1
|
Geisenhoff J, Pan Y, Yin H, Paesani F, Schimpf AM. Concentration-Dependent Layer-Stacking and the Influence on Phase-Conversion in Colloidally Synthesized WSe 2 Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:8834-8845. [PMID: 39347471 PMCID: PMC11428078 DOI: 10.1021/acs.chemmater.4c01602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/01/2024]
Abstract
We report a synthesis of WSe2 nanocrystals in which the number of layers is controlled by varying the precursor concentration. By altering the ratios and concentrations of W(CO)6 and Ph2Se2 in trioctylphosphine oxide, we show that high [Se] and large Se/W ratios lead to an increased number of layers per nanocrystal. As the number of layers per nanocrystal is increased, the nanocrystal ensembles show less phase-conversion from the metastable 2M phase to the thermodynamically favored 2H phase. Density functional theory calculations indicate that the interlayer binding energy increases with the number of layers, indicating that the stronger interlayer interactions in multilayered nanocrystals may increase the energy barrier to phase-conversion. The results presented herein provide insights for directing phase-conversion in solution-phase syntheses of transition metal dichalcogenides.
Collapse
Affiliation(s)
- Jessica
Q. Geisenhoff
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Yuanhui Pan
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Hang Yin
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alina M. Schimpf
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
- Program
in Materials Science and Engineering, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Yang M, Schoop LM. Friends not Foes: Exfoliation of Non-van der Waals Materials. Acc Chem Res 2024; 57:2490-2499. [PMID: 39150546 DOI: 10.1021/acs.accounts.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
ConspectusTwo-dimensional materials have been a focus of study for decades, resulting in the development of a library of nanosheets made by a variety of methods. However, many of these atomically thin materials are exfoliated from van der Waals (vdW) compounds, which inherently have weaker bonding between layers in the bulk crystal. Even though there are diverse properties and structures within this class of compounds, it would behoove the community to look beyond these compounds toward the exfoliation of non-vdW compounds as well. A particular class of non-vdW compounds that may be amenable to exfoliation are the ionically bonded layered materials, which are structurally similar to vdW compounds but have alkali ions intercalated between the layers. Although initially they may have been more difficult to exfoliate due to a lack of methodology beyond mechanical exfoliation, many synthesis techniques have been developed that have been used successfully in exfoliating non-vdW materials. In fact, as we will show, in some cases it has even proven to be advantageous to start the exfoliation from a non-vdW compound.The method we will highlight here is chemical exfoliation, which has developed significantly and is better understood mechanistically compared to when it was first conceived. Encompassing many methods, such as acid/base reactions, solvent reactions, and oxidative extractions, chemical exfoliation can be tailored to the delamination of non-vdW materials, which opens up many more possibilities of compounds to study. In addition, beginning with intercalated analogues of vdW materials can even lead to more consistent and higher quality results, overcoming some challenges associated with chemical exfoliation in general. To exemplify this, we will discuss our group's work on the synthesis of a 1T'-WS2 monolayer ink. By starting with K0.5WS2, the exfoliated 1T'-WS2 nanosheets obtained were larger and more uniform in thickness than those from previous syntheses beginning with vdW materials. The crystallinity of the nanosheets was high enough that films made from this ink were superconducting. We will also show how soft chemical methods can be used to make new phases from existing compounds, such as HxCrS2 from NaCrS2. This material was found to have alternating amorphous and crystalline layers. Its biphasic structure improved the material's performance as a battery electrode, enabling reversible Cr redox and faster Na-ion diffusion. From these and other examples, we will see how chemical exfoliation of non-vdW materials compares to other methods, as well as how this technique can be further extended to known compounds that can be deintercalated electrochemically and to quasi-one-dimensional crystals.
Collapse
Affiliation(s)
- Mulan Yang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leslie M Schoop
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Li Y, Xu L, Liu G, Fang Y, Zheng H, Dai S, Li E, Zhu G, Zhang S, Liang S, Yang L, Huang F, Xi X, Liu Z, Xu N, Chen Y. Evidence of strong and mode-selective electron-phonon coupling in the topological superconductor candidate 2M-WS 2. Nat Commun 2024; 15:6235. [PMID: 39043689 PMCID: PMC11266404 DOI: 10.1038/s41467-024-50590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
The interaction between lattice vibrations and electrons plays a key role in various aspects of condensed matter physics - including electron hydrodynamics, strange metal behavior, and high-temperature superconductivity. In this study, we present systematic investigations using Raman scattering and angle-resolved photoemission spectroscopy (ARPES) to examine the phononic and electronic subsystems of the topological superconductor candidate 2M-WS2. Raman scattering exhibits an anomalous nonmonotonic temperature dependence of phonon linewidths, indicative of strong phonon-electron scattering over phonon-phonon scattering. The ARPES results demonstrate pronounced dispersion anomalies (kinks) at multiple binding energies within both bulk and topological surface states, indicating a robust and mode-selective coupling between the electronic states and various phonon modes. These experimental findings align with previous calculations of the Eliashberg function, providing a deeper understanding of the highest superconducting transition temperature observed in 2M-WS2 (8.8 K) among all transition metal dichalcogenides as induced by electron-phonon coupling. Furthermore, our results may offer valuable insights into other properties of 2M-WS2 and guide the search for high-temperature topological superconductors.
Collapse
Affiliation(s)
- Yiwei Li
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China.
| | - Lixuan Xu
- Department of Physics, Hubei University, Wuhan, China
| | - Gan Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yuqiang Fang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, China
| | - Shenghao Dai
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Enting Li
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Guang Zhu
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China
| | - Shihao Zhang
- School of Physics and Electronics, Hunan University, Changsha, China
| | - Shiheng Liang
- Department of Physics, Hubei University, Wuhan, China
| | - Lexian Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Fuqiang Huang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiang Xi
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- ShanghaiTech Laboratory for Topological Physics, Shanghai, China.
| | - Nan Xu
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, China.
- Wuhan Institute of Quantum Technology, Wuhan, China.
| | - Yulin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, China
- Department of Physics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Guan Y, Chen M, Ding Y, Fang Y, Huang F, Xu CY, Zhen L, Li Y, Yang L, Xu P. Phase Transformation on Multilayer 2M-WS 2 for Improved Surface-enhanced Raman Scattering. ACS NANO 2024; 18:17339-17348. [PMID: 38905021 DOI: 10.1021/acsnano.4c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
In recent years, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been widely recognized as an ideal platform for surface-enhanced Raman scattering (SERS). Given their rich structural phases, phase transformation in 2D TMDCs is an efficient strategy to tailor their SERS performance. In this paper, we present the great SERS performance of multilayer 2M-WS2 and then investigate the effect of its phase transformation on SERS performance. It is observed that multilayer 2M-WS2 nanosheets undergo a thermally induced single-crystal phase transition from 2M-WS2 to 2H-WS2 upon thermal annealing or laser treatment. Distinguishing from the commercially available pure 2H-WS2 (P-2H-WS2), 2H-WS2 obtained by annealing and laser treatment still retain SERS properties comparable to those of 2M-WS2, among which the detection limits for CV molecules (10-8 M) are 3 orders of magnitude lower than that of P-2H-WS2 and the Raman intensity enhancements are ∼10-37 times higher. In contrast to the charge transfer (CT) mechanism governed by the Fermi level in metallic-phase 2M-WS2, 2H-WS2 obtained by phase transition exhibits accelerated CT facilitated by the bandgap reduction and reorganization resulting from the abundance of vacancies. This study introduces an interesting perspective and potential avenue for enhancing SERS through metal-to-semiconductor phase transitions in 2D TMDCs materials.
Collapse
Affiliation(s)
- Yanchao Guan
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ye Ding
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
- Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China
| | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Cheng-Yan Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Lijun Yang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
5
|
Xie H, Huang Z, Zhao Y, Huang H, Li G, Gu Z, Zeng S. Strong electron-phonon coupling and multigap superconductivity in 2H/1T Janus MoSLi monolayer. J Chem Phys 2024; 160:234707. [PMID: 38904407 DOI: 10.1063/5.0210968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Two-dimensional (2D) Janus transition metal dichalcogenides MXY manifest novel physical properties owing to the breaking of out-of-plane mirror symmetry. Recently, the 2H phase of MoSH has been demonstrated to possess intrinsic superconductivity, whereas the 1T phase exhibits a charge density waves state. In this paper, we have systematically studied the stability and electron-phonon interaction characteristics of MoSLi. Our results have shown that both the 2H and 1T phases of MoSLi are stable, as indicated by the phonon spectrum and the ab initio molecular dynamics. However, the 1T phase exhibits an electron-phonon coupling constant that is twice as large as that of the 2H phase. In contrast to MoSH, the 1T phase of MoSLi exhibits intrinsic superconductivity. By employing the ab initio anisotropic Migdal-Eliashberg formalism, we have revealed the two-gap superconducting nature of 1T-MoSLi, with a transition temperature (Tc) of 14.8 K. The detailed analysis indicates that the superconductivity in 1T-MoSLi primarily originates from the interplay between the vibration of the phonon modes in the low-frequency region and the dz2 orbital. These findings provide a fresh perspective on superconductivity within Janus structures.
