 V to 1.14 V. The unencapsulated device can maintain 82 % of the initial PCE under a humidity of 30±5 % for 1200 h. This work provides a new approach for the regulation of ionic defects and grain boundaries at the same time to develop high-performance planar perovskite solar cells.
Collapse
Affiliation(s)
- Yajuan Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianghu Liang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhanfei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ying Huang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianli Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhuang Zhou
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Maosheng He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
18
|
Murshed R, Bansal S. Additive-Assisted Optimization in Morphology and Optoelectronic Properties of Inorganic Mixed Sn-Pb Halide Perovskites. MATERIALS 2022; 15:ma15030899. [PMID: 35160845 PMCID: PMC8839045 DOI: 10.3390/ma15030899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 01/16/2023]
Abstract
Halide perovskite solar cells (HPSCs) are promising photovoltaic materials due to their excellent optoelectronic properties, low cost, and high efficiency. Here, we demonstrate atmospheric solution processing and stability of cesium tin-lead triiodide (CsSnPbI3) thin films for solar cell applications. The effect of additives, such as pyrazine and guanidinium thiocyanate (GuaSCN), on bandgap, film morphology, structure, and stability is investigated. Our results indicate the formation of a wide bandgap (>2 eV) structure with a mixed phase of tin oxide (SnO2) and Cs(Sn, Pb)I3. The addition of pyrazine decreases the intensity of SnO2 peaks, but the bandgap does not change much. With the addition of GuaSCN, the bandgap of the films reduces to 1.5 eV, and a dendritic structure of Cs(Sn, Pb)I3 is observed. GuaSCN addition also reduces the oxygen content in the films. To enable uniform film crystallization, cesium chloride (CsCl) and dimethyl sulfoxide (DMSO) additives are used in the precursor. Both CsCl and DMSO suppress dendrite formation with the latter resulting in uniform polycrystalline films with a bandgap of 1.5 eV. Heat and light soaking (HLS) stability tests at 65 °C and 1 sun for 100 h show all film types are stable with temperature but result in phase segregation with light exposure.
Collapse
|
19
|
Gao F, Luo C, Wang X, Zhao Q. Alkali Metal Chloride-Doped Water-Based TiO 2 for Efficient and Stable Planar Perovskite Photovoltaics Exceeding 23% Efficiency. SMALL METHODS 2021; 5:e2100856. [PMID: 34928042 DOI: 10.1002/smtd.202100856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Indexed: 06/14/2023]
Abstract
TiO2 is one of the most broadly employed electron transport materials in n-i-p structure perovskite solar cells (PSCs). Low-temperature non-hydrolyzed sol-gel method is developed to prepare TiO2 in order to simplify the fabrication process and match with the planar structure PSCs. Conventional low-temperature TiO2 film using organic solvents as dispersants makes direct doping challenging due to limited solubility. Here, a newly developed water-based TiO2 solution is directly doped with different alkali chlorides, resulting in better conductivity, compatible energy level matching, and enhanced charge extraction in terms of electron transport layer (ETL) for PSCs. As a result, a power conversion efficiency of 23.15% is achieved based on NaCl-doped TiO2 with competitive storage stability and light stability. The water-based TiO2 ETL for more general doping of various solutes opens up a new avenue for environmental-friendly manufacturing superior ETL toward high-efficiency and stable perovskite photovoltaic devices.
Collapse
Affiliation(s)
- Feng Gao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Chao Luo
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Xianjin Wang
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100084, China
| |
Collapse
|
20
|
Lin Z, Zhang W, Cai Q, Xu X, Dong H, Mu C, Zhang J. Precursor Engineering of the Electron Transport Layer for Application in High-Performance Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102845. [PMID: 34633769 PMCID: PMC8596138 DOI: 10.1002/advs.202102845] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The electron transport layer (ETL) is a key component of regular perovskite solar cells to promote the overall charge extraction efficiency and tune the crystallinity of the perovskite layer for better device performance. The authors present a novel protocol of ETL engineering by incorporating a composition of the perovskite precursor, methylammonium chloride (MACl), or formamidine chloride (FACl), into SnO2 layers, which are then converted into the crystal nuclei of perovskites by reaction with PbI2 . The SnO2 -embedded nuclei remarkably improve the morphology and crystallinity of the optically active perovskite layers. The improved ETL-to-perovskite electrical contact and dense packing of large-grained perovskites enhance the carrier mobility and suppress charge recombination. The power conversion efficiency increases from 20.12% (blank device) to 21.87% (21.72%) for devices with MACl (FACl) as an ETL dopant. Moreover, all the precursor-engineered cells exhibit a record-high fill factor (82%).
