1
|
Zhang X, Zhang X, Chen S, Liu Y, Cao C, Cheng G, Wang S. Glutathione-depleting polyprodrug nanoparticle for enhanced photodynamic therapy and cascaded locoregional chemotherapy. J Colloid Interface Sci 2024; 670:279-287. [PMID: 38763024 DOI: 10.1016/j.jcis.2024.05.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Nanomedicines that combine reactive oxygen species (ROS)-responsive polyprodrug and photodynamic therapy have shown great potential for improving treatment efficacy. However, the consumption of ROS by overexpressed glutathione in tumor cells is a major obstacle for achieving effective ROS amplification and prodrug activation. Herein, we report a polyprodrug-based nanoparticle that can realize ROS amplification and cascaded drug release. The nanoparticle can respond to the high level of hydrogen peroxide in tumor microenvironment, achieving self-destruction and release of quinone methide. The quinone methide depletes intracellular glutathione and thus decreases the antioxidant capacity of cancer cells. Under laser irradiation, a large amount of ROS will be generated to induce cell damage and prodrug activation. Therefore, the glutathione-depleting polyprodrug nanoparticles can efficiently inhibit tumor growth by enhanced photodynamic therapy and cascaded locoregional chemotherapy.
Collapse
Affiliation(s)
- Xinlu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xu Zhang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Shutong Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yongxin Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Chen Cao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Guohui Cheng
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Sheng Wang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
3
|
Zhou Y, Li Q, Wu Y, Zhang W, Ding L, Ji C, Li P, Chen T, Feng L, Tang BZ, Huang X. Synergistic Brilliance: Engineered Bacteria and Nanomedicine Unite in Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313953. [PMID: 38400833 DOI: 10.1002/adma.202313953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Engineered bacteria are widely used in cancer treatment because live facultative/obligate anaerobes can selectively proliferate at tumor sites and reach hypoxic regions, thereby causing nutritional competition, enhancing immune responses, and producing anticancer microbial agents in situ to suppress tumor growth. Despite the unique advantages of bacteria-based cancer biotherapy, the insufficient treatment efficiency limits its application in the complete ablation of malignant tumors. The combination of nanomedicine and engineered bacteria has attracted increasing attention owing to their striking synergistic effects in cancer treatment. Engineered bacteria that function as natural vehicles can effectively deliver nanomedicines to tumor sites. Moreover, bacteria provide an opportunity to enhance nanomedicines by modulating the TME and producing substrates to support nanomedicine-mediated anticancer reactions. Nanomedicine exhibits excellent optical, magnetic, acoustic, and catalytic properties, and plays an important role in promoting bacteria-mediated biotherapies. The synergistic anticancer effects of engineered bacteria and nanomedicines in cancer therapy are comprehensively summarized in this review. Attention is paid not only to the fabrication of nanobiohybrid composites, but also to the interpromotion mechanism between engineered bacteria and nanomedicine in cancer therapy. Additionally, recent advances in engineered bacteria-synergized multimodal cancer therapies are highlighted.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Qianying Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Yuhao Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Wan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Lu Ding
- Department of Cardiology, Jiangxi Hypertension Research Institute, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P. R. China
| | - Chenlin Ji
- School of Engineering, Westlake University, Hangzhou, 310030, P. R. China
| | - Ping Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330036, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| |
Collapse
|
4
|
Wu G, Liu F, Li N, Fu Q, Wang C, Yang S, Xiao H, Tang L, Wang F, Zhou W, Wang W, Kang Q, Li Z, Lin N, Wu Y, Chen G, Tan X, Yang Q. Trisulfide Bond-Mediated Molecular Phototheranostic Platform for "Activatable" NIR-II Imaging-Guided Enhanced Gas/Chemo-Hypothermal Photothermal Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304104. [PMID: 37983599 PMCID: PMC10754146 DOI: 10.1002/advs.202304104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/27/2023] [Indexed: 11/22/2023]
Abstract
Tumor microenvironment (TME)-triggered phototheranostic platform offers a feasible strategy to improve cancer diagnosis accuracy and minimize treatment side effects. Developing a stable and biocompatible molecular phototheranostic platform for TME-activated second near-infrared (NIR-II) fluorescence imaging-guided multimodal cascade therapy is a promising strategy for creating desirable anticancer agents. Herein, a new NIR-II fluorescence imaging-guided activatable molecular phototheranostic platform (IR-FEP-RGD-S-S-S-Fc) is presented for actively targeted tumor imaging and hydrogen sulfide (H2 S) gas-enhanced chemodynamic-hypothermal photothermal combined therapy (CDT/HPTT). It is revealed for the first time that the coupling distance between IR-FE and ferrocene is proportional to the photoinduced electron transfer (PET), and the aqueous environment is favorable for PET generation. The part of Cyclic-RGDfK (cRGDfk) peptides can target the tumor and benefit the endocytosis of nanoparticles. The high-concentration glutathione (GSH) in the TME will separate the fluorescence molecule and ferrocene by the GSH-sensitive trisulfide bond, realizing light-up NIR-II fluorescence imaging and a cascade of trimodal synergistic CDT/HPTT/gas therapy (GT). In addition, the accumulation of hydroxyl radicals (•OH) and down-regulation of glutathione peroxidase 4 (GPX4) can produce excessive harmful lipid hydroperoxides, ultimately leading to ferroptosis.
Collapse
Affiliation(s)
- Gui‐long Wu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Fen Liu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Na Li
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Qian Fu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Cheng‐kun Wang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Sha Yang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Hao Xiao
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Li Tang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of EducationCollege of Chemistry and Chemical EngineeringHainan Normal UniversityHaikouHainan571158China
| | - Feirong Wang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wei Zhou
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Wenjie Wang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Qiang Kang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Zelong Li
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Nanyun Lin
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Yinyin Wu
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Guodong Chen
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Xiaofeng Tan
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- National Health Commission Key Laboratory of Birth Defect Research and PreventionHunan Provincial Maternal and Child Health Care HospitalChangshaHunan410008China
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Qinglai Yang
- Center for Molecular Imaging ProbeHunan Province Key Laboratory of Tumor Cellular and Molecular PathologyCancer Research InstituteHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- Department of Hepatopancreatobiliary SurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
- National Health Commission Key Laboratory of Birth Defect Research and PreventionHunan Provincial Maternal and Child Health Care HospitalChangshaHunan410008China
- MOE Key Lab of Rare Pediatric DiseasesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| |
Collapse
|
5
|
Bhattacharya T, Preetam S, Ghosh B, Chakrabarti T, Chakrabarti P, Samal SK, Thorat N. Advancement in Biopolymer Assisted Cancer Theranostics. ACS APPLIED BIO MATERIALS 2023; 6:3959-3983. [PMID: 37699558 PMCID: PMC10583232 DOI: 10.1021/acsabm.3c00458] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
Applications of nanotechnology have increased the importance of research and nanocarriers, which have revolutionized the method of drug delivery to treat several diseases, including cancer, in the past few years. Cancer, one of the world's fatal diseases, has drawn scientists' attention for its multidrug resistance to various chemotherapeutic drugs. To minimize the side effects of chemotherapeutic agents on healthy cells and to develop technological advancement in drug delivery systems, scientists have developed an alternative approach to delivering chemotherapeutic drugs at the targeted site by integrating it inside the nanocarriers like synthetic polymers, nanotubes, micelles, dendrimers, magnetic nanoparticles, quantum dots (QDs), lipid nanoparticles, nano-biopolymeric substances, etc., which has shown promising results in both preclinical and clinical trials of cancer management. Besides that, nanocarriers, especially biopolymeric nanoparticles, have received much attention from researchers due to their cost-effectiveness, biodegradability, treatment efficacy, and ability to target drug delivery by crossing the blood-brain barrier. This review emphasizes the fabrication processes, the therapeutic and theragnostic applications, and the importance of different biopolymeric nanocarriers in targeting cancer both in vitro and in vivo, which conclude with the challenges and opportunities of future exploration using biopolymeric nanocarriers in onco-therapy with improved availability and reduced toxicity.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Food and Nutrition, College of Human Ecology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic
of Korea
- Nondestructive
Bio-Sensing Laboratory, Dept. of Biosystems Machinery Engineering,
College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subham Preetam
- Centre
for Biotechnology, Siksha O Anusandhan (Deemed
to be University), Bhubaneswar 751024, Odisha, India
- Daegu
Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Basab Ghosh
- KIIT
School of Biotechnology, Kalinga Institute
of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tulika Chakrabarti
- Department
of Chemistry, Sir Padampat Singhania University, Bhatewar, Udaipur 313601, Rajasthan, India
| | | | - Shailesh Kumar Samal
- Section of
Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nanasaheb Thorat
- Nuffield
Department of Women’s & Reproductive Health, Medical Science
Division, John Radcliffe Hospital University
of Oxford, Oxford OX3 9DU, United Kingdom
- Department
of Physics, Bernal Institute and Limerick Digital Cancer Research
Centre (LDCRC), University of Limerick, Castletroy, Limerick V94T9PX, Ireland
| |
Collapse
|
6
|
Huang J, Yao Z, Li B, Ping Y. Targeted delivery of PROTAC-based prodrug activated by bond-cleavage bioorthogonal chemistry for microneedle-assisted cancer therapy. J Control Release 2023; 361:270-279. [PMID: 37541594 DOI: 10.1016/j.jconrel.2023.07.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Proteolysis-targeting chimera (PROTAC) is emerging as a new strategy to degrade target proteins in a precise way by taking advantage of the cellular ubiquitin-proteasome system. However, the potential cytotoxicity of PROTAC should be avoided to mitigate the off-target degradation of proteins in healthy tissues or cells. To address this issue, we herein present a strategy to cage a PROTAC with 4-(vinyloxy) benzyl carbonate (MZ1-O), which can be eliminated through a 3,6-dimethyl-1,2,4,5-tetrazine (Tz)-mediated inverse electron-demand Diels-Alder (iEDDA) reaction to generate a BRD4 (bromodomain-containing protein 4) degrader, MZ1. We further propose a dissolvable microneedle-assisted strategy for site-specific activation of MZ1-O that is delivered by a targeted delivery vector through systemic route in vivo, and demonstrate such a bioorthogonal strategy is efficient and precise for tumor treatment. Our study suggests that the bioorthogonal activation of PROTAC-based prodrug offers a highly specific and precise approach for cancer therapy.