Collapse
Affiliation(s)
- Hongmei Xie
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zhijing Huang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yinchang Zhao
- Department of Physics, Yantai University, Yantai 264005, China
| | - Hao Huang
- Advanced Copper Industry College, Jiangxi University of Science and Technology, Yingtan 335000, China
| | - Geng Li
- China Rare Earth Group Research Institute, Ganzhou, Jiangxi 341000, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Zonglin Gu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Shuming Zeng
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| |
Collapse
|
6
|
Zhai W, Li Z, Wang Y, Zhai L, Yao Y, Li S, Wang L, Yang H, Chi B, Liang J, Shi Z, Ge Y, Lai Z, Yun Q, Zhang A, Wu Z, He Q, Chen B, Huang Z, Zhang H. Phase Engineering of Nanomaterials: Transition Metal Dichalcogenides. Chem Rev 2024; 124:4479-4539. [PMID: 38552165 DOI: 10.1021/acs.chemrev.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Crystal phase, a critical structural characteristic beyond the morphology, size, dimension, facet, etc., determines the physicochemical properties of nanomaterials. As a group of layered nanomaterials with polymorphs, transition metal dichalcogenides (TMDs) have attracted intensive research attention due to their phase-dependent properties. Therefore, great efforts have been devoted to the phase engineering of TMDs to synthesize TMDs with controlled phases, especially unconventional/metastable phases, for various applications in electronics, optoelectronics, catalysis, biomedicine, energy storage and conversion, and ferroelectrics. Considering the significant progress in the synthesis and applications of TMDs, we believe that a comprehensive review on the phase engineering of TMDs is critical to promote their fundamental studies and practical applications. This Review aims to provide a comprehensive introduction and discussion on the crystal structures, synthetic strategies, and phase-dependent properties and applications of TMDs. Finally, our perspectives on the challenges and opportunities in phase engineering of TMDs will also be discussed.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Lixin Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Banlan Chi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jinzhe Liang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zhiying Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
7
|
Xing Q, Zhang J, Fang Y, Song C, Zhao T, Mou Y, Wang C, Ma J, Xie Y, Huang S, Mu L, Lei Y, Shi W, Huang F, Yan H. Tunable anisotropic van der Waals films of 2M-WS 2 for plasmon canalization. Nat Commun 2024; 15:2623. [PMID: 38521817 PMCID: PMC10960863 DOI: 10.1038/s41467-024-46963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
In-plane anisotropic van der Waals materials have emerged as a natural platform for anisotropic polaritons. Extreme anisotropic polaritons with in-situ broadband tunability are of great significance for on-chip photonics, yet their application remains challenging. In this work, we experimentally characterize through Fourier transform infrared spectroscopy measurements a van der Waals plasmonic material, 2M-WS2, capable of supporting intrinsic room-temperature in-plane anisotropic plasmons in the far and mid-infrared regimes. In contrast to the recently revealed natural hyperbolic plasmons in other anisotropic materials, 2M-WS2 supports canalized plasmons with flat isofrequency contours in the frequency range of ~ 3000-5000 cm-1. Furthermore, the anisotropic plasmons and the corresponding isofrequency contours can be reversibly tuned via in-situ ion-intercalation. The tunable anisotropic and canalization plasmons may open up further application perspectives in the field of uniaxial plasmonics, such as serving as active components in directional sensing, radiation manipulation, and polarization-dependent optical modulators.
Collapse
Affiliation(s)
- Qiaoxia Xing
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Jiasheng Zhang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chaoyu Song
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Tuoyu Zhao
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, 200433, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, 201210, Shanghai, China
| | - Yanlin Mou
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Chong Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, 100081, Beijing, China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Junwei Ma
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Yuangang Xie
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Shenyang Huang
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Lei Mu
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Yuchen Lei
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China
| | - Wu Shi
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, 200433, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Fudan University, 201210, Shanghai, China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China.
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
| | - Hugen Yan
- State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, and Department of Physics, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
8
|
Liu X, Zhang P, Wang S, Fang Y, Wu P, Xiang Y, Chen J, Zhao C, Zhang X, Zhao W, Wang J, Huang F, Guan C. High intrinsic phase stability of ultrathin 2M WS 2. Nat Commun 2024; 15:1263. [PMID: 38341471 DOI: 10.1038/s41467-024-45676-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Metallic 2M or 1T'-phase transition metal dichalcogenides (TMDs) attract increasing interests owing to their fascinating physicochemical properties, such as superconductivity, optical nonlinearity, and enhanced electrochemical activity. However, these TMDs are metastable and tend to transform to the thermodynamically stable 2H phase. In this study, through systematic investigation and theoretical simulation of phase change of 2M WS2, we demonstrate that ultrathin 2M WS2 has significantly higher intrinsic thermal stabilities than the bulk counterparts. The 2M-to-2H phase transition temperature increases from 120 °C to 210 °C in the air as thickness of WS2 is reduced from bulk to bilayer. Monolayered 1T' WS2 can withstand temperatures up to 350 °C in the air before being oxidized, and up to 450 °C in argon atmosphere before transforming to 1H phase. The higher stability of thinner 2M WS2 is attributed to stiffened intralayer bonds, enhanced thermal conductivity and higher average barrier per layer during the layer(s)-by-layer(s) phase transition process. The observed high intrinsic phase stability can expand the practical applications of ultrathin 2M TMDs.
Collapse
Affiliation(s)
- Xiangye Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Pingting Zhang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Shiyao Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Penghui Wu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Yue Xiang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Jipeng Chen
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Chendong Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Xian Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing, 100094, China
| | - Wei Zhao
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Junjie Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai, Shanghai, 200050, China
| | - Cao Guan
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China.
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
9
|
Kwon IS, Kwak IH, Kim JY, Lee SJ, Sial QA, Ihsan J, Lee KS, Yoo SJ, Park J, Kang HS. 2H-2M Phase Control of WSe 2 Nanosheets by Se Enrichment Toward Enhanced Electrocatalytic Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307867. [PMID: 38009401 DOI: 10.1002/adma.202307867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/23/2023] [Indexed: 11/28/2023]
Abstract
The phase control of transition metal dichalcogenides (TMDs) is an intriguing approach for tuning the electronic structure toward extensive applications. In this study, WSe2 nanosheets synthesized via a colloidal reaction exhibit a phase conversion from semiconducting 2H to metallic 2M under Se-rich growth conditions (i.e., increasing the concentration of Se precursor or lowering the growth temperature). High-resolution scanning transmission electron microscopy images are used to identify the stacking sequence of the 2M phase, which is distinctive from that of the 1T' phase. First-principles calculations employing various Se-rich models (intercalation and substitution) indicated that Se enrichment induces conversion to the 2M phase. The 2M phase WSe2 nanosheets with the Se excess exhibited enhanced electrocatalytic performance in the hydrogen evolution reaction (HER). In situ X-ray absorption fine structure studies suggested that the excess Se atoms in the 2M phase WSe2 enhanced the HER catalytic activity, which is supported by the Gibbs free energy (ΔGH* ) of H adsorption and the Fermi abundance function. These results provide an appealing strategy for phase control of TMD catalysts.
Collapse
Affiliation(s)
- Ik Seon Kwon
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Beamline Science Team, 4GSR Project Headquarters, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - In Hye Kwak
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ju Yeon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Seung Jae Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Qadeer Akbar Sial
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Junaid Ihsan
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seung Jo Yoo
- Division of Scientific Instrumentation & Management, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | - Jeunghee Park
- Department of Advanced Materials Chemistry, Korea University, Sejong, 339-700, Republic of Korea
| | - Hong Seok Kang
- Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk, 55069, Republic of Korea
| |
Collapse
|
10
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Liu GH, Qiao SX, Wang QH, Wang H, Liu HD, Yin XZ, Tan JH, Jiao N, Lu HY, Zhang P. First-principles prediction of superconducting properties of monolayer 1T'-WS 2 under biaxial tensile strain. Phys Chem Chem Phys 2024; 26:1929-1935. [PMID: 38115787 DOI: 10.1039/d3cp05370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
High-purity 1T'-WS2 film has been experimentally synthesized [Nature Materials, 20, 1113-1120 (2021)] and theoretically predicted to be a two-dimensional (2D) superconducting material with Dirac cones [arXiv:2301.11425]. In the present work, we further study the superconducting properties of monolayer 1T'-WS2 by applying biaxial tensile strain. It is shown that the superconducting critical temperature Tc firstly increases and then decreases with respect to tensile strains, with the highest superconducting critical temperature Tc of 7.25 K under the biaxial tensile strain of 3%. In particular, we find that Dirac cones also exist in several tensile strained cases. Our studies show that monolayer 1T'-WS2 may provide a good platform for understanding the superconductivity of 2D Dirac materials.
