1
|
Zhao N, Jeon SJ, Yuan Y, Venkateswarlu S, Stella A, Papazotos J, Li Y. Full Conjugation in a Polymer with Non-conjugated Piperazine-2,5-dione Units via Energy-minimized Lactam-to-Lactim Tautomerization Enables Water-gated Transistor Fluoride Sensors. Angew Chem Int Ed Engl 2025; 64:e202419314. [PMID: 39607390 DOI: 10.1002/anie.202419314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Piperazine-2,5-dione (glycine anhydride, GA) has recently emerged as a valuable precursor for high-performance π-conjugated polymer semiconductors in organic electronics. We utilized GA to design a novel bisindolin-dihydropiperazine (IDHP)-based conjugated polymer, PIDHPTT, for aqueous chemical sensing. In the isatin-flanked monomer, GA exists as a non-conjugated lactam (DHP-NH) but converts to a conjugated lactim (DHP-OH) form within the polymer. Density functional theory (DFT) calculations show that this conversion is driven by energy minimization via extended π-conjugation. Neighboring DHP units in the lactim form facilitate this process through π-bridges, demonstrating a vinylogous effect, which has previously only been observed in small molecules. This is the first study to report such a long-range vinylogous effect in a polymer due to the collective synergy of numerous functional groups. The OH groups in the lactim DHP interact more strongly with fluoride ions than other halides. PIDHPTT exhibits significant changes in optical absorption, electrochemical impedance, and charge transport in response to fluoride ions, which differ from responses to other halides. A water-gated organic field-effect transistor based on PIDHPTT shows excellent sensitivity and selectivity for fluoride ions, demonstrating the potential of this polymer design for chemical sensing applications.
Collapse
Affiliation(s)
- Naixin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Sung Jae Jeon
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yi Yuan
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Samala Venkateswarlu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Andrew Stella
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jimmy Papazotos
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| | - Yuning Li
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology (WIN), University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
2
|
Jabri M, Hossein-Babaei F. DC field-biased multibit/analog artificial synapse featuring an additional degree of freedom for performance tuning. NANOSCALE 2025; 17:3389-3401. [PMID: 39704050 DOI: 10.1039/d4nr03464c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Multibit/analog artificial synapses are in demand for neuromorphic computing systems. A problem hindering the utilization of memristive artificial synapses in commercial neuromorphic systems is the rigidity of their functional parameters, plasticity in particular. Here, we report fabricating polycrystalline rutile-based memristive memory segments with Ti/poly-TiO2/Ti structures featuring multibit/analog storage and the first use of a tunable DC-biasing for synaptic plasticity adjustment from short- to long-term. The unbiased device is of short-term plasticity, positive biasing increases the remanence of the recorded events and the device gains long-term plasticity at a specific biasing level determined from the device geometry. The adjustability of the biasing field provides an additional degree of freedom allowing performance tuning; the paired-pulse facilitation index of the device is tuned by the biasing level adjustment providing further functional versatility. An appropriately biased segment provides more than 10 synaptic weight levels linearly depending on the number and duration of the stimulating spikes. The relationship with spike magnitude is exponential. The experimentally determined nonlinearity coefficient of the biased device for 50 potentiating spikes is comparable to the best published data. The spike-timing-dependent plasticity determined experimentally for the biased device in its long-term plasticity mode fits the mathematical relationship developed for biological synapses. Fabricated on a titanium metal foil, the produced memristors are sturdy and flexible making them suitable for wearable and implantable intelligent electronics. Our findings are anticipated to raise the potential of forming artificial synapses out of polycrystalline metal oxide thin films.
Collapse
Affiliation(s)
- Milad Jabri
- Electronic Materials Laboratory, K. N. Toosi University of Technology, Tehran 1631714191, Iran.
| | - Faramarz Hossein-Babaei
- Electronic Materials Laboratory, K. N. Toosi University of Technology, Tehran 1631714191, Iran.
- Hezare Sevom Co. Ltd, 7, Niloofar Square, Tehran 1533874417, Iran
| |
Collapse
|
3
|
Wang R, Nhung Le H, Jung C, Kwon HJ, Li Z, Kim H, Zhang ZH, Kim J, Kim SH, Tang X. High- k organic-inorganic hybrid dielectric material for flexible thin-film transistors and printed logic circuits. MATERIALS HORIZONS 2025. [PMID: 39838847 DOI: 10.1039/d4mh01249f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
A new photopolymerizable organic-inorganic (O-I) hybrid sol-gel material, AUP@SiOx-184, has been synthesized and utilized as a gate dielectric in flexible organic thin-film transistors (OTFTs). The previously reported three-arm alkoxy-functionalized silane amphiphilic polymer has yielded stable O-I hybrid materials comprising uniformly dispersed nanoparticles in the sol state. In this study, a photosensitizer was introduced, facilitating curing effects under ultraviolet light. Photo-crosslinking enhances the stability of hydroxyl radicals within inorganic nanoparticles, thereby minimizing device hysteresis. This approach also contributes to achieving a low leakage current and a high dielectric constant (high-k) while maintaining reduced thickness. Moreover, AUP@SiOx-184 films are amenable to patterning through UV photopolymerization and can be successfully produced using printing techniques. Compared to other materials, they exhibit outstanding flexibility and improved insulating capabilities. Additionally, OTFTs incorporating AUP@SiOx-184 layers demonstrate extremely stable driving features on flexible substrates. Selective printing and specific patterning play crucial roles in the fabrication of logic circuits. This synthesis strategy has resulted in integrated logic devices that have successfully demonstrated their functionality, highlighting its value for producing functional O-I hybrid materials. Utilizing AUP@SiOx-184 as a gate dielectric in OTFTs showcases its potential to advance electronic technologies that are both flexible and high-performing.
Collapse
Affiliation(s)
- Rixuan Wang
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Hong Nhung Le
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok 25931, Republic of Korea.
| | - Cheolmin Jung
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hyeok-Jin Kwon
- Department of Industrial Chemistry, Pukyung National University, Busan 48513, Republic of Korea
| | - Zhijun Li
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 Xiangshanzhi Lane, Hangzhou 310024, China
| | - Hyungdo Kim
- Graduate School of Engineering, Department of Polymer Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Zhi Hong Zhang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China.
| | - Juyoung Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok 25931, Republic of Korea.
| | - Se Hyun Kim
- Division of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Xiaowu Tang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China.
| |
Collapse
|
4
|
Yang F, Liu S, Li C, Lv A. High-Performance Organic Field-Effect Transistors and Inverters with Good Flexibility and Low Operating Voltage. Chemphyschem 2025; 26:e202300683. [PMID: 39462189 DOI: 10.1002/cphc.202300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Organic field-effect transistors (OFETs) with good flexibility and low operating voltage, are of great meaning for the low power stretchable and wearable electronic devices. The operating voltage and flexibility are easily affected by the dielectric layers in the OFETs. Bilayer dielectrics comprising both high- and low-permittivity (k) insulating polymers, have been reported. The flexible bilayer dielectrics can combine the advantages of both insulating polymers, which are high charge carriers from low-k polymers and low operating voltage from high-k polymers. However, the effect of film thicknesses in the bilayer dielectrics on the OFET performance is seldom investigated. Here, bilayer dielectrics comprising high-k polyvinyl alcohol (PVA) and low-k polymethylmethacrylate (PMMA) were fabricated. And PVA/PMMA bilayers with three different PVA film thicknesses are carefully investigated. The 300 nm PVA/100 nm PMMA bilayer dielectric makes the pentacene OFETs show the highest hole mobility of 1.24 cm2 V-1s-1 and the corresponding inverters give a high voltage gain of 40 and a noise margin of 2.3 V (77 % of 1/2 VDD) at low operating voltage of 6 V. Both the pentacene transistors and the inverters still work properly under bending radium of 5.85 mm, proving the good prospects of the PVA/PMMA bilayer dielectric in practical applications.
Collapse
Affiliation(s)
- Fukang Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Shining Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Congling Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Aifeng Lv
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| |
Collapse
|
5
|
Yang S, Sun M, Shi C, Liu Y, Guo Y, Liu Y, Lu Z, Huang Y, Pu X. Data-Quality-Navigated Machine Learning Strategy with Chemical Intuition to Improve Generalization. J Chem Theory Comput 2024; 20:10633-10648. [PMID: 39589234 DOI: 10.1021/acs.jctc.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Generalizing real-world data has been one of the most difficult challenges for application of machine learning (ML) in practice. Most ML works focused on improvements in algorithms and feature representations. However, the data quality, as the foundation of ML, has been largely overlooked, also leading to the absence of data evaluation and processing methods in ML fields. Motivated by the challenge and need, we selected an important but difficult reorganization energy (RE) prediction task as a test platform, which is an important parameter for the charge mobility of organic semiconductors (OSCs), to propose a data-quality-navigated strategy with chemical intuition. We developed a data diversity evaluation based on structure characteristics of OSC molecules, a reliability evaluation method based on prediction accuracy, a data filtering method based on the uncertainty of K-fold division, and a data split technique by clustering and stratified sampling based on four molecular descriptor-associated REs. Consequently, a representative RE data set (15,989 molecules) with high reliability and diversity can be obtained. For the feature representation, a complementary strategy is proposed by considering the chemical nature of REs and the structure characteristics of OCS molecules as well as the model algorithm. In addition, an ensemble framework consisting of two deep learning models is constructed to avoid the risk of local optimization of the single model. The robustness and generalization of our model are strongly validated against different OSC-like molecules with diverse structures and a wide range of REs and real OSC molecules, greatly outperforming eight adversarial controls. Collectively, our work not only provides a quick and reliable tool to screen efficient OSCs but also offers methodological guidelines for improving the generalization of ML.