Collapse
Affiliation(s)
- Jing Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Zhuo Yao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
7
|
Zhang C, Wang M, Zhang J, Zou B, Wang Y. Self-template synthesis of mesoporous and biodegradable Fe 3O 4 nanospheres as multifunctional nanoplatform for cancer therapy. Colloids Surf B Biointerfaces 2023; 229:113467. [PMID: 37515962 DOI: 10.1016/j.colsurfb.2023.113467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
Superparamagnetic Fe3O4 nanospheres have demonstrated great potential as important components in nanomedicine for cancer imaging and therapy. One of the major obstacles that impedes their application is the slow degradation of ingested Fe3O4 nanospheres, which potentially causes long-term health risks. To tackle this issue, we proposed to fabricate Fe3O4 nanospheres with mesoporous structure via a simple self-template etching method. The mesoporous Fe3O4 nanospheres not only offered large specific surface area and weak-acidic responsive degradability, but also exhibited T2-weighted magnetic resonance contrast enhancement and magnetic targeting, which made them possible to serve as excellent cancer therapeutic nanoplatform. Both inorganic photothermal therapeutic Au nanoparticles and organic chemotherapeutic doxorubicin hydrochloride were demonstrated to be successfully loaded onto such kind of nanoplatform, and the hybrid nanomedicine demonstrated synergistic photothermal and chemotherapeutic activity for tumor elimination under near infrared irradiation and improved biodegradability in weak acidic tumor microenvironment. We believe that this study paved a simple way for designing multifunctional Fe3O4-based biodegradable nanomedicine.
Collapse
Affiliation(s)
- Chuanbin Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Meijian Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Jianan Zhang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China
| | - Bingfang Zou
- School of Physics and Electronics, Henan University, Kaifeng 475004, PR China.
| | - Yongqiang Wang
- Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng 475004, PR China.
| |
Collapse
|
8
|
Du C, Wang C, Jiang SH, Zheng X, Li Z, Yao Y, Ding Y, Chen T, Yi H. pH/GSH dual-responsive supramolecular nanomedicine for hypoxia-activated combination therapy. Biomater Sci 2023; 11:5674-5679. [PMID: 37439102 DOI: 10.1039/d3bm00519d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Moderate oxygen (O2) supply and uneven distribution of oxygen at the tumor site usually hinder the therapeutic efficacy of hypoxia-activated prodrugs. In this report, we designed a ferrocene-containing supramolecular nanomedicine (PFC/GOD-TPZ) with the PEG corona and disulfide-bond cross-linked core to co-encapsulate 4-di-N-oxide tirapazamine (TPZ) and glucose oxidase (GOD). The PEG corona of PFC/GOD-TPZ could be weakly acidic tumor pH-responsively detached for an enhanced cellular internalization, while the disulfide-bond cross-linked core could be cleavaged by intracellular glutathione (GSH) to present a GSH-triggered drug-release behavior. Subsequently, the cascade reactions, including catalytic reactions among the released GOD, glucose, and O2 to generate H2O2 and the subsequent Fenton reaction between ferrocene and H2O2, occurred. With the depletion of O2, the non-toxic TPZ was activated and converted into the cytotoxic therapeutic agent benzotriazinyl (BTZ) radical under the exacerbated hypoxic microenvironment. Collectively, the PFC/GOD-TPZ provides a promising strategy for effective combination therapy of GOD-mediated starvation therapy, chemodynamic therapy (CDT), and hypoxia-activated chemotherapy (CT).
Collapse
Affiliation(s)
- Chang Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chenwei Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiangqin Zheng
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| | - Zelong Li
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China.
| | - Huan Yi
- Department of Gynecology Oncology, Fujian Provincial Maternity and Children's Hospital, Fujian Provincial Key Gynecology Clinical Specialty, The Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
9
|
Chen Q, Wu M, Yao J, Shao Z, Chen X. Enzyme/inorganic nanoparticle dual-loaded animal protein/plant protein composite nanospheres and their synergistic effect in cancer therapy. J Mater Chem B 2023; 11:4529-4538. [PMID: 37161762 DOI: 10.1039/d3tb00402c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
It is a viable strategy to develop a safer and tumor-specific method by considering the tumor microenvironment to optimize the curative effect and reduce the side effects in cancer treatment. In this study, glucose oxidase (GOx) and Fe3O4 nanoparticles were successfully loaded inside regenerated silk fibroin/zein (RSF/zein) nanospheres to obtain dual-loaded Fe3O4/GOx@RSF/zein nanospheres. The unique structure of the RSF/zein nanospheres reported in our previous work was favorable to loading sufficient amounts of GOx and Fe3O4 nanoparticles in the nanospheres. For Fe3O4/GOx@RSF/zein nanospheres, GOx depletes endogenous glucose via an enzyme-catalyzed bioreaction, simultaneously generating plenty of H2O2in situ. It was further catalyzed through a Fe3O4-mediated Fenton reaction to form highly toxic hydroxyl free radicals (˙OH) in the acidic tumor microenvironment. These two successive reactions made up the combination of starvation therapy and chemodynamic therapy during cancer treatment. The catalytic activity of GOx loaded in the RSF/zein nanospheres is similar to that of the pristine enzyme. It was maintained for more than one month due to the protection of the RSF/zein nanospheres. The methylene blue degradation results confirmed the sequential reaction by GOx and Fe3O4 from Fe3O4/GOx@RSF/zein nanospheres. The in vitro experiments demonstrated that the Fe3O4/GOx@RSF/zein nanospheres entered MCF-7 cells and generated ˙OH free radicals. Therefore, these Fe3O4/GOx@RSF/zein nanospheres exhibited a considerable synergistic therapeutic effect. They showed more efficient suppression in cancer cell growth than either single-loaded GOx@RSF/zein or Fe3O4@RSF/zein nanospheres, achieving the design goal for the nanospheres. Therefore, the Fe3O4/GOx@RSF/zein nanospheres cut off the nutrient supply due to the strong glucose dependence of tumor cells and generated highly toxic ˙OH free radicals in tumor cells, effectively enhancing the anticancer effect and minimizing side effects. Therefore, in future clinical applications, the Fe3O4/GOx@RSF/zein nanospheres developed in this study have significant potential for combining starvation and chemodynamic therapy.
Collapse
Affiliation(s)
- Qiaolin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
10
|
Wei Y, Qin G, Wang Z, Zhao C, Ren J, Qu X. Bioorthogonal Activation of TLR7 Agonists Provokes Innate Immunity to Reinforce Aptamer-Based Checkpoint Blockade. ACS NANO 2023; 17:5808-5820. [PMID: 36916491 DOI: 10.1021/acsnano.2c12313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although cancer immunotherapy based on immune checkpoint blockade has shown promising clinical responses, the limited host response rate and systemic side effects still restrict immunotherapy efficacy. To address these challenges, here, we construct an aptamer-functionalized metal-organic framework (MOF) catalyst for bioorthogonal activation of Toll-like receptors (TLR) 7 agonists and programmed death-ligand 1 (PDL1) blockade for enhanced antitumor immunotherapy. The catalyst contains ultrasmall Pd nanoparticles enabling the local activation of TLR7 agonists in native form, which results in the remodeling of the tumor microenvironment (TME). Meanwhile, the loaded PDL1 aptamers release in response to phosphate and block the PD1/PDL1 signaling pathway between T cells and cancer cells. Thus, synergy between TLR7 agonists and PDL1 blockade induces the infiltration and activation of immune cells to initiate a robust immune response, thereby simultaneously inhibiting primary and distant metastatic tumors. The immunotherapeutic effect of our design has been demonstrated in both single and bilateral subcutaneous colorectal cancer (CT26) models. In situ bioorthogonal activation of agonists may offer an alternative approach to improve the therapeutic efficacy of immunotherapy with minimized systemic toxicity. Our work will provide good inspiration for current checkpoint blockade-based immunotherapy.
Collapse
Affiliation(s)
- Yue Wei
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Zhao Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| |
Collapse
|
11
|
Lin G, Zhou J, Cheng H, Liu G. Smart Nanosystems for Overcoming Multiple Biological Barriers in Cancer Nanomedicines Transport: Design Principles, Progress, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207973. [PMID: 36971279 DOI: 10.1002/smll.202207973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The development of smart nanosystems, which could overcome diverse biological barriers of nanomedicine transport, has received intense scientific interest in improving the therapeutic efficacies of traditional nanomedicines. However, the reported nanosystems generally hold disparate structures and functions, and the knowledge of involved biological barriers is usually scattered. There is an imperative need for a summary of biological barriers and how these smart nanosystems conquer biological barriers, to guide the rational design of the new-generation nanomedicines. This review starts from the discussion of major biological barriers existing in nanomedicine transport, including blood circulation, tumoral accumulation and penetration, cellular uptake, drug release, and response. Design principles and recent progress of smart nanosystems in overcoming the biological barriers are overviewed. The designated physicochemical properties of nanosystems can dictate their functions in biological environments, such as protein absorption inhibition, tumor accumulation, penetration, cellular internalization, endosomal escape, and controlled release, as well as modulation of tumor cells and their resident tumor microenvironment. The challenges facing smart nanosystems on the road heading to clinical approval are discussed, followed by the proposals that could further advance the nanomedicine field. It is expected that this review will provide guidelines for the rational design of the new-generation nanomedicines for clinical use.