Collapse
Affiliation(s)
- Zhichao Lin
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Wenqi Zhang
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Qingbin Cai
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Xiangning Xu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Hongye Dong
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Cheng Mu
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| | - Jian‐Ping Zhang
- Department of ChemistryRenmin University of ChinaBeijing100872P. R. China
| |
Collapse
|
21
|
Li Z, Li J, Cao H, Qian Y, Zhai J, Qiu Y, Yang L, Yin S. Surface-Orientation Elimination of Vapor-Deposited PbI 2 Flakes for Efficient Perovskite Synthesis on Curved Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45496-45504. [PMID: 34521200 DOI: 10.1021/acsami.1c12283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vapor deposition of perovskite solar cells (PSCs) has attracted considerable interest for its dry processing characteristics. However, a two-step sequential vapor deposition method suffers from ineffective conversion of PbI2 to perovskite with reasons still unclear. In this report, we carefully investigated the crystallization orientation of PbI2 films deposited by physical vapor deposition via synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and observed an asymmetric scattering pattern with respect to the qz-axis. The observed oriented morphology and texture hinder the diffusion of MAI molecules in the PbI2 films synthesized by vapor deposition, resulting in over 15% PbI2 remaining at the buried interface after reaction with MAI vapor. As a result, the MAPbI3 synthesized in this way was also highly oriented, especially in the surface layers. Surface fumigation (SF) step was introduced to decrease the orientational anisotropy of PbI2, which successfully breaks the diffusion barriers of MAI molecules by forming a complex layer on the PbI2 surface with polar solvent vapors, like dimethyl sulfoxide or 1,3-dimethyl-2-imidazolidinone. We infer that the SF treatment changes the vapor-solid reaction mechanism from reaction-crystallization to dissolution-recrystallization, which largely promotes the conversion of PbI2 to perovskite. Defects were reduced in perovskite synthesized in this way, and a p-i-n device with 19.56% efficiency was fabricated, which is among the highest efficiencies reported for sequential-vapor-deposited PSCs. Notably, this method enables the fabrication of conformal perovskite layers on uneven substrates. An exemplary PSC showing efficiency of 8.93% was fabricated on a precurved substrate. We believe that the method is applicable to the fabrication of tandem or curved PSCs that are compatible with wearable or building/autocar-integrated photovoltaics in the future.
Collapse
Affiliation(s)
- Ziyi Li
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jinzhao Li
- HySPRINT Innovation Lab: Young Investigator Group Hybrid Materials Formation and Scaling, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin 12489, Germany
| | - Huanqi Cao
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yicheng Qian
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jianyong Zhai
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yuan Qiu
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Liying Yang
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Shougen Yin
- Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
22
|
Gozalzadeh S, Nasirpouri F, Seok SI. Towards environmental friendly multi-step processing of efficient mixed-cation mixed halide perovskite solar cells from chemically bath deposited lead sulphide. Sci Rep 2021; 11:18561. [PMID: 34535696 PMCID: PMC8448853 DOI: 10.1038/s41598-021-97633-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Organic-inorganic hybrid perovskite is the most promising active layer for new generation of solar cells. Despite of highly efficient perovskite active layer conventionally fabricated by spin coating methods, the need for using toxic solvents like dimethylformamide (DMF) required for dissolving low soluble metal precursors as well as the difficulties for upscaling the process have restricted their practical development. To deal with these shortcomings, in this work, lead sulphide as the lead metal precursor was produced by aqueous chemical bath deposition. Subsequently, PbS films were chemically converted to PbI2 and finally to mixed-cation mixed halide perovskite films. The microstructural, optical and solar cell performance of mixed cation mixed halide perovskite films were examined. Results show that controlling the morphology of PbI2 platelets achieved from PbS precursor films enabled efficient conversion to final perovskite films. Using this processing technique, smooth and pin hole-free perovskite films having columnar grains of about 800 nm and a bandgap of 1.55 eV were produced. The solar cell performance consisting of such perovskite layers gave rise to a notable power conversion efficiency of 11.35% under standard solar conditions. The proposed processing technique is very promising towards an environmentally friendly method for the production of large-scale high efficient perovskite solar cells.
