1
|
Huo J, Ming Y, Huang X, Ge R, Li S, Zheng R, Cairney J, Dou SX, Fei B, Li W. Arrayed metal phosphide heterostructure by Fe doping for robust overall water splitting. J Colloid Interface Sci 2025; 678:669-681. [PMID: 39307056 DOI: 10.1016/j.jcis.2024.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 10/27/2024]
Abstract
Transition metal phosphides (TMPs) show promise in water electrolysis due to their electronic structures, which activate hydrogen/oxygen reaction intermediates. However, TMPs face limitations in catalytic efficiency due to insufficient active sites, poor conductivity, and multiple intermediate steps in water electrolysis. Here, we synthesize a highly efficient bifunctional self-supported electrocatalyst, which consists of an N-doped carbon shell anchored on Fe-doped CoP/Co2P arrays on nickel foam (NC@Fe-CoxP/NF) using hydrothermal and phosphorization techniques. Experimental and theoretical results indicate that the modified morphology, with increased active site density and a tunable electronic structure induced by Fe doping in the CoP/Co2P heterostructure, leads to superior water electrolysis performance. The resulting NC@Fe0.1-CoP/Co2P/NF catalyst exhibits overpotentials of 122 mV for the hydrogen evolution reaction (HER) and 270 mV for the oxygen evolution reaction (OER) at 100 mA cm-2. Furthermore, using NC@Fe0.1-CoP/Co2P/NF as both the cathode and anode in an alkaline electrolyzer enables the cell system to achieve 100 mA cm-2 at a voltage of 1.70 V, while maintaining long-term catalytic durability. This work may pave the way for designing self-supported, highly efficient electrocatalysts for practical water electrolysis applications.
Collapse
Affiliation(s)
- Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yang Ming
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region
| | - Xianglong Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Riyue Ge
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| | - Sean Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Rongkun Zheng
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Julie Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin Fei
- School of Fashion and Textiles, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region.
| | - Wenxian Li
- School of Materials Science and Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
2
|
Zhang Y, Song X, Guo X, Li X. Design of NiCoP nanorod loaded on cocoon carbon substrate and its non-metal doping for efficient hydrogen evolution. J Colloid Interface Sci 2024; 675:391-400. [PMID: 38972126 DOI: 10.1016/j.jcis.2024.06.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
The quest for effective and sustainable electrocatalysts for hydrogen evolution is crucial in advancing the widespread use of H2. In this study, we utilized silkworm cocoons as the source material to produce porous N-doped carbon (PNCC) substrates through a process involving degumming and annealing. Subsequently, NiCoP nanorod (NiCoP@PNCC) is deposited onto the substrates via a simple impregnation and calcination method to enhance the catalytic performance for the hydrogen evolution reaction (HER). The optimal spacing between the silk fibers of PNCC facilitates longitudinal growth, increases the active surface area, and balances the adsorption and desorption of reaction intermediates, thereby accelerating HER kinetics. Consequently, NiCoP@PNCC demonstrates impressive performance, with 44 mV overpotential to achieve a current density of 10 mA cm-2. Additionally, density functional theory (DFT) calculations reveal that the electronic structure and energy band of NiCoP@PNCC can be modified through the doping of elements such as B, C, N, O, F, and S. In addition, with the electronegativity enhancement of the doping elements, the interaction between Co atoms in NiCoP@PNCC and O atoms in adsorbed H2O molecules gradually enhanced, which is conducive to the dissociation of water in alkaline solution. This research introduces a novel approach for fine-tuning the catalytic activity of transition metal phosphides.
Collapse
Affiliation(s)
- Yongzheng Zhang
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Song
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xu Guo
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
3
|
Lyu X, Hu Y, Han Y, Li X, Yu Q, Wen B, Zhao X, Dong Q, Du A. Waxberry-like hydrophilic Co-doped ZnFe 2O 4 as bifunctional electrocatalysts for water splitting. J Colloid Interface Sci 2024; 675:326-335. [PMID: 38972120 DOI: 10.1016/j.jcis.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Water splitting is a promising technique for clean hydrogen production. To improve the sluggish hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), the development of efficient bifunctional electrocatalysts for both HER and OER is urgent to approach the scale-up applications of water splitting. Nowadays transition metal oxides (TMOs) are considered as the promising electrocatalysts due to their low cost, structural flexibility and stability, however, their electrocatalytic activities are eager to be improved. Here, we synthesized waxberry-like hydrophilic Co-doped ZnFe2O4 electrocatalysts as bifunctional electrocatalysts for water splitting. Due to the enhanced active sites by electronic structure tuning and modified super-hydrophilic characteristics, the spinel ZFO-Co0.5 electrocatalyst exhibits excellent catalytic activities for both OER and HER. It exhibits a remarkable low OER overpotential of 220 mV at a current density of 10 mA cm-2 and a Tafel slope of 28.2 mV dec-1. Meanwhile, it achieves a low overpotential of 73 mV at a current density of 10 mA cm-2 with the Tafel slope of 87 mV dec-1 for HER. In addition, for water electrolysis device, the electrocatalytic performance of ZFO-Co0.5||ZFO-Co0.5 surpasses that of commercial IrO2||Pt/C. Our work reveals that the hydrophilic morphology regulation combined with metallic doping strategy is a facile and effective approach to synthesize spinel TMOs as excellent bifunctional electrocatalyst for water splitting.
Collapse
Affiliation(s)
- Xiao Lyu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China.
| | - Yongbin Hu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Yun Han
- Queensland Micro- and Nanotechnology Centre, School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Xuning Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Wen
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Xin Zhao
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Qinglong Dong
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane 4001, Australia
| |
Collapse
|
4
|
Cheng Y, Wang Y, Chen B, Han X, He F, He C, Hu W, Zhou G, Zhao N. Routes to Bidirectional Cathodes for Reversible Aprotic Alkali Metal-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410704. [PMID: 39308193 DOI: 10.1002/adma.202410704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Aprotic alkali metal-CO2 batteries (AAMCBs) have garnered significant interest owing to fixing CO2 and providing large energy storage capacity. The practical implementation of AAMCBs is constrained by the sluggish kinetics of the CO2 reduction reaction (CO2RR) and the CO2 evolution reaction (CO2ER). Because the CO2ER and CO2RR take place on the cathode, which connects the internal catalyst with the external environment. Building a bidirectional cathode with excellent CO2ER and CO2RR kinetics by optimizing the cathode's internal catalyst and environment has attracted most of the attention to improving the electrochemical performance of AAMCBs. However, there remains a lack of comprehensive understanding. This review aims to give a route to bidirectional cathodes for reversible AAMCBs, by systematically discussing engineering strategies of both the internal catalyst (atomic, nanoscopic, and macroscopic levels) and the external environment (photo, photo-thermal, and force field). The CO2ER and CO2RR mechanisms and the "engineering strategies from internal catalyst to the external environment-cathode properties-CO2RR and CO2ER kinetics and mechanisms-batteries performance" relationship are elucidated by combining computational and experimental approaches. This review establishes a fundamental understanding for designing bidirectional cathodes and gives a route for developing reversible AAMCBs and similar metal-gas battery systems.
Collapse
Affiliation(s)
- Yihao Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yuxuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Yang W, Chen T, Jia H, Li J, Liu B. Preparation and Electrochemical Applications of Magnéli Phase Titanium Suboxides: A Review. Chemistry 2024; 30:e202402188. [PMID: 39149925 DOI: 10.1002/chem.202402188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Magnéli phase titanium suboxides (M-TSOs) belong to a type of sub-stoichiometric titanium oxides based on the crystal structure of rutile TiO2. They possess a unique shear structure, granting them exceptional electrical conductivity and corrosion resistance. These two advantages are crucial for electrode materials in electrochemistry, hence the significant interest from numerous researchers. However, the preparation of M-TSOs is uneconomic due to high temperature reduction and other complex synthesis process, thus limiting their practical application in electrochemical fields. This review delves into the crystal structure, properties, and synthesis methods of M-TSOs, and touches on their applications as electrocatalysts in wastewater treatment and electrochemical water splitting. Furthermore, it highlights the research challenges and potential future research directions in M-TSOs.
Collapse
Affiliation(s)
- Wenduo Yang
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Tongxiang Chen
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Hanze Jia
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Jing Li
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Baodan Liu
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| |
Collapse
|
6
|
Bib Khan J, Liang YC. Recent Progress in Non-Noble Metal Catalysts for Oxygen Evolution Reaction: A Focus on Transition and Rare-Earth Elements. CHEM REC 2024:e202400151. [PMID: 39460472 DOI: 10.1002/tcr.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Indexed: 10/28/2024]
Abstract
The demand for renewable energy sources has become more urgent due to climate change and environmental pollution. The oxygen evolution reaction (OER) plays a crucial role in green energy sources. This article primarily explores the potential of using non-noble metals, such as transition and rare earth metals, to enhance the efficiency of the OER process. Due to their cost-effectiveness and unique electronic structure, these non-noble metals could be a game-changer in the field. 'Doping,' which is the process of adding a small amount of impurity to a material to alter its properties, and 'synergistic effects,' which refer to the combined effect of two or more elements that is greater than the sum of their individual effects, are two key concepts in this field. Transition and rare earth metals can reduce the overpotential, a measure of the excess potential required to drive a reaction, thus enhancing the OER process by engineering the electronic and surface molecular structure. This article summarizes the roles of various non-noble metals in the OER process and highlights opportunities for researchers to propose innovative ways to optimize the OER process.
Collapse
Affiliation(s)
- Jala Bib Khan
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Yuan-Chang Liang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| |
Collapse
|
7
|
Song S, Wu S, He Y, Zhang Y, Fan G, Long Y, Song S. Boron/nitrogen-trapping and regulative electronic states around Ru nanoparticles towards bifunctional hydrogen production. J Colloid Interface Sci 2024; 672:675-687. [PMID: 38865881 DOI: 10.1016/j.jcis.2024.06.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Developing a straightforward and general strategy to regulate the surface microenvironment of a carbon matrix enriched with N/B motifs for efficient atomic utilization and electronic state of metal sites in bifunctional hydrogen production via ammonia-borane hydrolysis (ABH) and water electrolysis is a persistent challenge. Herein, we present a simple, green, and universal approach to fabricate B/N co-doped porous carbons using ammonia-borane (AB) as a triple functional agent, eliminating the need for hazardous and explosive functional agents and complicated procedures. The pyrolysis of AB induces the regulation of the surface microenvironment of the carbon matrix, leading to the formation of abundant surface functional groups, defects, and pore structures. This regulation enhances the efficiency of atom utilization and the electronic state of the active component, resulting in improved bifunctional hydrogen evolution. Among the catalysts, B/N co-doped vulcan carbon (Ru/BNC) with 2.1 wt% Ru loading demonstrates the highest performance in catalytic hydrogen production from ABH, achieving an ultrahigh turnover frequency of 1854 min-1 (depending on the dispersion of Ru). Furthermore, this catalyst shows remarkable electrochemical activity for hydrogen evolution in alkaline water electrolysis with a low overpotential of 31 mV at 10 mA cm-2. The present study provides a simple, green, and universal method to regulate the surface microenvironment of various carbons with B/N modulators, thereby adjusting the atomic utilization and electronic state of active metals for enhanced bifunctional hydrogen evolution.