Collapse
Affiliation(s)
- Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Chemistry, the University of Chicago, Chicago, IL, 60637, USA
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, China
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
12
|
Wang Y, Xia H, Chen B, Wang Y. Rethinking nanoparticulate polymer-drug conjugates for cancer theranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1828. [PMID: 35734967 DOI: 10.1002/wnan.1828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 01/31/2023]
Abstract
Polymer-drug conjugates (PDCs) fabricated as nanoparticles have hogged the limelight in cancer theranostics in the past decade. Many researchers have devoted to developing novel and efficient polymeric drug delivery system since the first generation of poly(N-[2-hydroxypropyl]methacrylamide) copolymer-drug conjugates. However, none of them has been approved for chemotherapy in clinic. An ideal PDC nanoparticle for cancer theranostics should possess several properties, including prolonged circulation in blood, sufficient accumulation and internalization in tumors, and efficient drug release in target sites. To achieve these goals, it is important to rationally design the nanoparticulate PDCs based on circulation, accumulation, penetration, internalization, and drug release (CAPIR) cascade. Specifically, CAPIR cascades are divided into five steps: (1) circulation in the vascular compartment without burst release, (2) accumulation in tumors via enhanced permeability and retention effect, (3) subsequent penetration into the deep regions of tumors, (4) internalization into tumor cells, and (5) release of drugs as free molecules to exert their pharmacological effects. In this review, we focus on the development and novel approaches of nanoparticulate PDCs based on CAPIR cascade, and provide an outlook on future clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Yaoqi Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing, China
| | - Heming Xia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Sun T, Li C, Li X, Song H, Su B, You H, Zhang T, Jiang C. Pharmaceutical Nanotechnology. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Deng J, Liu S, Li G, Zheng Y, Zhang W, Lin J, Yu F, Weng J, Liu P, Zeng H. pH-sensitive charge-conversion cinnamaldehyde polymeric prodrug micelles for effective targeted chemotherapy of osteosarcoma in vitro. Front Chem 2023; 11:1190596. [PMID: 37206197 PMCID: PMC10188981 DOI: 10.3389/fchem.2023.1190596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction: Chemotherapy is a common strategy for the treatment of osteosarcoma. However, its therapeutic efficacy is not ideal due to the low targeting, lowbioavailability, and high toxicity of chemotherapy drugs. Nanoparticles can improve the residence time of drugs at tumor sites through targeted delivery. This new technology can reduce the risk to patients and improve survival rates. To achieve this goal, we developed a pHsensitive charge-conversion polymeric micelle [mPEG-b-P(C7-co-CA) micelles] for osteosarcoma-targeted delivery of cinnamaldehyde (CA). Methods: First, an amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was synthesized through Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization and post-modification, and self-assembled into mPEG-b-P(C7-co-CA) micelles in an aqueous solution. The physical properties of mPEG-b-P(C7-co-CA) micelles, such as critical micelle concentration (CMC), size, appearance, and Zeta potential were characterized. The CA release curve of mPEG-b-P(C7-co-CA) micelles at pH 7.4, 6.5 and 4.0 was studied by dialysis method, then the targeting ability of mPEG-b-P(C7-co-CA) micelles to osteosarcoma 143B cells in acidic environment (pH 6.5) was explored by cellular uptakeassay. The antitumor effect of mPEG-b-P(C7-co-CA) micelles on 143B cells in vitro was studied by MTT method, and the level of reactive oxygen species (ROS) in 143B cells after mPEG-b-P(C7-co-CA) micelles treatment was detected. Finally, the effects of mPEG-b-P(C7-co-CA) micelles on the apoptosis of 143B cells were detected by flow cytometry and TUNEL assay. Results: An amphiphilic cinnamaldehyde polymeric prodrug [mPEG-b-P(C7-co-CA)] was successfully synthesized and self-assembled into spheric micelles with a diameter of 227 nm. The CMC value of mPEG-b-P(C7-co-CA) micelles was 25.2 mg/L, and it showed a pH dependent release behavior of CA. mPEG-b-P(C7-co-CA) micelles can achieve chargeconversion from a neutral to a positive charge with decreasing pHs. This charge-conversion property allows mPEG-b-P(C7-co-CA) micelles to achieve 143B cell targeting at pH 6.5. In addition, mPEG-b-P(C7-co-CA) micelles present high antitumor efficacy and intracellular ROS generation at pH 6.5 which can induce 143B cell apoptosis. Discussion: mPEG-b-P(C7-co-CA) micelles can achieve osteosarcoma targeting effectively and enhance the anti-osteosarcoma effect of cinnamaldehyde in vitro. This research provides a promising drug delivery system for clinical application and tumor treatment.
Collapse
Affiliation(s)
- Jiapeng Deng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Su Liu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Li
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yien Zheng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weifei Zhang
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Fei Yu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Weng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Jian Weng, ; Peng Liu, ; Hui Zeng,
| | - Peng Liu
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Jian Weng, ; Peng Liu, ; Hui Zeng,
| | - Hui Zeng
- National and Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Jian Weng, ; Peng Liu, ; Hui Zeng,
| |
Collapse
|
15
|
Wang Z, Guo X, Hao L, Zhang X, Lin Q, Sheng R. Charge-Convertible and Reduction-Sensitive Cholesterol-Containing Amphiphilic Copolymers for Improved Doxorubicin Delivery. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6476. [PMID: 36143789 PMCID: PMC9504105 DOI: 10.3390/ma15186476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
For achieving successful chemotherapy against cancer, designing biocompatible drug delivery systems (DDSs) with long circulation times, high cellular endocytosis efficiency, and targeted drug release is of upmost importance. Herein, a well-defined PEG-b-P(MASSChol-co-MANBoc) block copolymer bearing redox-sensitive cholesteryl-side group was prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization (with non-redox PEG-b-P(MACCChol-co-MAN-DCA) as the reference), and 1,2-dicarboxylic-cyclohexene acid (DCA) was then grafted onto the hydrophobic block to endow it with charge-convertible characteristics under a tumor microenvironment. The amphiphilic copolymer could be assembled into polymeric spherical micelles (SSMCs) with polyethylene glycol (PEG) as the corona/shell, and anti-cancer drug doxorubicin (DOX) was successfully encapsulated into the micellar core via strong hydrophobic and electrostatic interactions. This nanocarrier showed high stability in the physiological environment and demonstrated "smart" surface charge conversion from negative to positive in the slightly acidic environment of tumor tissues (pH 6.5~6.8), as determined by dynamic light scattering (DLS). Moreover, the cleavage of a disulfide bond linking the cholesterol grafts under an intracellular redox environment (10 mM GSH) resulted in micellar dissociation and accelerated drug release, with the non-redox-responsive micelles (CCMCs) as the control. Additionally, a cellular endocytosis and tumor proliferation inhibition study against MCF-7 tumor cells demonstrated the enhanced endocytosis and tumor cell inhibitory efficiency of dual-responsive SSMCs/DOX nanomedicines, revealing potentials as multifunctional nanoplatforms for effective oncology treatment.
Collapse
Affiliation(s)
- Zhao Wang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xinyu Guo
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Lingyun Hao
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Xiaojuan Zhang
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Qing Lin
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China
- Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing 211169, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Campus da Penteada, Universidade da Madeira, 9000390 Funchal, Madeira, Portugal
| |
Collapse
|
16
|
Tian H, Zhang T, Qin S, Huang Z, Zhou L, Shi J, Nice EC, Xie N, Huang C, Shen Z. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies. J Hematol Oncol 2022; 15:132. [PMID: 36096856 PMCID: PMC9469622 DOI: 10.1186/s13045-022-01320-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Poor targeting of therapeutics leading to severe adverse effects on normal tissues is considered one of the obstacles in cancer therapy. To help overcome this, nanoscale drug delivery systems have provided an alternative avenue for improving the therapeutic potential of various agents and bioactive molecules through the enhanced permeability and retention (EPR) effect. Nanosystems with cancer-targeted ligands can achieve effective delivery to the tumor cells utilizing cell surface-specific receptors, the tumor vasculature and antigens with high accuracy and affinity. Additionally, stimuli-responsive nanoplatforms have also been considered as a promising and effective targeting strategy against tumors, as these nanoplatforms maintain their stealth feature under normal conditions, but upon homing in on cancerous lesions or their microenvironment, are responsive and release their cargoes. In this review, we comprehensively summarize the field of active targeting drug delivery systems and a number of stimuli-responsive release studies in the context of emerging nanoplatform development, and also discuss how this knowledge can contribute to further improvements in clinical practice.
Collapse
Affiliation(s)
- Hailong Tian
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tingting Zhang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jiayan Shi
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, VIC, Australia
| | - Edouard C Nice
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China
| | - Na Xie
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. .,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan university, Chengdu, 610041, China.
| | - Canhua Huang
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
17
|
Ge X, Hao Y, Li H, Zhao H, Liu Y, Liu Y, Li X, Chen H, Zou J, Zhang S, Huang L, Shan G, Zhang Z. Sequential acid/reduction response of triblock copolymeric nanomicelles to release camptothecin and toll-like receptor 7/8 agonist for orchestrated chemoimmunotherapy. J Nanobiotechnology 2022; 20:369. [PMID: 35953798 PMCID: PMC9367092 DOI: 10.1186/s12951-022-01577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Background Immunosuppressive tumor immune microenvironment (TIME) lowers immunotherapy effectiveness. Additionally, low penetration efficiency and unpredictable drug release in tumor areas restrict tumor therapy. Methods A triblock copolymeric micelle (NanoPCPT+PIMDQ) was developed to carry the chemotherapeutic drug camptothecin (CPT) and the TLR7/8 agonist 1-(4-(aminomethyl)benzyl)-2-butyl-1H-imidazo[4,5-c] quinoline-4-amine (IMDQ) to achieve deep tumor penetration and on-demand drug release by responding to acid and reduction stimuli sequentially. The synergistic antitumour efficacy of NanoPCPT+PIMDQ was assessed both in vitro and in vivo. Results NanoPCPT+PIMDQ is composed of a hydrophilic PEG(polyethylene glycol) outer layer, an acid-sensitive EPEMA middle layer, and a drug inner core. Upon intratumoral injection, (i) NanoPCPT+PIMDQ first responds to the acidic tumor microenvironment and disintegrates to PIMDQ and PCPT, penetrating deep regions of the tumor; (ii) tumor cells are killed by the released CPT; (iii) DCs are activated by PIMDQ to increase the infiltration of cytotoxic T lymphocyte (CTL); and (iv) both downregulated Foxp3+ Tregs by CPT and repolarized M2 macrophages by PIMDQ can relieve the TIME. Conclusion This pH/GSH-responsive triblock polymer-drug conjugate reduces immunosuppression and enhances the infiltration of CTLs by codelivering CPT and IMDQ in a controllable manner, providing a promising platform for synergistic tumor chemoimmunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01577-5.