Collapse
Affiliation(s)
- Guo-Hua Liu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Shu-Xiang Qiao
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Qiu-Hao Wang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hao Wang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hao-Dong Liu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Xin-Zhu Yin
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Jin-Han Tan
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Na Jiao
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hong-Yan Lu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Ping Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
12
|
Ozden B, Zhang T, Liu M, Fest A, Pearson DA, Khan E, Uprety S, Razon JE, Cherry J, Fujisawa K, Liu H, Perea-López N, Wang K, Isaacs-Smith T, Park M, Terrones M. Engineering Vacancies for the Creation of Antisite Defects in Chemical Vapor Deposition Grown Monolayer MoS 2 and WS 2 via Proton Irradiation. ACS NANO 2023; 17:25101-25117. [PMID: 38052014 DOI: 10.1021/acsnano.3c07752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
It is critical to understand the laws of quantum mechanics in transformative technologies for computation and quantum information science applications to enable the ongoing second quantum revolution calls. Recently, spin qubits based on point defects have gained great attention, since these qubits can be initiated, selectively controlled, and read out with high precision at ambient temperature. The major challenge in these systems is controllably generating multiqubit systems while properly coupling the defects. To address this issue, we began by tackling the engineering challenges these systems present and understanding the fundamentals of defects. In this regard, we controllably generate defects in MoS2 and WS2 monolayers and tune their physicochemical properties via proton irradiation. We quantitatively discovered that the proton energy could modulate the defects' density and nature; higher defect densities were seen with lower proton irradiation energies. Three distinct defect types were observed: vacancies, antisites, and adatoms. In particular, the creation and manipulation of antisite defects provides an alternative way to create and pattern spin qubits based on point defects. Our results demonstrate that altering the particle irradiation energy can regulate the formation of defects, which can be utilized to modify the properties of 2D materials and create reliable electronic devices.
Collapse
Affiliation(s)
- Burcu Ozden
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Tianyi Zhang
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Andres Fest
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Daniel A Pearson
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Ethan Khan
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sunil Uprety
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Jiffer E Razon
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Javari Cherry
- Engineering and Science Division, Penn State Abington, Abington, Pennsylvania 19001, United States
| | - Kazunori Fujisawa
- Water Environment and Civil Engineering, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nestor Perea-López
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ke Wang
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| | - Tamara Isaacs-Smith
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Minseo Park
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Mauricio Terrones
- Department of Materials Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- NSF-IUCRC Center for Atomically Thin 1093 Multifunctional Coatings (ATOMIC), The Pennsylvania State University, University Park, Pennsylvania 16082, United States
| |
Collapse
|
13
|
Chen CH, Lan YS, Huang A, Jeng HT. Two-gap topological superconductor LaB 2 with high Tc = 30 K. NANOSCALE HORIZONS 2023; 9:148-155. [PMID: 37938857 DOI: 10.1039/d3nh00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Since two gap superconductivity was discovered in MgB2, research on multigap superconductors has attracted increasing attention because of its intriguing fundamental physics. In MgB2, the Mg atom donates two electrons to the borophene layer, resulting in a stronger gap from the σ band and a weaker gap from the π bond. First-principles calculations demonstrate that the two gap anisotropic superconductivity strongly enhances the transition temperature of MgB2 in comparison with that given by the isotropic model. In this work, we report a three-band (B-σ, B-π, and La-d) two-gap superconductor LaB2 with very high Tc = 30 K by solving the fully anisotropic Migdal-Eliashberg equation. Because of the σ and π-d hybridization on the Fermi surface, the electron-phonon coupling constant λ = 1.5 is significantly larger than the λ = 0.7 of MgB2. Our work paves a new route to enhance the electron-phonon coupling strength of multigap superconductors with d orbitals. On the other hand, our analysis reveals that LaB2 belongs to the weak topological semimetal category, leading to a possible topological superconductor with the highest Tc to date. Moreover, upon applying pressure and/or doping, the topology is tunable between weak and strong with Tc varying from 15 to 30 K, opening up a flexible platform for manipulating topological superconductors.
Collapse
Affiliation(s)
- Chin-Hsuan Chen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ye-Shun Lan
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Angus Huang
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Horng-Tay Jeng
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
14
|
Guan Y, Ding Y, Fang Y, Wang G, Zhao S, Wang L, Huang J, Chen M, Hao J, Xu C, Zhen L, Huang F, Li Y, Yang L. Femtosecond Laser-Driven Phase Engineering of WS 2 for Nano-Periodic Phase Patterning and Sub-ppm Ammonia Gas Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303654. [PMID: 37415518 DOI: 10.1002/smll.202303654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Laser-driven phase transition of 2D transition metal dichalcogenides has attracted much attention due to its high flexibility and rapidity. However, there are some limitations during the laser irradiation process, especially the unsatisfied surface ablation, the inability of nanoscale phase patterning, and the unexploited physical properties of new phase. In this work, the well-controlled femtosecond (fs) laser-driven transformation from the metallic 2M-WS2 to the semiconducting 2H-WS2 is reported, which is confirmed to be a single-crystal to single-crystal transition without layer thinning or obvious ablation. Moreover, a highly ordered 2H/2M nano-periodic phase transition with a resolution of ≈435 nm is achieved, breaking through the existing size bottleneck of laser-driven phase transition, which is attributed to the selective deposition of plasmon energy induced by fs laser. It is also demonstrated that the achieved 2H-WS2 after laser irradiation contains rich sulfur vacancies, which exhibits highly competitive ammonia gas sensing performance, with a detection limit below 0.1 ppm and a fast response/recovery time of 43/67 s at room temperature. This study provides a new strategy for the preparation of the phase-selective transition homojunction and high-performance applications in electronics.
Collapse
Affiliation(s)
- Yanchao Guan
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Ye Ding
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, China
| | - Genwang Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Shouxin Zhao
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lianfu Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Jingtao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Mengxin Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chengyan Xu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Liang Zhen
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yang Li
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lijun Yang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
15
|
Mandal M, Drucker NC, Siriviboon P, Nguyen T, Boonkird A, Lamichhane TN, Okabe R, Chotrattanapituk A, Li M. Topological Superconductors from a Materials Perspective. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6184-6200. [PMID: 37637011 PMCID: PMC10448998 DOI: 10.1021/acs.chemmater.3c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/12/2023] [Indexed: 08/29/2023]
Abstract
Topological superconductors (TSCs) have garnered significant research and industry attention in the past two decades. By hosting Majorana bound states which can be used as qubits that are robust against local perturbations, TSCs offer a promising platform toward (nonuniversal) topological quantum computation. However, there has been a scarcity of TSC candidates, and the experimental signatures that identify a TSC are often elusive. In this Perspective, after a short review of the TSC basics and theories, we provide an overview of the TSC materials candidates, including natural compounds and synthetic material systems. We further introduce various experimental techniques to probe TSCs, focusing on how a system is identified as a TSC candidate and why a conclusive answer is often challenging to draw. We conclude by calling for new experimental signatures and stronger computational support to accelerate the search for new TSC candidates.
Collapse
Affiliation(s)
- Manasi Mandal
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Nathan C. Drucker
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- School
of Engineering and Applied Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Phum Siriviboon
- Department
of Physics, MIT, Cambridge, Massachusetts 02139, United States
| | - Thanh Nguyen
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Artittaya Boonkird
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Tej Nath Lamichhane
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Ryotaro Okabe
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, MIT, Cambridge, Massachusetts 02139, United States
| | - Abhijatmedhi Chotrattanapituk
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Electrical Engineering and Computer Science, MIT, Cambridge, Massachusetts 02139, United States
| | - Mingda Li
- Quantum
Measurement Group, MIT, Cambridge, Massachusetts 02139, United States
- Department
of Nuclear Science and Engineering, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Li Y, Pu C, Zhou D. Structure, Stability, and Superconductivity of Two-Dimensional Janus NbSH Monolayers: A First-Principle Investigation. Molecules 2023; 28:5522. [PMID: 37513394 PMCID: PMC10385167 DOI: 10.3390/molecules28145522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Two-dimensional Janus materials have unique structural characteristics due to their lack of out-of-plane mirror symmetry, resulting in many excellent physical and chemical properties. Using first-principle calculations, we performed a detailed investigation of the possible stable structures and properties of two-dimensional Janus NbSH. We found that both Janus 1T and 2H structures are semiconductors, unlike their metallic counterparts MoSH. Furthermore, we predicted a new stable NbSH monolayer using a particle swarm optimization method combined with first-principle calculations. Interestingly, the out-of-plane mirror symmetry is preserved in this newly found 2D structure. Furthermore, the newly found NbSH is metallic and exhibits intrinsic superconducting behavior. The superconducting critical temperature is about 6.1 K under normal conditions, which is found to be very sensitive to stress. Even under a small compressive strain of 1.08%, the superconducting critical temperature increases to 9.3 K. In addition, the superconductivity was found to mainly originate from Nb atomic vibrations. Our results show the diversity of structures and properties of the two-dimensional Janus transition metal sulfhydrate materials and provide some guidelines for further investigations.