Collapse
Affiliation(s)
- Sahel Gozalzadeh
- grid.412345.50000 0000 9012 9027Faculty of Materials Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Farzad Nasirpouri
- grid.412345.50000 0000 9012 9027Faculty of Materials Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Sang Il Seok
- grid.42687.3f0000 0004 0381 814XSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 689-798 Republic of Korea
| |
Collapse
|
23
|
Kim BJ, Boschloo G. Beneficial effects of cesium acetate in the sequential deposition method for perovskite solar cells. NANOSCALE 2021; 13:11478-11487. [PMID: 34165116 DOI: 10.1039/d1nr01281a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cesium cation (Cs+) is widely used as a dopant for highly efficient and stable formamidinium lead tri-halide perovskite (FAPbX3, X = I, Br, Cl) solar cells. Herein, we introduce a small amount of cesium acetate (CsAc) that can effectively stabilize FAMAPbI3 under thermal- and light illumination-stress. We show that incorporated Cs+ leads to relaxation of strain in the perovskite layer, and that Ac- forms a strong intermediate phase with PbI2, which can help the intercalation of the PbI2 film with Cs+ and cation halide (FAI, MAI, MACl) in the sequential deposition process. The addition of CsAc reduces the trap density in the resulting perovskite layers and extends their carrier lifetime. The CsAc-modified perovskite solar cells show less hysteresis phenomena and enhanced operational and thermal stability in ambient conditions. Our findings provide insight into how dopants and synthesis precursors play an important role in efficient and stable perovskite solar cells.
Collapse
Affiliation(s)
- Byeong Jo Kim
- Department of Chemistry-Ångström Laboratory, Physical Chemistry, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden.
| | - Gerrit Boschloo
- Department of Chemistry-Ångström Laboratory, Physical Chemistry, Uppsala University, Box 523, SE 751 20 Uppsala, Sweden.
| |
Collapse
|
24
|
Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y, Huang W. Stabilizing black-phase formamidinium perovskite formation at room temperature and high humidity. Science 2021; 371:1359-1364. [PMID: 33766883 DOI: 10.1126/science.abf7652] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 01/19/2023]
Abstract
The stabilization of black-phase formamidinium lead iodide (α-FAPbI3) perovskite under various environmental conditions is considered necessary for solar cells. However, challenges remain regarding the temperature sensitivity of α-FAPbI3 and the requirements for strict humidity control in its processing. Here we report the synthesis of stable α-FAPbI3, regardless of humidity and temperature, based on a vertically aligned lead iodide thin film grown from an ionic liquid, methylamine formate. The vertically grown structure has numerous nanometer-scale ion channels that facilitate the permeation of formamidinium iodide into the lead iodide thin films for fast and robust transformation to α-FAPbI3. A solar cell with a power-conversion efficiency of 24.1% was achieved. The unencapsulated cells retain 80 and 90% of their initial efficiencies for 500 hours at 85°C and continuous light stress, respectively.
Collapse
Affiliation(s)
- Wei Hui
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Lingfeng Chao
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Hui Lu
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Fei Xia
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Tingting Niu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Lei Tao
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Bin Du
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Deli Li
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Yue Wang
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - He Dong
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Shouwei Zuo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bixin Li
- Department of Educational Science, Laboratory of College Physics, Hunan First Normal University, Changsha 410205, Hunan, China
| | - Wei Shi
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Xueqin Ran
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Ping Li
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Hui Zhang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yingdong Xia
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, Jiangsu, China
- Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
25
|
Dagar J, Fenske M, Al-Ashouri A, Schultz C, Li B, Köbler H, Munir R, Parmasivam G, Li J, Levine I, Merdasa A, Kegelmann L, Näsström H, Marquez JA, Unold T, Többens DM, Schlatmann R, Stegemann B, Abate A, Albrecht S, Unger E. Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar Cells and Mini-Modules. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13022-13033. [PMID: 33721995 DOI: 10.1021/acsami.0c17893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation" Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, VOC, due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, J-V, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs.