Collapse
Affiliation(s)
- Shaoxian Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Song Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yating He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yiwen Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
8
|
Cheng S, Wu W, Li L, Su Y, Jin B, Li Y, Yu Z, Gu R. Synthesis of P-(NiCo)CO 3/TiO 2/Ti Self-Supported Electrode with High Catalytic Activity and Stability for Hydrogen Evolution. SMALL METHODS 2024; 8:e2301771. [PMID: 38501826 DOI: 10.1002/smtd.202301771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Indexed: 03/20/2024]
Abstract
Hydrogen is considered an ideal clean energy due to its high mass-energy density, and only water is generated after combustion. Water electrolysis is a sustainable method of obtaining a usable amount of pure hydrogen among the various hydrogen production methods. However, its development is still limited by applying expensive noble metal catalysts. Here, the dissolution-recrystallization process of TiO2 nanotube arrays in water with the hydrothermal reaction of a typical nickel-cobalt hydroxide synthesis process followed by phosphating to prepare a self-supported electrode with (NiCo)CO3/TiO2 heterostructure named P-(NiCo)CO3/TiO2/Ti electrode is combined. The electrode exhibits an ultra-low overpotential of 31 mV at 10 mA cm-2 with a Tafel slope of 46.2 mV dec-1 in 1 m KOH and maintained its stability after running for 500 h in 1 m KOH. The excellent catalytic activity can be attributed to the structure of nanotube arrays with high specific surface area, superhydrophilicity, and super aerophobicity on the electrode surface. In addition, the uniform (NiCo)CO3/TiO2 heterostructure also accelerates the electron transfer on the electrode surface. Finally, DFT calculations demonstrate that phosphating also improves the ΔGH* and ΔGH2O of the electrode. The synthesis strategy also promotes the exploration of catalysts for other necessary electrocatalytic fields.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wei Wu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Longxin Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yuqing Su
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Beichen Jin
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yangxi Li
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhen Yu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ruonan Gu
- State Key Laboratory of Clean Energy Utilization, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Li W, Liu Y, Azam A, Liu Y, Yang J, Wang D, Sorrell CC, Zhao C, Li S. Unlocking Efficiency: Minimizing Energy Loss in Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404658. [PMID: 38923073 DOI: 10.1002/adma.202404658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Catalysts play a crucial role in water electrolysis by reducing the energy barriers for hydrogen and oxygen evolution reactions (HER and OER). Research aims to enhance the intrinsic activities of potential catalysts through material selection, microstructure design, and various engineering techniques. However, the energy consumption of catalysts has often been overlooked due to the intricate interplay among catalyst microstructure, dimensionality, catalyst-electrolyte-gas dynamics, surface chemistry, electron transport within electrodes, and electron transfer among electrode components. Efficient catalyst development for high-current-density applications is essential to meet the increasing demand for green hydrogen. This involves transforming catalysts with high intrinsic activities into electrodes capable of sustaining high current densities. This review focuses on current improvement strategies of mass exchange, charge transfer, and reducing electrode resistance to decrease energy consumption. It aims to bridge the gap between laboratory-developed, highly efficient catalysts and industrial applications regarding catalyst structural design, surface chemistry, and catalyst-electrode interplay, outlining the development roadmap of hierarchically structured electrode-based water electrolysis for minimizing energy loss in electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ashraful Azam
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Charles Christopher Sorrell
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chuan Zhao
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
10
|
Guo D, Xue XX, Jiao M, Liu J, Wu T, Ma X, Lu D, Zhang R, Zhang S, Shao G, Zhou Z. Coordination engineering of single-atom ruthenium in 2D MoS 2 for enhanced hydrogen evolution. Chem Sci 2024:d4sc04905e. [PMID: 39309101 PMCID: PMC11409851 DOI: 10.1039/d4sc04905e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
This study investigates the enhancement of catalytic activity in single-atom catalysts (SACs) through coordination engineering. By introducing non-metallic atoms (X = N, O, or F) into the basal plane of MoS2 via defect engineering and subsequently anchoring hetero-metallic Ru atoms, we created 10 types of non-metal-coordinated Ru SACs (Ru-X-MoS2). Computations indicate that non-metal atom X significantly modifies the electronic structure of Ru, optimizing the hydrogen evolution reaction (HER). Across acidic, neutral, and alkaline electrolytes, Ru-X-MoS2 catalysts exhibit significantly improved HER performance compared with Ru-MoS2, even surpassing commercial Pt/C catalysts. Among these, the Ru-O-MoS2 catalyst, characterized by its asymmetrically coordinated O2-Ru-S1 active sites, demonstrates the most favorable electrocatalytic behavior and exceptional stability across all pH ranges. Consequently, single-atom coordination engineering presents a powerful strategy for enhancing SAC catalytic performance, with promising applications in various fields.
Collapse
Affiliation(s)
- Dong Guo
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xiong-Xiong Xue
- School of Physics and Optoelectronics, Xiangtan University Xiangtan 411105 P. R. China
| | - Menggai Jiao
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Jinhui Liu
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tian Wu
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Xiandi Ma
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Die Lu
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Rui Zhang
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Shaojun Zhang
- School of Materials Science and Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Gonglei Shao
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zhen Zhou
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE2), School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
11
|
Zhang J, Zhang Y, Zhou J, Guo H, Qi L. Electronic Engineering of Crystalline/Amorphous CoP/FeCoP x Nanoarrays for Efficient Water Electrolysis. SMALL METHODS 2024:e2401139. [PMID: 39235422 DOI: 10.1002/smtd.202401139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The development of bifunctional, non-noble metal-based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through morphology and electronic engineering is highly attractive for efficient water splitting. Herein, hierarchical nanoarrays consisting of crystalline cobalt phosphide nanorods covered by amorphous Fe-doped cobalt phosphide nanocuboids (CoP/FeCoPx) are constructed as bifunctional catalysts for both HER and OER. Experimental results and theoretical calculations reveal that the catalysts exhibit balanced dual-catalytic properties due to simultaneous introduction of Fe doping and phosphorus vacancies, leading to an optimized electronic structure of the CoP/FeCoPx. Furthermore, the hierarchical nanoarrays made of crystalline/amorphous heterostructures significantly enhance the performance of the electrocatalysts. As a result, the CoP/FeCoPx catalyst demonstrates remarkable performance in both HER and OER, with overpotentials of 74 and 237 mV at 10 mA cm-2 in 1 m KOH, respectively, as well as a low cell voltage of 1.53 V at 10 mA cm-2 for alkaline overall water splitting. This work integrates the morphology engineering involving design of hierarchical crystalline/amorphous nanoarrays and the electronic engineering through Fe doping and phosphorus vacancies for efficient water electrolysis. It may open a new route toward rational design and feasible fabrication of high-performance, multifunctional, non-noble metal-based electrocatalysts for energy conversion.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yujing Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haoran Guo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Zhao Y, Cui M, Zhang B, Wei S, Shi X, Shan K, Ma J, Zhou G, Pang H. One-step Sintering Synthesis of Ni 3Se 2-Ni Electrode with Robust Interfacial Bonding for Ultra-stable Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301465. [PMID: 38164889 DOI: 10.1002/smtd.202301465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Exploring efficient and robust self-supporting hydrogen evolution reaction (HER) electrodes using simple, accessible, and low-cost synthetic processes is crucial for the commercial application of water electrolysis at high current densities. Ni-based self-supporting electrodes are widely studied owing to their low cost and good catalytic performance. However, to date, the preparation of Ni-based electrodes requires multistep and complex preparation processes. In this study, a novel one-step in situ sintering method to synthesize mechanically stable and highly active Ni3Se2-Ni electrodes with well-controlled morphologies and structures is developed. Their excellent performance and durability can be attributed to the numerous highly active nano-Ni3Se2 catalysts embedded on the surface of the Ni skeleton, the excellent conductivity of the interconnected conductive network, and the strong interfacial bonding between Ni3Se2 and Ni. As a result, the Ni3Se2-Ni600 electrode can operate stably at 85 and 400 mA cm-2 for more than 800 and 300 h, respectively. Moreover, the Ni3Se2-Ni600 electrode displays outstanding stability for over 500 h in a commercial two-electrode system. This study provides a feasible one-step synthesis method for low-cost, high-efficiency metal selenide-metal self-supporting electrodes for water electrolysis.
Collapse
Affiliation(s)
- Yang Zhao
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Manman Cui
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Bin Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Shizhong Wei
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Xiaoqian Shi
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Kangning Shan
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Jiping Ma
- School of Materials Science and Engineering, Henan University of Science and Technology
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
13
|
Zhong SC, Cui Z, Li J, Tian GR, Zhou ZH, Jiao HF, Xiong JF, Wang LC, Xiang J, Wu FF, Zhao RD. Improved Alkaline Hydrogen Evolution Performance of Dealloying Fe 75-xCo xSi 12.5B 12.5 Electrocatalyst. Molecules 2024; 29:4130. [PMID: 39274975 PMCID: PMC11397610 DOI: 10.3390/molecules29174130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
The electrocatalytic performance of a Fe65Co10Si12.5B12.5 Fe-based compounds toward alkaline hydrogen evolution reaction (HER) is enhanced by dealloying. The dealloying process produced a large number of nanosheets on the surface of NS-Fe65Co10Si12.5B12.5, which greatly increased the specific surface area of the electrode. When the dealloying time is 3 h, the overpotential of NS-Fe65Co10Si12.5B12.5 is only 175.1 mV at 1.0 M KOH and 10 mA cm-2, while under the same conditions, the overpotential of Fe65Co10Si12.5B12.5 is 215 mV, which is reduced. In addition, dealloying treated electrodes also show better HER performance than un-dealloying treated electrodes. With the increase in Co doping amount, the overpotential of the hydrogen evolution reaction decreases, and the hydrogen evolution activity is the best when the addition amount of Co is 10%. This work not only provides a basic understanding of the relationship between surface activity and the dealloying of HER catalysts, but also paves a new way for doping transition metal elements in Fe-based electrocatalysts working in alkaline media.