Collapse
Affiliation(s)
- Songran Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ming Sun
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chaojie Shi
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yiran Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yijing Liu
- College of Computer Science, Sichuan University, Chengdu 610064, China
| | - Zhiyun Lu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Huang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Losi T, Viola FA, Sala E, Heeney M, He Q, Kleemann H, Caironi M. Downscaling of Organic Field-Effect Transistors based on High-Mobility Semiconducting Blends for High-Frequency Operation. SMALL METHODS 2024; 8:e2400546. [PMID: 39104287 PMCID: PMC11671851 DOI: 10.1002/smtd.202400546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Indexed: 08/07/2024]
Abstract
Small molecule/polymer semiconductor blends are promising solutions for the development of high-performing organic electronics. They are able to combine ease in solution processability, thanks to the tunable rheological properties of polymeric inks, with outstanding charge transport properties thanks to high crystalline phases of small molecules. However, because of charge injection issues, so far such good performances are only demonstrated in ad-hoc device architectures, not suited for high-frequency applications, where transistor dimensions require downscaling. Here, the successful integration of the most performing blend reported to date, based on 2,7-dioctyl[1] benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and poly(indacenodithiophene-co-benzothiadiazole) (C16IDT-BT), in OFETs characterized by channel and overlap lengths equal to 1.3 and 1.9 µm, respectively, is demonstrated, enabling a transition frequency of 23 MHz at -8 V. Two key aspects allowed such result: molecular doping, leading to width-normalized contact resistance of only 260 Ωcm, allowing to retain an apparent field-effect mobility as high as 3 cm2/(Vs) in short channel devices, and the implementation of a high capacitance dielectric stack, enabling the reduction of operating voltages below 10 V and the overcoming of self-heating issues. These results represent a fundamental step for the future development of low-cost and high-speed printed electronics for IoT applications.
Collapse
Affiliation(s)
- Tommaso Losi
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milano20134Italy
| | - Fabrizio Antonio Viola
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milano20134Italy
- Department of Electrical and Electronic EngineeringUniversity of Cagliarivia MarengoCagliari09123Italy
| | - Elda Sala
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milano20134Italy
- Department of EnergyPolitecnico di Milano, Via Lambruschini 4aMilan20156Italy
| | - Martin Heeney
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Qiao He
- Department of Chemistry and Centre for Processable ElectronicsImperial College LondonLondonW12 0BZUK
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)Technische Universität DresdenNöthnitzer Straße 6101062DresdenGermany
| | - Mario Caironi
- Center for Nano Science and TechnologyIstituto Italiano di TecnologiaVia Rubattino 81Milano20134Italy
| |
Collapse
|
7
|
Mulia T, Ercan E, Mumtaz M, Lin YC, Borsali R, Chen WC. Carbohydrate-based block copolymers with sub-10 nm face-centered cubic nanostructures for low-power-consuming and ultraviolet light-triggered synaptic phototransistors. Carbohydr Polym 2024; 344:122476. [PMID: 39218535 DOI: 10.1016/j.carbpol.2024.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
Addressing environmental concerns and producing sustainable and environmentally friendly electronic devices with low power consumption poses a significant challenge. This study introduces phototransistor devices employing morphologically controlled block copolymers based on maltotriose, maltoheptaose, and β-cyclodextrin as polymer electrets. Ordered self-assembled morphologies can be achieved by utilizing microwave radiation for rapid annealing (within 5 s) with optimized annealing conditions. Herein, face-centered cubic (FCC), vertical, and mixed cylindrical nanostructures are reported. The resulting well-defined morphologies play a pivotal role in enhancing the electron-trapping capability of the block copolymers and facilitating charge carrier transport between the electret and semiconducting layers. Consequently, the phototransistor memory manifests exceptional performance, featuring stability and endurance. Intriguingly, the cavity of β-cyclodextrin provides a stable environment for the trapped charges, leading to a larger memory window than other block copolymers. On the other hand, a device consisting of MT-b-PS exhibited superior current contrast exceeding 106 even under a low drain voltage of -1 V, attributed to sub-10 nm FCC nanostructures. Furthermore, this phototransistor device successfully emulated the synaptic functions of sensing, learning, and short- and long-term memory in the human brain, along with a low energy consumption of 0.312 fJ. Hence, this report opens the pathways for developing promising bio-based electronic devices.
Collapse
Affiliation(s)
- Tiffany Mulia
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Ender Ercan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Muhammad Mumtaz
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101, Taiwan.
| | - Redouane Borsali
- University of Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
8
|
Das JP, Nardekar SS, Ravichandran V, Kim SJ. From Friction to Function: A High-Voltage Sliding Triboelectric Nanogenerator for Highly Efficient Energy Autonomous IoTs and Self-Powered Actuation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405792. [PMID: 39221685 DOI: 10.1002/smll.202405792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Indexed: 09/04/2024]
Abstract
An advanced energy autonomous system that simultaneously harnesses and stores energy on the same platform offers exciting opportunities for the near-future self-powered miniature electronics. However, achieving optimal synchronization between the power output of an energy harvester and the storage unit or integrating it seamlessly with real-time microelectronics to build a highly efficient energy autonomous system remains challenging. Herein, a unique bimetallic layered double hydroxide (LDH) based tribo-positive layer is introduced for a high-voltage sliding triboelectric nanogenerator (S-TENG) with an output voltage of ≈1485 V and power output of 250 µW, respectively. To demonstrate the potential of a self-charging power system, S-TENG is integrated with on-chip micro-supercapacitors (MSCs) as a storage unit. The MSC array effectively self-charged up to 4.8 V (within 220s), providing ample power to support micro-sensory systems. In addition, by utilizing the high-voltage output of the S-TENG, the efficient operation of electrostatic actuators and digital microfluidic (DMF) systems driven directly by simple mechanical motion is further demonstrated. Overall, this work can provide a solid foundation for the advancement of next-generation energy-autonomous systems.
Collapse
Affiliation(s)
- Jyoti Prakash Das
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Swapnil Shital Nardekar
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Vishwanathan Ravichandran
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sang-Jae Kim
- Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea
- Nanomaterials & System Lab, Major of Mechanical System Engineering, College of Engineering, Jeju National University, Jeju, 63243, Republic of Korea
- Research Institute of New Energy Industry (RINEI), Jeju National University, Jeju, 63243, Republic of Korea
| |
Collapse
|
9
|
Sinha A, Lee J, Kim J, So H. An evaluation of recent advancements in biological sensory organ-inspired neuromorphically tuned biomimetic devices. MATERIALS HORIZONS 2024; 11:5181-5208. [PMID: 39114942 DOI: 10.1039/d4mh00522h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
In the field of neuroscience, significant progress has been made regarding how the brain processes information. Unlike computer processors, the brain comprises neurons and synapses instead of memory blocks and transistors. Despite advancements in artificial neural networks, a complete understanding concerning brain functions remains elusive. For example, to achieve more accurate neuron replication, we must better understand signal transmission during synaptic processes, neural network tunability, and the creation of nanodevices featuring neurons and synapses. This study discusses the latest algorithms utilized in neuromorphic systems, the production of synaptic devices, differences between single and multisensory gadgets, recent advances in multisensory devices, and the promising research opportunities available in this field. We also explored the ability of an artificial synaptic device to mimic biological neural systems across diverse applications. Despite existing challenges, neuroscience-based computing technology holds promise for attracting scientists seeking to enhance solutions and augment the capabilities of neuromorphic devices, thereby fostering future breakthroughs in algorithms and the widespread application of cutting-edge technologies.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Jihun Lee
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Junho Kim
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
10
|
Sun M, Wang S, Liang Y, Wang C, Zhang Y, Liu H, Zhang Y, Han L. Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing. NANO-MICRO LETTERS 2024; 17:34. [PMID: 39373823 PMCID: PMC11458861 DOI: 10.1007/s40820-024-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yanbo Liang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yunhong Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- School of Integrated Circuits, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, Shandong, People's Republic of China.
| |
Collapse
|
11
|
Kohn JT, Grimme S, Hansen A. A semi-automated quantum-mechanical workflow for the generation of molecular monolayers and aggregates. J Chem Phys 2024; 161:124707. [PMID: 39319657 DOI: 10.1063/5.0230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Organic electronics (OE) such as organic light-emitting diodes or organic solar cells represent an important and innovative research area to achieve global goals like environmentally friendly energy production. To accelerate OE material discovery, various computational methods are employed. For the initial generation of structures, a molecular cluster approach is employed. Here, we present a semi-automated workflow for the generation of monolayers and aggregates using the GFNn-xTB methods and composite density functional theory (DFT-3c). Furthermore, we present the novel D11A8MERO dye interaction energy benchmark with high-level coupled cluster reference interaction energies for the assessment of efficient quantum chemical and force-field methods. GFN2-xTB performs similar to low-cost DFT, reaching DFT/mGGA accuracy at two orders of magnitude lower computational cost. As an example application, we investigate the influence of the dye aggregate size on the optical and electrical properties and show that at least four molecules in a cluster model are needed for a qualitatively reasonable description.