Collapse
Affiliation(s)
- Janardan Dagar
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany
| | - Markus Fenske
- HTW Berlin, University of Applied Sciences, Wilhelminenhofstr. 75a, D-12459 Berlin, Germany
- PVcomB/Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstr. 3, D-12489 Berlin, Germany
| | - Amran Al-Ashouri
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Christof Schultz
- HTW Berlin, University of Applied Sciences, Wilhelminenhofstr. 75a, D-12459 Berlin, Germany
| | - Bor Li
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Hans Köbler
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Active Materials and Interfaces for Stable Perovskite Solar Cells Kekuléstrasse 5, 12489 Berlin, Germany
| | - Rahim Munir
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany
| | - Gopinath Parmasivam
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany
| | - Jinzhao Li
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany
| | - Igal Levine
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Institute for Silicon Photovoltaics, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Aboma Merdasa
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany
| | - Lukas Kegelmann
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Hampus Näsström
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany
| | - Jose A Marquez
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Thomas Unold
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
| | - Daniel M Többens
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), Department Structure and Dynamics of Energy Materials, Albert-Einstein-Str. 15, 12489 Berlin, Germany
| | - Rutger Schlatmann
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- PVcomB/Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstr. 3, D-12489 Berlin, Germany
| | - Bert Stegemann
- HTW Berlin, University of Applied Sciences, Wilhelminenhofstr. 75a, D-12459 Berlin, Germany
| | - Antonio Abate
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Active Materials and Interfaces for Stable Perovskite Solar Cells Kekuléstrasse 5, 12489 Berlin, Germany
| | - Steve Albrecht
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Perovskite Tandem Solar Cells, Helmholtz-Zentrum Berlin, Kekuléstrasse 5, 12489 Berlin, Germany
- Faculty IV-Electrical Engineering and Computer Science, Technical University Berlin, 10587 Berlin, Germany
| | - Eva Unger
- Helmholtz-Zentrum Berlin, HySPRINT Innovation Lab, Kekuléstrasse 5, 12489 Berlin, Germany
- Young Investigator Group Hybrid Materials Formation and Scaling Kekuléstrasse 5, 12489 Berlin, Germany
- Department of Chemistry & NanoLund, Lund University, Naturvetarvägen 14, 22362 Lund, Sweden
| |
Collapse
|
26
|
Akman E, Shalan AE, Sadegh F, Akin S. Moisture-Resistant FAPbI 3 Perovskite Solar Cell with 22.25 % Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation. CHEMSUSCHEM 2021; 14:1176-1183. [PMID: 33352009 DOI: 10.1002/cssc.202002707] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Indexed: 05/27/2023]
Abstract
Perovskite solar cells (PSCs) have shown great promise for photovoltaic applications, owing to their low-cost assembly, exceptional performance, and low-temperature solution processing. However, the advancement of PSCs towards commercialization requires improvements in efficiency and long-term stability. The surface and grain boundaries of perovskite layer, as well as interfaces, are critical factors in determining the performance of the assembled cells. Defects, which are mainly located at perovskite surfaces, can trigger hysteresis, carrier recombination, and degradation, which diminish the power conversion efficiencies (PCEs) of the resultant cells. This study concerns the stabilization of the α-FAPbI3 perovskite phase without negatively affecting the spectral features by using 2,3,4,5,6-pentafluorobenzyl phosphonic acid (PFBPA) as a passivation agent. Accordingly, high-quality PSCs are attained with an improved PCE of 22.25 % and respectable cell parameters compared to the pristine cells without the passivation layer. The thin PFBPA passivation layer effectively protects the perovskite layer from moisture, resulting in better long-term stability for unsealed PSCs, which maintain >90 % of the original efficiency under different humidity levels (40-75 %) after 600 h. PFBPA passivation is found to have a considerable impact in obtaining high-quality and stable FAPbI3 films to benefit both the efficiency and the stability of PSCs.
Collapse
Affiliation(s)
- Erdi Akman
- Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, 11421, Helwan, Cairo, Egypt
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Faranak Sadegh
- Department of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran
| | - Seckin Akin
- Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
27
|
Yu X, Zhou Q, Xu J, Liang L, Wang X, Wu J, Gao P. The Impact of PbI
2
:KI Alloys on the Performance of Sequentially Deposited Perovskite Solar Cells. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaoyan Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Institution Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
- Laboratory for Advanced Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qin Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Institution Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
- Laboratory for Advanced Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianbin Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Institution Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
- Laboratory for Advanced Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lusheng Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Institution Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
- Laboratory for Advanced Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaobing Wang
- College of Materials Science and Engineering Huaqiao University Xiamen 361021 China
| | - Jihuai Wu
- College of Materials Science and Engineering Huaqiao University Xiamen 361021 China
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Institution Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou, Fujian 350002 China
- Laboratory for Advanced Functional Materials Xiamen Institute of Rare Earth Materials Haixi Institute Chinese Academy of Sciences Xiamen 361021 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
28
|
Guo X, Ngai K, Qin M, Lu X, Xu J, Long M. The compatibility of methylammonium and formamidinium in mixed cation perovskite: the optoelectronic and stability properties. NANOTECHNOLOGY 2021; 32:075406. [PMID: 33108782 DOI: 10.1088/1361-6528/abc50c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The methylammonium (MA) and formamidinium (FA) are the most commonly used organic cations in perovskite solar cells (PSCs), whereas the impact of size and polarity differences between these two on the photovoltaic performances has been rarely revealed. Herein, we systematically investigated the phase distribution, optoelectronic and stability properties of FA-MA mixed perovskites. To identify the phase homogeneity, depth-dependent grazing-incidence wide-angle x-ray scattering measurements were employed, which demonstrates that the mixed cation perovskite possesses a FA-rich phase on the film surface and the bottom is comprised of MA-rich phase. Additionally, upon long-time illumination, a new PL peak is appeared at 778 nm, representing the generation of MA-rich phase induced by ion migration. It is worth noting that the phase splitting and inhomogeneous phase distribution would not bring any obvious detrimental effects to the photovoltaic performances and stability properties. Through judiciously tuning the cation proportion in pure-iodide perovskite, the additive-free PSCs achieve an efficiency as high as 20.7%. Furthermore, the PSCs with a broad range of FA/MA ratios show improved humidity/thermal/light stability despite the phase inhomogeneity. Therefore, the work shows that the MA and FA cations have a high compatibility in perovskite structure and the precise ratio control can further improve the performances.