Collapse
Affiliation(s)
- Si-Cheng Zhong
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Zhe Cui
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Jia Li
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
- School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221008, China
- Innovation Center for Applied Magnetics Co., Ltd., Ningbo 315201, China
| | - Guang-Run Tian
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Zhong-Hong Zhou
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Hong-Fei Jiao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Jie-Fu Xiong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Li-Chen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jun Xiang
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Fu-Fa Wu
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Rong-Da Zhao
- School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
| |
Collapse
|
14
|
Zheng Z, Qi L, Luan X, Zhao S, Xue Y, Li Y. Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne. Nat Commun 2024; 15:7331. [PMID: 39187493 PMCID: PMC11347568 DOI: 10.1038/s41467-024-51687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Controlling the precise growth of atoms is necessary to achieve manipulation of atomic composition and atomic position, regulation of electronic structure, and an understanding of reactions at the atomic level. Herein, we report a facile method for ordered anchoring of zero-valent platinum and manganese atoms with single-atom thickness on graphdiyne under mild conditions. Due to strong and incomplete charge transfer between graphdiyne and metal atoms, the formation of metal clusters and nanoparticles can be inhibited. The size, composition and structure of the bimetallic nanoplates are precisely controlled by the natural structure-limiting effect of graphdiyne. Experimental characterization clearly demonstrates such a fine control process. Electrochemical measurements show that the active site of platinum-manganese interface on graphdiyne guarantees the high catalytic activity and selectivity (~100%) for alkene-to-diol conversion. This work lays a solid foundation for obtaining high-performance nanomaterials by the atomic engineering of active site.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Beglau THY, Fei Y, Janiak C. Microwave-Assisted Ultrafast Synthesis of Bimetallic Nickel-Cobalt Metal-Organic Frameworks for Application in the Oxygen Evolution Reaction. Chemistry 2024; 30:e202401644. [PMID: 38869378 DOI: 10.1002/chem.202401644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/14/2024]
Abstract
Herein, a series of monometallic Ni-, Co- and Zn-MOFs and bimetallic NiCo-, NiZn- and CoZn-MOFs of formula M2(BDC)2DABCO and (M,M')2(BDC)2DABCO, respectively, (M, M'=metal) with the same pillar and layer linkers 1,4-diazabicyclo[2.2.2]octane (DABCO) and benzene-1,4-dicarboxylate (BDC) were prepared through a fast microwave-assisted thermal conversion synthesis method (MW) within only 12 min. In the bimetallic MOFs the ratio M:M' was 4 : 1. The mono- and bimetallic MOFs were selected to systematically explore the catalytic-activity of their derived metal oxide/hydroxides for the oxygen evolution reaction (OER). Among all tested bimetallic MOF-derived catalysts, the NiCoMOF exhibits superior catalytic activity for the OER with the lowest overpotentials of 301 mV and Tafel slopes of 42 mV dec-1 on a rotating disk glassy carbon electrode (RD-GCE) in 1 mol L-1 KOH electrolyte at a current density of 10 mA cm-2. In addition, NiCoMOF was insitu grown in just 25 min by the MW synthesis on the surface of nickel foam (NF) with, for example, a mass loading of 16.6 mgMOF/gNF, where overpotentials of 313 and 328 mV at current densities of 50 and 300 mA cm-2, respectively, were delivered and superior long-term stability for practical OER application. The low Tafel slope of 27 mV dec-1, as well as a low reaction resistance from electrochemical impedance spectroscopy (EIS) measurement (Rfar=2 Ω), confirm the excellent OER performance of this NiCoMOF/NF composite. During the electrocatalytic processes or even before upon KOH pre-treatment, the MOFs are transformed to the mixed-metal hydroxide phase α-/β-M(OH)2 which presents the active species in the reactions (turnover frequency TOF=0.252 s-1 at an overpotential of 320 mV). Compared to the TOF from β-M(OH)2 (0.002 s-1), our study demonstrates that a bimetallic MOF improves the electrocatalytic performance of the derived catalyst by giving an intimate and uniform mixture of the involved metals at the nanoscale.
Collapse
Affiliation(s)
- Thi Hai Yen Beglau
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Yanyan Fei
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204, Düsseldorf, Germany
| |
Collapse
|
16
|
Pang Z, Chen Z, Li J, Liu D, Zhang G, Liu C, Du C, Zhou W. Advances in Inorganic Foam Materials Fabricated Via Blowing Strategy: A Comprehensive Review. ACS NANO 2024; 18:21747-21778. [PMID: 39105765 DOI: 10.1021/acsnano.4c05321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Two-dimensional (2D) materials with excellent properties and widespread applications have been explosively investigated. However, their conventional synthetic methods exhibit concerns of limited scalability, complex purification process, and incompetence of prohibiting their restacking. The blowing strategy, characterized by gas-template, low-cost, and high-efficiency, presents a valuable avenue for the synthesis of 2D-based foam materials and thereby addresses these constraints. Whereas, its comprehensive introduction has been rarely outlined so far. This review commences with a synopsis of the blowing strategy, elucidating its development history, the statics and kinetics of the blowing process, and the choice of precursor and foaming agents. Thereafter, we dwell at length on across-the-board foams enabled by the blowing route, like BxCyNz foams, carbon foams, and diverse composite foams consisting of carbon and metal compounds. Following that, a wide-ranging evaluation of the functionality of the foam products in fields such as energy storage, electrocatalysis, adsorption, etc. is discussed, revealing their distinctive strength originated from the foam structure. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future research priorities in this rapidly developing method.
Collapse
Affiliation(s)
- Zimo Pang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhichao Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Jianyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Guangyue Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Canshang Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Chengkai Du
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Weiwei Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
17
|
Zhang X, Tong X, Wang J, Zhu X, Li Z, Fang F, Qian K, E Y. Enhancement of acidic hydrogen evolution reaction efficiency through Cu/Ni-doped MFI-type protozeolite layered nanoclusters. RSC Adv 2024; 14:26604-26610. [PMID: 39175691 PMCID: PMC11340388 DOI: 10.1039/d4ra04475d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
We have prepared a highly active and stable copper-doped nickel electrocatalyst. Cu/Ni-doped MFI-type protozeolite layered nanoclusters electrodes have a large electrochemically active surface area (ECSA) and good HER activity, as well as excellent durability. The addition of Cu greatly increases hydrogen evolution reaction (HER) activity under acidic conditions. At the same time, the in situ grown Cu2+1O provides some activity, and in addition, the interface constructed between Cu and Ni further generates sufficient electrochemically active surface area. The activated Cu/Ni-doped MFI-type layered nanoclusters required only a 385 mV overpotential to generate 10 mA cm-2, demonstrating efficient and stable activity with potential practical applications.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Xiyuan Tong
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Junyang Wang
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Xinyu Zhu
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Zhuozhe Li
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Fang Fang
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Kun Qian
- Jinzhou Medical University Jinzhou 121001 PR China
| | - Yifeng E
- Jinzhou Medical University Jinzhou 121001 PR China
| |
Collapse
|
18
|
Doughty T, Zingl A, Wünschek M, Pichler CM, Watkins MB, Roy S. Structural Reconstruction of a Cobalt- and Ferrocene-Based Metal-Organic Framework during the Electrochemical Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40814-40824. [PMID: 39041926 PMCID: PMC11310903 DOI: 10.1021/acsami.4c03262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Metal-organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER) due to their unique modular structures that present a hybrid between molecular and heterogeneous catalysts, featuring well-defined active sites. However, many fundamental questions remain open regarding the electrochemical stability of MOFs, structural reconstruction of coordination sites, and the role of in situ-formed species. Here, we report the structural transformation of a surface-grown MOF containing cobalt nodes and 1,1'-ferrocenedicarboxylic acid linkers (denoted as CoFc-MOF) during the OER in alkaline electrolyte. Ex situ and in situ investigations of CoFc-MOF film suggest that the MOF acts as a precatalyst and undergoes a two-step restructuring process under operating conditions to generate a metal oxyhydroxide phase. The MOF-derived metal oxyhydroxide catalyst, supported on nickel foam electrodes, displays high activity toward the OER with an overpotential of 190 mV at a current density of 10 mA cm-2. While this study demonstrates the necessity of investigating structural evolution of MOFs during electrocatalysis, it also shows the potential of using MOFs as precursors in catalyst design.
Collapse
Affiliation(s)
- Thomas Doughty
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| | - Andrea Zingl
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
| | - Maximilian Wünschek
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
| | - Christian M. Pichler
- Institute
of Applied Physics, TU Vienna, Wiedner Hauptstraße 8-10, Vienna 1040, Austria
- Centre
of Electrochemical and Surface Technology, Viktor Kaplan Straße 2, Wiener Neustadt 2700, Austria
| | - Matthew B. Watkins
- School
of Mathematics and Physics, University of
Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Souvik Roy
- School
of Chemistry, University of Lincoln, Green Lane, Lincoln LN6 7DL, U.K.
| |
Collapse
|
19
|
Guo L, Zhang Z, Mu Z, Da P, An L, Shen W, Hou Y, Xi P, Yan CH. Ceria-Optimized Oxygen-Species Exchange in Hierarchical Bimetallic Hydroxide for Electrocatalytic Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406682. [PMID: 38837816 DOI: 10.1002/adma.202406682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Indexed: 06/07/2024]
Abstract
The utilization of rare earth elements to regulate the interaction between catalysts and oxygen-containing species holds promising prospects in the field of oxygen electrocatalysis. Through structural engineering and adsorption regulation, it is possible to achieve high-performance catalytic sites with a broken activity-stability tradeoff. Herein, this work fabricates a hierarchical CeO2/NiCo hydroxide for electrocatalytic oxygen evolution reaction (OER). This material exhibits superior overpotentials and enhanced stability. Multiple potential-dependent experiments reveal that CeO2 promotes oxygen-species exchange, especially OH- ions, between catalyst and environment, thereby optimizing the redox transformation of hydroxide and the adsorption of oxygen-containing intermediates during OER. This is attributed to the reduction in the adsorption energy barrier of Ni to *OH facilitated by CeO2, particularly the near-interfacial Ni sites. The less-damaging adsorbate evolution mechanism and the CeO2 hierarchical shell significantly enhance the structural robustness, leading to exceptional stability. Additionally, the observed "self-healing" phenomenon provides further substantiation for the accelerated oxygen exchange. This work provides a neat strategy for the synthesis of ceria-based complex hollow electrocatalysts, as well as an in-depth insight into the co-catalytic role of CeO2 in terms of oxygen transfer.
Collapse
Affiliation(s)
- Linchuan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhuang Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaori Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Shen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yichao Hou
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou, 014030, P. R. China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
20
|
Lu Y, Li J, Bao X, Zhang L, Jing M, Wang K, Luo Q, Gou L, Fan X. Confined growth of Ultrathin, nanometer-sized FeOOH/CoP heterojunction nanosheet arrays as efficient self-supported electrode for oxygen evolution reaction. J Colloid Interface Sci 2024; 667:597-606. [PMID: 38657543 DOI: 10.1016/j.jcis.2024.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Self-supported electrodes, featuring abundant active species and rapid mass transfer, are promising for practical applications in water electrolysis. However, constructing efficient self-supported electrodes with a strong affinity between the catalytic components and the substrate is of great challenge. In this study, by combining the ideas of in-situ construction and space-confined growth, we designed a novel self-supported FeOOH/cobalt phosphide (CoP) heterojunctions grown on a carefully modified commercial Ni foam (NF) with three-dimensional (3D) hierarchically porous Ni skeleton (FeOOH/CoP/3D NF). The specific porous structure of 3D NF directs the confined growth of FeOOH/CoP catalyst into ultra-thin and small-sized nanosheet arrays with abundant edge active sites. The active FeOOH/CoP component is stably anchored on the rough pore wall of 3D NF support, leading to superior stability and improved conductivity. These structural advantages contributed to a highly facilitated oxygen evolution reaction (OER) activity and enhanced durability of the FeOOH/CoP/3D NF electrode. Herein, the FeOOH/CoP/3D NF electrode afforded a low overpotential of 234 mV at 10 mA cm-2 (41 mV smaller than FeOOH/CoP grown on unmodified Ni foam) and high stability for over 90 h, which is among the top reported OER catalysts. Our study provides an effective idea and technique for the construction of active and robust self-supported electrodes for water electrolysis.