Collapse
Affiliation(s)
- Yan Li
- International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Chunying Pu
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Dawei Zhou
- Henan International Joint Laboratory of MXene Materials Microstructure, College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
17
|
Xu L, Li Y, Fang Y, Zheng H, Shi W, Chen C, Pei D, Lu D, Hashimoto M, Wang M, Yang L, Feng X, Zhang H, Huang F, Xue Q, He K, Liu Z, Chen Y. Topology Hierarchy of Transition Metal Dichalcogenides Built from Quantum Spin Hall Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300227. [PMID: 36870326 DOI: 10.1002/adma.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/22/2023] [Indexed: 05/26/2023]
Abstract
The evolution of the physical properties of 2D material from monolayer limit to the bulk reveals unique consequences from dimension confinement and provides a distinct tuning knob for applications. Monolayer 1T'-phase transition metal dichalcogenides (1T'-TMDs) with ubiquitous quantum spin Hall (QSH) states are ideal 2D building blocks of various 3D topological phases. However, the stacking geometry has been previously limited to the bulk 1T'-WTe2 type. Here, the novel 2M-TMDs consisting of translationally stacked 1T'-monolayers are introduced as promising material platforms with tunable inverted bandgaps and interlayer coupling. By performing advanced polarization-dependent angle-resolved photoemission spectroscopy as well as first-principles calculations on the electronic structure of 2M-TMDs, a topology hierarchy is revealed: 2M-WSe2 , MoS2, and MoSe2 are weak topological insulators (WTIs), whereas 2M-WS2 is a strong topological insulator (STI). Further demonstration of topological phase transitions by tunning interlayer distance indicates that band inversion amplitude and interlayer coupling jointly determine different topological states in 2M-TMDs. It is proposed that 2M-TMDs are parent compounds of various exotic phases including topological superconductors and promise great application potentials in quantum electronics due to their flexibility in patterning with 2D materials.
Collapse
Affiliation(s)
- Lixuan Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Yiwei Li
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Yuqiang Fang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, P. R. China
| | - Wujun Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai high repetition rate XFEL and extreme light facility (SHINE), ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Cheng Chen
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ding Pei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, P. R. China
| | - Donghui Lu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Makoto Hashimoto
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Meixiao Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, P. R. China
| | - Lexian Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiao Feng
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Haijun Zhang
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing, 210093, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qikun Xue
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Ke He
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, P. R. China
| | - Yulin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210, P. R. China
- Clarendon LaboratoryDepartment of Physics, University of Oxford, Oxford, OX1 3PU, UK
| |
Collapse
|
18
|
Song X, Singha R, Cheng G, Yeh YW, Kamm F, Khoury JF, Hoff BL, Stiles JW, Pielnhofer F, Batson PE, Yao N, Schoop LM. Synthesis of an aqueous, air-stable, superconducting 1T'-WS 2 monolayer ink. SCIENCE ADVANCES 2023; 9:eadd6167. [PMID: 36947621 PMCID: PMC10032609 DOI: 10.1126/sciadv.add6167] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Liquid-phase chemical exfoliation can achieve industry-scale production of two-dimensional (2D) materials for a wide range of applications. However, many 2D materials with potential applications in quantum technologies often fail to leave the laboratory setting because of their air sensitivity and depreciation of physical performance after chemical processing. We report a simple chemical exfoliation method to create a stable, aqueous, surfactant-free, superconducting ink containing phase-pure 1T'-WS2 monolayers that are isostructural to the air-sensitive topological insulator 1T'-WTe2. The printed film is metallic at room temperature and superconducting below 7.3 kelvin, shows strong anisotropic unconventional superconducting behavior with an in-plane and out-of-plane upper critical magnetic field of 30.1 and 5.3 tesla, and is stable at ambient conditions for at least 30 days. Our results show that chemical processing can make nontrivial 2D materials that were formerly only studied in laboratories commercially accessible.
Collapse
Affiliation(s)
- Xiaoyu Song
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ratnadwip Singha
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Guangming Cheng
- Princeton Institute for Science and Technology of Materials, Princeton, NJ 08544, USA
| | - Yao-Wen Yeh
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Franziska Kamm
- Institute of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Jason F. Khoury
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Brianna L. Hoff
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Joseph W. Stiles
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Florian Pielnhofer
- Institute of Inorganic Chemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Philip E. Batson
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Nan Yao
- Princeton Institute for Science and Technology of Materials, Princeton, NJ 08544, USA
| | - Leslie M. Schoop
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
19
|
Xiao Y, Xiong C, Chen MM, Wang S, Fu L, Zhang X. Structure modulation of two-dimensional transition metal chalcogenides: recent advances in methodology, mechanism and applications. Chem Soc Rev 2023; 52:1215-1272. [PMID: 36601686 DOI: 10.1039/d1cs01016f] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Together with the development of two-dimensional (2D) materials, transition metal dichalcogenides (TMDs) have become one of the most popular series of model materials for fundamental sciences and practical applications. Due to the ever-growing requirements of customization and multi-function, dozens of modulated structures have been introduced in TMDs. In this review, we present a systematic and comprehensive overview of the structure modulation of TMDs, including point, linear and out-of-plane structures, following and updating the conventional classification for silicon and related bulk semiconductors. In particular, we focus on the structural characteristics of modulated TMD structures and analyse the corresponding root causes. We also summarize the recent progress in modulating methods, mechanisms, properties and applications based on modulated TMD structures. Finally, we demonstrate challenges and prospects in the structure modulation of TMDs and forecast potential directions about what and how breakthroughs can be achieved.
Collapse
Affiliation(s)
- Yao Xiao
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Chengyi Xiong
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Miao-Miao Chen
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Shengfu Wang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| | - Lei Fu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiuhua Zhang
- Collaborative Innovation Centre for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China.
| |
Collapse
|
20
|
Yang XP, Zhong Y, Mardanya S, Cochran TA, Chapai R, Mine A, Zhang J, Sánchez-Barriga J, Cheng ZJ, Clark OJ, Yin JX, Blawat J, Cheng G, Belopolski I, Nagashima T, Najafzadeh S, Gao S, Yao N, Bansil A, Jin R, Chang TR, Shin S, Okazaki K, Hasan MZ. Coexistence of Bulk-Nodal and Surface-Nodeless Cooper Pairings in a Superconducting Dirac Semimetal. PHYSICAL REVIEW LETTERS 2023; 130:046402. [PMID: 36763428 DOI: 10.1103/physrevlett.130.046402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoemission spectroscopy, we establish it as a spin-orbit coupled Dirac semimetal with the topological Fermi arc crossing the Fermi level on the (010) surface. This spin-textured surface state exhibits a fully gapped superconducting Cooper pairing structure below T_{c}∼4.5 K. Moreover, we find a node in the bulk near the Brillouin zone boundary, away from the topological Fermi arc. These observations not only demonstrate the band resolved electronic correlation between topological Fermi arc states and the way it induces Cooper pairing in PdTe, but also provide a rare case where surface and bulk states host a coexistence of nodeless and nodal gap structures enforced by spin-orbit coupling.