Collapse
Affiliation(s)
- J T Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - S Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - A Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
12
|
Yang H, Li S, Wu Y, Bao X, Xiang Z, Xie Y, Pan L, Chen J, Liu Y, Li RW. Advances in Flexible Magnetosensitive Materials and Devices for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311996. [PMID: 38776537 DOI: 10.1002/adma.202311996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Emerging fields, such as wearable electronics, digital healthcare, the Internet of Things, and humanoid robots, highlight the need for flexible devices capable of recording signals on curved surfaces and soft objects. In particular, flexible magnetosensitive devices garner significant attention owing to their ability to combine the advantages of flexible electronics and magnetoelectronic devices, such as reshaping capability, conformability, contactless sensing, and navigation capability. Several key challenges must be addressed to develop well-functional flexible magnetic devices. These include determining how to make magnetic materials flexible and even elastic, understanding how the physical properties of magnetic films change under external strain and stress, and designing and constructing flexible magnetosensitive devices. In recent years, significant progress is made in addressing these challenges. This study aims to provide a timely and comprehensive overview of the most recent developments in flexible magnetosensitive devices. This includes discussions on the fabrications and mechanical regulations of flexible magnetic materials, the principles and performances of flexible magnetic sensors, and their applications for wearable electronics. In addition, future development trends and challenges in this field are discussed.
Collapse
Affiliation(s)
- Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shengbin Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziyin Xiang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinxia Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Li X, Sabir A, Zhang X, Jiang H, Wang W, Zheng X, Yang H. Highly Stretchable and Oriented Wafer-Scale Semiconductor Films for Organic Phototransistor Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36678-36687. [PMID: 38966894 DOI: 10.1021/acsami.4c04349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Stretchable organic phototransistor arrays have potential applications in artificial visual systems due to their capacity to perceive ultraweak light across a broad spectrum. Ensuring uniform mechanical and electrical performance of individual devices within these arrays requires semiconductor films with large-area scale, well-defined orientation, and stretchability. However, the progress of stretchable phototransistors is primarily impeded by their limited electrical properties and photodetection capabilities. Herein, wafer-scale and well-oriented semiconductor films were successfully prepared using a solution shearing process. The electrical properties and photodetection capabilities were optimized by improving the polymer chain alignment. Furthermore, a stretchable 10 × 10 transistor array with high device uniformity was fabricated, demonstrating excellent mechanical robustness and photosensitive imaging ability. These arrays based on highly stretchable and well-oriented wafer-scale semiconductor films have great application potential in the field of electronic eye and artificial visual systems.
Collapse
Affiliation(s)
- Xiangxiang Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Ayesha Sabir
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaoying Zhang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hongchen Jiang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Weiyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xinran Zheng
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Hui Yang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Samadder P, Naim K, Sahoo SC, Neelakandan PP. Surface coating induced room-temperature phosphorescence in flexible organic single crystals. Chem Sci 2024; 15:9258-9265. [PMID: 38903241 PMCID: PMC11186325 DOI: 10.1039/d4sc01708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Materials exhibiting room temperature phosphorescence (RTP) are in high demand for signage, information encryption, sensing, and biological imaging. Due to weak spin-orbit coupling and other non-radiative processes that effectively quench the triplet excited states, RTP is sparsely observed in organic materials. Although the incorporation of a heavy atom through covalent or non-covalent modification circumvents these drawbacks, heavy-atom-containing materials are undesirable because of their deleterious side effects. Here, we designed and synthesized a new naphthalidenimine-boron complex as a coating material for the single crystals of 4,4'-dimethoxybenzophenone. The coated surface was observed to exhibit yellowish-green phosphorescence with ms lifetimes at ambient conditions through Förster resonance energy transfer (FRET). Importantly, the mechanical flexibility of the single crystals was observed to be retained after coating. The fluorescence-phosphorescence dual emission was utilised for colour-tunable optical waveguiding and anti-counterfeiting applications. As organic single crystals that can sustain mechanical deformations are emerging as the next-generation materials for electronic device fabrication, the flexible RTP organic crystals showing colour-tuneable optical waveguiding could be omnipotent in electronics.
Collapse
Affiliation(s)
- Prodipta Samadder
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali 140306 India
| | - Khalid Naim
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali 140306 India
| | | | - Prakash P Neelakandan
- Institute of Nano Science and Technology (INST) Knowledge City, Sector 81 Mohali 140306 India
| |
Collapse
|
15
|
Fang PH, Chang HC, Cheng HL, Huang CC, Wang S, Teng CH, Chia ZC, Chiang HP, Ruan J, Shih WA, Chou WY. Bacteria Contaminants Detected by Organic Inverter-Based Biosensors. Polymers (Basel) 2024; 16:1462. [PMID: 38891409 PMCID: PMC11174487 DOI: 10.3390/polym16111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The importance of bacteria detection lies in its role in enabling early intervention, disease prevention, environmental protection, and effective treatment strategies. Advancements in technology continually enhance the speed, accuracy, and sensitivity of detection methods, aiding in addressing these critical issues. This study first reports the fabrication of an inverter constructed using crosslinked-poly(4-vinylphenol) (C-PVP) as the dielectric layer and an organic complementary metal-oxide semiconductor (O-CMOS) based on pentacene and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) as a diagnostic biosensor to rapidly detect bacterial concentration. Bacteria including Escherichia coli O157, Staphylococcus aureus ATCC25922, and Enterococcus faecalis SH-1051210 were analysed on the inverters at an ultra-low operating voltage of 2 V. The high density of negative charge on bacteria surfaces strongly modulates the accumulated negative carriers within the inverter channel, resulting in a shift of the switching voltage. The inverter-based bacteria sensor exhibits a linear-like response to bacteria concentrations ranging from 102 to 108 CFU/mL, with a sensitivity above 60%. Compared to other bacterial detectors, the advantage of using an inverter lies in its ability to directly read the switching voltage without requiring an external computing device. This facilitates rapid and accurate bacterial concentration measurement, offering significant ease of use and potential for mass production.
Collapse
Affiliation(s)
- Po-Hsiang Fang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Han-Chun Chang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Horng-Long Cheng
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zi-Chun Chia
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hai-Pang Chiang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jrjeng Ruan
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-An Shih
- Institute of Molecular Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Yang Chou
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
16
|
Du H, Chen B, Zhang F. Strong Acceptors Based on Derivatives of Benzothiadiazoloimidazole. Molecules 2024; 29:2262. [PMID: 38792123 PMCID: PMC11124087 DOI: 10.3390/molecules29102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Despite the rapid progression of organic semiconductors, developing high-air-stability n-type organic semiconductors are still challenging. Herein, novel strong acceptors based on benzothiadiazoloimidazole units are reported. The results reveal that the strong acceptor BTI-NDI-BTI-a has good solubility and high electron affinity (3.94 eV), accompanied by 1D slipped-stacking crystals. Notably, the material presents promising potential for developing into air-stable n-type organic semiconductor materials.
Collapse
Affiliation(s)
- Hanyun Du
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
| | - Bin Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| | - Fengyuan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
| |
Collapse
|
17
|
Sung J, Chung S, Jang Y, Jang H, Kim J, Lee C, Lee D, Jeong D, Cho K, Kim YS, Kang J, Lee W, Lee E. Unveiling the Role of Side Chain for Improving Nonvolatile Characteristics of Conjugated Polymers-Based Artificial Synapse. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400304. [PMID: 38408158 DOI: 10.1002/advs.202400304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Indexed: 02/28/2024]
Abstract
Interest has grown in services that consume a significant amount of energy, such as large language models (LLMs), and research is being conducted worldwide on synaptic devices for neuromorphic hardware. However, various complex processes are problematic for the implementation of synaptic properties. Here, synaptic characteristics are implemented through a novel method, namely side chain control of conjugated polymers. The developed devices exhibit the characteristics of the biological brain, especially spike-timing-dependent plasticity (STDP), high-pass filtering, and long-term potentiation/depression (LTP/D). Moreover, the fabricated synaptic devices show enhanced nonvolatile characteristics, such as long retention time (≈102 s), high ratio of Gmax/Gmin, high linearity, and reliable cyclic endurance (≈103 pulses). This study presents a new pathway for next-generation neuromorphic computing by modulating conjugated polymers with side chain control, thereby achieving high-performance synaptic properties.