Collapse
Affiliation(s)
- Xiaoyan Ge
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yanyun Hao
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yang Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yutong Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xia Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Hongfei Chen
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jing Zou
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Shiying Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Lingling Huang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Gang Shan
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
18
|
Xu Y, Zhang Z, Zhang Y, Yang D, Liang Y, Xu Y. Lipid Membrane-Wrapped Zeolitic Imidazolate Framework-8 for Synergistic Chemotherapy and Photothermal Therapy to Target Prostate Cancer. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endocrine therapy is often used for advanced prostate cancer. However, with cancer progress, prostate cancer gradually resistant to hormone which lead to serious threatens to life of patients. Herein, a multifunctional synergistic core–shell nanoplatform is reported for improving
the therapeutic effect of chemotherapy for advanced or metastatic prostate cancer, and reducing the risk of leakage of chemotherapy drugs. Particularly, Zeolitic imidazolate framework-8 (ZIF-8) is chosen as inner core to load doxorubicin, and the of liposomes which are embedded with IR780
iodide are used as outer shell, and further modified with target ligand that binds to luteinizing hormone releasing hormone receptor. The prepared nanocarrier exhibit satisfactory photothermal effect under near infrared laser irradiation, and the temperature increases to 60.8 °C within
6 min. Meanwhile, the elevated temperature accelerates the degradation of lipid shell, releasing ZIF-8 core to acidic microenvironment of tumor, and resulting in the release of doxorubicin. Moreover, in vivo and in vitro studies have shown the ZIF-D@ALIP core–shell nanoparticles
can achieve targeted drug delivery, pH and NIR dual stimuli-responsive drug release, as well as chemotherapy and photothermal therapy synergistically on the tumor site. In addition, the problem of premature leakage and changes in the physicochemical properties of anticancer drugs are avoided
under the protection of the outer shell structure. Therefore, the core–shell nanostructure proposes a new lipid membrane coating strategy to promote the effective targeting of prostate cancer cells or tissues and provides some insights in clinical treatment for advanced prostate cancer.
Collapse
Affiliation(s)
- Yingtian Xu
- School of Material Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
| | - Zhaokun Zhang
- National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai, 200241, P. R. China
| | - Ying Zhang
- National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai, 200241, P. R. China
| | - Dicheng Yang
- National Engineering Research Center for Nanotechnology, 28 East Jiangchuan Road, Shanghai, 200241, P. R. China
| | - Yuan Liang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou, 225001, P. R. China
| | - Yan Xu
- School of Material Sciences and Engineering, Shanghai Jiao Tong University, Shanghai, 200241, P. R. China
| |
Collapse
|
19
|
Li S, Xing R, van Hest JCM, Yan X. Peptide-based supramolecular assembly drugs toward cancer theranostics. Expert Opin Drug Deliv 2022; 19:847-860. [PMID: 35748126 DOI: 10.1080/17425247.2022.2093855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Peptide-based supramolecular self-assembly has been demonstrated to be a flexible approach for the fabrication of programmable de novo nanodrugs by employing synergistic or reciprocal intermolecular non-covalent interactions; this class of nanomaterials holds significant promise for clinical translation, especially as cancer theranostics. AREAS COVERED : In this review, we describe the concept of cancer theranostic drug assembly by employing non-covalent interactions. That is, molecular drugs are formulated into nanoscale and even microscale architectures by peptide-modulated self-assembly. A series of peptide-based supramolecular assembly drugs are discussed, with an emphasis on the relation between structural feature and theranostic performance. EXPERT OPINION : Molecular design, manipulation of non-covalent interactions and elucidation of structure-function relationships not only facilitate the implementation of supramolecular self-assembly principles in drug development, but also provide a new means for advancing anticancer nanostructured drugs toward clinical application.
Collapse
Affiliation(s)
- Shukun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China.,Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, The Netherlands
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, The Netherlands
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Beijing 100190, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
20
|
Yang Y, Hu D, Lu Y, Chu B, He X, Chen Y, Xiao Y, Yang C, Zhou K, Yuan L, Qian Z. Tumor-targeted/reduction-triggered composite multifunctional nanoparticles for breast cancer chemo-photothermal combinational therapy. Acta Pharm Sin B 2022; 12:2710-2730. [PMID: 35755283 PMCID: PMC9214336 DOI: 10.1016/j.apsb.2021.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer has become the most commonly diagnosed cancer type in the world. A combination of chemotherapy and photothermal therapy (PTT) has emerged as a promising strategy for breast cancer therapy. However, the intricacy of precise delivery and the ability to initiate drug release in specific tumor sites remains a challenging puzzle. Therefore, to ensure that the therapeutic agents are synchronously delivered to the tumor site for their synergistic effect, a multifunctional nanoparticle system (PCRHNs) is developed, which is grafted onto the prussian blue nanoparticles (PB NPs) by reduction-responsive camptothecin (CPT) prodrug copolymer, and then modified with tumor-targeting peptide cyclo(Asp-d-Phe-Lys-Arg-Gly) (cRGD) and hyaluronic acid (HA). PCRHNs exhibited nano-sized structure with good monodispersity, high load efficiency of CPT, triggered CPT release in response to reduction environment, and excellent photothermal conversion under laser irradiation. Furthermore, PCRHNs can act as a photoacoustic imaging contrast agent-guided PTT. In vivo studies indicate that PCRHNs exhibited excellent biocompatibility, prolonged blood circulation, enhanced tumor accumulation, allow tumor-specific chemo-photothermal therapy to achieve synergistic antitumor effects with reduced systemic toxicity. Moreover, hyperthermia-induced upregulation of heat shock protein 70 in the tumor cells could be inhibited by CPT. Collectively, PCRHNs may be a promising therapeutic way for breast cancer therapy.
Collapse
|
21
|
Tang T, Huang B, Liu F, Cui R, Zhang M, Sun T. Enhanced delivery of theranostic liposomes through NO-mediated tumor microenvironment remodeling. NANOSCALE 2022; 14:7473-7479. [PMID: 35503233 DOI: 10.1039/d2nr01175a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Highly efficient delivery of nanoagents to the tumor region remains the primary challenge for cancer nanomedicine. Herein, we propose a NO-mediated tumor microenvironment (TME) remodeling strategy for the high-efficient delivery of nanoagents into tumor. Quantum dots (QDs) with bright fluorescence in the near-infrared IIb (NIR-IIb, 1500-1700 nm) window and high photothermal conversion efficiency were encapsulated into liposomes for the imaging-guided photothermal therapy (PTT) of tumor. The fabrication of PEG and arginine-glycine-aspartate (RGD) peptide on liposomes ensured the prolonged circulation in vivo and active targeting to tumor. Moreover, the loading of a natural NO generator L-arginine in liposomes realized the continuous generation of NO in the acidic TME. By co-localization fluorescence imaging and western blot of tumor tissue, we confirmed that the release of NO activated the expression of metalloproteinases in TME and further degraded Collagen I in the peripheral region of the tumor, thus removing the barrier for the permeation of liposomes. Attributed to the enhanced accumulation of liposomes inside the tumor, NIR IIb imaging-guided PTT was achieved with remarkable therapeutic efficacy.
Collapse
Affiliation(s)
- Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Biao Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Feng Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Ran Cui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
22
|
Chen S, Wu Y, Lortie F, Bernard J, Binder WH, Zhu J. Hydrogen-Bonds Mediated Nanomedicine: Design, Synthesis and Applications. Macromol Rapid Commun 2022; 43:e2200168. [PMID: 35609317 DOI: 10.1002/marc.202200168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/30/2022] [Indexed: 11/08/2022]
Abstract
Among the various challenges in medicine, diagnosis, complete cure and healing of cancers remain difficult given the heterogeneity and complexity of such disease. Differing from conventional platforms with often unsatisfactory theranostic capabilities, the contribution of supramolecular interactions, such as hydrogen-bonds (H-bonds), to cancer nanotheranostics opens new perspectives for the design of biomedical materials, exhibiting remarkable properties and easier processability. Thanks to their dynamic characteristics, a feature generally observed for non-covalent interactions, H-bonding (macro)molecules can be used as supramolecular motifs for yielding drug- and diagnostic carriers that possess attractive features, arising from the combination of assembled nanoplatforms and the responsiveness of H-bonds. Thus H-bonded nanomedicine provides a rich toolbox that is useful to fulfill biomedical needs with unique advantages in early-stage diagnosis and therapy, demonstrating the promising potential in clinical translations and applications. We here summarize the design and synthetic routes towards H-bonded nanomedicines, focus on the growing understanding of the structure-function relationship for efficient cancer treatment. We propose a guidance for designing new H-bonded intelligent theranostic agents, to inspire more successful explorations of cancer nanotheranostics and finally to promote potential clinical translations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yanggui Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Frédéric Lortie
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, Villeurbanne Cedex, F-69621, France
| | - Julien Bernard
- Univ Lyon, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Université Claude Bernard Lyon1, INSA Lyon, Université Jean Monnet, Villeurbanne Cedex, F-69621, France
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle (Saale), D-06120, Germany
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
23
|
Yao M, Wang X, Huang K, Jia X, Xue J, Guo B, Chen J. Fluorescence-Reporting-Guided Tumor Acidic Environment-Activated Triple Photodynamic, Chemodynamic, and Chemotherapeutic Reactions for Efficient Hepatocellular Carcinoma Cell Ablation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5381-5391. [PMID: 35467866 DOI: 10.1021/acs.langmuir.1c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor acidic environment-activated combination therapy holds great promise to significantly decrease side effects, circumvent multiple drug resistance, and improve therapeutic outcomes for cancer treatment. Herein, Sorafenib/ZnPc(PS)4@FeIII-TA nanoparticles (SPFT) are designed with acid-environment turned-on fluorescence to report the activation of triple therapy including photodynamic, chemodynamic, and chemotherapy on hepatocellular carcinoma. The SPFT are composed of SP cores formulated via self-assembly of sorafenib and ZnPc(PS)4, with high drug loading efficiency, and FeIII-TA shells containing FeCl3 and tannic acid. Importantly, the nanoparticles suppress reactive oxygen species (ROS) generation of ZnPc(PS)4 due to their formation in nanoparticles, while assisting simultaneous uptake of the uploaded drugs in cancer cells. The tumor acidic environment initiates FeIII-TA decomposition and accelerates a chemodynamic reaction between FeII and H2O2 to generate toxic •OH. Then, the SP core is decomposed to separate ZnPc(PS)4 and sorafenib, which leads to fluorescence turning-on of ZnPc(PS)4, expedited photodynamic reactions, and burst release of sorafenib. Notably, SPFT shows low dark cytotoxicity to normal cells but exerts high potency on hepatocellular carcinoma cells under near-infrared light irradiation, which is much more potent than either sorafenib or ZnPc(PS)4 alone. This research offers a facile nanomedicine design strategy for cancer therapy.