Collapse
Affiliation(s)
- Xinlu Guo
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, People's Republic of China
| | - Kwanho Ngai
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, People's Republic of China
| | - Minchao Qin
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, People's Republic of China
| | - Xinhu Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, People's Republic of China
| | - Jianbin Xu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, People's Republic of China
| | - Mingzhu Long
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077, Hong Kong, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
29
|
Shalan AE, Akman E, Sadegh F, Akin S. Efficient and Stable Perovskite Solar Cells Enabled by Dicarboxylic Acid-Supported Perovskite Crystallization. J Phys Chem Lett 2021; 12:997-1004. [PMID: 33470117 DOI: 10.1021/acs.jpclett.0c03566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Defect states at surfaces and grain boundaries as well as poor anchoring of perovskite grains hinder the charge transport ability by acting as nonradiative recombination centers, thus resulting in undesirable phenomena such as low efficiency, poor stability, and hysteresis in perovskite solar cells (PSCs). Herein, a linear dicarboxylic acid-based passivation molecule, namely, glutaric acid (GA), is introduced by a facile antisolvent additive engineering (AAE) strategy to concurrently improve the efficiency and long-term stability of the ensuing PSCs. Thanks to the two-sided carboxyl (-COOH) groups, the strong interactions between GA and under-coordinated Pb2+ sites induce the crystal growth, improve the electronic properties, and minimize the charge recombination. Ultimately, champion-stabilized efficiency approaching 22% is achieved with negligible hysteresis for GA-assisted devices. In addition to the enhanced moisture stability of the devices, considerable operational stability is achieved after 2400 h of aging under continuous illumination at maximum power point (MPP) tracking.
Collapse
Affiliation(s)
- Ahmed Esmail Shalan
- Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Erdi Akman
- Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Faranak Sadegh
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Seckin Akin
- Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
30
|
Kausar A, Sattar A, Xu C, Zhang S, Kang Z, Zhang Y. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem Soc Rev 2021; 50:2696-2736. [DOI: 10.1039/d0cs01316a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metal–halide hybrid perovskites have prompted the prosperity of the sustainable energy field and simultaneously demonstrated their great potential in meeting both the growing consumption of energy and the increasing social development requirements.
Collapse
Affiliation(s)
- Ammarah Kausar
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Abdul Sattar
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Chenzhe Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Suicai Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|
31
|
Ye F, Ma J, Chen C, Wang H, Xu Y, Zhang S, Wang T, Tao C, Fang G. Roles of MACl in Sequentially Deposited Bromine-Free Perovskite Absorbers for Efficient Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007126. [PMID: 33296122 DOI: 10.1002/adma.202007126] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 06/12/2023]
Abstract
So far, the combination of methylammonium bromide/methylammonium chloride (MABr/MACl) or methylammonium iodide (MAI)/MACl is the most frequently used additives to stabilize formamidinium lead iodide (FAPbI3 ) fabricated by the sequential deposition method. However, the enlarged bandgap due to the addition of bromide and the ambiguous functions of these additives in lead iodide (PbI2 ) transformation are still worth considering. Herein, the roles of MACl in sequentially deposited Br-free FA-based perovskites are systematically investigated. It is found that MACl can finely regulate the PbI2 /FAI reaction, tune the phase transition at room temperature, and adjust intermediate-related perovskite crystallization and decomposition during thermal annealing. Compared to FAPbI3 , the perovskite with MACl exhibits larger grain, longer carrier lifetime, and reduced trap density. The resultant solar cell therefore achieves a champion power conversion efficiency (PCE) of 23.1% under reverse scan with a stabilized power output of 23.0%. In addition, it shows much improved photostability under 100 mW cm-2 white illumination (xenon lamp) in nitrogen atmosphere without encapsulation.