Collapse
Affiliation(s)
- Yao Lu
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Julong Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Xiaobing Bao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| | - Lulu Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Maosen Jing
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Kaixin Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Qiaomei Luo
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Lei Gou
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| | - Xiaoyong Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| |
Collapse
|
21
|
Wang RX, Yang L, Chen HY, Wang N, Zhang WJ, Li R, Chen YQ, You CY, Ramakrishna S, Long YZ. Rationally designing of Co-WS 2 catalysts with optimized electronic structure to enhance hydrogen evolution reaction. J Colloid Interface Sci 2024; 667:192-198. [PMID: 38636221 DOI: 10.1016/j.jcis.2024.04.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Designing and developing cost-effective, high-performance catalysts for hydrogen evolution reaction (HER) is crucial for advancing hydrogen production technology. Tungsten-based sulfides (WSx) exhibit great potential as efficient HER catalysts, however, the activity is limited by the larger energy required for water dissociation under alkaline conditions. Herein, we adopt a top-down strategy to construct heterostructure Co-WS2 nanofiber catalysts. The experimental results and theoretical simulations unveil that the work functions-induced built-in electric field at the interface of Co-WS2 catalysts facilitates the electron transfer from Co to WS2, significantly reducing water dissociation energy and optimizing the Gibbs free energy of the entire reaction step for HER. Besides, the self-supported catalysts of Co-WS2 nanoparticles confining 1D nanofibers exhibit an increased number of active sites. As expected, the heterostructure Co-WS2 catalysts exhibit remarkable HER activity with an overpotential of 113 mV to reach 10 mA cm-2 and stability with 30 h catalyzing at 23 mA cm-2. This work can provide an avenue for designing highly efficient catalysts applicable to the field of energy storage and conversion.
Collapse
Affiliation(s)
- Rong-Xu Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Lei Yang
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China.
| | - Han-Yang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Nan Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Wen-Jie Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ru Li
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - You-Qiang Chen
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Chao-Yu You
- Research Center for Smart Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao, 266071, China.
| |
Collapse
|
22
|
van Limpt RTM, Lao M, Tsampas MN, Creatore M. Unraveling the Role of the Stoichiometry of Atomic Layer Deposited Nickel Cobalt Oxides on the Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405188. [PMID: 38958233 PMCID: PMC11348001 DOI: 10.1002/advs.202405188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/04/2024] [Indexed: 07/04/2024]
Abstract
Nickel cobalt oxides (NCOs) are promising, non-precious oxygen evolution reaction (OER) electrocatalysts. However, the stoichiometry-dependent electrochemical behavior makes it crucial to understand the structure-OER relationship. In this work, NCO thin film model systems are prepared using atomic layer deposition. In-depth film characterization shows the phase transition from Ni-rich rock-salt films to Co-rich spinel films. Electrochemical analysis in 1 m KOH reveals a synergistic effect between Co and Ni with optimal performance for the 30 at.% Co film after 500 CV cycles. Electrochemical activation correlates with film composition, specifically increasing activation is observed for more Ni-rich films as its bulk transitions to the active (oxy)hydroxide phase. In parallel to this transition, the electrochemical surface area (ECSA) increases up to a factor 8. Using an original approach, the changes in ECSA are decoupled from intrinsic OER activity, leading to the conclusion that 70 at.% Co spinel phase NCO films are intrinsically the most active. The studies point to a chemical composition dependent OER mechanism: Co-rich spinel films show instantly high activities, while the more sustainable Ni-rich rock-salt films require extended activation to increase the ECSA and OER performance. The results highlight the added value of working with model systems to disclose structure-performance mechanisms.
Collapse
Affiliation(s)
- Renée T. M. van Limpt
- Department of Applied Physics and Science EducationEindhoven University of TechnologyEindhoven5600 MBNetherlands
| | - Mengmeng Lao
- Dutch Institute for Fundamental Energy Research (DIFFER)Eindhoven5600 HHNetherlands
| | - Mihalis N. Tsampas
- Dutch Institute for Fundamental Energy Research (DIFFER)Eindhoven5600 HHNetherlands
| | - Mariadriana Creatore
- Department of Applied Physics and Science EducationEindhoven University of TechnologyEindhoven5600 MBNetherlands
- Eindhoven Institute for Renewable Energy Systems (EIRES)Eindhoven5600 MBNetherlands
| |
Collapse
|
23
|
Jiang Y, Song Z, Qu M, Jiang Y, Luo W, He R. Co─Mn Bimetallic Nanowires by Interfacial Modulation with/without Vacancy Filling as Active and Durable Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400859. [PMID: 38516951 DOI: 10.1002/smll.202400859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Active and stable nonnoble electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required for water splitting by sustainable electricity. Here, Mn bonded with O and P is incorporated to modulate Co3S4 and Co2P respectively to enhance the catalytic activity and extend the catalyst lifetime. Mn3O4 adjusts the electronic structure of Co3S4 and Co atom fills the oxygen vacancy in Mn3O4. The interfacial interaction endows Co3S4/Mn3O4 to a lower reaction barrier due to ideal binding energies for OER intermediates. Structure stability of active sites and enhanced Co─S bonds by Operando Raman spectroscopy and theoretical calculations reduce the dissolution of Co3S4/Mn3O4, resulting in a lifetime of 500 h at 50 mA cm-2 for OER. The modulation of Co2P by MnP weakens the interaction between Co sites and adsorbed H*, achieving a high activity under a large current for HER. The assembled electrolyzer affords 50 mA cm-2 at 1.58 V and exhibits a lifetime of 350 h at 50 mA cm-2. The calculations disclose the electron interaction for the activity and stability, as well as the enhanced conductivity. The findings develop new avenues toward promoting catalytic activity and stability, making Co─Mn bimetallic nanowires efficient electrocatalysts for nonnoble water electrolyzers.
Collapse
Affiliation(s)
- Yimin Jiang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Zekuan Song
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Meijiao Qu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yong Jiang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Rongxing He
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
24
|
Wang W, Xu L, Ye R, Yang P, Zhu J, Jiang L, Wu X. Molybdenum and Vanadium-Codoped Cobalt Carbonate Nanosheets Deposited on Nickel Foam as a High-Efficient Bifunctional Catalyst for Overall Alkaline Water Splitting. Molecules 2024; 29:3591. [PMID: 39124995 PMCID: PMC11314115 DOI: 10.3390/molecules29153591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
To address issues of global energy sustainability, it is essential to develop highly efficient bifunctional transition metal-based electrocatalysts to accelerate the kinetics of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Herein, the heterogeneous molybdenum and vanadium codoped cobalt carbonate nanosheets loaded on nickel foam (VMoCoCOx@NF) are fabricated by facile hydrothermal deposition. Firstly, the mole ratio of V/Mo/Co in the composite is optimized by response surface methodology (RSM). When the optimized composite serves as a bifunctional catalyst, the water-splitting current density achieves 10 mA cm-2 and 100 mA cm-2 at cell voltages of 1.54 V and 1.61 V in a 1.0 M KOH electrolyte with robust stability. Furthermore, characterization is carried out using field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Density functional theory (DFT) calculations reveal that the fabricated VMoCoCOx@NF catalyst synergistically decreases the Gibbs free energy of hydrogen and oxygen-containing intermediates, thus accelerating OER/HER catalytic kinetics. Benefiting from the concerted advantages of porous NF substrates and clustered VMoCoCOx nanosheets, the fabricated catalyst exhibits superior electrocatalytic performance. This work presents a novel approach to developing transition metal catalysts for overall water splitting.
Collapse
Affiliation(s)
- Wenxin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lulu Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, China
| | - Ruilong Ye
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, China
| | - Peng Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, China
| | - Junjie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingcai Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing 210023, China
| |
Collapse
|
25
|
Yu SE, Su YL, Ni IC, Chuang YC, Hsu CC, Wu CI, Chen YS, Cheng IC, Chen JZ. Direct Current Pulse Atmospheric Pressure Plasma Jet Treatment on Electrochemically Deposited NiFe/Carbon Paper and Its Potential Application in an Anion-Exchange Membrane Water Electrolyzer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14978-14989. [PMID: 38946167 PMCID: PMC11271009 DOI: 10.1021/acs.langmuir.4c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
An atmospheric pressure plasma jet (APPJ) is used to process electrochemically deposited NiFe on carbon paper (NiFe/CP). The reactive oxygen and nitrogen species (RONs) of the APPJ modify the surface properties, chemical bonding types, and oxidation states of the material at the self-sustained temperature of the APPJ. The APPJ treatment further enhances the hydrophilicity and creates a higher disorder level in the carbon material. Moreover, the metal carbide bonds of NiFe/CP formed in the electrochemical deposition (ED) process are converted to metal oxide bonds after APPJ processing. The potential application of APPJ treatment on NiFe/CP in alkaline water electrolysis is demonstrated. With more oxygen-containing species and better hydrophilicity after APPJ treatment, APPJ-treated NiFe/CP is applied as the electrocatalyst for the oxygen evolution reaction (OER) in alkaline water electrolysis. APPJ-treated NiFe/CP is also used in a custom-made anion-exchange membrane water electrolyzer (AEMWE); this should contribute toward realizing the practical large-scale application of AEM for hydrogen production.