Collapse
Affiliation(s)
- Xian P Yang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yigui Zhong
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Sougata Mardanya
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Tyler A Cochran
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ramakanta Chapai
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Akifumi Mine
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Junyi Zhang
- Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Jaime Sánchez-Barriga
- Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein Strasse 15, Berlin 12489, Germany
- IMDEA Nanoscience, C/ Faraday 9, Campus de Cantoblanco, Madrid 28049, Spain
| | - Zi-Jia Cheng
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Oliver J Clark
- Helmholtz-Zentrum Berlin für Materialien und Energie, Elektronenspeicherring BESSY II, Albert-Einstein Strasse 15, Berlin 12489, Germany
| | - Jia-Xin Yin
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Joanna Blawat
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Center for Experimental Nanoscale Physics, Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Guangming Cheng
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| | - Ilya Belopolski
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Tsubaki Nagashima
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Sahand Najafzadeh
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Shiyuan Gao
- Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Nan Yao
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| | - Arun Bansil
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Rongying Jin
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Center for Experimental Nanoscale Physics, Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Tay-Rong Chang
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort), Tainan 701, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| | - Shik Shin
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Office of University Professor, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Material Innovation Research Center, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Kozo Okazaki
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Material Innovation Research Center, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Trans-scale Quantum Science Institute, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
21
|
Zhang Z, Wang Y, Zhao Z, Song W, Zhou X, Li Z. Interlayer Chemical Modulation of Phase Transitions in Two-Dimensional Metal Chalcogenides. Molecules 2023; 28:molecules28030959. [PMID: 36770625 PMCID: PMC9921675 DOI: 10.3390/molecules28030959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Two-dimensional metal chalcogenides (2D-MCs) with complex interactions are usually rich in phase transition behavior, such as superconductivity, charge density wave (CDW), and magnetic transitions, which hold great promise for the exploration of exciting physical properties and functional applications. Interlayer chemical modulation, as a renewed surface modification method, presents congenital advantages to regulate the phase transitions of 2D-MCs due to its confined space, strong guest-host interactions, and local and reversible modulation without destructing the host lattice, whereby new phenomena and functionalities can be produced. Herein, recent achievements in the interlayer chemical modulation of 2D-MCs are reviewed from the aspects of superconducting transition, CDW transition, semiconductor-to-metal transition, magnetic phase transition, and lattice transition. We systematically discuss the roles of charge transfer, spin coupling, and lattice strain on the modulation of phase transitions in the guest-host architectures of 2D-MCs established by electrochemical intercalation, solution-processed intercalation, and solid-state intercalation. New physical phenomena, new insight into the mechanism of phase transitions, and derived functional applications are presented. Finally, a prospectus of the challenges and opportunities of interlayer chemical modulation for future research is pointed out.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Yi Wang
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Zelin Zhao
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Weijing Song
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
| | - Xiaoli Zhou
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zejun Li
- School of Physics, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 211189, China
- Purple Mountain Laboratories, Nanjing 211111, China
- Correspondence:
| |
Collapse
|
22
|
Cho S, Huh S, Fang Y, Hua C, Bai H, Jiang Z, Liu Z, Liu J, Chen Z, Fukushima Y, Harasawa A, Kawaguchi K, Shin S, Kondo T, Lu Y, Mu G, Huang F, Shen D. Direct Observation of the Topological Surface State in the Topological Superconductor 2M-WS 2. NANO LETTERS 2022; 22:8827-8834. [PMID: 36367457 DOI: 10.1021/acs.nanolett.2c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The quantum spin Hall (QSH) effect has attracted extensive research interest because of the potential applications in spintronics and quantum computing, which is attributable to two conducting edge channels with opposite spin polarization and the quantized electronic conductance of 2e2/h. Recently, 2M-WS2, a new stable phase of transition metal dichalcogenides with a 2M structure showing a layer configuration identical to that of the monolayer 1T' TMDs, was suggested to be a QSH insulator as well as a superconductor with a critical transition temperature of around 8 K. Here, high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES are applied to investigate the electronic and spin structure of the topological surface states (TSS) in the superconducting 2M-WS2. The TSS exhibit characteristic spin-momentum-locking behavior, suggesting the existence of long-sought nontrivial Z2 topological states therein. We expect that 2M-WS2 with coexisting superconductivity and TSS might host the promising Majorana bound states.
Collapse
Affiliation(s)
- Soohyun Cho
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Soonsang Huh
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai200050, People's Republic of China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People's Republic of China
| | - Chenqiang Hua
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Hua Bai
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Zhicheng Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
| | - Zhengtai Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Jishan Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zhenhua Chen
- Shanghai Synchrotron Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, People's Republic of China
| | - Yuto Fukushima
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Ayumi Harasawa
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Kaishu Kawaguchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Shik Shin
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Takeshi Kondo
- Trans-Scale Quantum Science Institute, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Yunhao Lu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Gang Mu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai200050, People's Republic of China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People's Republic of China
| | - Dawei Shen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
23
|
Okada M, Pu J, Lin YC, Endo T, Okada N, Chang WH, Lu AKA, Nakanishi T, Shimizu T, Kubo T, Miyata Y, Suenaga K, Takenobu T, Yamada T, Irisawa T. Large-Scale 1T'-Phase Tungsten Disulfide Atomic Layers Grown by Gas-Source Chemical Vapor Deposition. ACS NANO 2022; 16:13069-13081. [PMID: 35849128 DOI: 10.1021/acsnano.2c05699] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The control of crystal polymorphism and exploration of metastable, two-dimensional, 1T'-phase, transition-metal dichalcogenides (TMDs) have received considerable research attention. 1T'-phase TMDs are expected to offer various opportunities for the study of basic condensed matter physics and for its use in important applications, such as devices with topological states for quantum computing, low-resistance contact for semiconducting TMDs, energy storage devices, and as hydrogen evolution catalysts. However, due to the high energy difference and phase change barrier between 1T' and the more stable 2H-phase, there are few methods that can be used to obtain monolayer 1T'-phase TMDs. Here, we report on the chemical vapor deposition (CVD) growth of 1T'-phase WS2 atomic layers from gaseous precursors, i.e., H2S and WF6, with alkali metal assistance. The gaseous nature of the precursors, reducing properties of H2S, and presence of Na+, which acts as a countercation, provided an optimal environment for the growth of 1T'-phase WS2, resulting in the formation of high-quality submillimeter-sized crystals. The crystal structure was characterized by atomic-resolution scanning transmission electron microscopy, and the zigzag chain structure of W atoms, which is characteristic of the 1T' structure, was clearly observed. Furthermore, the grown 1T'-phase WS2 showed superconductivity with the transition temperature in the 2.8-3.4 K range and large upper critical field anisotropy. Thus, alkali metal assisted gas-source CVD growth is useful for realizing large-scale, high-quality, phase-engineered TMD atomic layers via a bottom-up synthesis.
Collapse
Affiliation(s)
- Mitsuhiro Okada
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Jiang Pu
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Yung-Chang Lin
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Takahiko Endo
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Naoya Okada
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Wen-Hsin Chang
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Anh Khoa Augustin Lu
- Mathematics for Advanced Materials Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 980-8577, Japan
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Takeshi Nakanishi
- Mathematics for Advanced Materials Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Sendai 980-8577, Japan
| | - Tetsuo Shimizu
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Toshitaka Kubo
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Yasumitsu Miyata
- Department of Physics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Kazu Suenaga
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan
| | - Taishi Takenobu
- Department of Applied Physics, Nagoya University, Nagoya 464-8603, Japan
| | - Takatoshi Yamada
- Nano Carbon Device Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Toshifumi Irisawa
- Device Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| |
Collapse
|
24
|
Dong Q, Pan J, Li S, Fang Y, Lin T, Liu S, Liu B, Li Q, Huang F, Liu B. Record-High Superconductivity in Transition Metal Dichalcogenides Emerged in Compressed 2H-TaS 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103168. [PMID: 34936715 DOI: 10.1002/adma.202103168] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Pressure has always been an effective method for uncovering novel phenomena and properties in condensed matter physics. Here, an electrical transport study is carried on 2H-TaS2 up to ≈208 GPa, and an unexpected superconducting state (SC-II) emerging around 86.1 GPa with an initial critical temperature (Tc ) of 9.6 K is found. As pressure increases, the Tc enhances rapidly and reaches a maximum of 16.4 K at 157.4 GPa, which sets a new record for transition metal dichalcogenides (TMDs). The original superconducting state (SC-I) is found to be re-enhanced above 100 GPa after the recession around 10 GPa, and coexists with SC-II to the highest pressure applied in this work. In situ high-pressure X-ray diffraction and Hall effect measurements reveal that the occurrence of SC-II is accompanied by a structural modification and a concurrent enhancement of hole carrier density. The new high-Tc superconducting state in 2H-TaS2 can be attributed to the change of the electronic states near the Fermi surface, owing to pressure-induced interlayer modulation. It is the first time finding this remarkable superconducting state in TMDs, which not only brings a new broad of perspective on layered materials but also expands the field of pressure-modified superconductivity.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Jie Pan
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Shujia Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Yuqiang Fang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Lin
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Shuang Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Bo Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| | - Fuqiang Huang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
25
|
Kim JY, Chae S, Jang W, Besford QA, Oh JY, Lee TI. Antioxidant Triggered Metallic 1T' Phase Transformations of Chemically Exfoliated Tungsten Disulfide (WS 2 ) Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107557. [PMID: 35146916 DOI: 10.1002/smll.202107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Developing facile methods for inducing phase transformation between metallic and semiconducting 2D transition metal dichalcogenide (TMDC) materials is crucial toward leveraging their use in cutting-edge energy devices. Herein, 2H-to-1T' phase transformations in chemically exfoliated Tungsten Disulfide (WS2 ) nanosheet films, triggered by antioxidants toward highly conductive 2D TMDC electrode materials, are introduced. It is found that antioxidants cause residual LiOx compounds to reduce to Li metal, subsequently inducing 1T' phase transformations in layered WS2 nanosheets, resulting in significantly enhanced conductivity across the overall films. Both thermoelectric devices and supercapacitors are fabricated utilizing the highly conductive 1T' phase WS2 nanosheet films as a working electrode, allowing for outstanding performance due to the increased conductivity of the WS2 nanosheet films. The method constitutes a facile approach toward the use of chemically exfoliated 1T' TMDC nanosheets for highly efficient energy device applications.