Collapse
Affiliation(s)
- Junho Sung
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Yongchan Jang
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Hyoik Jang
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Jiyeon Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Lee
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghwa Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Dongyeong Jeong
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youn Sang Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Joonhee Kang
- Department of Nanoenergy Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Wonho Lee
- Department of Polymer Science and Engineering, Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Eunho Lee
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| |
Collapse
|
18
|
Alam F, Ashfaq Ahmed M, Jalal AH, Siddiquee I, Adury RZ, Hossain GMM, Pala N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. MICROMACHINES 2024; 15:475. [PMID: 38675286 PMCID: PMC11051912 DOI: 10.3390/mi15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Implantable biosensors have evolved to the cutting-edge technology of personalized health care and provide promise for future directions in precision medicine. This is the reason why these devices stand to revolutionize our approach to health and disease management and offer insights into our bodily functions in ways that have never been possible before. This review article tries to delve into the important developments, new materials, and multifarious applications of these biosensors, along with a frank discussion on the challenges that the devices will face in their clinical deployment. In addition, techniques that have been employed for the improvement of the sensitivity and specificity of the biosensors alike are focused on in this article, like new biomarkers and advanced computational and data communicational models. A significant challenge of miniaturized in situ implants is that they need to be removed after serving their purpose. Surgical expulsion provokes discomfort to patients, potentially leading to post-operative complications. Therefore, the biodegradability of implants is an alternative method for removal through natural biological processes. This includes biocompatible materials to develop sensors that remain in the body over longer periods with a much-reduced immune response and better device longevity. However, the biodegradability of implantable sensors is still in its infancy compared to conventional non-biodegradable ones. Sensor design, morphology, fabrication, power, electronics, and data transmission all play a pivotal role in developing medically approved implantable biodegradable biosensors. Advanced material science and nanotechnology extended the capacity of different research groups to implement novel courses of action to design implantable and biodegradable sensor components. But the actualization of such potential for the transformative nature of the health sector, in the first place, will have to surmount the challenges related to biofouling, managing power, guaranteeing data security, and meeting today's rules and regulations. Solving these problems will, therefore, not only enhance the performance and reliability of implantable biodegradable biosensors but also facilitate the translation of laboratory development into clinics, serving patients worldwide in their better disease management and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Ishrak Siddiquee
- Institute of Microsystems Technology, University of South-Eastern Norway, Horten, 3184 Vestfold, Norway;
| | - Rabeya Zinnat Adury
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL 32611, USA;
| | - G M Mehedi Hossain
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| |
Collapse
|
19
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
20
|
Zhao W, Fu GE, Yang H, Zhang T. Two-Dimensional Conjugated Polymers: a New Choice For Organic Thin-Film Transistors. Chem Asian J 2023:e202301076. [PMID: 38151907 DOI: 10.1002/asia.202301076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 12/29/2023]
Abstract
Organic thin-film transistors (OTFTs) as a vital component among transistors have shown great potential in smart sensing, flexible displays, and bionics due to their flexibility, biocompatibility and customizable chemical structures. Even though linear conjugated polymer semiconductors are common for constructing channel materials of OTFTs, advanced materials with high charge carrier mobility, tunable band structure, robust stability, and clear structure-property relationship are indispensable for propelling the evolution of OTFTs. Two-dimensional conjugated polymers (2DCPs), featured with conjugated lattice, tailorable skeletons, and functional porous structures, match aforementioned criteria closely. In this review, we firstly introduce the synthesis of 2DCP thin films, focusing on their characteristics compatible with the channels of OTFTs. Subsequently, the physics and operating mechanisms of OTFTs and the applications of 2DCPs in OTFTs are summarized in detail. Finally, the outlook and perspective in the field of OTFTs using 2DCPs are provided as well.
Collapse
Affiliation(s)
- Wenkai Zhao
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guang-En Fu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haoyong Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Key Laboratory of Marine Materials and Related Technologies, 315201, Ningbo, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
21
|
Germer S, Bauer M, Hübner O, Marten R, Dreuw A, Himmel HJ. Isolated Dimers Versus Solid-State Dimers of N-Heteropolycycles: Matrix-Isolation Spectroscopy in Concert with Quantum Chemistry. Chemistry 2023; 29:e202302296. [PMID: 37860944 DOI: 10.1002/chem.202302296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
In this work, matrix-isolation spectroscopy and quantum-chemical calculations are used together to analyse the structure and properties of weakly bound dimers of the two isomers benzo[a]acridine and benzo[c]acridine. Our measured experimental electronic absorbance spectra agree with simulated spectra calculated for the equilibrium structures of the dimers in gas-phase, but in contrast, disagree with the simulated spectra calculated for the structures obtained by optimising the experimental solid-state structures. This highlights the sensitivity of the electronic excitations with respect to the dimer structures. The comparison between the solid-state and gas-phase dimers shows how far the intermolecular interactions could change the geometric and electronic structure in a disordered bulk material or at device interfaces, imposing consequences for exciton and charge mobility and other material properties.
Collapse
Affiliation(s)
- Stefan Germer
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marco Bauer
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Olaf Hübner
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Ramona Marten
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
22
|
Abstract
Efforts to design devices emulating complex cognitive abilities and response processes of biological systems have long been a coveted goal. Recent advancements in flexible electronics, mirroring human tissue's mechanical properties, hold significant promise. Artificial neuron devices, hinging on flexible artificial synapses, bioinspired sensors, and actuators, are meticulously engineered to mimic the biological systems. However, this field is in its infancy, requiring substantial groundwork to achieve autonomous systems with intelligent feedback, adaptability, and tangible problem-solving capabilities. This review provides a comprehensive overview of recent advancements in artificial neuron devices. It starts with fundamental principles of artificial synaptic devices and explores artificial sensory systems, integrating artificial synapses and bioinspired sensors to replicate all five human senses. A systematic presentation of artificial nervous systems follows, designed to emulate fundamental human nervous system functions. The review also discusses potential applications and outlines existing challenges, offering insights into future prospects. We aim for this review to illuminate the burgeoning field of artificial neuron devices, inspiring further innovation in this captivating area of research.
Collapse
Affiliation(s)
- Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Cong Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yongli He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
23
|
Zhou X, Wang Z, Xiong T, He B, Wang Z, Zhang H, Hu D, Liu Y, Yang C, Li Q, Chen M, Zhang Q, Wei L. Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300576. [PMID: 37042804 DOI: 10.1002/adma.202300576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Smart wearables have a significant impact on people's daily lives, enabling personalized motion monitoring, realizing the Internet of Things, and even reshaping the next generation of telemedicine systems. Fiber crossbars (FCs), constructed by crossing two fibers, have become an emerging architecture among the accessible structures of state-of-the-art smart electronic textiles. The mechanical, chemical, and electrical interactions between crossing fibers result in extensive functionalities, leading to the significant development of innovative electronic textiles employing FCs as their basic units. This review provides a timely and comprehensive overview of the structure designs, material selections, and assembly techniques of FC-based devices. The recent advances in FC-based devices are summarized, including multipurpose sensing, multiple-mode computing, high-resolution display, high-efficient power supply, and large-scale textile systems. Finally, current challenges, potential solutions, and future perspectives for FC-based systems are discussed for their further development in scale-up production and commercial applications.
Collapse
Affiliation(s)
- Xuhui Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bing He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhixun Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Haozhe Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Dongmei Hu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Yanting Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunlei Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Ming Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- The Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
24
|
Lv L, Liu T, Jiang T, Li J, Zhang J, Zhou Q, Dhakal R, Li X, Li Y, Yao Z. A highly sensitive flexible capacitive pressure sensor with hierarchical pyramid micro-structured PDMS-based dielectric layer for health monitoring. Front Bioeng Biotechnol 2023; 11:1303142. [PMID: 38026884 PMCID: PMC10665575 DOI: 10.3389/fbioe.2023.1303142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Herein, a flexible pressure sensor with high sensitivity was created using a dielectric layer featuring a hierarchical pyramid microstructure, both in simulation and fabrication. The capacitive pressure sensor comprises a hierarchically arranged dielectric layer made of polydimethylsiloxane (PDMS) with pyramid microstructures, positioned between copper electrodes at the top and bottom. The achievement of superior sensing performance is highly contingent upon the thickness of the dielectric layer, as indicated by both empirical findings and finite-element analysis. Specifically, the capacitive pressure sensor, featuring a dielectric layer thickness of 0.5 mm, exhibits a remarkable sensitivity of 0.77 kPa-1 within the pressure range below 1 kPa. It also demonstrates an impressive response time of 55 ms and recovery time of 42 ms, along with a low detection limit of 8 Pa. Furthermore, this sensor showcases exceptional stability and reproducibility with up to 1,000 cycles. Considering its exceptional achievements, the pressure sensor has been effectively utilized for monitoring physiological signals, sign language gestures, and vertical mechanical force exerted on objects. Additionally, a 5 × 5 sensor array was fabricated to accurately and precisely map the shape and position of objects. The pressure sensor with advanced performance shows broad potential in electronic skin applications.