Collapse
Affiliation(s)
- Shuo-En Yu
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei
City 106319, Taiwan
| | - Yu-Lun Su
- Institute
of Applied Mechanics, National Taiwan University, Taipei City 106319, Taiwan
| | - I-Chih Ni
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei City 106319, Taiwan
| | - Yi-Cheng Chuang
- Department
of Mechanical Engineering and Advanced Institute of Manufacturing
with High-Tech Innovations, National Chung
Cheng University, Minhsiung, Chiayi 621301, Taiwan
| | - Cheng-Che Hsu
- Department
of Chemical Engineering, National Taiwan
University, Taipei
City 106319, Taiwan
| | - Chih-I Wu
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei
City 106319, Taiwan
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei City 106319, Taiwan
| | - Yong-Song Chen
- Department
of Mechanical Engineering and Advanced Institute of Manufacturing
with High-Tech Innovations, National Chung
Cheng University, Minhsiung, Chiayi 621301, Taiwan
| | - I-Chun Cheng
- Graduate
Institute of Photonics and Optoelectronics and Department of Electrical
Engineering, National Taiwan University, Taipei City 106319, Taiwan
| | - Jian-Zhang Chen
- Graduate
School of Advanced Technology, National
Taiwan University, Taipei
City 106319, Taiwan
- Institute
of Applied Mechanics, National Taiwan University, Taipei City 106319, Taiwan
- Advanced
Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 106319, Taiwan
| |
Collapse
|
26
|
Jing X, Dong J, Mao Y, Zhou L, Ding J, Dong H, Zhang L, Zhang Y, Zhang W. Synergistic Effect Enables the Dual-Metal Doped Cobalt Telluride Particles as Potential Electrocatalysts for Oxygen Evolution in Alkaline Electrolyte. Inorg Chem 2024; 63:12764-12773. [PMID: 38950312 DOI: 10.1021/acs.inorgchem.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Cobalt (Co)-based materials have been widely investigated as hopeful noble-metal-free alternatives for the oxygen evolution reaction (OER) in alkaline electrolytes, which is crucial for generating hydrogen by water electrolysis. Herein, cobalt-based telluride particles with good electronic conductivity as anodic electrocatalysts were prepared under vacuum by the solid-state strategy, which display remarkable activities toward the OER. Nickel (Ni) and iron (Fe) codoped cobalt telluride (NiFe-CoTe) exhibits an overpotential of 321 mV to achieve a current density of 10 mA cm-2 and a Tafel slope of 51.8 mV dec-1, outperforming the performances of CoTe, CoTe2, and IrO2. According to the DFT calculation, the adsorbed hydroxyl-assisted adsorbate evolution mechanism was proposed for the OER process of NiFe-CoTe, which reveals the synergetic effect toward OER induced by codoping of the Ni and Fe atoms. This work proposes a rational strategy to prepare cobalt-based tellurides as efficient OER catalysts in alkaline electrolytes, providing a new strategy to prepare and regulate metal-based tellurides for catalysis and beyond.
Collapse
Affiliation(s)
- Xiaoxiao Jing
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Zhengzhou 450046, China
| | - Jinyuan Dong
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Zhengzhou 450046, China
| | - Yuguang Mao
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Zhengzhou 450046, China
| | - Lingyan Zhou
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Zhengzhou 450046, China
| | - Jiabao Ding
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Zhengzhou 450046, China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
- National Center for International Research on Intelligent Nano-Materials and Detection Technology in Environmental Protection, Soochow University, Suzhou 215123, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yuxuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Weifeng Zhang
- Henan Key Laboratory of Quantum Materials and Quantum Energy, School of Quantum Information Future Technology, Henan University, Zhengzhou 450046, China
- Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| |
Collapse
|
27
|
Lv J, Liu J, Liu J, Huang Z, Li Y, Zhang H, Li T, Zhang S. Laser Additive Manufacturing of Three-Dimensional Ti/TiN Nanotube Arrays with Hierarchical Pore Structures and Promoted Supercapacitor Performances. NANO LETTERS 2024; 24:8327-8334. [PMID: 38942742 DOI: 10.1021/acs.nanolett.4c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Titanium-based composites hold great promise in versatile functional application fields, including supercapacitors. However, conventional subtractive methods for preparing complex-shaped titanium-based composites generally suffer from several significant shortcomings, including low efficiency, strictly simple geometry, low specific surface area, and poor electrochemical performance of the products. Herein, three-dimensional composites of Ti/TiN nanotube arrays with hierarchically porous structures were prepared using the additive manufacturing method of selective laser melting combined with anodic oxidation and nitridation. The resultant Ti/TiN nanotube array composites exhibit good electrical conductivity, ultrahigh specific surface areas, and outstanding supercapacitor performances featuring the unique combination of a large specific capacitance of 134.4 mF/cm2 and a high power density of 4.1 mW/cm2, which was remarkably superior to that of their counterparts. This work is anticipated to provide new insights into the facile and efficient preparation of high-performance structural and functional devices with arbitrarily complex geometries and good overall performances.
Collapse
Affiliation(s)
- Junyi Lv
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jie Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jianghao Liu
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhong Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yage Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haijun Zhang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tao Li
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shaowei Zhang
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K
| |
Collapse
|
28
|
Liao X, Huang Z, Zhang W, Meng Y, Yang L, Gao Q. Cr-doping promoted surface reconstruction of Ni 3N electrocatalysts toward efficient overall water splitting. J Colloid Interface Sci 2024; 674:1048-1057. [PMID: 39003820 DOI: 10.1016/j.jcis.2024.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Understanding and utilizing the dynamic changes of electrocatalysts under working conditions are important for advancing the sustainable hydrogen production. Here, we for the first time report that Cr-doping can promote the in situ reconstruction of a self-supported Ni3N electrocatalyst (Cr-Ni3N/NF) during oxygen and hydrogen evolution reactions (OER and HER), and therefore improve the electrocatalytic water splitting performance. As identified by in situ measurements and theoretical calculations, Cr-doping enhances OH- adsorption during OER at anode and thereby boosts the transformation of Ni3N pre-catalysts to defect-rich nickel oxyhydroxide (NiOOH) active species. Meanwhile, it facilitates the generation of Ni3N/Ni(OH)2 at cathodes due to effective H2O activation, leading to the fast HER kinetics on the Ni3N/Ni(OH)2 interfaces. Notably, the optimal Cr-Ni3N/NF displays good OER and HER performance in 1.0 M KOH electrolytes, with low overpotentials of 316 and 188 mV to achieve the current density of ± 100 mA cm-2, respectively. Benefiting from its bi-functionality and self-supporting property, an alkaline electrolyzer equipped with Cr-Ni3N/NF as both anode and cathode affords a small voltage of 1.72 V at 100 mA cm-2, along with 100 h operation stability. Elucidating that Cr-doping can boost in situ reconfiguration and consequently the electrocatalytic activity, this work would shed new light on the rational design and synthesis of electrocatalysts via directional reconstructions.
Collapse
Affiliation(s)
- Xianping Liao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Zinan Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Yuying Meng
- College of Chemistry and Materials Science, and Institution Advance Wear & Corrosion Resistance & Functional Material, Jinan University, Guangzhou 510632, China.
| | - Lichun Yang
- School of Materials Science and Engineering, and Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
29
|
Wei S, Xia X, Bi S, Hu S, Wu X, Hsu HY, Zou X, Huang K, Zhang DW, Sun Q, Bard AJ, Yu ET, Ji L. Metal-insulator-semiconductor photoelectrodes for enhanced photoelectrochemical water splitting. Chem Soc Rev 2024; 53:6860-6916. [PMID: 38833171 DOI: 10.1039/d3cs00820g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production. The practical implementation of PEC systems hinges on addressing three critical challenges: enhancing energy conversion efficiency, ensuring long-term stability, and achieving economic viability. Metal-insulator-semiconductor (MIS) heterojunction photoelectrodes have gained significant attention over the last decade for their ability to efficiently segregate photogenerated carriers and mitigate corrosion-induced semiconductor degradation. This review discusses the structural composition and interfacial intricacies of MIS photoelectrodes tailored for PEC water splitting. The application of MIS heterostructures across various semiconductor light-absorbing layers, including traditional photovoltaic-grade semiconductors, metal oxides, and emerging materials, is presented first. Subsequently, this review elucidates the reaction mechanisms and respective merits of vacuum and non-vacuum deposition techniques in the fabrication of the insulator layers. In the context of the metal layers, this review extends beyond the conventional scope, not only by introducing metal-based cocatalysts, but also by exploring the latest advancements in molecular and single-atom catalysts integrated within MIS photoelectrodes. Furthermore, a systematic summary of carrier transfer mechanisms and interface design principles of MIS photoelectrodes is presented, which are pivotal for optimizing energy band alignment and enhancing solar-to-chemical conversion efficiency within the PEC system. Finally, this review explores innovative derivative configurations of MIS photoelectrodes, including back-illuminated MIS photoelectrodes, inverted MIS photoelectrodes, tandem MIS photoelectrodes, and monolithically integrated wireless MIS photoelectrodes. These novel architectures address the limitations of traditional MIS structures by effectively coupling different functional modules, minimizing optical and ohmic losses, and mitigating recombination losses.
Collapse
Affiliation(s)
- Shice Wei
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuewen Xia
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Bi
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Shen Hu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Xuefeng Wu
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Hsien-Yi Hsu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xingli Zou
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Kai Huang
- Department of Physics, Xiamen University, Xiamen 361005, China.
| | - David W Zhang
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Qinqqing Sun
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| | - Allen J Bard
- Department of Chemistry, The University of Texas at Austin, Texas 78713, USA
| | - Edward T Yu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Texas 78758, USA.
| | - Li Ji
- School of Microelectronics & Jiashan Fudan Institute, Fudan University, Shanghai 200433, China.
| |
Collapse
|
30
|
Fan J, Wang L, Xiang X, Liu Y, Shi N, Lin Y, Xu D, Jiang J, Lai Y, Bao J, Han M. Porous Flower-Like Nanoarchitectures Derived from Nickel Phosphide Nanocrystals Anchored on Amorphous Vanadium Phosphate Nanosheet Nanohybrids for Superior Overall Water Splitting. SMALL METHODS 2024; 8:e2301279. [PMID: 38189527 DOI: 10.1002/smtd.202301279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Transition metal phosphides (TMPs) and phosphates (TM-Pis) nanostructures are promising functional materials for energy storage and conversion. Nonetheless, controllable synthesis of crystalline/amorphous heterogeneous TMPs/TM-Pis nanohybrids or related nanoarchitectures remains challenging, and their electrocatalytic applications toward overall water splitting (OWS) are not fully explored. Herein, the Ni2P nanocrystals anchored on amorphous V-Pi nanosheet based porous flower-like nanohybrid architectures that are self-supported on carbon cloth (CC) substrate (Ni2P/V-Pi/CC) are fabricated by conformal oxidation and phosphorization of pre-synthesized NiV-LDH/CC. Due to the unique microstructures and strong synergistic effects of crystalline Ni2P and amorphous V-Pi components, the obtained Ni2P/V-Pi/CC owns abundant active sites, suitable surface/interface electronic structure and optimized adsorption-desorption of reaction intermediates, resulting in outstanding electrocatalytic performances toward hydrogen and oxygen evolution reactions in alkaline media. Correspondingly, the assembled Ni2P/V-Pi/CC||Ni2P/V-Pi/CC electrolyzer only needs an ultralow cell voltage (1.44 V) to deliver 10 mA cm-2 water-splitting currents, exceeding its counterparts, recently reported bifunctional catalysts-based devices, and Pt/C/CC||IrO2/CC pairs. Moreover, the Ni2P/V-Pi/CC||Ni2P/V-Pi/CC manifests remarkable stability. Also, such device shows a certain prospect for OWS in acidic media. This work may spur the development of TMPs/TMPis-based nanohybrid architectures by combining structure and phase engineering, and push their applications in OWS or other clean energy options.
