1
|
Hashiguchi R, Ichikawa H, Kumeta M, Koyama D. Control of myotube orientation using ultrasonication. Sci Rep 2024; 14:25737. [PMID: 39468262 PMCID: PMC11519932 DOI: 10.1038/s41598-024-77277-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
This study investigated a technique for controlling the orientation of C2C12-derived myotube cells using ultrasonication for future clinical applications of cultured skeletal muscle tissues. An ultrasonicating cell culture dish, comprising a plastic-bottomed culture dish and a circular glass plate (diameter, 35 mm; thickness, 1.1 mm) attached to an annular piezoelectric ultrasonic transducer (inner diameter, 10 mm; outer diameter, 20 mm; thickness, 1 mm), was constructed. A concentric resonant vibrational mode at 89 kHz was generated on the bottom of the dish, and the orientations of myotube cells were quantitatively evaluated using two-dimensional Fourier transform analysis of phase contrast microscopy images captured over a 14 × 10 mm2 area at the center of the dish. Unsonicated myotube cells grew in random directions, but ultrasonication aligned them circumferentially in the culture dish. The timing of treatment was important, with ultrasonication for 48 h before differentiation having a greater impact on myotube orientation than ultrasonication after differentiation. A larger ultrasonic vibration, with an amplitude of over 20 Vpp, resulted in significantly smaller angles of deviation in the circumferential direction than the control. Ultrasonication enhanced the expression of differentiation-related genes and the formation of aligned myotubes, suggesting that it promotes differentiation of C2C12 cells into myotubes.
Collapse
Affiliation(s)
- Ryohei Hashiguchi
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Hidetaka Ichikawa
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe, Kyoto, 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida Konoe, Kyoto, 606-8501, Japan
| | - Daisuke Koyama
- Faculty of Science and Engineering, Doshisha University, 1-3 TataraMiyakodani, Kyotanabe, Kyoto, 610-0321, Japan.
| |
Collapse
|
2
|
Lee CY, Hsu CC, Wang CH, Jeng US, Tung SH, Hu CC, Liu CL. Exploring Pyrazine-Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407622. [PMID: 39358979 DOI: 10.1002/smll.202407622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Thermoelectric generators (TEGs) based on thermogalvanic cells can convert low-temperature waste heat into electricity. Organic redox couples are well-suited for wearable devices due to their nontoxicity and the potential to enhance the ionic Seebeck coefficient through functional-group modifications. Pyrazine-based organic redox couples with different functional groups is comparatively analyzed through cyclic voltammetry under varying temperatures. The results reveal substantial differences in entropy changes with temperature and highlight 2,5-pyrazinedicarboxylic acid dihydrate (PDCA) as the optimal candidate. How the functional groups of the pyrazine compounds impact the ionic Seebeck coefficient is examined, by calculating the electrostatic potential based on density functional theory. To evaluate the thermoelectric properties, PDCA is integrated in different concentrations into a double-network hydrogel comprising poly(vinyl alcohol) and polyacrylamide. The resulting champion device exhibits an impressive ionic Seebeck coefficient (Si) of 2.99 mV K-1, with ionic and thermal conductivities of ≈67.6 µS cm-1 and ≈0.49 W m-1 K-1, respectively. Finally, a TEG is constructed by connecting 36 pieces of 20 × 10-3 m PDCA-soaked hydrogel in series. It achieves a maximum power output of ≈0.28 µW under a temperature gradient of 28.3 °C and can power a small light-emitting diode. These findings highlight the significant potential of TEGs for wearable devices.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ching-Chieh Hsu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
3
|
Wang Y, Wang X, Zhao Y, Dong L, Zhou T, Yong Z, Di J. Reversible Electrochemical Swelling of Straight Carbon Nanotube Yarns for High-Performance Linear Actuation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405277. [PMID: 39189539 DOI: 10.1002/smll.202405277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Coiled artificial muscle yarns outperform their straight counterparts in contractile strokes. However, challenges persist in the fabrication complexity and the susceptibility of the coiled yarns to becoming stuck by surrounding objects during contraction and recovery. Additionally, torsional stability remains a concern. In this study, it is reported that straight carbon nanotube (CNT) yarns when driven by a low-voltage electrochemical approach, can achieve a contractile stroke that surpasses even NiTi shape memory alloy fibers. The key lies in the suitable match between a yarn consisting of randomly aligned CNTs and the reversible and substantial electrochemical swelling induced by solvated ions. Wrinkled structures are formed on the surface of the CNT yarn to adapt to the swelling process. This not only assures torsional stability but also enhances the surface area for improved electrode-electrolyte interaction during electrochemical actuation. Remarkably, the CNT artificial muscle yarn generates a contractile stroke of 8.8% and an isometric stress of 7.5 MPa under 2.5 V actuation voltages, demonstrating its potential for applications requiring low energy consumption while maintaining high operational efficiency. This study highlights the crucial impact of CNT orientation on the effectiveness of electrochemically-driven artificial muscles, signaling new possibilities in smart material and biomechanical system development.