Collapse
Affiliation(s)
- Luyu Lv
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, China
- College of Electronics and Information, Qingdao University, Qingdao, China
| | - Tianxiang Liu
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, China
- College of Electronics and Information, Qingdao University, Qingdao, China
| | - Ting Jiang
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, China
| | - Jiamin Li
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, China
- College of Electronics and Information, Qingdao University, Qingdao, China
| | - Jie Zhang
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, China
- College of Electronics and Information, Qingdao University, Qingdao, China
| | - Qihui Zhou
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Rajendra Dhakal
- Department of Computer Science and Engineering, Sejong University, Seoul, Republic of Korea
| | - Xiao Li
- Hisense Visual Technology Co., Ltd., Qingdao, China
| | - Yuanyue Li
- College of Electronics and Information, Qingdao University, Qingdao, China
| | - Zhao Yao
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, China
- College of Electronics and Information, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Ercan E, Lin YC, Yang YF, Lin BH, Shimizu H, Inagaki S, Higashihara T, Chen WC. Tailoring Wavelength-Adaptive Visual Neuroplasticity Transitions of Synaptic Transistors Comprising Rod-Coil Block Copolymers for Dual-Mode Photoswitchable Learning/Forgetting Neural Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46157-46170. [PMID: 37728642 DOI: 10.1021/acsami.3c11441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The vision-inspired artificial neural network based on optical synapses has drawn a tremendous amount of attention for emulating biological senses. Although photoexcitation-induced synaptic functionalities have been widely studied, optical habituation via the photoinhibitory pathway is yet to be demonstrated for sophisticated biomimetic visual adaptive systems. Here, the first optical neuromorphic block copolymer (BCP) phototransistor is demonstrated as an all-optical operation responding to various wavelengths, fulfilling photoassisted dynamic learning/forgetting cycles via optical potentiation without gate bias. The polyfluorene BCPs were precisely designed to enable wavelength-adaptive responses, benefiting from interfacial semiconductor/electret morphology and the crystallinity/electron affinity of the BCPs. Notably, this is the first work to simultaneously exhibit fully light-controlled short- and long-term memory based on organic material systems. The device presents a high current contrast above 100-fold and long-term retention over 104 s. As a proof-of-concept for neural networks, a 6 × 6 array of photosynapses performed outstanding visual pattern learning/forgetting with high accuracy. This study exploits the design strategy of a conjugated BCP electret to unleash the full potential of wavelength-adaptive visual neuroplasticity transitions. It provides an effective architecture for designing high-performance and high-storage capacity required applications in next-generation neuromorphic systems.
Collapse
Affiliation(s)
- Ender Ercan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yun-Fang Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hiroya Shimizu
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Yamagata, Japan
| | - Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Yamagata, Japan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa 992-8510, Yamagata, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
26
|
Lee JH, Cho KH, Cho K. Emerging Trends in Soft Electronics: Integrating Machine Intelligence with Soft Acoustic/Vibration Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209673. [PMID: 37043776 DOI: 10.1002/adma.202209673] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In the last decade, soft acoustic/vibration sensors have gained tremendous research interest due to their unique ability to detect broadband acoustic/vibration stimuli, potentializing futuristic applications including voice biometrics, voice-controlled human-machine-interfaces, electronic skin, and skin-mountable healthcare devices. Importantly, to benefit most from these sensors, it is inevitable to use machine learning (ML) to process their output signals; with ML, a more accurate and efficient interpretation of original data is possible. This paper is dedicated to offering an overview of recent advances empowering the development of soft acoustic/vibration sensors and their signal processing using ML. First, the key performance parameters of the sensors are discussed. Second, popular transduction mechanisms for the sensors are addressed, followed by an in-depth overview of each type, covering materials used, structural designs, and sensing performances. Third, potential applications of the sensors are elaborated and fourth, a thorough discussion on ML is conducted, exploring different types of ML, specific ML algorithms suitable for processing acoustic/vibration signals, and current trends in ML-assisted applications. Finally, the challenges and potential opportunities in soft acoustic/vibration sensor and ML research are revealed to offer new insights into future prospects in these fields.
Collapse
Affiliation(s)
- Jeng-Hun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kang Hyuk Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| |
Collapse
|
27
|
Chen CK, Ho JC, Hung CC, Chen WC, Satoh T, Chen WC. Sustained Flexible Photonic Transistor Memories Based on Fully Natural Floating Gate Electrets. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37428837 DOI: 10.1021/acsami.3c05981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Photonic transistor memory with high-speed communication and energy-saving capabilities has emerged as a new data storage technology. However, most floating-gate electrets are composed of quantum dots derived from petroleum or metals, which are either toxic or harmful to the environment. In this study, an environmentally friendly floating-gate electret made entirely from biomass-derived materials was designed for photonic memories. The results show that the photosensitive hemin and its derivative protoporphyrin IX (PPIX) were successfully embedded in a polylactic acid (PLA) matrix. Correspondingly, their disparate photochemistry and core structure strongly affected the photosensitivity and charge-trapping capacity of the prepared electrets. With an appropriate energy-level alignment, the interlayer exciton formed with the correct alignment of energy levels within the PPIX/PLA electret. In addition, the demetallized core offered a unique relaxation dynamic and additional trapping sites to consolidate the charges. Correspondingly, the as-prepared device exhibited a memory ratio of up to 2.5 × 107 with photo-writing-electrical-erasing characteristics. Conversely, hemin demonstrated self-charge transfer during relaxation, making it challenging for the device to store the charges and exhibit a photorecovery behavior. Furthermore, the effect of trapping site discreteness on memory performance was also investigated. The photoactive components were effectively distributed due to the high dipole-dipole interaction between the PLA matrix and PPIX, resulting in a sustained memory performance for at least 104 s after light removal. The photonic memory was also realized on a bio-derived dielectric flexible substrate. Accordingly, a reliable photorecording behavior was observed, wherein, even after 1000 cycles of bending under a 5 mm bending radius, the data was retained for more than 104 s. To our knowledge, it is the first time that a two-pronged approach has been used to improve the performance of photonic memories while addressing the issue of sustainability with a biodegradable electret made entirely from natural materials.
Collapse
Affiliation(s)
- Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jin-Chieh Ho
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chih-Chien Hung
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Wei-Cheng Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Toshifumi Satoh
- Faculty of Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
28
|
Nguyen TN, Phung VD, Tran VV. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. BIOSENSORS 2023; 13:586. [PMID: 37366951 DOI: 10.3390/bios13060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, virus pandemics have become a major burden seriously affecting human health and social and economic development. Thus, the design and fabrication of effective and low-cost techniques for early and accurate virus detection have been given priority for prevention and control of such pandemics. Biosensors and bioelectronic devices have been demonstrated as promising technology to resolve the major drawbacks and problems of the current detection methods. Discovering and applying advanced materials have offered opportunities to develop and commercialize biosensor devices for effectively controlling pandemics. Along with various well-known materials such as gold and silver nanoparticles, carbon-based materials, metal oxide-based materials, and graphene, conjugated polymer (CPs) have become one of the most promising candidates for preparation and construction of excellent biosensors with high sensitivity and specificity to different virus analytes owing to their unique π orbital structure and chain conformation alterations, solution processability, and flexibility. Therefore, CP-based biosensors have been regarded as innovative technologies attracting great interest from the community for early diagnosis of COVID-19 as well as other virus pandemics. For providing precious scientific evidence of CP-based biosensor technologies in virus detection, this review aims to give a critical overview of the recent research related to use of CPs in fabrication of virus biosensors. We emphasize structures and interesting characteristics of different CPs and discuss the state-of-the-art applications of CP-based biosensors as well. In addition, different types of biosensors such as optical biosensors, organic thin film transistors (OTFT), and conjugated polymer hydrogels (CPHs) based on CPs are also summarized and presented.