Collapse
Affiliation(s)
- Jiayao Fan
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Wang
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xing Xiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Ying Liu
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Naien Shi
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, 230026, P. R. China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiadong Jiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Yu Lai
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Han
- Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China
- Jiangsu Key Laboratory of New Power Batteries, and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
31
|
Xia X, Wang S, Liu D, Wang F, Zhang X, Zhang H, Yu X, Pang Z, Li G, Chen C, Zhao Y, Ji L, Xu Q, Zou X, Lu X. Electronic Modulation in Cu Doped NiCo LDH/NiCo Heterostructure for Highly Efficient Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311182. [PMID: 38332446 DOI: 10.1002/smll.202311182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Indexed: 02/10/2024]
Abstract
Layered double hydroxides (LDHs), promising bifunctional electrocatalysts for overall water splitting, are hindered by their poor conductivity and sluggish electrochemical reaction kinetics. Herein, a hierarchical Cu-doped NiCo LDH/NiCo alloy heterostructure with rich oxygen vacancies by electronic modulation is tactfully designed. It extraordinarily effectively drives both the oxygen evolution reaction (151 mV@10 mA cm-2) and the hydrogen evolution reaction (73 mV@10 mA cm-2) in an alkaline medium. As bifunctional electrodes for overall water splitting, a low cell voltage of 1.51 V at 10 mA cm-2 and remarkable long-term stability for 100 h are achieved. The experimental and theoretical results reveal that Cu doping and NiCo alloy recombination can improve the conductivity and reaction kinetics of NiCo LDH with surface charge redistribution and reduced Gibbs free energy barriers. This work provides a new inspiration for further design and construction of nonprecious metal-based bifunctional electrocatalysts based on electronic structure modulation strategies.
Collapse
Affiliation(s)
- Xuewen Xia
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Shujuan Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Dan Liu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Fei Wang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xueqiang Zhang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Hao Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Xing Yu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhongya Pang
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Guangshi Li
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Chaoyi Chen
- Department of Metallurgical Engineering, College of Materials and Metallurgy, Guizhou University, Guizhou, 550025, China
| | - Yufeng Zhao
- Institute of Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Li Ji
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Qian Xu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
32
|
Ahmad A, Nairan A, Feng Z, Zheng R, Bai Y, Khan U, Gao J. Unlocking the Potential of High Entropy Alloys in Electrochemical Water Splitting: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311929. [PMID: 38396229 DOI: 10.1002/smll.202311929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
The global pursuit of sustainable energy is focused on producing hydrogen through electrocatalysis driven by renewable energy. Recently, High entropy alloys (HEAs) have taken the spotlight in electrolysis due to their intriguing cocktail effect, broad design space, customizable electronic structure, and entropy stabilization effect. The tunability and complexity of HEAs allow a diverse range of active sites, optimizing adsorption strength and activity for electrochemical water splitting. This review comprehensively covers contemporary advancements in synthesis technique, design framework, and physio-chemical evaluation approaches for HEA-based electrocatalysts. Additionally, it explores design principles and strategies aimed at optimizing the catalytic activity, stability, and effectiveness of HEAs in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. Through an in-depth investigation of these aspects, the complexity inherent in constituent element interactions, reaction processes, and active sites associated with HEAs is aimed to unravel. Eventually, an outlook regarding challenges and impending difficulties and an outline of the future direction of HEA in electrocatalysis is provided. The thorough knowledge offered in this review will assist in formulating and designing catalysts based on HEAs for the next generation of electrochemistry-related applications.
Collapse
Affiliation(s)
- Abrar Ahmad
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Adeela Nairan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuo Feng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruiming Zheng
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yelin Bai
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Usman Khan
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junkuo Gao
- Institute of Functional Porous Materials, School of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
33
|
Wang J, Zhang G, Liu H, Wang L, Li Z. Ru Regulated Electronic Structure of Pd xCu y Nanosheets for Efficient Hydrogen Evolution Reaction in Wide pH Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310277. [PMID: 38431942 DOI: 10.1002/smll.202310277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/13/2024] [Indexed: 03/05/2024]
Abstract
The development of highly effective catalysts for hydrogen evolution reaction (HER) in a wide pH range is crucial for the sustainable utilization of green energy utilization, while the slow kinetic reaction rate severely hinders the progress of HER. Herein, the reaction kinetic issue is solved by adjusting the electronic structure of the Ru/PdxCuy catalysts. The champion catalyst displays a remarkable performance for HER with the ultralow overpotential (27, 28, and 97 mV) in 1.0 m KOH, 0.5 m H2SO4, and 1.0 m PBS at 10 mA cm-2 and high the mass activity (3036 A g-1), respectively, superior to those of commercial Pt/C benchmarks and most of reported electrocatalysts, mainly due to its low reaction activation energy. Density functional theory (DFT) calculations indicate that Ru doping contributes an electron-deficient 3d band, which promotes water adsorption. Additionally, this also leads to an upward shift of the d-band center of Pd and a downward shift of the d-band center of Cu, further optimizing the adsorption/dissociation of H2O and H*. Results from this work may provide an insight into the design and synthesis of high-performance pH-universal HER electrocatalysts.
Collapse
Affiliation(s)
- Jigang Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Guangyang Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China
| | - Huan Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255049, China
| |
Collapse
|
34
|
Zhao Y, Li J, He Y, Wang X, Ma C, Zhan T, Chen L, Wang J, Ling Q, Wu X, Xiao Z, Cai J, Wu P. Efficient Hydrogen Production over Molybdenum Tungsten Bimetallic Oxide NF/PMo nW 12-n Catalyst on Nickel Foam. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12089-12096. [PMID: 38804669 DOI: 10.1021/acs.langmuir.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Developing inexpensive, efficient, and stable catalysts is crucial for reducing the cost of electrolytic hydrogen production. Recently, polyoxometalates (POMs) have gained attention and widespread use due to their excellent electrocatalytic properties. This study designed and synthesized three composite materials, NF/PMonW12-n, by using phosphomolybdic-tungstic heteropolyacids as precursors to grow in situ on nickel foam via the hydrothermal process and subsequent calcination. Then, their catalytic performances are systematically investigated. This work demonstrates that the NF/PMonW12-n catalysts generate more low valent oxides under the synergistic effect of Mo and W, further enhancing activity for hydrogen evolution reaction (HER). Among these electrocatalysts, NF/PMo6W6 exhibits the perfect HER performance, η10 is only 74 mV. It also shows great stability during long-term electrolysis. The current study introduces a fresh approach for producing electrocatalysts that are both cost-effective and highly efficient.
Collapse
Affiliation(s)
- Yanchao Zhao
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jincheng Li
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Yuzhou He
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Xingyue Wang
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Chunhui Ma
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Taozhu Zhan
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Lihong Chen
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jiani Wang
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Qian Ling
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Xuefei Wu
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co, Ltd., Dalian 116045, Liaoning, China
| | - Zicheng Xiao
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jinlong Cai
- Department of Electronic Science and Technology, School of Science, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Pingfan Wu
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| |
Collapse
|
35
|
Yang G, Peng W, Chen Z, Li S, Han Q, Hu R, Yuan B. In Situ Construction of Biphasic Boride Electrocatalysts on Dealloyed Bulk Ni-Mo Alloy as Self-Supporting Electrode for Water Splitting at High Current Density. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28578-28589. [PMID: 38797977 DOI: 10.1021/acsami.4c04157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nickel-molybdenum-boron (Ni-Mo-B)-based catalysts with biphasic interfaces are highly advantageous in bifunctional electrocatalytic activity in alkaline water-splitting. However, it remains an ongoing challenge to obtain porous Ni-Mo alloy substrates that provide stable adhesion to catalysts, ensuring the long-term performance of bifunctional self-supporting electrodes at a high current density. Herein, a porous Ni-Mo alloy substrate was effectively obtained by a cost-effective dealloying process on a commercial Ni-Mo alloy with high-energy crystal planes. Subsequently, the Mo2NiB2/Ni3B bifunctional catalyst was in situ synthesized on this substrate via boriding heat treatment, resulting in outstanding catalytic activity and stability. Density functional theory (DFT) calculations reveal that the abundant biphasic interfaces and surface-reconstructed sites of the Mo2NiB2/Ni3B catalyst can decrease the energy barriers for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Thus, the designed self-supporting electrodes show bifunctional catalytic activity with overpotentials of 151 mV for HER and 260 mV for OER at a current density of 10 mA cm-2. Markedly, the assembled water electrolyzer can be driven up to 10 mA cm-2 at 1.64 V and maintain catalytic activity at a high current density of 1000 mA cm-2 for 100 h. The new strategy is expected to provide a low-cost scheme for designing self-supporting bifunctional electrodes with high activity and excellent stability and contribute to the development of hydrogen energy technology.
Collapse
Affiliation(s)
- Guangyao Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, Guangzhou 510640, P.R. China
| | - Weiliang Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, Guangzhou 510640, P.R. China
| | - Zhipeng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, Guangzhou 510640, P.R. China
| | - Shaobo Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, Guangzhou 510640, P.R. China
| | - Qiying Han
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P.R. China
- Guangdong Jinsheng New Energy Co., Ltd., Zhaoqing 526116, P.R. China
| | - Renzong Hu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, Guangzhou 510640, P.R. China
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P.R. China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, Guangzhou 510640, P.R. China
- Guangdong Province Waste Lithium Battery Clean Regeneration Engineering Technology Research Center, Zhaoqing 526116, P.R. China
| |
Collapse
|
36
|
Zhou Y, Gao J, Ju M, Chen Y, Yuan H, Li S, Li J, Guo D, Hong M, Yang S. Combustion Growth of NiFe Layered Double Hydroxide for Efficient and Durable Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28526-28536. [PMID: 38775170 DOI: 10.1021/acsami.4c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
NiFe layered double hydroxide (LDH) with abundant heterostructures represents a state-of-the-art electrocatalyst for the alkaline oxygen evolution reaction (OER). Herein, NiFe LDH/Fe2O3 nanosheet arrays have been fabricated by facile combustion of corrosion-engineered NiFe foam (NFF). The in situ grown, self-supported electrocatalyst exhibited a low overpotential of 248 mV for the OER at 50 mA cm-2, a small Tafel slope of 31 mV dec-1, and excellent durability over 100 h under the industrial benchmarking 500 mA cm-2 current density. A balanced Ni and Fe composition under optimal corrosion and combustion contributed to the desirable electrochemical properties. Comprehensive ex-situ analyses and operando characterizations including Fourier-transformed alternating current voltammetry (FTACV) and in situ Raman demonstrate the beneficial role of modulated interfacial electron transfer, dynamic atomic structural transformation to NiOOH, and the high-valence active metal sites. This study provides a low-cost and easy-to-expand way to synthesize efficient and durable electrocatalysts.