Collapse
Affiliation(s)
- Yulian Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaobo Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yueran Zhao
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tao Zhou
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Zhenzhong Yong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Jiangtao Di
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| |
Collapse
|
4
|
Chen L, Zhang L, Wu T, Tang C, Song H. Fast Responsive and High-Strain Electro-Ionic Soft Actuator Based on the 3D-Structure MXene-EGaIn/MXene Bilayer Composite Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39099098 DOI: 10.1021/acs.langmuir.4c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Electro-ionic soft actuators have garnered significant attention owing to their promising applications in flexible electronics, wearable devices, and soft robotics. However, achieving high actuation performance (large bending strain and fast response time) of these soft actuators under low voltage has been challenging due to issues related to ion diffusion and accumulation. In this study, an electro-ionic soft actuator is fabricated using Ti3C2Tx MXene and eutectic gallium-indium (EGaIn) composite material as the bilayer electrode and methylammonium formate/1-ethyl-3-methylimidazolium tetrafluoroborate/poly(vinylidene fluoride) (MAF-EMIMBF4/PVDF) as the ionic liquid-type electrolyte. The research results indicate that the prepared soft actuator exhibits excellent actuation performance with a peak-to-peak displacement of 35 mm and a bending strain of 0.69% (a peak-to-peak strain of 1.38%) under a low voltage (3 V). The electro-ionic soft actuator shows a wide frequency range (0.1-10 Hz), fast response time (0.35 s), and a rise time of 7.5 s. Furthermore, it demonstrates good cyclic durability, with a retention rate of 92.5% of its performance for 10 000 cycles. These excellent performances are attributed to the 3D structure of the Ti3C2Tx-EGaIn/Ti3C2Tx bilayer composite electrode, as well as the characteristics of the low viscosity, high conductivity, small ion volume, and larger volume difference between cations and anions in MAF ionic liquid. The high-performance electro-ionic soft actuator can be used in various fields such as artificial muscles, tactile devices, and soft robots.
Collapse
Affiliation(s)
- Lingfeng Chen
- School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Libing Zhang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ting Wu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Chengli Tang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haijun Song
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
5
|
Suzuki H, Kametaka J, Nakahori S, Tanaka Y, Iwahara M, Lin H, Manzhos S, Kyaw AKK, Nishikawa T, Hayashi Y. N-DMBI Doping of Carbon Nanotube Yarns for Achieving High n-Type Thermoelectric Power Factor and Figure of Merit. SMALL METHODS 2024; 8:e2301387. [PMID: 38470210 DOI: 10.1002/smtd.202301387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The application of carbon nanotube (CNT) yarns as thermoelectric materials for harvesting energy from low-grade waste heat including that generated by the human body, is attracting considerable attention. However, the lack of efficient n-type CNT yarns hinders their practical implementation in thermoelectric devices. This study reports efficient n-doping of CNT yarns, employing 4-(1, 3-dimethyl-2, 3-dihydro-1H-benzimidazole-2-yl) phenyl) dimethylamine (N-DMBI) in alternative to conventional n-dopants, with o-dichlorobenzene emerging as the optimal solvent. The small molecular size of N-DMBI enables highly efficient doping within a remarkably short duration (10 s) while ensuring prolonged stability in air and at high temperature (150 °C). Furthermore, Joule annealing of the yarns significantly improves the n-doping efficiency. Consequently, thermoelectric power factors (PFs) of 2800, 2390, and 1534 µW m-1 K-2 are achieved at 200, 150, and 30 °C, respectively. The intercalation of N-DMBI molecules significantly suppresses the thermal conductivity, resulting in the high figure of merit (ZT) of 1.69×10-2 at 100 °C. Additionally, a π-type thermoelectric module is successfully demonstrated incorporating both p- and n-doped CNT yarns. This study offers an efficient doping strategy for achieving CNT yarns with high thermoelectric performance, contributing to the realization of lightweight and mechanically flexible CNT-based thermoelectric devices.