Collapse
Affiliation(s)
- Thanh Ngoc Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Viet-Duc Phung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang 550000, Vietnam
| | - Vinh Van Tran
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
29
|
Oh IH, Park E, Chang ST, Lim S. Foldable RF Energy Harvesting System Based on Vertically Layered Metal Electrodes within a Single Sheet of Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300197. [PMID: 36906919 DOI: 10.1002/adma.202300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/24/2023] [Indexed: 05/19/2023]
Abstract
Radio frequency energy harvesting (RFEH) systems have emerged as a critical component for powering devices and replacing traditional batteries, with paper being one of the most promising substrates for use in flexible RFEH systems. However, previous paper-based electronics with optimized porosity, surface roughness, and hygroscopicity still face limitations in terms of the development of integrated foldable RFEH systems within a single sheet of paper. In the present study, a novel wax-printing control and water-based solution process are used to realize an integrated foldable RFEH system within a single sheet of paper. The proposed paper-based device includes vertically layered foldable metal electrodes, a via-hole, and stable conductive patterns with a sheet resistance of less than 1 Ω sq-1 . The proposed RFEH system exhibits an RF/DC conversion efficiency of 60% and an operating voltage of 2.1 V in 100 s at a distance of 50 mm and a transmitted power of 50 mW. The integrated RFEH system also demonstrates stable foldability, with RFEH performance maintained up to a folding angle of 150°. The single-sheet paper-based RFEH system thus has the potential for use in practical applications associated with the remote powering of wearable and Internet-of-Things devices and in paper electronics.
Collapse
Affiliation(s)
- In Hyeok Oh
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eiyong Park
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Suk Tai Chang
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sungjoon Lim
- School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
30
|
Hou Y, Li J, Yoon J, Knoepfel AM, Yang D, Zheng L, Ye T, Ghosh S, Priya S, Wang K. Retina-inspired narrowband perovskite sensor array for panchromatic imaging. SCIENCE ADVANCES 2023; 9:eade2338. [PMID: 37058567 PMCID: PMC10104461 DOI: 10.1126/sciadv.ade2338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The retina is the essential part of the human visual system that receives light, converts it to neural signal, and transmits to brain for visual recognition. The red, green, and blue (R/G/B) cone retina cells are natural narrowband photodetectors (PDs) sensitive to R/G/B lights. Connecting with these cone cells, a multilayer neuro-network in the retina provides neuromorphic preprocessing before transmitting to brain. Inspired by this sophistication, we develop the narrowband (NB) imaging sensor combining R/G/B perovskite NB sensor array (mimicking the R/G/B photoreceptors) with a neuromorphic algorithm (mimicking the intermediate neural network) for high-fidelity panchromatic imaging. Compared to commercial sensors, we use perovskite "intrinsic" NB PD to exempt the complex optical filter array. In addition, we use an asymmetric device configuration to collect photocurrent without external bias, enabling a power-free photodetection feature. These results display a promising design for efficient and intelligent panchromatic imaging.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Junde Li
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA 16802 USA
| | - Jungjin Yoon
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Abbey Marie Knoepfel
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Dong Yang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Luyao Zheng
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Tao Ye
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Swaroop Ghosh
- School of Electrical Engineering and Computer Science, Pennsylvania State University, University Park, PA 16802 USA
| | - Shashank Priya
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Kai Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Luo H, Du J, Yang P, Shi Y, Liu Z, Yang D, Zheng L, Chen X, Wang ZL. Human-Machine Interaction via Dual Modes of Voice and Gesture Enabled by Triboelectric Nanogenerator and Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17009-17018. [PMID: 36947663 PMCID: PMC10080540 DOI: 10.1021/acsami.3c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
With the development of science and technology, human-machine interaction has brought great benefits to the society. Here, we design a voice and gesture signal translator (VGST), which can translate natural actions into electrical signals and realize efficient communication in human-machine interface. By spraying silk protein on the copper of the device, the VGST can achieve improved output and a wide frequency response of 20-2000 Hz with a high sensitivity of 167 mV/dB, and the resolution of frequency detection can reach 0.1 Hz. By designing its internal structure, its resonant frequency and output voltage can be adjusted. The VGST can be used as a high-fidelity platform to effectively recover recorded music and can also be combined with machine learning algorithms to realize the function of speech recognition with a high accuracy rate of 97%. It also has good antinoise performance to recognize speech correctly even in noisy environments. Meanwhile, in gesture recognition, the triboelectric translator is able to recognize simple hand gestures and to judge the distance between hand and the VGST based on the principle of electrostatic induction. This work demonstrates that triboelectric nanogenerator (TENG) technology can have great application prospects and significant advantages in human-machine interaction and high-fidelity platforms.
Collapse
Affiliation(s)
- Hao Luo
- College
of Mathematics and Physics, Shanghai Key Laboratory of Materials Protection
and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
| | - Jingyi Du
- College
of Mathematics and Physics, Shanghai Key Laboratory of Materials Protection
and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
| | - Peng Yang
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuxiang Shi
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaoqi Liu
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dehong Yang
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zheng
- College
of Mathematics and Physics, Shanghai Key Laboratory of Materials Protection
and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiangyu Chen
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhong Lin Wang
- Beijing
Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy
of Sciences, Beijing 100083, PR China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
32
|
Lee Y, Kwon H, Kim SM, Lee HI, Kim K, Lee HW, Kim SY, Hwang HJ, Lee BH. Demonstration of p-type stack-channel ternary logic device using scalable DNTT patterning process. NANO CONVERGENCE 2023; 10:12. [PMID: 36894801 PMCID: PMC9998751 DOI: 10.1186/s40580-023-00362-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
A p-type ternary logic device with a stack-channel structure is demonstrated using an organic p-type semiconductor, dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). A photolithography-based patterning process is developed to fabricate scaled electronic devices with complex organic semiconductor channel structures. Two layers of thin DNTT with a separation layer are fabricated via the low-temperature deposition process, and for the first time, p-type ternary logic switching characteristics exhibiting zero differential conductance in the intermediate current state are demonstrated. The stability of the DNTT stack-channel ternary logic switch device is confirmed by implementing a resistive-load ternary logic inverter circuit.
Collapse
Affiliation(s)
- Yongsu Lee
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Heejin Kwon
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seung-Mo Kim
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Ho-In Lee
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Kiyung Kim
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hae-Won Lee
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - So-Young Kim
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyeon Jun Hwang
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Byoung Hun Lee
- Center for Semiconductor Technology Convergence, Department of Electrical Engineering, Pohang University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
33
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Nawaz A, Merces L, Ferro LMM, Sonar P, Bufon CCB. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204804. [PMID: 36124375 DOI: 10.1002/adma.202204804] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The development of flexible and conformable devices, whose performance can be maintained while being continuously deformed, provides a significant step toward the realization of next-generation wearable and e-textile applications. Organic field-effect transistors (OFETs) are particularly interesting for flexible and lightweight products, because of their low-temperature solution processability, and the mechanical flexibility of organic materials that endows OFETs the natural compatibility with plastic and biodegradable substrates. Here, an in-depth review of two competing flexible OFET technologies, planar and vertical OFETs (POFETs and VOFETs, respectively) is provided. The electrical, mechanical, and physical properties of POFETs and VOFETs are critically discussed, with a focus on four pivotal applications (integrated logic circuits, light-emitting devices, memories, and sensors). It is pointed out that the flexible function of the relatively newer VOFET technology, along with its perspective on advancing the applicability of flexible POFETs, has not been reviewed so far, and the direct comparison regarding the performance of POFET- and VOFET-based flexible applications is most likely absent. With discussions spanning printed and wearable electronics, materials science, biotechnology, and environmental monitoring, this contribution is a clear stimulus to researchers working in these fields to engage toward the plentiful possibilities that POFETs and VOFETs offer to flexible electronics.
Collapse
Affiliation(s)
- Ali Nawaz
- Center for Sensors and Devices, Bruno Kessler Foundation (FBK), Trento, 38123, Italy
| | - Leandro Merces
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
| | - Letícia M M Ferro
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo, 13083-970, Brazil
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Carlos C B Bufon
- MackGraphe - Graphene and Nanomaterials Research Center, Mackenzie Presbyterian Institute, São Paulo, 01302-907, Brazil
| |
Collapse
|
35
|
Roy Barman S, Lin YJ, Lee KM, Pal A, Tiwari N, Lee S, Lin ZH. Triboelectric Nanosensor Integrated with Robotic Platform for Self-Powered Detection of Chemical Analytes. ACS NANO 2023; 17:2689-2701. [PMID: 36700939 DOI: 10.1021/acsnano.2c10770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rapid on-site detection of hazardous chemicals is imperative for remote security and environmental monitoring applications. However, the implementation of current sensing technologies in real environments is limited due to an external high-power requirement, poor selectivity and sensitivity. Recent progress in triboelectric nanosensors and nanogenerators presents tremendous opportunities to address these issues. Here, we report an innovative self-powered triboelectric nanosensor for detection of Hg2+ ions, a harmful chemical pollutant, in a rapid single step on-site detection mechanism. Based on the mechanism of solid-liquid contact electrification, tellurium nanowire (Te NW) arrays serving as a solid triboelectric material as well as the sensing probe underwent periodic contact and separation with the Hg2+ solution, leading to the in situ formation of mercury telluride nanowire (HgTe NWs) owing to the selective binding affinity of Te NWs toward Hg2+ ions. To realize the on-site sensing potential, Te NW arrays were mounted onto the robotic hands equipped with additional wireless transmission functionality for rapid detection of Hg2+ ions in resource-limited settings by employing a simple "touch and sense" mechanism. Such a demonstration of direct integration of self-powered sensors with robotics would lead to the development of low-cost, automated chemical sensing machinery for the on-field detection of harmful analytes.