Collapse
Affiliation(s)
- Yu Zhou
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Jinqiang Gao
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Min Ju
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanpeng Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Haifeng Yuan
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Simeng Li
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Mei Hong
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shihe Yang
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
37
|
Yang S, Liu X, Li S, Yuan W, Yang L, Wang T, Zheng H, Cao R, Zhang W. The mechanism of water oxidation using transition metal-based heterogeneous electrocatalysts. Chem Soc Rev 2024; 53:5593-5625. [PMID: 38646825 DOI: 10.1039/d3cs01031g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The water oxidation reaction, a crucial process for solar energy conversion, has garnered significant research attention. Achieving efficient energy conversion requires the development of cost-effective and durable water oxidation catalysts. To design effective catalysts, it is essential to have a fundamental understanding of the reaction mechanisms. This review presents a comprehensive overview of recent advancements in the understanding of the mechanisms of water oxidation using transition metal-based heterogeneous electrocatalysts, including Mn, Fe, Co, Ni, and Cu-based catalysts. It highlights the catalytic mechanisms of different transition metals and emphasizes the importance of monitoring of key intermediates to explore the reaction pathway. In addition, advanced techniques for physical characterization of water oxidation intermediates are also introduced, for the purpose of providing information for establishing reliable methodologies in water oxidation research. The study of transition metal-based water oxidation electrocatalysts is instrumental in providing novel insights into understanding both natural and artificial energy conversion processes.
Collapse
Affiliation(s)
- Shujiao Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xiaohan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Sisi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wenjie Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Luna Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
38
|
Li Z, Xu C, Zhang Z, Xia S, Li D, Liu L, Chen P, Dong X. Reversing the Interfacial Electric Field in Metal Phosphide Heterojunction by Fe-Doping for Large-Current Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308477. [PMID: 38590138 DOI: 10.1002/advs.202308477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Developing non-precious-metal electrocatalysts that can operate with a low overpotential at a high current density for industrial application is challenging. Heterogeneous bimetallic phosphides have attracted much interest. Despite high hydrogen evolution reaction (HER) performance, the ordinary oxygen evolution reaction (OER) performance hinders their practical use. Herein, it is shown that Fe-doping reverses and enlarges the interfacial electrical field at the heterojunction, turning the H intermediate favorable binding sites for HER into O intermediate favorable sites for OER. Specifically, the self-supported heterojunction catalysts on nickel foam (CoP@Ni2P/NF and Fe-CoP@Fe-Ni2P/NF) are readily synthesized. They only require the overpotentials of 266 and 274 mV to drive a large current density of 1000 mA cm-2 (j1000) for HER and OER, respectively. Furthermore, a water splitting cell equipped with these electrodes only requires a voltage of 1.724 V to drive j1000 with excellent durability, demonstrating the potential of industrial application. This work offers new insights on interfacial engineering for heterojunction catalysts.
Collapse
Affiliation(s)
- Zhong Li
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chengshuang Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Zheye Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 637457, Singapore
| | - Shan Xia
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Liren Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 637457, Singapore
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
39
|
Chen Z, Li L, Chu Y, Zhao F, Zhu Y, Tong S, Zheng H. Bio-Inspired Superhydrophilic Self-Assembled Coronavirus-Like Pt-WC/CNT for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309675. [PMID: 38263847 DOI: 10.1002/smll.202309675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/10/2024] [Indexed: 01/25/2024]
Abstract
This study presents a novel approach to enhance the catalytic activity of composite materials by promoting active surface exposure and improving hydrogen transfer performance. Through a self-assembly route involving tailored gas-solid and galvanic replacement reactions, Pt-WC/CNT catalysts with superhydrophilicity and coronavirus-like structure are synthesized. These unique structural features contribute to a remarkable enhancement in the electrocatalytic performance of the hydrogen evolution reaction (HER). Notably, the Pt-WC/CNT catalyst exhibits an outstanding intrinsic activity and efficient bubble transfer properties, leading to a high turnover frequency of 34.97 H2·s-1 at an overpotential of 100 mV. This value is 4.8 times higher than that achieved by commercial Pt/C catalysts (7.30 H2·s-1), establishing Pt-WC/CNT as one of the most active catalysts reported to date. Moreover, the combination of gas-solid and galvanic replacement reactions in the synthesis process offers a scalable route for the production of Pt-loading controllable composite catalysts, thus challenging the dominance of commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Zhaoyang Chen
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Lingtong Li
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Youqun Chu
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Fengming Zhao
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Yinghong Zhu
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shaoping Tong
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Huajun Zheng
- Cooperation Base of Energy Materials and Application, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
40
|
Lv D, Yin D, Yang Y, Shao H, Li D, Wang T, Ma Q, Li F, Yu W, Han C, Dong X. Self-supporting multi-channel Janus carbon fibers: A new strategy to achieve an efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2024; 663:270-279. [PMID: 38401447 DOI: 10.1016/j.jcis.2024.02.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
A new type of self-supporting multi-channel Janus carbon fibers with efficient water splitting has been successfully manufactured using a specially designed parallel spinneret through electrospinning technology and subsequent carbonization technique. Every single Janus fiber composes of a half side of Mo2C and the other half side of Ni components as Mo2C, Ni embedded in N-doped multi-channel Janus carbon fibers ([Mo2C/C]//[Ni/C]-NMCFs) for overall water splitting. Under optimized condition, the hydrogen evolution reaction overpotential of [Mo2C/C]//[Ni/C]-NMCFs (62 mV) is just 24 mV higher than 20 wt% Pt/C (38 mV) at a current density of 10 mA cm-2. Furthermore, it achieves current density of 10 mA cm-2 to require an overpotential of 324 mV for oxygen evolution reaction. Additionally, the cell assembled by the identical [Mo2C/C]//[Ni/C]-NMCFs catalyst as both the cathode and anode needs only 1.607 V at a current density of 10 mA cm-2, which is only 0.022 V higher than that of Pt/C-IrO2 electrodes. Moreover, [Mo2C/C]//[Ni/C]-NMCFs catalyst also exhibits a long-term stability. The synergistic effect and unique heterostructure of Mo2C and Ni enhance the catalytic activity.
Collapse
Affiliation(s)
- Dongxue Lv
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Duanduan Yin
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China.
| | - Ying Yang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Hong Shao
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Dan Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Feng Li
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China
| | - Ce Han
- State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.
| | - Xiangting Dong
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022, Jilin, China.
| |
Collapse
|
41
|
Yao Y, Liu Y, Shin J, Cai S, Zhang X, Guo Z, Blackman CS. In-situ fabrication of self-supported cobalt molybdenum sulphide on carbon paper for bifunctional water electrocatalysis. Heliyon 2024; 10:e31108. [PMID: 38826749 PMCID: PMC11141360 DOI: 10.1016/j.heliyon.2024.e31108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
The fabrication of highly efficient yet stable noble-metal-free bifunctional electrocatalysts that can simultaneously catalyse both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) remains challenging. Herein, we employ the heterostructure coupling strategy, showcasing an aerosol-assisted chemical vapour deposition (AACVD) aided synthetic approach for the in-situ growth of cobalt molybdenum sulphide nanocomposites on carbon paper (CoMoS@CP) as a bifunctional electrocatalyst. The AACVD allows the rational incorporation of Co in the Mo-S binary structure, which modulates the morphology of CoMoS@CP, resulting in enhanced HER activity (ŋ10 = 171 mV in acidic and ŋ10 = 177 mV in alkaline conditions). Furthermore, the CoS2 species in the CoMoS@CP ternary structure extends the OER capability, yielding an ŋ100 of 455 mV in 1 M KOH. Lastly, we found that the synergistic effect of the Co-Mo-S interface elevates the bifunctional performance beyond binary counterparts, achieving a low cell voltage (1.70 V at 10 mA cm-2) in overall water splitting test and outstanding catalytic stability (∼90 % performance retention after 50-/30-h continuous operation at 10 and 100 mA cm-2, respectively). This work has opened up a new methodology for the controllable synthesis of self-supported transition metal-based electrocatalysts for applications in overall water splitting.
Collapse
Affiliation(s)
- Yuting Yao
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Yuhan Liu
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Juhun Shin
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Shenglin Cai
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Xinyue Zhang
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Zhengxiao Guo
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, 999077, China
- HKU Zhejiang Institute of Research and Innovation, Hangzhou, 311305, China
| | | |
Collapse
|
42
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
43
|
Chen L, Wang HY, Tian WW, Wang L, Sun ML, Ren JT, Yuan ZY. Enabling Internal Electric Field in Heterogeneous Nanosheets to Significantly Accelerate Alkaline Hydrogen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307252. [PMID: 38054813 DOI: 10.1002/smll.202307252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Indexed: 12/07/2023]
Abstract
Efficient bifunctional hydrogen electrocatalysis, encompassing both hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR), is of paramount significance in advancing hydrogen-based societies. While non-precious-metal-based catalysts, particularly those based on nickel (Ni), are essential for alkaline HER/HOR, their intrinsic catalytic activity often falls short of expectations. Herein, an internal electric field (IEF) strategy is introduced for the engineering of heterogeneous nickel-vanadium oxide nanosheet arrays grown on porous nickel foam (Ni-V2O3/PNF) as bifunctional electrocatalysts for hydrogen electrocatalysis. Strikingly, the Ni-V2O3/PNF delivers 10 mA cm-2 at an overpotential of 54 mV for HER and a mass-specific kinetic current of 19.3 A g-1 at an overpotential of 50 mV for HOR, placing it on par with the benchmark 20% Pt/C, while exhibiting enhanced stability in alkaline electrolytes. Density functional theory calculations, in conjunction with experimental characterizations, unveil that the interface IEF effect fosters asymmetrical charge distributions, which results in more thermoneutral hydrogen adsorption Gibbs free energy on the electron-deficient Ni side, thus elevating the overall efficiency of both HER and HOR. The discoveries reported herein guidance are provided for further understanding and designing efficient non-precious-metal-based electrocatalysts through the IEF strategy.
Collapse
Affiliation(s)
- Lei Chen
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Hao Yu Wang
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Wen Wen Tian
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Lei Wang
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Ming Lei Sun
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Jin Tao Ren
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| | - Zhong Yong Yuan
- School of Materials Science, Engineering, Smart Sensing Interdisciplinary Science Center, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300350, China
| |
Collapse
|
44
|
He Y, Liu W, Liu J. MOF-based/derived catalysts for electrochemical overall water splitting. J Colloid Interface Sci 2024; 661:409-435. [PMID: 38306750 DOI: 10.1016/j.jcis.2024.01.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
Water-splitting electrocatalysis has gained increasing attention as a promising strategy for developing renewable energy in recent years, but its high overpotential caused by the unfavorable thermodynamics has limited its widespread implementation. Therefore, there is an urgent need to design catalytic materials with outstanding activity and stability that can overcome the high overpotential and thus improve the electrocatalytic efficiency. Metal-organic frameworks (MOFs) based and/or derived materials are widely used as water-splitting catalysts because of their easily controlled structures, abundant heterointerfaces and increased specific surface area. Herein, some recent research findings on MOFs-based/derived materials are summarized and presented. First, the mechanism and evaluation parameters of electrochemical water splitting are described. Subsequently, advanced modulation strategies for designing MOFs-based/derived catalysts and their catalytic performance toward water splitting are summarized. In particular, the correlation between chemical composition/structural functionalization and catalytic performance is highlighted. Finally, the future outlook and challenges for MOFs materials are also addressed.
Collapse
Affiliation(s)
- Yujia He
- College of Materials Science and Engineering, Institute for Graphene Applied, Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Wei Liu
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, China.