Collapse
Affiliation(s)
- Mengyu Yao
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiaojie Wang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Kunshan Huang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiao Jia
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
24
|
Yang R, Wang L, Wu Z, Yin Y, Jiang SW. How Nanotechniques Could Vitalize the O-GlcNAcylation-Targeting Approach for Cancer Therapy. Int J Nanomedicine 2022; 17:1829-1841. [PMID: 35498390 PMCID: PMC9049135 DOI: 10.2147/ijn.s360488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Accumulated data indicated that many types of cancers have increased protein O-GlcNAcylation at cell surface and inside cells. The aberrant O-GlcNAcylation is considered a potential therapeutic target. Although several types of compounds capable of inhibiting O-GlcNAcylation have been developed, their low solubility, poor permeability and delivery efficiency have impeded the application for in vivo and pre-clinical studies. Nanocarriers have the advantages of controllable drug release and active cancer-targeting capability. Moreover, nanoparticles can improve drug delivery efficiency and reduce the non-specific distribution in normal tissues by the enhanced permeability and retention (EPR) effect in cancer. Taking the advantage of O-GlcNAc-specific antibodies or lectins, nanoparticles could further improve their cancer-targeting capability. Although nanocarriers targeting the canonical N- and O-linked glycosylation have been extensively investigated for cancer detection and therapy, application of nanotechniques for the specific targeting of O-GlcNAcylation has not been actively pursued. This review summarizes the general features of GlcNAcylation and its alterations in cancers. Analyses are focused on the following areas: How the nanocarriers may improve the solubility and/or cell permeability of O-GlcNAc transferase (OGT) inhibitors; The modification of nanocarriers with lectins or antibodies for active targeting of O-GlcNAc; The nanocarriers-mediated co-delivery of OGT inhibitors and conventional drugs, which may lead to synergistic effects. Unsolved issues impeding the research progression on O-GlcNAcylation-targeting scheme are also discussed.
Collapse
Affiliation(s)
- Rui Yang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Leilei Wang
- Department of Medical Genetics, Lianyungang Maternal and Child Health Hospital Affiliated to Yangzhou University, Lianyungang, 222000, Jiangsu, People’s Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| |
Collapse
|
25
|
Cheng K, Zhou J, Zhao Y, Chen Y, Ming L, Huang D, Yang R, Lin Z, Chen D. pH-responsive and CD44-targeting polymer micelles based on CD44p-conjugated amphiphilic block copolymer PEG- b-HES- b-PLA for delivery of emodin to breast cancer cells. NANOTECHNOLOGY 2022; 33:275604. [PMID: 35313287 DOI: 10.1088/1361-6528/ac5f9a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Herein, an amphiphilic block copolymer CD44-targeting peptide-conjugated polyethylene glycol-block-hydroxyethyl starch-block-poly (L-lactic acid) (CD44p-conjugated PEG-b-HES-b-PLA) are synthesized, which could self-assemble into the pH-responsive and CD44-targeting polymer micelles against breast cancer cells MDA-MB-231. Emodin (Emo) is a natural anthraquino with pharmacological activities in anti-tumor effects. However, Emo suffers from poor water solubility, low biocompatibility, rapid systemic elimination, and off-target side effects, resulting in unsatisfactory treatment outcomes. Nanotechnology-based drug delivery systems have proven great potential for cancer chemotherapy. The constructed polymeric micelles Emo@CD44p-PM have exhibited an average size of 154.5 ± 0.9 nm characterized by DLS and TEM. Further, the Emo@CD44p-PM have effective Emo-loading capacity, good thermal stability, and pH responsiveness. Intracellular uptake study shows the enhanced cellular internalization of Emo@CD44p-PM due to the increased exposure of CD44p enhances the cellular internalization of Emo@CD44p-PM effectively. Furthermore, thein vitroresults showed Emo@CD44p-PM has been observed good biocompatibility and anti-tumor effects. Therefore, the polymeric micelles Emo@CD44p-PM provide a promising delivery strategy of targeted therapy for breast cancer.
Collapse
Affiliation(s)
- Kai Cheng
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Jie Zhou
- Department of Obstetrics and Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Yujie Zhao
- The First Clinical School, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Lan Ming
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People's Republic of China
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Daozhen Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, People's Republic of China
| |
Collapse
|
26
|
Wang H, Monroe M, Leslie F, Flexner C, Cui H. Supramolecular nanomedicines through rational design of self-assembling prodrugs. Trends Pharmacol Sci 2022; 43:510-521. [PMID: 35459589 DOI: 10.1016/j.tips.2022.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/23/2023]
Abstract
Advancements in the development of nanomaterials have led to the creation of a plethora of functional constructs as drug delivery vehicles to address many dire medical needs. The emerging prodrug strategy provides an alternative solution to create nanomedicines of extreme simplicity by directly using the therapeutic agents as molecular building blocks. This Review outlines different prodrug-based drug delivery systems, highlights the advantages of the prodrug strategy for therapeutic delivery, and demonstrates how combinations of different functionalities - such as stimuli responsiveness, targeting propensity, and multidrug conjugation - can be incorporated into designed prodrug delivery systems. Furthermore, we discuss the opportunities and challenges facing this rapidly growing field.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Maya Monroe
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Faith Leslie
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charles Flexner
- Divisions of Clinical Pharmacology and Infectious Diseases, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Center of Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
27
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
28
|
Zhang Y, Yu Y, Gao J. Supramolecular Nanomedicines of In-Situ Self-Assembling Peptides. Front Chem 2022; 10:815551. [PMID: 35186883 PMCID: PMC8854645 DOI: 10.3389/fchem.2022.815551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomedicines provide distinct clinical advantages over traditional monomolecular therapeutic and diagnostic agents. Supramolecular nanomedicines made from in-situ self-assembling peptides have emerged as a promising strategy in designing and fabricating nanomedicines. In-situ self-assambly (SA) allows the combination of nanomedicines approach with prodrug approach, which exhibited both advantages of these strategies while addressed the problems of both and thus receiving more and more research attention. In this review, we summarized recently designed supramolecular nanomedicines of in-situ SA peptides in the manner of applications and design principles, and the interaction between the materials and biological environments was also discussed.
Collapse
|
29
|
Cai H, Tan P, Chen X, Kopytynski M, Pan D, Zheng X, Gu L, Gong Q, Tian X, Gu Z, Zhang H, Chen R, Luo K. Stimuli-Sensitive Linear-Dendritic Block Copolymer-Drug Prodrug as a Nanoplatform for Tumor Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108049. [PMID: 34875724 DOI: 10.1002/adma.202108049] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/28/2021] [Indexed: 02/05/2023]
Abstract
Linear-dendritic block copolymer (LDBCs) are highly attractive candidates for smart drug-delivery vehicles. Herein, an amphiphilic poly[(ethylene glycol) methyl ether methacrylate] (POEGMA) linear-peptide dendritic prodrug of doxorubicin (DOX) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The hydrophobic-dye-based photosensitizer chlorin e6 (Ce6) is employed for encapsulation in the prodrug nanoparticles (NPs) to obtain an LDBCs-based drug-delivery system (LD-DOX/Ce6) that offers a combination cancer therapy. Due to the presence of Gly-Phe-Leu-Gly peptides and hydrazone bonds in the prodrug structure, LD-DOX/Ce6 is degraded into small fragments, thus specifically triggering the intracellular release of DOX and Ce6 in the tumor microenvironment. Bioinformatics analysis suggests that LD-DOX/Ce6 with laser irradiation treatment significantly induces apoptosis, DNA damage, and cell cycle arrest. The combination treatment can not only suppress tumor growth, but also significantly reduce tumor metastasis compared with treatments with DOX or Ce6 through regulating EMT pathway, TGFβ pathway, angiogenesis, and the hypoxia pathway. LD-DOX/Ce6 displays a synergistic chemo-photodynamic antitumor efficacy, resulting in a high inhibition in tumor growth and metastasis, while maintaining an excellent biosafety. Therefore, this study demonstrates the potential of the biodegradable and tumor-microenvironment-responsive LDBCs as an intelligent multifunctional drug-delivery vehicle for high-efficiency cancer combination therapy.
Collapse
Affiliation(s)
- Hao Cai
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ping Tan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiaoting Chen
- Animal Experimental Center of West China Hospital Sichuan University Chengdu 610041 China
| | - Michal Kopytynski
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiuli Zheng
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| | - Xiaohe Tian
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Hu Zhang
- Amgen Bioprocessing Centre Keck Graduate Institute Claremont CA 91711 USA
| | - Rongjun Chen
- Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Kui Luo
- Huaxi MR Research Center (HMRRC) Department of Radiology National Clinical Research Center for Geriatrics Frontiers Science Center for Disease‐Related Molecular Network State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu 610041 China
| |
Collapse
|
30
|
Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug Nanomedicines: An Emerging Paradigm for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107434. [PMID: 34693571 DOI: 10.1002/adma.202107434] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Nanomedicines have the potential to provide advanced therapeutic strategies in combating tumors. Polymer-prodrug-based nanomedicines are particularly attractive in cancer therapies owing to the maximum drug loading, prolonged blood circulation, and reduced premature leakage and side effects in comparison with conventional nanomaterials. However, the difficulty in precisely tuning the composition and drug loading of polymer-drug conjugates leads to batch-to-batch variations of the prodrugs, thus significantly restricting their clinical translation. Polyprodrug nanomedicines inherit the numerous intrinsic advantages of polymer-drug conjugates and exhibit well-controlled composition and drug loading via direct polymerization of therapeutic monomers, representing a promising nanomedicine for clinical tumor therapies. In this review, recent advances in the development of polyprodrug nanomedicines are summarized for tumor elimination. Various types of polyprodrug nanomedicines and the corresponding properties are first summarized. The unique advantages of polyprodrug nanomedicines and their key roles in various tumor therapies are further highlighted. Finally, current challenges and the perspectives on future research of polyprodrug nanomedicines are discussed.