Collapse
Affiliation(s)
- Snigdha Roy Barman
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Jhen Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Ming Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Arnab Pal
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Naveen Tiwari
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul 06974, South Korea
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Ghosh R, Paesani F. Connecting the dots for fundamental understanding of structure-photophysics-property relationships of COFs, MOFs, and perovskites using a Multiparticle Holstein Formalism. Chem Sci 2023; 14:1040-1064. [PMID: 36756323 PMCID: PMC9891456 DOI: 10.1039/d2sc03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
Abstract
Photoactive organic and hybrid organic-inorganic materials such as conjugated polymers, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and layered perovskites, display intriguing photophysical signatures upon interaction with light. Elucidating structure-photophysics-property relationships across a broad range of functional materials is nontrivial and requires our fundamental understanding of the intricate interplay among excitons (electron-hole pair), polarons (charges), bipolarons, phonons (vibrations), inter-layer stacking interactions, and different forms of structural and conformational defects. In parallel with electronic structure modeling and data-driven science that are actively pursued to successfully accelerate materials discovery, an accurate, computationally inexpensive, and physically-motivated theoretical model, which consistently makes quantitative connections with conceptually complicated experimental observations, is equally important. Within this context, the first part of this perspective highlights a unified theoretical framework in which the electronic coupling as well as the local coupling between the electronic and nuclear degrees of freedom can be efficiently described for a broad range of quasiparticles with similarly structured Holstein-style vibronic Hamiltonians. The second part of this perspective discusses excitonic and polaronic photophysical signatures in polymers, COFs, MOFs, and perovskites, and attempts to bridge the gap between different research fields using a common theoretical construct - the Multiparticle Holstein Formalism. We envision that the synergistic integration of state-of-the-art computational approaches with the Multiparticle Holstein Formalism will help identify and establish new, transformative design strategies that will guide the synthesis and characterization of next-generation energy materials optimized for a broad range of optoelectronic, spintronic, and photonic applications.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California La Jolla San Diego California 92093 USA
- San Diego Supercomputer Center, University of California La Jolla San Diego California 92093 USA
- Materials Science and Engineering, University of California La Jolla San Diego California 92093 USA
| |
Collapse
|
37
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
38
|
Lee C, Gwyther REA, Freeley M, Jones D, Palma M. Fabrication and Functionalisation of Nanocarbon-Based Field-Effect Transistor Biosensors. Chembiochem 2022; 23:e202200282. [PMID: 36193790 PMCID: PMC10092808 DOI: 10.1002/cbic.202200282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Indexed: 01/25/2023]
Abstract
Nanocarbon-based field-effect transistor (NC-FET) biosensors are at the forefront of future diagnostic technology. By integrating biological molecules with electrically conducting carbon-based platforms, high sensitivity real-time multiplexed sensing is possible. Combined with their small footprint, portability, ease of use, and label-free sensing mechanisms, NC-FETs are prime candidates for the rapidly expanding areas of point-of-care testing, environmental monitoring and biosensing as a whole. In this review we provide an overview of the basic operational mechanisms behind NC-FETs, synthesis and fabrication of FET devices, and developments in functionalisation strategies for biosensing applications.
Collapse
Affiliation(s)
- Chang‐Seuk Lee
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Rebecca E. A. Gwyther
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Mark Freeley
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| | - Dafydd Jones
- Molecular Biosciences Division, School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Matteo Palma
- Department of ChemistrySchool of Physical and Chemical SciencesQueen Mary University of LondonMile End RoadLondonE1 4NSUK
| |
Collapse
|
39
|
Borrmann F, Tsuda T, Guskova O, Kiriy N, Hoffmann C, Neusser D, Ludwigs S, Lappan U, Simon F, Geisler M, Debnath B, Krupskaya Y, Al‐Hussein M, Kiriy A. Charge-Compensated N-Doped π-Conjugated Polymers: Toward both Thermodynamic Stability of N-Doped States in Water and High Electron Conductivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203530. [PMID: 36065004 PMCID: PMC9631074 DOI: 10.1002/advs.202203530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Indexed: 05/28/2023]
Abstract
The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective "in-water" applications is developed. A combined experimental-theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10-2 S cm-1 under ambient conditions and 10-1 S cm-1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced "collapse" of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
Collapse
Affiliation(s)
- Fabian Borrmann
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Takuya Tsuda
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Olga Guskova
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
- Dresden Center for Computational Materials Science (DCMS)TU Dresden01062DresdenGermany
| | - Nataliya Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Cedric Hoffmann
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - David Neusser
- IPOC‐Functional PolymersInstitute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Ludwigs
- IPOC‐Functional PolymersInstitute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Uwe Lappan
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Frank Simon
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Martin Geisler
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Bipasha Debnath
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung DresdenHelmholtzstraße 2001069DresdenGermany
| | - Yulia Krupskaya
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung DresdenHelmholtzstraße 2001069DresdenGermany
| | - Mahmoud Al‐Hussein
- Physics Department and Hamdi Mango Center for Scientific ResearchThe University of JordanAmman11942Jordan
| | - Anton Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| |
Collapse
|
40
|
Kim S, Seo J, Choi J, Yoo H. Vertically Integrated Electronics: New Opportunities from Emerging Materials and Devices. NANO-MICRO LETTERS 2022; 14:201. [PMID: 36205848 PMCID: PMC9547046 DOI: 10.1007/s40820-022-00942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Vertical three-dimensional (3D) integration is a highly attractive strategy to integrate a large number of transistor devices per unit area. This approach has emerged to accommodate the higher demand of data processing capability and to circumvent the scaling limitation. A huge number of research efforts have been attempted to demonstrate vertically stacked electronics in the last two decades. In this review, we revisit materials and devices for the vertically integrated electronics with an emphasis on the emerging semiconductor materials that can be processable by bottom-up fabrication methods, which are suitable for future flexible and wearable electronics. The vertically stacked integrated circuits are reviewed based on the semiconductor materials: organic semiconductors, carbon nanotubes, metal oxide semiconductors, and atomically thin two-dimensional materials including transition metal dichalcogenides. The features, device performance, and fabrication methods for 3D integration of the transistor based on each semiconductor are discussed. Moreover, we highlight recent advances that can be important milestones in the vertically integrated electronics including advanced integrated circuits, sensors, and display systems. There are remaining challenges to overcome; however, we believe that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.
Collapse
Affiliation(s)
- Seongjae Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Juhyung Seo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Junhwan Choi
- Center of Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin, Gyeonggi-do, 16890, Republic of Korea.
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| |
Collapse
|
41
|
Wu Z, Yan Y, Zhao Y, Liu Y. Recent Advances in Realizing Highly Aligned Organic Semiconductors by Solution-Processing Approaches. SMALL METHODS 2022; 6:e2200752. [PMID: 35793415 DOI: 10.1002/smtd.202200752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Solution-processing approaches are widely used for controlling the aggregation structure of organic semiconductors because they are fast, efficient, and have strong practicability. Effective regulation of the aggregation structure of molecules to achieve highly ordered molecular stacking is key to realizing effective carrier transport and high-performance devices. Numerous studies have achieved highly aligned organic semiconductors using different solution-processing approaches. This article provides a detailed review of the prevalent solution-processing technologies and emerging methods developed over the past few years for the alignment of organic semiconducting materials. These technologies and methods are classified according to the processing principle. This review focuses on the principles of different experimental techniques, improvements upon the conventional methods, and state-of-the-art performance of resulting devices. In addition, a brief discussion of the characteristics and development prospects of various methods is presented.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
42
|
Chen Y, Wang H, Luo F, Montes-García V, Liu Z, Samorì P. Nanofloating gate modulated synaptic organic light-emitting transistors for reconfigurable displays. SCIENCE ADVANCES 2022; 8:eabq4824. [PMID: 36103533 PMCID: PMC9473570 DOI: 10.1126/sciadv.abq4824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The use of postsynaptic current to drive long-lasting luminescence holds a disruptive potential for harnessing the next-generation of smart displays. Multiresponsive long afterglow emission can be achieved by integrating light-emitting polymers in electric spiked transistors trigged by distinct presynaptic signals inputs. Here, we report a highly effective electric spiked long afterglow organic light-emitting transistor (LAOLET), whose operation relies on a nanofloating gate architecture. Long afterglow emission with reconfigurable brightness and retention time is observed upon applying specific positive gate voltage spiked. Conversely, when negative gate voltage stimulus is applied, these LAOLETs function as click-on display. Interestingly, upon endowing the device with force sensing capabilities, it can operate as a long afterglow pressure sensor that emits long-lasting green light subsequently to a controlled extrusion action.