Collapse
Affiliation(s)
- Feihong Ye
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Junjie Ma
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Cong Chen
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Haibing Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuhao Xu
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shunping Zhang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ti Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Tao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
32
|
Qi W, Zhou X, Li J, Cheng J, Li Y, Ko MJ, Zhao Y, Zhang X. Inorganic material passivation of defects toward efficient perovskite solar cells. Sci Bull (Beijing) 2020; 65:2022-2032. [PMID: 36659061 DOI: 10.1016/j.scib.2020.07.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 01/21/2023]
Abstract
Surface passivation with organic materials is one of the most effective and popular strategies to improve the stability and efficiency of perovskite solar cells (PSCs). However, the secondary bonding formed between organic molecules and perovskite layers is still not strong enough to protect the perovskite absorber from degradation initialized by oxygen and water attacking at defects. Recently, passivation with inorganic materials has gradually been favored by researchers due to the effectiveness of chemical and mechanical passivation. Lead-containing substances, alkali metal halides, transition elements, oxides, hydrophobic substances, etc. have already been applied to the surface and interfacial passivation of PSCs. These inorganic substances mainly manipulate the nucleation and crystallization process of perovskite absorbers by chemically passivating defects along grain boundaries and surface or forming a mechanically protective layer simultaneously to prevent the penetration of moisture and oxygen, thereby improving the stability and efficiency of the PSCs. Herein, we mainly summarize inorganic passivating materials and their individual passivation principles and methods. Finally, this review offers a personal perspective for future research trends in the development of passivation strategies through inorganic materials.
Collapse
Affiliation(s)
- Wenjing Qi
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China
| | - Xin Zhou
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China
| | - Jiale Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China
| | - Jian Cheng
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China.
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Ying Zhao
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China
| | - Xiaodan Zhang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center, Nankai University, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Engineering, Renewable Energy Conversion and Storage Center of Nankai University, Tianjin 300072, China
| |
Collapse
|
33
|
Qiu X, Liu Y, Li W, Hu Y. Traps in metal halide perovskites: characterization and passivation. NANOSCALE 2020; 12:22425-22451. [PMID: 33151219 DOI: 10.1039/d0nr05739h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal halide perovskites (MHPs) have become a research focus in the field of optoelectronics due to their excellent optoelectronic properties and simple and cost-effective thin film manufacturing processes. In particular, the power conversion efficiency (PCE) of solar cells (SCs) and external quantum efficiency (EQE) of light-emitting diodes (LEDs) based on perovskite materials have reached 25.2% and 21.6%, respectively, in a short period, making perovskites especially promising for fabricating next-generation optoelectronic devices. Despite these inspiring results, obtaining high-performance, high-stability MHP-based devices still faces many challenges, among which the defects and the consequent traps in MHPs are key factors. Defect-induced traps can trap charge carriers or even act as non-radiative recombination centers, seriously degrading the device performance, causing hysteresis and deteriorating the stability of MHP-based devices. Thus, understanding the chemical/physical nature of traps and adopting appropriate strategies to passivate traps are important to enhance the device performance and stability. Herein we present a review in which the knowledge and understanding of traps in MHPs are considered and discussed. Moreover, the latest efforts on passivating traps in MHPs for improving device performance are summarized, with the hope of providing guidance to future development of high-performance and high-stability MHP-based devices.
Collapse
Affiliation(s)
- Xincan Qiu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China.
| | | | | | | |
Collapse
|
34
|
Lu H, Liu Y, Ahlawat P, Mishra A, Tress WR, Eickemeyer FT, Yang Y, Fu F, Wang Z, Avalos CE, Carlsen BI, Agarwalla A, Zhang X, Li X, Zhan Y, Zakeeruddin SM, Emsley L, Rothlisberger U, Zheng L, Hagfeldt A, Grätzel M. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 2020; 370:370/6512/eabb8985. [DOI: 10.1126/science.abb8985] [Citation(s) in RCA: 307] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Mixtures of cations or halides with FAPbI3 (where FA is formamidinium) lead to high efficiency in perovskite solar cells (PSCs) but also to blue-shifted absorption and long-term stability issues caused by loss of volatile methylammonium (MA) and phase segregation. We report a deposition method using MA thiocyanate (MASCN) or FASCN vapor treatment to convert yellow δ-FAPbI3 perovskite films to the desired pure α-phase. NMR quantifies MA incorporation into the framework. Molecular dynamics simulations show that SCN– anions promote the formation and stabilization of α-FAPbI3 below the thermodynamic phase-transition temperature. We used these low-defect-density α-FAPbI3 films to make PSCs with >23% power-conversion efficiency and long-term operational and thermal stability, as well as a low (330 millivolts) open-circuit voltage loss and a low (0.75 volt) turn-on voltage of electroluminescence.