Collapse
Affiliation(s)
- Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150080, P. R. China
| | - Zhiqing Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Guocan Yu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
31
|
Huang L, Yang J, Wang T, Gao J, Xu D. Engineering of small-molecule lipidic prodrugs as novel nanomedicines for enhanced drug delivery. J Nanobiotechnology 2022; 20:49. [PMID: 35073914 PMCID: PMC8785568 DOI: 10.1186/s12951-022-01257-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
AbstractA widely established prodrug strategy can effectively optimize the unappealing properties of therapeutic agents in cancer treatment. Among them, lipidic prodrugs extremely uplift the physicochemical properties, site-specificity, and antitumor activities of therapeutic agents while reducing systemic toxicity. Although great perspectives have been summarized in the progress of prodrug-based nanoplatforms, no attention has been paid to emphasizing the rational design of small-molecule lipidic prodrugs (SLPs). With the aim of outlining the prospect of the SLPs approach, the review will first provide an overview of conjugation strategies that are amenable to SLPs fabrication. Then, the rational design of SLPs in response to the physiological barriers of chemotherapeutic agents is highlighted. Finally, their biomedical applications are also emphasized with special functions, followed by a brief introduction of the promising opportunities and potential challenges of SLPs-based drug delivery systems (DDSs) in clinical application.
Graphical Abstract
Collapse
|
32
|
Gou S, Chen N, Wu X, Zu M, Yi S, Ying B, Dai F, Ke B, Xiao B. Multi-responsive nanotheranostics with enhanced tumor penetration and oxygen self-producing capacities for multimodal synergistic cancer therapy. Acta Pharm Sin B 2022; 12:406-423. [PMID: 35127395 PMCID: PMC8800034 DOI: 10.1016/j.apsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 11/28/2022] Open
Abstract
Incorporation of multiple functions into one nanoplatform can improve cancer diagnostic efficacy and enhance anti-cancer outcomes. Here, we constructed doxorubicin (DOX)-loaded silk fibroin-based nanoparticles (NPs) with surface functionalization by photosensitizer (N770). The obtained nanotheranostics (N770-DOX@NPs) had desirable particle size (157 nm) and negative surface charge (−25 mV). These NPs presented excellent oxygen-generating capacity and responded to a quadruple of stimuli (acidic solution, reactive oxygen species, glutathione, and hyperthermia). Surface functionalization of DOX@NPs with N770 could endow them with active internalization by cancerous cell lines, but not by normal cells. Furthermore, the intracellular NPs were found to be preferentially retained in mitochondria, which were also efficient for near-infrared (NIR) fluorescence imaging, photothermal imaging, and photoacoustic imaging. Meanwhile, DOX could spontaneously accumulate in the nucleus. Importantly, a mouse test group treated with N770-DOX@NPs plus NIR irradiation achieved the best tumor retardation effect among all treatment groups based on tumor-bearing mouse models and a patient-derived xenograft model, demonstrating the unprecedented therapeutic effects of trimodal imaging-guided mitochondrial phototherapy (photothermal therapy and photodynamic therapy) and chemotherapy. Therefore, the present study brings new insight into the exploitation of an easy-to-use, versatile, and robust nanoplatform for programmable targeting, imaging, and applying synergistic therapy to tumors.
Collapse
Affiliation(s)
- Shuangquan Gou
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Nanxi Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoai Wu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Shixiong Yi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Bowen Ke
- Laboratory of Anesthesiology & Critical Care Medicine, Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Chongqing 400715, China
- Corresponding authors.
| |
Collapse
|
33
|
Pharmaceutical Nanotechnology. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_10-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
34
|
Li Y, Pei Q, Cui B, Zhang H, Han L, Li W, Zhu W, Feng X, Xie Z. A redox-responsive dihydroartemisinin dimeric nanoprodrug for enhanced antitumor activity. J Nanobiotechnology 2021; 19:441. [PMID: 34930288 PMCID: PMC8686335 DOI: 10.1186/s12951-021-01200-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
Redox-responsive drug delivery system emerges as a hopeful platform for tumor treatment. Dihydroartemisinin (DHA) has been investigated as an innovative tumor therapeutic agent. Herein, a DHA dimeric prodrug bridged with disulfide bond as linker (DHA2-SS) has been designed and synthesized. The prepared prodrugs could self-assemble into nanoparticles (SS NPs) with high DHA content (> 90%) and robust stability. These SS NPs display sensitive redox responsive capability and can release DHA under the tumor heterogeneity microenvironment. SS NPs possess preferable antitumor therapeutic activity in contrast with free DHA. Moreover, the possible anti-cancer mechanism of SS NPs was investigated through RNA-seq analysis, bioinformatics and molecular biological method. SS NPs could induce apoptosis via mitochondrial apoptosis pathway, as well as glycolysis inhibition associate with the regulation of PI3K/AKT/HIF-1α signal path, which may offer an underlying therapeutic target for liver cancer. Our study highlights the potential of using redox responsive prodrug nanoparticles to treat cancer, meanwhile provides insights into the anti-cancer mechanism of DHA prodrug.
Collapse
Affiliation(s)
- Yawei Li
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China
| | - Baiji Cui
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Hongmei Zhang
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Liu Han
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Wenqing Li
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Wenhe Zhu
- Jilin Medical University, Jilin, 132013, People's Republic of China.
| | - Xianmin Feng
- Jilin Medical University, Jilin, 132013, People's Republic of China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
| |
Collapse
|
35
|
Sui B, Cheng C, Shi S, Wang M, Xu P. Esterase-activatable and GSH-responsive Triptolide Nano-prodrug for the Eradication of Pancreatic Cancer. ADVANCED NANOBIOMED RESEARCH 2021; 1. [PMID: 34870282 DOI: 10.1002/anbr.202100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Triptolide (TPL) is a small molecule isolated from a traditional Chinese herb Tripterygium wilfordii Hook F and shows excellent anticancer effect for pancreatic cancer cells. However, the poor water solubility and severe liver toxicity of TPL hindered its clinical application. In this study, TPL was covalently conjugated to a polymer and entrapped inside the core of the TPL nanogel (nTPL) to protect it from premature leakage during blood circulation. With the help of lactobionic acid (LBA), nTPL-LBA could selectively target the tumors in an orthotopic pancreatic cancer mouse model. TPL could be subsequently released intracellularly in its original form due to the presence of elevated intracellular esterase and GSH, and eventually kills cancer cells. nTPL-LBA treatment reduced tumor burden by 99% while not introducing TPL associated liver and kidney toxicities. Most importantly, more than half of the nTPL-LBA treated animals were tumor-free, suggesting that nTPL-LBA is an effective approach in eradicating pancreatic cancer.
Collapse
Affiliation(s)
- Binglin Sui
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Chen Cheng
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter St., Columbia, SC 29208, United States
| |
Collapse
|
36
|
Li J, Wang J, Zhang J, Han T, Hu X, Lee MMS, Wang D, Tang BZ. A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105999. [PMID: 34651361 DOI: 10.1002/adma.202105999] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Improving photothermal conversion efficiency (PCE) is critical to facilitate therapeutic performance during photothermal therapy (PTT). However, current strategies of prompting PCE always involve complex synthesis or modification of photothermal agents, thereby significantly inhibiting the practical applications and fundamental understanding of photothermal conversion. A facile strategy is herein present for boosting PCE by transforming photothermal agents from aggregated state to dispersed state. Compared to aggregated state, the developed photothermal agents with semiconducting nature can rotate freely in dispersed state, which allows for an efficient nonradiative dissipation through twisted intramolecular charge transfer (TICT) effect, consequentially offering excellent photothermal performance. Noteworthy, the state transformation can be achieved by virtue of releasing photothermal molecules from nanoparticles on the basis of a pH-responsive polymer nanocarrier, and the PCE is elevated from 43% to 60% upon changing the pH values from 7.4 to 5.0. Moreover, the nanoparticle disassembly and state transformation behaviors can also smoothly proceed in lysosome of cancer cells, demonstrating a distinct photothermal therapeutic performance for cancer ablation. It is hoped that this strategy of transforming state to boost PCE would be a new platform for practical applications of PTT technique.
Collapse
Affiliation(s)
- Jie Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxing Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiyao Hu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Michelle M S Lee
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
37
|
Han J, Wang DY, Wang Q, Meng L, Luo Z, Li J, Kang Y, Lv W, Huang Q, Wang PG, Wang Y, Shen J, Wang Y. PEGylated Poly-HDACi: A Designer Polyprodrug from Optimized Drug Units. Chemistry 2021; 28:e202103114. [PMID: 34820923 DOI: 10.1002/chem.202103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 10/19/2022]
Abstract
We designed, synthesized, and characterized a tri-block copolymer. Its hydrophobic part, a chain of histone deacetylase inhibitor (HDACi) prodrug, was symmetrically flanked by two identical PEG blocks, whereas the built-in HDACi was a linear molecule, terminated with a thiol at one end, and a hydroxyl group at the other. Such a feature facilitated end-to-end linkage of prodrugs through alternatively aligned disulfides and carbonates. The disulfides served dual roles: redox sensors of smart nanomedicine, and warheads of masked HDACi drugs. This approach, carefully designed to benefit both control-release and efficacy, is conceptually novel for optimizing drug units in nanomedicine. Micelles from this designer polyprodrug released only PEG, CO2 and HDACi, and synergized with DOX against HCT116 cells, demonstrating its widespread potential in combination therapy. Our work highlights, for the first time, the unique advantage of thiol-based drug molecules in nanomedicine design.
Collapse
Affiliation(s)
- Jinghua Han
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Da-Yuan Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Qiuyu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Li Meng
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Zihan Luo
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Jing Li
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Yanke Kang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Wenhui Lv
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Qingqing Huang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Peng George Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Jie Shen
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| | - Yanming Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, P. R. China
| |
Collapse
|
38
|
Yang L, Hou X, Zhang Y, Wang D, Liu J, Huang F, Liu J. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. J Control Release 2021; 339:114-129. [PMID: 34536448 DOI: 10.1016/j.jconrel.2021.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023]
Abstract
NIR-activated therapies based on light-responsive drug delivery systems are emerging as a remote-controlled method for cancer precise therapy. In this work, fluorescent dye indocyanine green (ICG)-conjugated and bioactive compound gambogic acid (GA)-loaded polymeric micelles (GA@PEG-TK-ICG PMs) were smoothly fabricated via the self-assembly of the reactive oxygen species (ROS)-responsive thioketal (TK)-linked amphiphilic polymer poly(ethyleneglycol)-thioketal-(indocyanine green) (PEG-TK-ICG). The resultant micelles demonstrated increased resistance to photobleaching, enhanced photothermal conversion efficiency, NIR-controlled drug release behavior, preferable biocompatibility, and excellent tumor accumulation performance. Moreover, upon an 808 nm laser irradiation, the micellar photoactive chromophore ICG converted the absorbed optical energy to both hyperthermia for photothermal therapy (PTT) and ROS as the feedback trigger to the micelles for the tumor-specific release of GA, which could serve as not only a chemotherapeutic drug to directly kill tumor cells but also a heat shock protein 90 (HSP90) inhibitor to realize the photothermal sensitization. As a result, an extremely high tumor inhibition rate (97.9%) of mouse 4 T1 breast cancer models was achieved with negligible side effects after the chemo-photothermal synergistic therapy. This NIR-activated nanosystem with photothermal self-sensitization function may provide a feasible option for the effective treatment of aggressive breast cancers.