Collapse
Affiliation(s)
- Jun Yeob Kim
- Department of Materials Science and Engineering, Gachon University, Seong-nam, Gyeonggi, 13120, Republic of Korea
| | - Soosang Chae
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Woosun Jang
- Center for Artificial Synesthesia Materials Discovery, Yonsei University, Seoul, 03722, Republic of Korea
| | - Quinn A Besford
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Tae Il Lee
- Department of Materials Science and Engineering, Gachon University, Seong-nam, Gyeonggi, 13120, Republic of Korea
| |
Collapse
|
26
|
Bae J, Kim M, Kang H, Kim T, Choi H, Kim B, Do HW, Shim W. Kinetic 2D Crystals via Topochemical Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006043. [PMID: 34013602 DOI: 10.1002/adma.202006043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The designing of novel materials is a fascinating and innovative pathway in materials science. Particularly, novel layered compounds have tremendous influence in various research fields. Advanced fundamental studies covering various aspects, including reactants and synthetic methods, are required to obtain novel layered materials with unique physical and chemical properties. Among the promising synthetic techniques, topochemical approaches have afforded the platform for widening the extent of novel 2D materials. Notably, the synthesis of binary layered materials is considered as a major scientific breakthrough after the synthesis of graphene as they exhibit a wide spectrum of material properties with varied potential applicability. In this review, a comprehensive overview of the progress in the development of metastable layered compounds is presented. The various metastable layered compounds synthesized from layered ternary bulk materials through topochemical approaches are listed, followed by the descriptions of their mechanisms, structural analyses, characterizations, and potential applications. Finally, an essential research direction concerning the synthesis of new materials is indicated, wherein the possible application of topochemical approaches in unprecedented areas is explored.
Collapse
Affiliation(s)
- Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Minjung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyeonsoo Kang
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Taeyoung Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hong Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Bokyeong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyung Wan Do
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
27
|
Ji X, Ding D, Guan X, Wu C, Qian H, Cao J, Li J, Jin C. Interlayer Coupling Dependent Discrete H → T' Phase Transition in Lithium Intercalated Bilayer Molybdenum Disulfide. ACS NANO 2021; 15:15039-15046. [PMID: 34495636 DOI: 10.1021/acsnano.1c05332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, the interlayer coupling dependent lithium intercalation induced phase transition in bilayer MoS2 (BL-MoS2) was investigated using an atomic-resolution annual dark-field scanning transmission electron microscope (ADF-STEM). It was revealed that the lithiation induced H → T' phase transition in BL-MoS2 strongly depended on the interlayer twist angle; i.e., the H → T' phase transition occurred in well-stacked H phase BL-MoS2 (with a twist angle of θt = 0°) but not for θt ≠ 0° BL-MoS2. The lithiated BL-MoS2 appeared in homophase stacking, either T'/T' or H/H (locally, no phase transformation) stacking, without any heterophase stacking such as H/T' or T'/H observed. This finding indicated the H → T' phase transition occurred via a domain-by-domain mode rather than layer-by-layer. Up to 15 types of stacking orders were experimentally identified locally in lithiated bilayer T'-MoS2, and the formation mechanism was attributed to the discrete interlayer translation with a unit step of (m/6a, n/6b) (m, n = 0, 1, 2, 3), where a and b were the primitive lattice vectors of T'-MoS2. Our experimental results were further corroborated by ab initio density functional theory (DFT) calculations, where the occurrence of different stacking orders can be quantitatively correlated with the variation of intercalated lithium contents into the BL-MoS2. The present study aids in the understanding of the phase transition mechanisms in atomically thin 2D transition metal dichalcogenides (TMDCs) and will also shed light on the precisely controlled phase engineering of 2D materials for memory applications.
Collapse
Affiliation(s)
- Xujing Ji
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Degong Ding
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaoxiao Guan
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Chunyang Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haofu Qian
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Juexian Cao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jixue Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Jihua Laboratory, Foshan, Guangdong 528200, China
| |
Collapse
|
28
|
Joseph NB, Narayan A. Topological properties of bulk and bilayer 2M WS 2: a first-principles study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:465001. [PMID: 34399421 DOI: 10.1088/1361-648x/ac1de1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Recently discovered 2M phase of bulk WS2was observed to exhibit superconductivity with a critical temperature of 8.8 K, the highest reported among superconducting transition metal dichalcogenides. Also predicted to support protected surface states, it could be a potential topological superconductor. In the present study, we perform a detailed first-principles analysis of bulk and bilayer 2M WS2. We report a comprehensive investigation of the bulk phase, comparing structural and electronic properties obtained from different exchange correlation functionals to the experimentally reported values. By calculation of theZ2invariant and surface states, we give support for its non-trivial band nature. Based on the insights gained from the analysis of the bulk phase, we predict bilayer 2M WS2as a new two-dimensional topological material. We demonstrate its dynamical stability from first-principles phonon computations and present its electronic properties, highlighting the band inversions between the Wdand Spstates. By means ofZ2invariant computations and a calculation of the edge states, we show that bilayer 2M WS2exhibits protected, robust edge states. The broken inversion symmetry in this newly proposed bilayer also leads to the presence of Berry curvature dipole and resulting non-linear responses. We compute the Berry curvature distribution and the dipole as a function of Fermi energy. We propose that Berry curvature dipole signals, which are absent in the centrosymmetric bulk 2M WS2, can be signatures of the bilayer. We hope our predictions lead to the experimental realization of this as-yet-undiscovered two-dimensional topological material.
Collapse
Affiliation(s)
- Nesta Benno Joseph
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Awadhesh Narayan
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
29
|
Li YW, Zheng HJ, Fang YQ, Zhang DQ, Chen YJ, Chen C, Liang AJ, Shi WJ, Pei D, Xu LX, Liu S, Pan J, Lu DH, Hashimoto M, Barinov A, Jung SW, Cacho C, Wang MX, He Y, Fu L, Zhang HJ, Huang FQ, Yang LX, Liu ZK, Chen YL. Observation of topological superconductivity in a stoichiometric transition metal dichalcogenide 2M-WS 2. Nat Commun 2021; 12:2874. [PMID: 34001892 PMCID: PMC8129086 DOI: 10.1038/s41467-021-23076-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/11/2021] [Indexed: 02/03/2023] Open
Abstract
Topological superconductors (TSCs) are unconventional superconductors with bulk superconducting gap and in-gap Majorana states on the boundary that may be used as topological qubits for quantum computation. Despite their importance in both fundamental research and applications, natural TSCs are very rare. Here, combining state of the art synchrotron and laser-based angle-resolved photoemission spectroscopy, we investigated a stoichiometric transition metal dichalcogenide (TMD), 2M-WS2 with a superconducting transition temperature of 8.8 K (the highest among all TMDs in the natural form up to date) and observed distinctive topological surface states (TSSs). Furthermore, in the superconducting state, we found that the TSSs acquired a nodeless superconducting gap with similar magnitude as that of the bulk states. These discoveries not only evidence 2M-WS2 as an intrinsic TSC without the need of sensitive composition tuning or sophisticated heterostructures fabrication, but also provide an ideal platform for device applications thanks to its van der Waals layered structure.