Collapse
Affiliation(s)
- Haizhou Lu
- Laboratory of Photomolecular Science, Institute of Chemical Sciences Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Yuhang Liu
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Paramvir Ahlawat
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Aditya Mishra
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Wolfgang R. Tress
- Laboratory of Photomolecular Science, Institute of Chemical Sciences Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Felix T. Eickemeyer
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Fan Fu
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland
| | - Zaiwei Wang
- Laboratory of Photomolecular Science, Institute of Chemical Sciences Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Claudia E. Avalos
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Brian I. Carlsen
- Laboratory of Photomolecular Science, Institute of Chemical Sciences Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anand Agarwalla
- Laboratory of Photomolecular Science, Institute of Chemical Sciences Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xin Zhang
- Centre for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200433, P. R. China
| | - Xiaoguo Li
- Centre for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200433, P. R. China
| | - Yiqiang Zhan
- Centre for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200433, P. R. China
| | - Shaik M. Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Lirong Zheng
- Centre for Micro Nano Systems, School of Information Science and Technology (SIST), Fudan University, Shanghai 200433, P. R. China
| | - Anders Hagfeldt
- Laboratory of Photomolecular Science, Institute of Chemical Sciences Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, EPFL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Chen L, Zheng G, Yao G, Zhang P, Dai S, Jiang Y, Li H, Yu B, Ni H, Wei S. Lead-Free Perovskite Narrow-Bandgap Oxide Semiconductors of Rare-Earth Manganates. ACS OMEGA 2020; 5:8766-8776. [PMID: 32337438 PMCID: PMC7178806 DOI: 10.1021/acsomega.0c00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 05/27/2023]
Abstract
Tremendous success has been achieved in photovoltaic (PV) applications, but PV-generated electricity still cannot compete with traditional power in terms of price. Chemically stable and nontoxic all-oxide solar cells made from earth-abundant resources fulfill the requirements for low-cost manufacturing under ambient conditions and thus are promising as the next-generation approach to solar cells. However, the main obstacles to developing all-oxide solar cells are the spectral absorbers. Besides photovoltaics, novel chemically stable, nontoxic, and earth-abundant narrow-bandgap semiconductors are desired for photochemical applications in photodetectors, photoelectrodes, or photocatalysts. Herein, were report novel lead-free perovskite narrow-bandgap rare-earth semiconductors, YMnO3, HoMnO3, ErMnO3, and YbMnO3, which were identified by screening a family of perovskite rare-earth manganates, RMnO3 (R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Yb). The sharp edge observed in their absorption spectra indicates the existence of band gaps, further confirmed with laser Raman fluorescence spectra. Good periodic on-off photoelectronic response was observed in 8 of the 12 members (i.e., R = La, Pr, Nd, Sm, Gd, Tb, Dy, and Yb). Among them, YbMnO3 is approved as an n-type semiconductor with a direct band gap near 1.35 eV, whose theoretical Shockley-Queisser efficiency is approximately 33.7% for single-p-n-junction solar cells. This work sheds light on exploring stable oxide semiconductors with a narrow band gap for future applications.
Collapse
Affiliation(s)
- Lei Chen
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, China
- Engineering
Research Center of High Performance Copper Alloy Materials and Processing,
Ministry of Education, Hefei University
of Technology, Hefei 230009, China
| | - Guifang Zheng
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Gang Yao
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Pingjuan Zhang
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, China
- College
of Electrical and Electronic Engineering, Anhui Science and Technology University, Bengbu 233030, China
| | - Shangkai Dai
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Yang Jiang
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Heqin Li
- School
of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Binbin Yu
- SUSTech
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Haiyong Ni
- Guangdong
Province Key Laboratory of Rare Earth Development and Application,
Guangdong Research Institute of Rare Metals, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Shizhong Wei
- National
Joint Engineering Research Center for Abrasion Control and Molding
of Metal Materials, Henan University of
Science and Technology, Luoyang 471003, China
| |
Collapse
|
36
|
Cui Y, Chen C, Li C, Chen L, Bista SS, Liu X, Li Y, Awni RA, Song Z, Yan Y. Correlating Hysteresis and Stability with Organic Cation Composition in the Two-Step Solution-Processed Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10588-10596. [PMID: 32045195 DOI: 10.1021/acsami.9b23374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The two-step solution-based process has demonstrated substantial success in fabricating high-efficiency perovskite solar cells in recent years. Despite the high performance, the underlying mechanisms that govern the formation of perovskite films and corresponding device performance are yet to be fully understood. Particularly, organic cation composition used in the two-step solution processing of mixed-cation lead halide perovskite solar cells plays a critical role in the perovskite film formation and the resultant device performance. However, little is understood about the impacts of organic cation composition on the current density-voltage (J-V) hysteretic behavior and stability of perovskite solar cells. To address this need, here, we study the effect of mixed organic cations, that is, the fraction of formamidinium (FA) and methylammonium (MA) contents, used for the two-step solution-processed perovskite thin films on solar cell performance, including efficiency, J-V hysteresis, and stability. In addition to the efficiency variations, we find that perovskite solar cells based on FA-rich and MA-rich stoichiometries show distinct characteristics in J-V hysteresis and stability. The origins of such a discrepancy are attributed to the thermodynamically driven conversion from lead iodide to perovskites, which is determined by the combination of organic cations. The perovskite solar cells based on the mixed cation FA0.6MA0.4PbI3 composition show a champion power conversion efficiency of over 21% and robust stability (retaining more than 90% of initial efficiency) under maximum power-point tracking in dry nitrogen for more than 500 h. Our work provides insights on understanding the formation of perovskite films in the two-step process, which may benefit further investigation on perovskite solar cells.