Collapse
Affiliation(s)
- Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoxue Hou
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
39
|
Dutta D, Zhou Q, Mukerabigwi JF, Lu N, Ge Z. Hypoxia-Responsive Polyprodrug Nanocarriers for Near-Infrared Light-Boosted Photodynamic Chemotherapy. Biomacromolecules 2021; 22:4857-4870. [PMID: 34689560 DOI: 10.1021/acs.biomac.1c01152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hypoxia environment inside tumors is tightly associated with tumor growth, metastasis, and drug resistance. However, the heterogonous distribution of hypoxic areas limits the efficacy of hypoxia-activatable drug delivery systems. Herein, we report the hypoxia-activable block copolymer polyprodrugs, which are composed of poly(ethylene glycol) (PEG) and copolymerized segments of ortho-nitrobenzyl-linked camptothecin (CPT) methacrylate and 2-(piperidin-1-yl)ethyl methacrylate (PEMA) monomers. After self-assembly in aqueous solution, indocyanine green (ICG) photosensitizers were encapsulated to formulate ICG-loaded micellar nanoparticles (ICG@CPTNB) for near-infrared (NIR) light-boosted photodynamic therapy (PDT), tumor hypoxia aggravation, and responsive drug activation. Through intravenous injection and prolonged blood circulation, the nanoparticles can accumulate into tumor efficiently. Tumor acidity-triggered charge transition of PEMA units remarkably promotes cellular internalization of the nanoparticles. Upon exposure to NIR laser irradiation, ICG inside the nanoparticles produced reactive oxygen species (ROS) along with local hypothermia. Simultaneously, the oxygen consumption during ROS production aggravated the intratumoral hypoxia, which amplified hypoxia-responsive self-immolative CPT release from the nanoparticles. The combined photodynamic chemotherapy using hypoxia-responsive polyprodrug nanoparticles, ICG@CPTNB, overcomes the limitations of single therapy of hypoxia-activable prodrugs or PDT, which remarkably improves the efficiency of tumor growth suppression.
Collapse
Affiliation(s)
- Debabrata Dutta
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jean Felix Mukerabigwi
- Department of Applied Chemistry, College of Science and Technology, University of Rwanda, 3900 Kigali, Rwanda
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
40
|
Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021; 9:8718-8738. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the therapeutic performance of traditional mono-chemotherapy on cancers remains unsatisfactory because of the tumor heterogeneity and multidrug resistance. In light of intricate tumor structures and distinct tumor microenvironments (TMEs), combinational therapeutic strategies with multiple anticancer drugs from different mechanisms can synergistically optimize the outcomes and concomitantly minimize the adverse effects during the therapy process. Extensive research on polymeric micelles (PMs) for biomedical applications has revealed the growing importance of nanomedicines for cancer therapy in the recent decade. Starting from traditional simple delivery systems, PMs have been extended to multi-faceted therapeutic strategies. Here we review and summarize the most recent advances in combinational therapy based on multifunctional PMs including a combination of multiple anticancer drugs, chemo-gene therapy, chemo-phototherapy and chemo-immunotherapy. The design approaches, action mechanisms and therapeutic applications of these nanodrugs are summarized. In addition, we highlight the opportunities and potential challenges associated with this promising field, which will provide new guidelines for advanced combinational cancer chemotherapy.
Collapse
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
41
|
Zegota M, Müller MA, Lantzberg B, Kizilsavas G, Coelho JAS, Moscariello P, Martínez-Negro M, Morsbach S, Gois PMP, Wagner M, Ng DYW, Kuan SL, Weil T. Dual Stimuli-Responsive Dynamic Covalent Peptide Tags: Toward Sequence-Controlled Release in Tumor-like Microenvironments. J Am Chem Soc 2021; 143:17047-17058. [PMID: 34632780 PMCID: PMC8532147 DOI: 10.1021/jacs.1c06559] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/11/2022]
Abstract
Dynamic covalent chemistry (DCvC) has emerged as a versatile synthetic tool for devising stable, stimuli-responsive linkers or conjugates. The interplay of binding affinity, association and dissociation constants exhibits a strong influence on the selectivity of the reaction, the conversion rate, as well as the stability in aqueous solutions. Nevertheless, dynamic covalent interactions often exhibit fast binding and fast dissociation events or vice versa, affecting their conversion rates or stabilities. To overcome the limitation in linker design, we reported herein dual responsive dynamic covalent peptide tags combining a pH responsive boronate ester with fast association and dissociation rates, and a redox-active disulfide with slow formation and dissociation rate. Precoordination by boronic acid-catechol interaction improves self-sorting and selectivity in disulfide formation into heterodimers. The resulting bis-peptide conjugate exhibited improved complex stability in aqueous solution and acidic tumor-like extracellular microenvironment. Furthermore, the conjugate responds to pH changes within the physiological range as well as to redox conditions found inside cancer cells. Such tags hold great promise, through cooperative effects, for controlling the stability of bioconjugates under dilution in aqueous media, as well as designing intelligent pharmaceutics that react to distinct biological stimuli in cells.
Collapse
Affiliation(s)
- Maksymilian
Marek Zegota
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Bellinda Lantzberg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Gönül Kizilsavas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jaime A. S. Coelho
- Centro
de Química Estrutural, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | | | - María Martínez-Negro
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Svenja Morsbach
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Pedro M. P. Gois
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Manfred Wagner
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Y. W. Ng
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Seah Ling Kuan
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
42
|
Tan P, Cai H, Wei Q, Tang X, Zhang Q, Kopytynski M, Yang J, Yi Y, Zhang H, Gong Q, Gu Z, Chen R, Luo K. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021; 277:121061. [PMID: 34508957 DOI: 10.1016/j.biomaterials.2021.121061] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Patient-derived xenograft (PDX) models are powerful tools for understanding cancer biology and drug discovery. In this study, a polymeric nano-sized drug delivery system poly (OEGMA)-PTX@Ce6 (NPs@Ce6) composed of a photosensitizer chlorin e6 (Ce6) and a cathepsin B-sensitive polymer-paclitaxel (PTX) prodrug was constructed. The photochemical internalization (PCI) effect and enhanced chemo-photodynamic therapy (PDT) were achieved via a two-stage light irradiation strategy. The results showed that the NPs@Ce6 had great tumor targeting and rapid cellular uptake induced by PCI, thereby producing excellent anti-tumor effects on human bladder cancer PDX models with tumor growth inhibition greater than 98%. Bioinformatics analysis revealed that the combination of PTX chemotherapy and PDT up-regulated oxidative phosphorylation and reactive oxygen species (ROS) generation, blocked cell cycle and proliferation, and down-regulated the pathways related to tumor progression, invasion and metastasis, including hypoxia, TGF-β signaling and TNF-α signaling pathways. Western blots analysis confirmed that proteins promoting apoptosis (Bax, Cleaved caspase-3, Cleaved PARP) and DNA damage (γH2A.X) were up-regulated, while those inhibiting apoptosis (Bcl-2) and mitosis (pan-actin and α/β-tubulin) were down-regulated after chemo-PDT treatment. Therefore, this stimuli-responsive polymer-PTX prodrug-based nanomedicine with combinational chemotherapy and PDT evaluated in the PDX models could be a potential candidate for bladder cancer therapy.
Collapse
Affiliation(s)
- Ping Tan
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Cai
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodi Tang
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Qianfeng Zhang
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Michal Kopytynski
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Junxiao Yang
- State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yong Yi
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA, 91711, USA
| | - Qiyong Gong
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Zhongwei Gu
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Kui Luo
- Department of Urology, Institute of Urology, Huaxi MR Research Center (HMRRC), National Clinical Research Center for Geriatrics, Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
43
|
Su Q, Wang C, Song H, Zhang C, Liu J, Huang P, Zhang Y, Zhang J, Wang W. Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. J Mater Chem B 2021; 9:3892-3899. [PMID: 33928989 DOI: 10.1039/d1tb00256b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapy is revolutionizing cancer treatment. Vaccination of antigenic peptides has been identified as a promising strategy for cancer immunotherapy while insufficient immune responses were stimulated due to low antigenicity. Moreover, immune checkpoint blockade therapy is still limited by a low objective response rate. In this work, cationic polymer-lipid hybrid nanovesicle (P/LNV)-based liposomes are designed to simultaneously deliver tumor vaccines composed of anionic antigen epitopes, toll-like receptor-9 agonist (TLR9), CpG (AE/CpG), and indoleamine-2,3-dioxygenase (IDO) inhibitor, 1-methyl-tryptophan (1-MT), to increase the immunogenicity of peptide antigens and meanwhile block the immune checkpoint. P/LNV liposomes efficiently enhanced the uptake of vaccines by dendritic cells (DCs) and improved the maturation of DCs indicated by the significantly increased percentage of CD86+MHCI+ DCs, resulting in a potent cytotoxic T-lymphocyte (CTL) response against B16-OVA tumor cells in vitro. Importantly, the combination immunotherapy showed significantly higher therapeutic efficiency towards melanoma tumors in mice, compared with an untreated or individual therapy modality. Mechanistically, the co-delivery system could elicit a strong cancer-specific T-cell response, as characterized by the remarkably increased infiltration of CD8+ T cells in the tumor and draining lymph nodes. Altogether, cationic liposomes delivered with tumor vaccines and IDO inhibitor provide a promising platform for cancer immunotherapy by provoking antitumor T-cell immunity and simultaneously reversing the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Qi Su
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Guanhai Road 346, Yantai 264003, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jianhuan Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
44
|
Sui B, Wang M, Cheng C, Zhang Q, Zhang J, Fan D, Xu P. Nanogel-facilitated Protein Intracellular Specific Degradation through Trim-Away. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2010556. [PMID: 34421476 PMCID: PMC8376022 DOI: 10.1002/adfm.202010556] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 05/10/2023]
Abstract
Recently discovered "Trim-Away" mechanism opens a new window for fast and selective degradation of endogenous proteins. However, the in vivo and clinical application of this approach is stuck by the requirement of special skills and equipment needed for the intracellular delivery of antibodies. Hereby, an antibody conjugated polymer nanogel system, Nano-ERASER, for intracellular delivery and release of antibody, and degradation of a specific endogenous protein has been developed. After being delivered into cells, the antibody is released and forms complex with its target protein, and subsequently binds to the Fc receptor of TRIM21. The resulted complex of target protein/antibody/TRIM21 is then degraded by the proteasome. The efficacy of Nano-ERASER has been validated by depleting GFP protein in a GFP expressing cell line. Furthermore, Nano-ERASER successfully degrades COPZ1, a vital protein for cancer cells, and kills those cells while sparing normal cells. Benefit from its convenience and targeted delivery merit, Nano-ERASER technique is promising in providing a reliable tool for endogenous protein function study as well as paves the way for novel antibody-based Trim-Away therapeutic modalities for cancer and other diseases.