Collapse
Affiliation(s)
- Y. W. Li
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,grid.4991.50000 0004 1936 8948Department of Physics, University of Oxford, Oxford, OX1 3PU UK ,ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 People’s Republic of China
| | - H. J. Zheng
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Y. Q. Fang
- grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Science, Shanghai, 200050 People’s Republic of China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People’s Republic of China
| | - D. Q. Zhang
- grid.411485.d0000 0004 1755 1108School of Physics, China Jiliang University, Hangzhou, 310018 People’s Republic of China ,grid.41156.370000 0001 2314 964XNational Laboratory of Solid State Microstructures and School of Physics Nanjing University, Nanjing, 210093 People’s Republic of China ,grid.509497.6Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093 People’s Republic of China
| | - Y. J. Chen
- grid.12527.330000 0001 0662 3178State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - C. Chen
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 People’s Republic of China ,grid.184769.50000 0001 2231 4551Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - A. J. Liang
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 People’s Republic of China
| | - W. J. Shi
- grid.440637.20000 0004 4657 8879Center for Transformative Science, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,grid.440637.20000 0004 4657 8879Shanghai high repetition rate XFEL and extreme light facility (SHINE), ShanghaiTech University, Shanghai, 201210 People’s Republic of China
| | - D. Pei
- grid.4991.50000 0004 1936 8948Department of Physics, University of Oxford, Oxford, OX1 3PU UK
| | - L. X. Xu
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - S. Liu
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - J. Pan
- grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Science, Shanghai, 200050 People’s Republic of China
| | - D. H. Lu
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - M. Hashimoto
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 USA
| | - A. Barinov
- grid.5942.a0000 0004 1759 508XElettra-Sincrotrone Trieste, Trieste, Basovizza, 34149 Italy
| | - S. W. Jung
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Campus, Didcot, OX11 0DE UK ,grid.256681.e0000 0001 0661 1492Department of Physics, Gyeongsang National University, Jinju, 52828 Korea
| | - C. Cacho
- grid.18785.330000 0004 1764 0696Diamond Light Source, Harwell Campus, Didcot, OX11 0DE UK
| | - M. X. Wang
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 People’s Republic of China
| | - Y. He
- grid.47840.3f0000 0001 2181 7878Department of Physics, University of California at Berkeley, Berkeley, CA 94720 USA
| | - L. Fu
- grid.116068.80000 0001 2341 2786Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - H. J. Zhang
- grid.41156.370000 0001 2314 964XNational Laboratory of Solid State Microstructures and School of Physics Nanjing University, Nanjing, 210093 People’s Republic of China ,grid.509497.6Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093 People’s Republic of China
| | - F. Q. Huang
- grid.454856.e0000 0001 1957 6294State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Science, Shanghai, 200050 People’s Republic of China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 People’s Republic of China
| | - L. X. Yang
- grid.12527.330000 0001 0662 3178State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084 People’s Republic of China ,Frontier Science Center for Quantum Information, Beijing, 100084 People’s Republic of China
| | - Z. K. Liu
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 People’s Republic of China
| | - Y. L. Chen
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210 People’s Republic of China ,grid.4991.50000 0004 1936 8948Department of Physics, University of Oxford, Oxford, OX1 3PU UK ,ShanghaiTech Laboratory for Topological Physics, Shanghai, 201210 People’s Republic of China ,grid.12527.330000 0001 0662 3178State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084 People’s Republic of China
| |
Collapse
|
30
|
Zhang W, Fang Y, Zhang Z, Tian F, Huang Y, Wang X, Huang X, Huang F, Cui T. A New Superconducting 3R-WS 2 Phase at High Pressure. J Phys Chem Lett 2021; 12:3321-3327. [PMID: 33769817 DOI: 10.1021/acs.jpclett.1c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-pressure investigation has been shown to be of paramount significance for changing the conventional lattice or bringing fascinating properties, especially inducing superconducting phases. Here we studied the application of pressure to the recently synthesized 2M-WS2 with the record Tc (8.8 K) among transition metal dichalcogenides (TMDs) at ambient pressure by electrical resistance investigations, synchrotron X-ray studies, and theoretical calculations. Tc in the initial 2M-WS2 dropped from the maximum to become undetected, accompanied by a phase transition into a semiconductor, 3R-WS2, at 15 GPa. The successive metallization and superconducting transitions in 3R-WS2 were observed at 48.8 GPa with Tc ≈ 2.5 K. This is the first experimental case in which superconductivity has been realized in the 3R phase among TMDs. We propose that the degradation of superconductivity in 2M-WS2 and the reemergence of superconductivity in 3R-WS2 are mainly attributable to changes in the density of states near the Fermi surface driven by the interlayer coupling.
Collapse
Affiliation(s)
- Wenting Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Zihan Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yanping Huang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xiaoli Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
31
|
Zhao C, Che X, Zhang Z, Huang F. P-type doping in 2M-WS 2 for a complete phase diagram. Dalton Trans 2021; 50:3862-3866. [PMID: 33656509 DOI: 10.1039/d0dt04313c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2M-WS2 as a new phase of transition metal dichalcogenides possesses many novel physical properties, such as superconductivity and topological surface states. The effect of n-type doping on the superconductivity of this material has been studied. However, p-type doping has not been studied, because it is difficult to implement p-type doping in metastable 2M-WS2. In this paper, p-type doping was achieved in 2M-WS2 for the first time by using Mo. With the increase of the Mo content, the carrier concentration rises slightly from 1.42 × 1021 cm-1 to 1.56 × 1021 cm-1. Meanwhile, the superconducting transition temperature decreases monotonously with the increase of Mo doping and reaches a minimum value of 4.37 K at the doping limit of x = 0.6 in W1-xMoxS2. Combining the data of n-type doped 2M-WS2 from our previous research, we summarize the carrier concentration and superconducting transition temperature in a phase diagram, which shows a typical dome-like shape. These results uncover the relationship between the carrier concentration and electronic state of 2M-WS2.
Collapse
Affiliation(s)
- Chendong Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China.
| | | | | | | |
Collapse
|
32
|
Samarawickrama P, Dulal R, Fu Z, Erugu U, Wang W, Ackerman J, Leonard B, Tang J, Chien T, Tian J. Two-Dimensional 2M-WS 2 Nanolayers for Superconductivity. ACS OMEGA 2021; 6:2966-2972. [PMID: 33553915 PMCID: PMC7860099 DOI: 10.1021/acsomega.0c05327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Recently, a newly discovered VIB group transition metal dichalcogenide (TMD) material, 2M-WS2, has attracted extensive attention due to its interesting physical properties such as topological superconductivity, nodeless superconductivity, and anisotropic Majorana bound states. However, the techniques to grow high-quality 2M-WS2 bulk crystals and the study of their physical properties at the nanometer scale are still limited. In this work, we report a new route to grow high-quality 2M-WS2 single crystals and the observation of superconductivity in its thin layers. The crystal structure of the as-grown 2M-WS2 crystals was determined by X-ray diffraction (XRD) and scanning tunneling microscopy (STM). The chemical composition of the 2M-WS2 crystals was determined by energy dispersive X-ray spectroscopy (EDS) analysis. At 77 K, we observed the spatial variation of the local tunneling conductance (dI/dV) of the 2M-WS2 thin flakes by scanning tunneling spectroscopy (STS). Our low temperature transport measurements demonstrate clear signatures of superconductivity of a 25 nm-thick 2M-WS2 flake with a critical temperature (T C) of ∼8.5 K and an upper critical field of ∼2.5 T at T = 1.5 K. Our work may pave new opportunities in studying the topological superconductivity at the atomic scale in simple 2D TMD materials.
Collapse
Affiliation(s)
- Piumi Samarawickrama
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| | - Rabindra Dulal
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| | - Zhuangen Fu
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| | - Uppalaiah Erugu
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| | - Wenyong Wang
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| | - John Ackerman
- Department
of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- Resonant
Sciences, Beavercreek, Ohio 45430, United
States
| | - Brian Leonard
- Department
of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jinke Tang
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| | - TeYu Chien
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| | - Jifa Tian
- Department
of Physics & Astronomy, University of
Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
33
|
Lian CS, Si C, Duan W. Anisotropic Full-Gap Superconductivity in 2M-WS 2 Topological Metal with Intrinsic Proximity Effect. NANO LETTERS 2021; 21:709-715. [PMID: 33378208 DOI: 10.1021/acs.nanolett.0c04357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layered 2M-WS2 is recently observed to show Majorana bound states in vortices, but its superconducting pairing mechanism remains unknown, hindering the understanding of its topological superconducting nature. Using the ab initio Migdal-Eliashberg theory and electron-phonon Wannier interpolation, we demonstrate that both bulk and bilayer 2M-WS2 have a single anisotropic full-gap superconducting order of s-wave symmetry. We successfully reproduce the experimental superconducting critical temperature for the bulk and predict the bilayer 2M-WS2, a two-dimensional (2D) Z2 topological metal with nontrivial edge states right at the Fermi energy, to superconduct at 7 K, much higher than that in most 2D transition metal dichalcogenides (TMDs). A distinct proximity-enhanced surface superconductivity is further revealed by simulating quasiparticle density of states. This work unveils a universal electron-phonon full-gap pairing in 2M group VI TMDs and suggests a strong intrinsic surface-bulk proximity effect for 2M-WS2, paving the way to engineering topological superconductivity in TMD-based nanoscale devices.