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied, Technology Innovation, Qingdao University, Qingdao 266071, China; School of Chemistry & Chemical Engineering, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
45
|
Liu S, Wang N, Liu G, Yang S, Li C, Zhou Y, He H, Chen Y, Thummavichaia K, Zhu Y. In situ synthesis of tentacle-like NiC/Mo 2C/NF nanorods array with excellent hydrogen evolution reaction at high current densities. J Colloid Interface Sci 2024; 661:606-613. [PMID: 38310769 DOI: 10.1016/j.jcis.2024.01.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
The problem limiting the use of hydrogen evolution reactions in industry is the inability of electrocatalysts to operate stably at high current densities, so the development of stable and efficient electrocatalysts is important for hydrogen production by water splitting. By designing a rational interface engineering not only can the problem of limited number of catalytic sites in the catalyst be solved, but also can facilitate electron transfer, thus enhancing the efficiency of water splitting. Here, we designed a two-stage chemical vapour deposition method to construct NiC/Mo2C nanorod arrays on nickel foam to enhance the electrocatalytic ability of the catalysts, which exhibited efficient HER catalytic activity due to their special tentacle-like nanorod structure and abundant heterogeneous junction surfaces, which brought about abundant active sites as well as promoted electron transfer capability. The resulting catalysts provide current densities of 10, 100 and 500 mA cm-2 with overpotentials of 31, 153 and 264 mV, and exhibit excellent stability at current densities of 10 mA cm-2 for 200 h. This discovery provides a new idea for the rational design of catalysts with special morphologies.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nannan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Guangsheng Liu
- School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shiming Yang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chen Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Zhou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Huan He
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yu Chen
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, United Kingdom
| | - Kunyapat Thummavichaia
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
46
|
Zeng B, Liu X, Wan L, Xia C, Cao L, Hu Y, Dong B. Grafting Ultra-fine Nanoalloys with Amorphous Skin Enables Highly Active and Long-lived Acidic Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202400582. [PMID: 38308672 DOI: 10.1002/anie.202400582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/05/2024]
Abstract
Large-scale deployment of proton exchange membranes water electrolysis (PEM-WE) requires a substantial reduction in usage of platinum group metals (PGMs) as indispensable electrocatalyst for cathodic hydrogen evolution reaction (HER). Ultra-fine PGMs nanocatalysts possess abundant catalytic sites at lower loading, but usually exhibit reduced stability in long-term operations under corrosive acidic environments. Here we report grafting the ultra-fine PtRu crystalline nanoalloys with PtxRuySez "amorphous skin" (c-PtRu@a-PtxRuySez) by in situ atomic layer selenation to simultaneously improve catalytic activity and stability. We found that the c-PtRu@a-PtxRuySez-1 with ~0.6 nm thickness amorphous skin achieved an ultra-high mass activity of 26.7 A mg-1 Pt+Ru at -0.07 V as well as a state-of-the-art durability maintained for at least 1000 h at -10 mA cm-2 and 550 h at -100 mA⋅cm-2 for acid HER. Experimental and theoretical investigations suggested that the amorphous skin not only improved the electrochemical accessibility of the catalyst surface and increasing the intrinsic activity of the catalytic sites, but also mitigated the dissolution/diffusion of the active species, thus resulting in improved catalytic activity and stability under acidic electrolyte. This work demonstrates a direction of designing ultra-fine PGMs electrocatalysts both with high utilization and robust durability, offers an in situ "amorphous skin" engineering strategy.
Collapse
Affiliation(s)
- Biao Zeng
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Li Wan
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Chenghui Xia
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| | - Yubin Hu
- Institute of Marine Science and Technology, Shandong University, 72 Coastal Highway, Qingdao, 266237, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266400, P. R. China
| |
Collapse
|
47
|
Zhang QM, Wang ZY, Zhang H, Liu XH, Zhang W, Zhao LB. Micro-kinetic modelling of the CO reduction reaction on single atom catalysts accelerated by machine learning. Phys Chem Chem Phys 2024; 26:11037-11047. [PMID: 38526740 DOI: 10.1039/d4cp00325j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Electrochemical CO2 transformation to fuels and chemicals is an effective strategy for conversion of renewable electric energy into storable chemical energy in combination with reducing green-house gas emission. Metal-nitrogen-carbon (M-N-C) single atom catalysts (SAC) have shown great potential in the electrochemical CO2 reduction reaction (CO2RR). However, exploring advanced SACs with simultaneously high catalytic activity and high product selectivity remains a great challenge. In this study, density functional theory (DFT) calculations are combined with machine learning (ML) for rapid and high-throughput screening of high performance CO reduction catalysts. Firstly, the electrochemical properties of 99 M-N-C SACs were calculated by DFT and used as a database. By using different machine learning models with simple features, the investigated SACs were expanded from 99 to 297. Through several effective indicators of catalyst stability, inhibition of the hydrogen evolution reaction, and CO adsorption strength, 33 SACs were finally selected. The catalytic activity and selectivity of the remaining 33 SACs were explored by micro-kinetic simulation based on Marcus theory. Among all the studied SACs, Mn-NC2, Pt-NC2, and Au-NC2 deliver the best catalytic performance and can be used as potential catalysts for CO2/CO conversion to hydrocarbons with high energy density. This effective screening method using a machine learning algorithm can promote the exploration of CO2RR catalysts and significantly reduce the simulation cost.
Collapse
Affiliation(s)
- Qing-Meng Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Zhao-Yu Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Hao Zhang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Xiao-Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China.
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liu-Bin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
48
|
Liu X, Chen G, Guo Y, Li T, Huang J, Chen W, Ostrikov KK. Fabric-like rhodium-nickel-tungsten oxide nanosheets for highly-efficient electrocatalytic H 2 generation in an alkaline electrolyte. J Colloid Interface Sci 2024; 659:895-904. [PMID: 38219308 DOI: 10.1016/j.jcis.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Transition-metal based oxides with custom-designed phases are effective oxygen evolution reaction (OER) electrocatalysts. However, their applications in water splitting are limited because of insufficient catalytic performance in hydrogen evolution reaction (HER) in alkaline media. In this work, we engineer fabric-like rhodium-nickel-tungsten oxide nanosheets (Rh2O3-NiWO4) on plasma-treated nickel foam (PNF) with a one-step hydrothermal approach for potential applications as industry-grade HER electrocatalysts. Benefiting from rich active sites exposed on the heterostructure, low hydrogen binding energy on Rh, and enhanced charge delivery rates, Rh2O3-NiWO4/PNF catalyst exhibits superior HER activity than that achieved by a commercially available Pt/C catalyst. This is evidenced by the fact that the overpotentials of Rh2O3-NiWO4/PNF for delivering current densities of 10 (j10) and 1000 (j1000) mA cm-2 in 1.0 M KOH are merely 19 and 293 mV, respectively. Meanwhile, the small Tafel slope (18 mV dec-1) of the optimized catalyst manifests the fast HER kinetics. In addition, Rh2O3-NiWO4/PNF exhibits ultra-stable HER performance, and the current density (j100) only decrease 7.69 % after 100 h chronoamperometric curves (I-t) test. The present work provides a new approach for designing high-performance, low-cost 2D electrocatalysts for H2 production and other clean energy-related applications.
Collapse
Affiliation(s)
- Xin Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Guangliang Chen
- Department of Materials Engineering, Huzhou University, Huzhou 313000, PR China.
| | - Yingchun Guo
- Department of Materials Engineering, Huzhou University, Huzhou 313000, PR China
| | - Tongtong Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Jun Huang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China
| | - Wei Chen
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Clean Energy Technologies and Practices, Centre for Waste-free World, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
49
|
Mao S, Ye L, Jin S, Zhou C, Pang J, Xu W. Enhanced Electrocatalytic Oxygen Evolution by In Situ Growth of Tetrametallic Metal-Organic Framework Electrocatalyst FeCoNiMn-MOF on Nickel Foam. Inorg Chem 2024; 63:6005-6015. [PMID: 38507712 DOI: 10.1021/acs.inorgchem.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Developing highly efficient, cost-effective, non-noble-metal-based electrocatalysts with superior performance and stability for oxygen evolution reactions is of immense challenge as well as great importance for the upcoming sustainable and green energy conversion technologies. The multivariate metal-organic frameworks with hierarchical porous structures and unsaturated coordination modes are considered to be promising emerging energy materials. In this work, a series of multimetallic MOFs were directly grown on nickel foam (NF) through the solvothermal method. Notably, the optimized tetrametallic FeCoNiMn-MOF/NF shows a low overpotential of 239 mV to achieve a current density of 50 mA cm-2 with a Tafel slope of 62.05 mV dec-1 for OER in 1 M KOH. It also exhibits excellent stability and durability over 100 h in chronoamperometric studies. The enhanced performance is closely tied to the high activity of iron and nickel ions and the decomposed and reconstructed Ni/Fe-OOH intermediates of the FeCoNiMn-MOF/NF during the OER process, which are revealed by XPS analysis and in situ Raman spectroscopy. This present work demonstrates the feasibility and advantage of utilizing highly efficient and durable multimetallic MOFs for electrocatalytic oxygen evolution.
Collapse
Affiliation(s)
- Shengbin Mao
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Liang Ye
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Siyang Jin
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chaohui Zhou
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Junbao Pang
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Research Institute of Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
50
|
Jeong S, Kim U, Lee S, Zhang Y, Son E, Choi KJ, Han YK, Baik JM, Park H. Superaerophobic/Superhydrophilic Multidimensional Electrode System for High-Current-Density Water Electrolysis. ACS NANO 2024; 18:7558-7569. [PMID: 38420914 DOI: 10.1021/acsnano.3c12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Water electrolysis is emerging as a promising renewable-energy technology for the green production of hydrogen, which is a representative and reliable clean energy source. From economical and industrial perspectives, the development of earth-abundant non-noble metal-based and bifunctional catalysts, which can simultaneously exhibit high catalytic activities and stabilities for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), is critical; however, to date, these types of catalysts have not been constructed, particularly, for high-current-density water electrolysis at the industrial level. This study developed a heterostructured zero-dimensional (0D)-one-dimensional (1D) PrBa0.5Sr0.5Co1.5Fe0.5O5+δ (PBSCF)-Ni3S2 as a self-supported catalytic electrode via interface and morphology engineering. This unique heterodimensional nanostructure of the PBSCF-Ni3S2 system demonstrates superaerophobic/superhydrophilic features and maximizes the exposure of the highly active heterointerface, endowing the PBSCF-Ni3S2 electrode with outstanding electrocatalytic performances in both HER and OER and exceptional operational stability during the overall water electrolysis at high current densities (500 h at 500 mA cm-2). This study provides important insights into the development of catalytic electrodes for efficient and stable large-scale hydrogen production systems.
Collapse
Affiliation(s)
- Seulgi Jeong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ungsoo Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Sangjin Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Yihan Zhang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Eunbin Son
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kyoung-Jin Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jeong Min Baik
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyesung Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|