Collapse
Affiliation(s)
- Binglin Sui
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208 (USA)
| | - Mingming Wang
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208 (USA)
| | - Chen Cheng
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208 (USA)
| | - Quanguang Zhang
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, University of South Carolina
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208 (USA)
| |
Collapse
|
45
|
Ma B, Xu H, Wang Y, Yang L, Zhuang W, Li G, Wang Y. Biomimetic-Coated Nanoplatform with Lipid-Specific Imaging and ROS Responsiveness for Atherosclerosis-Targeted Theranostics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35410-35421. [PMID: 34286950 DOI: 10.1021/acsami.1c08552] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is one of the leading causes of cardiovascular diseases and is triggered by endothelial damage, local lipid cumulation, and inflammation. Despite the conventional medication treatment, nanosized drug carriers have become promising candidates for efficient drug delivery with lower side effects. However, the development of problems in nanocarriers such as drug leakage, accumulating efficiency, and accurate drug release, as well as the specific recognition of atherosclerotic plaques, still needs to be checked. In this study, a lipid-specific fluorophore (LFP) has been designed, which is further packaged with a reactive oxygen species (ROS)-responsive prednisolone (Pred) prodrug copolymer [PMPC-P(MEMA-co-PDMA)] to self-assemble into LFP@PMMP micelles. LFP@PMMP can be further coated with red blood cell (RBC) membrane to obtain surface-biomimetic nanoparticles (RBC/LFP@PMMP), demonstrating prolonged circulation, minimal drug leakage, and better accumulation at the plaques. With ROS responsiveness, RBC/LFP@PMMP can be interrupted at inflammatory atherosclerotic tissue with overexpressed ROS, followed by the dissociation of Pred from the polymer backbone and the release of LFP to combine with the rich lipid in the plaques. An accurate anti-inflammation and lipid-specific fluorescent imaging of atherosclerotic lesions was performed and further proven on ApoE-/- mice; this holds prospective potential for atherosclerosis theranostics.
Collapse
Affiliation(s)
- Boxuan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Hong Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yanan Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Weihua Zhuang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
46
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. Endogenous reactive oxygen species burst induced and spatiotemporally controlled multiple drug release by traceable nanoparticles for enhancing antitumor efficacy. Biomater Sci 2021; 9:4968-4983. [PMID: 34085682 DOI: 10.1039/d1bm00668a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) are not only used as a therapeutic reagent in chemodynamic therapy (CDT), to stimulate the release of antineoplastic drugs, they can also be used to achieve a combined effect of CDT and chemotherapy to enhance anticancer effects. Herein, we synthesized a pH-responsive prodrug (PEG2k-NH-N-DOX), ROS-responsive prodrug (PEG2k-S-S-CPT-ROS), organic CDT agents (TPP-PEG2k-LND, TPP-PEG2k-TOS), and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), and used them to encapsulate combrestatinA4 (CA4) to prepare traceable pH/ROS dual-responsive multifunctional nanoparticles (TLDCAG NPs) with endogenous ROS burst and spatiotemporally controlled multiple drug release ability. Firstly, TLDCAG NPs were accumulated in the tumor cell microenvironment via an enhanced permeability and retention (EPR) effect. Secondly, CA4 was released and specifically destroyed angiogenesis to facilitate the interaction between the tumor and the remaining TLDCG NPs. After accumulating in tumor cells, the TLDCG NPs could be destroyed under acidic conditions to quickly release doxorubicin (DOX), TPP-PEG2k-LND, and TPP-PEG2k-TOS. Thirdly, TPP-PEG2k-LND and TPP-PEG2k-TOS quickly targeted mitochondria, induced endogenous ROS bursts, reduced the mitochondrial membrane potential, and induced tumor cell apoptosis. Endogenous ROS can not only be used as a therapeutic reagent for CDT, but also can cut off the thioketal bond in PEG2k-S-S-CPT-ROS and release camptothecin (CPT). Finally, TLDCAG NPs were traced by magnetic resonance imaging (MRI). Furthermore, in vitro and vivo results indicate that the TLDCAG NPs have vigorous antitumor activity and negligible systemic toxicity. Therefore, the TLDCAG NPs provide an efficient strategy for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
47
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
48
|
Sun Q, Zhu Y, Du J. Recent progress on charge-reversal polymeric nanocarriers for cancer treatments. Biomed Mater 2021; 16. [PMID: 33971642 DOI: 10.1088/1748-605x/abffb5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Nanocarriers (NCs) for delivery anticancer therapeutics have been under development for decades. Although great progress has been achieved, the clinic translation is still in the infancy. The key challenge lies in the biological barriers which lie between the NCs and the target spots, including blood circulation, tumor penetration, cellular uptake, endo-/lysosomal escape, intracellular therapeutics release and organelle targeting. Each barrier has its own distinctive microenvironment and requires different surface charge. To address this challenge, charge-reversal polymeric NCs have been a hot topic, which are capable of overcoming each delivery barrier, by reversing their charges in response to certain biological stimuli in the tumor microenvironment. In this review, the triggering mechanisms of charge reversal, including pH, enzyme and redox approaches are summarized. Then the corresponding design principles of charge-reversal NCs for each delivery barrier are discussed. More importantly, the limitations and future prospects of charge-reversal NCs in clinical applications are proposed.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, People's Republic of China.,Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| |
Collapse
|
49
|
Cheng G, Zong W, Guo H, Li F, Zhang X, Yu P, Ren F, Zhang X, Shi X, Gao F, Chang J, Wang S. Programmed Size-Changeable Nanotheranostic Agents for Enhanced Imaging-Guided Chemo/Photodynamic Combination Therapy and Fast Elimination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100398. [PMID: 33876500 DOI: 10.1002/adma.202100398] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/27/2021] [Indexed: 06/12/2023]
Abstract
An ideal nanotheranostic agent should be able to achieve efficient tumor accumulation, retention, and fast elimination after its theranostic functions exhausts. However, there is an irreconcilable contradiction on optimum sizes for effective tumor retention and fast elimination. Herein, a programmed size-changeable nanotheranostic agent based on polyprodrug-modified iron oxide nanoparticles (IONPs) and aggregation-induced emission photosensitizer is developed for enhanced magnetic resonance imaging (MRI)-guided chemo/photodynamic combination therapy. The nano-sized theranostic agents with an initial diameter of about 90 nm can accumulate in tumor tissue through passive targeting. In the acidic tumor microenvironment, large aggregates of IONPs are formed, realizing enhanced tumor retention and MR signal enhancement. Under the guidance of MRI, light irradiation is applied to the tumor site for triggering the generation of reactive oxygen species and drug release. Moreover, after chemo/photodynamic combination therapy, the large-sized aggregates are re-dispersed into small-sized IONPs for fast elimination, reducing the risk of toxicity caused by long-term retention. Therefore, this study provides a promising size-changeable strategy for the development of nanotheranostic agents.
Collapse
Affiliation(s)
- Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Zong
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Haizhen Guo
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Fuyan Li
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Fuxin Ren
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Xinlu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoen Shi
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Fei Gao
- Shandong Medical Imaging Research Institute, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, P. R. China
- Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250021, P. R. China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| | - Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
50
|
Wang S, Yu G, Yang W, Wang Z, Jacobson O, Tian R, Deng H, Lin L, Chen X. Photodynamic-Chemodynamic Cascade Reactions for Efficient Drug Delivery and Enhanced Combination Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002927. [PMID: 34026433 PMCID: PMC8132047 DOI: 10.1002/advs.202002927] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Indexed: 05/27/2023]
Abstract
Nanomedicines with photodynamic therapy and reactive oxygen species (ROS)-triggered drug release capabilities are promising for cancer therapy. However, most of the nanomedicines based on ROS-responsive nanocarriers still suffer from serious ROS consumption during the triggered drug release process. Herein, a photodynamic-chemodynamic cascade strategy for the design of drug delivery nanosystem is proposed. A doxorubicin hydrochloride-loaded ROS-responsive polymersome (DOX-RPS) is prepared via the self-assembly of amphiphilic poly(ethylene glycol)-poly(linoleic acid) and poly(ethylene glycol)-(2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-α)-iron chelate (PEG-HPPH-Fe). The RPS can effectively deliver a drug to tumor site through passive targeting effect. Upon laser irradiation, the photosensitizer HPPH can efficiently generate ROS, which further causes in situ oxidation of linoleic acid chain and subsequent RPS structural destruction, permitting triggered drug release. Intriguingly, catalyzed by HPPH-Fe, ROS will be regenerated from linoleic acid peroxide through a chemodynamic process. Therefore, ROS-triggered drug release can be achieved without ROS over-consumption. The in vitro and in vivo results confirmed ROS generation, triggered drug release behavior, and potent antitumor effect of the DOX-RPS. This photodynamic-chemodynamic cascade strategy provides a promising approach for enhanced combination therapy.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Guocan Yu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Weijing Yang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Zhantong Wang
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Orit Jacobson
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Rui Tian
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Hongzhang Deng
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology & Institute of Environmental Analysis and DetectionCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical EngineeringNational University of SingaporeSingapore117545Singapore
| |
Collapse
|