Collapse
|
43
|
Shen C, Yin Z, Collins F, Pinna N. Atomic Layer Deposition of Metal Oxides and Chalcogenides for High Performance Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104599. [PMID: 35712776 PMCID: PMC9376853 DOI: 10.1002/advs.202104599] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Atomic layer deposition (ALD) is a deposition technique well-suited to produce high-quality thin film materials at the nanoscale for applications in transistors. This review comprehensively describes the latest developments in ALD of metal oxides (MOs) and chalcogenides with tunable bandgaps, compositions, and nanostructures for the fabrication of high-performance field-effect transistors. By ALD various n-type and p-type MOs, including binary and multinary semiconductors, can be deposited and applied as channel materials, transparent electrodes, or electrode interlayers for improving charge-transport and switching properties of transistors. On the other hand, MO insulators by ALD are applied as dielectrics or protecting/encapsulating layers for enhancing device performance and stability. Metal chalcogenide semiconductors and their heterostructures made by ALD have shown great promise as novel building blocks to fabricate single channel or heterojunction materials in transistors. By correlating the device performance to the structural and chemical properties of the ALD materials, clear structure-property relations can be proposed, which can help to design better-performing transistors. Finally, a brief concluding remark on these ALD materials and devices is presented, with insights into upcoming opportunities and challenges for future electronics and integrated applications.
Collapse
Affiliation(s)
- Chengxu Shen
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Zhigang Yin
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao West Road, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Fionn Collins
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin, 12489, Germany
| |
Collapse
|
44
|
Zhang Q, Huang J, Wang K, Huang W. Recent Structural Engineering of Polymer Semiconductors Incorporating Hydrogen Bonds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110639. [PMID: 35261083 DOI: 10.1002/adma.202110639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Highly planar, extended π-electron organic conjugated polymers have been increasingly attractive for achieving high-mobility organic semiconductors. In addition to the conventional strategy to construct rigid backbone by covalent bonds, hydrogen bond has been employed extensively to increase the planarity and rigidity of polymer via intramolecular noncovalent interactions. This review provides a general summary of high-mobility semiconducting polymers incorporating hydrogen bonds in field-effect transistors over recent years. The structural engineering of the hydrogen bond-containing building blocks and the discussion of theoretical simulation, microstructural characterization, and device performance are covered. Additionally, the effects of the introduction of hydrogen bond on self-healing, stretchability, chemical sensitivity, and mechanical properties are also discussed. The review aims to help and inspire design of new high-mobility conjugated polymers with superiority of mechanical flexibility by incorporation of hydrogen bond for the application in flexible electronics.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Jianyao Huang
- CAS key Laboratory of Organic Solids, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
45
|
Gong Q, Miao Q. Sensitivity of gas sensors enhanced by functionalization of hexabenzoperylene in solution-processed monolayer organic field effect transistors. Chem Commun (Camb) 2022; 58:7046-7049. [PMID: 35647768 DOI: 10.1039/d2cc01899c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution-processed monolayer films consisting of unfunctionalized and functionalized hexabenzoperylenes in a single homogeneous phase have enabled highly sensitive detection of NH3 and NO2 on the basis of organic field effect transistors.
Collapse
Affiliation(s)
- Qi Gong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
46
|
Naphthalene-Diimide-Based Small Molecule Containing a Thienothiophene Linker for n-Type Organic Field-Effect Transistors. Macromol Res 2022. [DOI: 10.1007/s13233-022-0054-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Lu W, Cao J, Zhai C, Bu L, Lu G, Zhu Y. Enhanced Performance of Organic Field-Effect Transistors by a Molecular Dopant with High Electron Affinity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23709-23716. [PMID: 35548972 DOI: 10.1021/acsami.2c02977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organic field-effect transistors (OFETs) are attractive for next-generation electronics, while doping plays an important role in their performance optimization. In this work, a soluble molecular dopant with high electron affinity, CN6-CP, is investigated to manipulate the performance of OFETs with a p-type organic semiconductor as the transport layer. The performance of the model 2,7-didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C12-BTBT) bottom-gate top-contact (BGTC) OFETs is greatly optimized upon doping by CN6-CP, and the field-effect mobility is improved from 5.5 to 11.1 cm2 V-1 s-1, with a widely tunable threshold voltage from -40 to +5 V. Improvements in performance also appear in CN6-CP doped BGBC OFETs. As compared with commonly used molecular dopant F4-TCNQ, CN6-CP exhibits excellent doping effects and great potential for organic electronic applications.
Collapse
Affiliation(s)
- Wanlong Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingning Cao
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Chenyang Zhai
- The High School Affiliated to Xi'an Jiaotong University, Xi'an 710054, China
| | - Laju Bu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guanghao Lu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yuanwei Zhu
- Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
48
|
Choi J, Lee C, Lee C, Park H, Lee SM, Kim CH, Yoo H, Im SG. Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors. Nat Commun 2022; 13:2305. [PMID: 35484111 PMCID: PMC9051064 DOI: 10.1038/s41467-022-29756-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022] Open
Abstract
Multi-valued logic (MVL) circuits based on heterojunction transistor (HTR) have emerged as an effective strategy for high-density information processing without increasing the circuit complexity. Herein, an organic ternary logic inverter (T-inverter) is demonstrated, where a nonvolatile floating-gate flash memory is employed to control the channel conductance systematically, thus realizing the stabilized T-inverter operation. The 3-dimensional (3D) T-inverter is fabricated in a vertically stacked form based on all-dry processes, which enables the high-density integration with high device uniformity. In the flash memory, ultrathin polymer dielectrics are utilized to reduce the programming/erasing voltage as well as operating voltage. With the optimum programming state, the 3D T-inverter fulfills all the important requirements such as full-swing operation, optimum intermediate logic value (~VDD/2), high DC gain exceeding 20 V/V as well as low-voltage operation (< 5 V). The organic flash memory exhibits long retention characteristics (current change less than 10% after 104 s), leading to the long-term stability of the 3D T-inverter. We believe the 3D T-inverter employing flash memory developed in this study can provide a useful insight to achieve high-performance MVL circuits. High-density information processing without increasing the circuit complexity is highly desired in electronics. Here, Im et al. demonstrate a low-voltage organic ternary logic circuit vertically integrated with the nonvolatile flash memory, increasing the information density by a factor of 3.
Collapse
Affiliation(s)
- Junhwan Choi
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Changhyeon Lee
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Chungryeol Lee
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Hongkeun Park
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Seung Min Lee
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Chang-Hyun Kim
- Department of Electronic Engineering Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Korea
| | - Hocheon Yoo
- Department of Electronic Engineering Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Korea.
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea. .,KAIST Institute For NanoCentury (KINC) Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
49
|
Abstract
The application of flexible electronics in the field of communication has made the transition from rigid physical form to flexible physical form. Flexible electrode technology is the key to the wide application of flexible electronics. However, flexible electrodes will break when large deformation occurs, failing flexible electronics. It restricts the further development of flexible electronic technology. Flexible stretchable electrodes are a hot research topic to solve the problem that flexible electrodes cannot withstand large deformation. Flexible stretchable electrode materials have excellent electrical conductivity, while retaining excellent mechanical properties in case of large deformation. This paper summarizes the research results of flexible stretchable electrodes from three aspects: material, process, and structure, as well as the prospects for future development.
Collapse
|
50
|
He Z, Ye D, Liu L, Di CA, Zhu D. Advances in materials and devices for mimicking sensory adaptation. MATERIALS HORIZONS 2022; 9:147-163. [PMID: 34542132 DOI: 10.1039/d1mh01111a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Adaptive devices, which aim to adjust electrical behaviors autonomically to external stimuli, are considered to be attractive candidates for next-generation artificial perception systems. Compared with typical electronic devices with stable signal output, adaptive devices possess unique features in exhibiting dynamic fitness to varying environments. To meet this requirement, increasing efforts have been made focusing on developing new materials, functional interfaces and novel device geometry for sensory perception applications. In this review, we summarize the recent advances in materials and devices for mimicking sensory adaptation. Keeping this in mind, we first introduce the fundamentals of biological sensory adaptation. Thereafter, the recent progress in mimicking sensory adaptation, such as tactile and visual adaptive systems, is overviewed. Moreover, we suggest five strategies to construct adaptive devices. Finally, challenges and perspectives are proposed to highlight the directions that deserve focused attention in this flourishing field.
Collapse
Affiliation(s)
- Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|