Collapse
Affiliation(s)
- Yunkang Cui
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
- Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
| | - Cong Chen
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Chongwen Li
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Lei Chen
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Sandip Singh Bista
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Xiangyang Liu
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - You Li
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Rasha A Awni
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Zhaoning Song
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Yanfa Yan
- Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
37
|
Zhu W, Chai W, Chen D, Xi H, Chen D, Chang J, Zhang J, Zhang C, Hao Y. Recycling of FTO/TiO 2 Substrates: Route toward Simultaneously High-Performance and Cost-Efficient Carbon-Based, All-Inorganic CsPbIBr 2 Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4549-4557. [PMID: 31913017 DOI: 10.1021/acsami.9b21331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon-based, all-inorganic perovskite solar cells (PSCs) have drawn enormous attention recently on account of their ungraded stability and reduced costs. However, their power conversion efficiencies (PCEs) still lag behind the ones with conventional architecture. Moreover, the high cost of FTO substrates and energy-consuming sintering process of TiO2 electron-transporting layers should be further addressed. Herein, it is demonstrated that the FTO/TiO2 substrates could be separated simply from degraded CsPbIBr2 PSCs for fabricating the new ones again, which thus reduces the production costs of resulting PSCs and makes them renewable and sustainable. Meanwhile, the characterization results reveal that there are some residual CsPbIBr2-derived species on recycled FTO/TiO2 substrates, which enable the upper CsPbIBr2 films with suppressed halide phase separation and reduced defects, the diminished work function of TiO2 layers from 4.13 to 3.89 eV, along with decreased conduction band minimum (CBM) difference of CsPbIBr2/TiO2 interface from 0.51 to 0.36 eV. Consequently, the average PCE of CsPbIBr2 PSCs is improved by 20%, from 6.51 ± 0.62% to 8.14 ± 0.63%, wherein the champion one yields the exceptional value of 9.12%. These findings provide an avenue for simultaneous performance enhancement and cost-saving of carbon-based, all-inorganic PSCs to promote their commercialization.
Collapse
Affiliation(s)
- Weidong Zhu
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
| | - Wenming Chai
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
| | - Dandan Chen
- College of Science , Xi'an Shiyou University , Xi'an 710065 , Shaanxi , China
| | - He Xi
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
- State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China
| | - Dazheng Chen
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
| | - Jingjing Chang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
| | - Jincheng Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
| | - Chunfu Zhang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology & Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics , Xidian University , Xi'an 710071 , China
| |
Collapse
|
38
|
Chen B, Rudd PN, Yang S, Yuan Y, Huang J. Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev 2019; 48:3842-3867. [DOI: 10.1039/c8cs00853a] [Citation(s) in RCA: 834] [Impact Index Per Article: 166.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perovskite solar cells to date are made of polycrystalline films which contain a high density of defects. Imperfection passivation to reduce non-radiative recombination and suppress ion migration could improve device efficiency and device stability.
Collapse
Affiliation(s)
- Bo Chen
- Department of Applied Physical Sciences
- The University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Peter N. Rudd
- Department of Applied Physical Sciences
- The University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Shuang Yang
- Department of Applied Physical Sciences
- The University of North Carolina at Chapel Hill
- Chapel Hill
- USA
- Department of Mechanical and Materials Engineering
| | - Yongbo Yuan
- School of Physics & Electronics
- Hunan Key Laboratory of Super Microstructure & Ultrafast Process
- Central South University
- Changsha
- China
| | - Jinsong Huang
- Department of Applied Physical Sciences
- The University of North Carolina at Chapel Hill
- Chapel Hill
- USA
- Department of Mechanical and Materials Engineering
| |
Collapse
|