Collapse
Affiliation(s)
- Chao-Sheng Lian
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Si
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Wenhui Duan
- Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| |
Collapse
|
34
|
Guo Z, Hao X, Dong J, Li H, Gong Y, Yang D, Liao J, Chu S, Li Y, Li X, Chen D. Prediction of topological nontrivial semimetals and pressure-induced Lifshitz transition in 1T'-MoS 2 layered bulk polytypes. NANOSCALE 2020; 12:22710-22717. [PMID: 33169783 DOI: 10.1039/d0nr05208f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, bulk MoS2 crystals stacked by 1T'-MoS2 monolayers have been synthesized successfully, but little is known about their stacking sequences and topological properties. Based on first-principles calculations and symmetry-based indicator theory, we discovered that three predicted bulk structures of MoS2 (named 2M-, 1T'- and β-MoS2) stacked by 1T' monolayers are topological insulators and nodal line semimetals with and without spin-orbit coupling. Their stacking stability, electronic structure and the topology origin were systematically investigated. Further research proves that in the absence of SOC the open- and closed-type nodal lines can coexist in the momentum space of 2M-MoS2, which also possesses drumhead-like surface state. Moreover, we predicted a pressure-induced Lifshitz transition at about 1.3 GPa in 2M-MoS2. Our findings greatly enrich the topological phases of MoS2 and probably bring MoS2 to the rapidly growing family of layered topological semimetals.
Collapse
Affiliation(s)
- Zhiying Guo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang H, Li YY, Liu TT, Guan DD, Wang SY, Zheng H, Liu C, Fu L, Jia JF. Multiple In-Gap States Induced by Topological Surface States in the Superconducting Topological Crystalline Insulator Heterostructure Sn_{1-x}Pb_{x}Te-Pb. PHYSICAL REVIEW LETTERS 2020; 125:136802. [PMID: 33034492 DOI: 10.1103/physrevlett.125.136802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Superconducting topological crystalline insulators (TCIs) have been proposed to be a new type of topological superconductor where multiple Majorana zero modes may coexist under the protection of lattice symmetries. The bulk superconductivity of TCIs has been realized, but it is quite challenging to detect the superconductivity of topological surface states inside their bulk superconducting gaps. Here, we report high-resolution scanning tunneling spectroscopy measurements on lateral Sn_{1-x}Pb_{x}Te-Pb heterostructures using superconducting tips. Both the bulk superconducting gap and the multiple in-gap states with energy differences of ∼0.3 meV can be clearly resolved on TCI Sn_{1-x}Pb_{x}Te at 0.38 K. Quasiparticle interference measurements further confirm the in-gap states are gapless. Our work demonstrates that the unique topological superconductivity of a TCI can be directly distinguished in the density of states, which helps to further investigate the multiple Dirac and Majorana fermions inside the superconducting gap.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao-Yi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Teng-Teng Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan-Dan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Yong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Fu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jin-Feng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
36
|
Yan F, Sun Z, Xu J, Li H, Zhang Y. WS2 quantum dots-MnO2 nanosheet system for use in ratiometric fluorometric/scattered light detection of glutathione. Mikrochim Acta 2020; 187:344. [DOI: 10.1007/s00604-020-04318-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
|
37
|
Das B, Sen D, Mahapatra S. Tuneable quantum spin Hall states in confined 1T' transition metal dichalcogenides. Sci Rep 2020; 10:6670. [PMID: 32317660 PMCID: PMC7174349 DOI: 10.1038/s41598-020-63450-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/09/2022] Open
Abstract
Investigation of quantum spin Hall states in 1T' phase of the monolayer transition metal dichalcogenides has recently attracted the attention for its potential in nanoelectronic applications. While most of the theoretical findings in this regard deal with infinitely periodic crystal structures, here we employ density functional theory calculations and [Formula: see text] Hamiltonian based continuum model to unveil the bandgap opening in the edge-state spectrum of finite width molybdenum disulphide, molybdenum diselenide, tungsten disulphide and tungsten diselenide. We show that the application of a perpendicular electric field simultaneously modulates the band gaps of bulk and edge-states. We further observe that tungsten diselenide undergoes a semi-metallic intermediate state during the phase transition from topological to normal insulator. The tuneable edge conductance, as obtained from the Landauer-Büttiker formalism, exhibits a monotonous increasing trend with applied electric field for deca-nanometer molybdenum disulphide, whereas the trend is opposite for other cases.
Collapse
Affiliation(s)
- Biswapriyo Das
- Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science (IISc) Bangalore, Bangalore, 560012, India.
| | - Diptiman Sen
- Centre for High Energy Physics, Indian Institute of Science (IISc) Bangalore, Bangalore, 560012, India
| | - Santanu Mahapatra
- Nano-Scale Device Research Laboratory, Department of Electronic Systems Engineering, Indian Institute of Science (IISc) Bangalore, Bangalore, 560012, India
| |
Collapse
|
38
|
Huang HH, Fan X, Singh DJ, Zheng WT. Recent progress of TMD nanomaterials: phase transitions and applications. NANOSCALE 2020; 12:1247-1268. [PMID: 31912836 DOI: 10.1039/c9nr08313h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Transition metal dichalcogenides (TMDs) show wide ranges of electronic properties ranging from semiconducting, semi-metallic to metallic due to their remarkable structural differences. To obtain 2D TMDs with specific properties, it is extremely important to develop particular strategies to obtain specific phase structures. Phase engineering is a traditional method to achieve transformation from one phase to another controllably. Control of such transformations enables the control of properties and access to a range of properties, otherwise inaccessible. Then extraordinary structural, electronic and optical properties lead to a broad range of potential applications. In this review, we introduce the various electronic properties of 2D TMDs and their polymorphs, and strategies and mechanisms for phase transitions, and phase transition kinetics. Moreover, the potential applications of 2D TMDs in energy storage and conversion, including electro/photocatalysts, batteries/supercapacitors and electronic devices, are also discussed. Finally, opportunities and challenges are highlighted. This review may further promote the development of TMD phase engineering and shed light on other two-dimensional materials of fundamental interest and with potential ranges of applications.
Collapse
Affiliation(s)
- H H Huang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - Xiaofeng Fan
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130012, China.
| | - David J Singh
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211-7010, USA and Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - W T Zheng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130012, China. and State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130012, China.
| |
Collapse
|
39
|
Superconductivity in Cu Co-Doped Sr xBi 2Se 3 Single Crystals. MATERIALS 2019; 12:ma12233899. [PMID: 31779079 PMCID: PMC6926552 DOI: 10.3390/ma12233899] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022]
Abstract
In this study, we grew Cu co-doped single crystals of a topological superconductor candidate SrxBi2Se3, and studied their structural and transport properties. We reveal that the addition of even as small an amount of Cu co-dopant as 0.6 atomic %, completely suppresses superconductivity in SrxBi2Se3. Critical temperature (∼2.7 K) is rather robust with respect to co-doping. We show that Cu systematically increases the electron density and lattice parameters a and c. Our results demonstrate that superconductivity in SrxBi2Se3-based materials is induced by significantly lower Sr doping level x<0.02 than commonly accepted x∼0.06, and it strongly depends on the specific arrangement of Sr atoms in the host matrix. The critical temperature in superconductive Sr-doped Bi2Se3 is shown to be insensitive to carrier density.
Collapse
|
40
|
Liang H, Zhang B, Song J. Synthesis of Textured Tungsten Disulfide Nanosheets and their Catalysis for Benzylamine Coupling Reaction. ChemCatChem 2019. [DOI: 10.1002/cctc.201901576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hua Liang
- School of Chemistry & Chemical Engineering Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Anhui 230601 P. R. China
| | - Bing‐Qian Zhang
- School of Chemistry & Chemical Engineering Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Anhui 230601 P. R. China
| | - Ji‐Ming Song
- School of Chemistry & Chemical Engineering Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui University Anhui 230601 P. R. China
| |
Collapse
|
41
|
Mao Y, Xie M, Zhao W, Yuan K, Fang Y, Huang F. K0.36(H2O)yWS2: a new layered compound for reversible hydrated potassium ion intercalation in aqueous electrolyte. RSC Adv 2019; 9:32323-32327. [PMID: 35530791 PMCID: PMC9073370 DOI: 10.1039/c9ra07718a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
This work reports the synthesis of a new quasi two-dimensional layered compound, K0.36(H2O)yWS2, for aqueous potassium ion storage.
Collapse
Affiliation(s)
- Yuanlv Mao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Miao Xie
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Wei Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Kaidi Yuan
- ShanghaiTech University
- Shanghai 201210
- China
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|