Collapse
Affiliation(s)
- Hiroo Suzuki
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Jun Kametaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shinya Nakahori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yuichiro Tanaka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Mizuki Iwahara
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Haolu Lin
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan
| | - Aung Ko Ko Kyaw
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Takeshi Nishikawa
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiko Hayashi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
6
|
Jeong YH, Im J, Choi GH, Kim CB, Lee J. Effect of Thermal Oxidation of Carbon Nanotubes during Wet Spinning into Fibers Using Sodium Cholate Surfactant in Aqueous Dispersion. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3581. [PMID: 39063873 PMCID: PMC11278946 DOI: 10.3390/ma17143581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Surfactant-based wet spinning is a promising route toward the eco-friendly production of carbon nanotube fibers (CNTFs). However, currently, the properties of surfactant-based wet-spun CNTFs lag behind those produced by other methods, indicating the need for further understanding and research. Here, we explored the surface characteristics of carbon nanotubes (CNTs) that are advantageous for the properties of CNTFs produced by wet spinning, using sodium cholate as a surfactant. Our finding indicates that appropriate thermal oxidation of CNTs enhances the fiber properties, while excessive oxidation undermines them. This implies that the bonding mechanism between CNTs and sodium cholate involves hydrophobic interaction and π-π interaction. Therefore, it is crucial to preserve a clean surface of CNTs in wet spinning using sodium cholate. We believe our research will contribute to the advancement of surfactant-based wet spinning of CNTFs.
Collapse
Affiliation(s)
- Yun Ho Jeong
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| | - Jaegyun Im
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| | - Gyeong Hwan Choi
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| | - Chae Bin Kim
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
- Department of Polymer Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeoung-gu, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Jeon W, Lee JM, Kim Y, Lee Y, Won J, Lee S, Son W, Koo YH, Hong JW, Gwac H, Joo J, Kim SJ, Choi C, Park S. Structurally Aligned Multifunctional Neural Probe (SAMP) Using Forest-Drawn CNT Sheet onto Thermally Drawn Polymer Fiber for Long-Term In Vivo Operation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313625. [PMID: 38552258 DOI: 10.1002/adma.202313625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Neural probe engineering is a dynamic field, driving innovation in neuroscience and addressing scientific and medical demands. Recent advancements involve integrating nanomaterials to improve performance, aiming for sustained in vivo functionality. However, challenges persist due to size, stiffness, complexity, and manufacturing intricacies. To address these issues, a neural interface utilizing freestanding CNT-sheets drawn from CNT-forests integrated onto thermally drawn functional polymer fibers is proposed. This approach yields a device with structural alignment, resulting in exceptional electrical, mechanical, and electrochemical properties while retaining biocompatibility for prolonged periods of implantation. This Structurally Aligned Multifunctional neural Probe (SAMP) employing forest-drawn CNT sheets demonstrates in vivo capabilities in neural recording, neurotransmitter detection, and brain/spinal cord circuit manipulation via optogenetics, maintaining functionality for over a year post-implantation. The straightforward fabrication method's versatility, coupled with the device's functional reliability, underscores the significance of this technique in the next-generation carbon-based implants. Moreover, the device's longevity and multifunctionality position it as a promising platform for long-term neuroscience research.
Collapse
Affiliation(s)
- Woojin Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae Myeong Lee
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yunheum Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Joonhee Won
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Somin Lee
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wonkyeong Son
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong Hoe Koo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji-Won Hong
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hocheol Gwac
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Changsoon Choi
- Department of Electronic Engineering and Biomedical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KAIST Institute for NanoCentury (KINC), Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Luo Z, Kong N, Usman KAS, Tao J, Lynch PA, Razal JM, Zhang J. Knitting Elastic Conductive Fibers of MXene/Natural Rubber for Multifunctional Wearable Sensors. Polymers (Basel) 2024; 16:1824. [PMID: 39000679 PMCID: PMC11244089 DOI: 10.3390/polym16131824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Wearable electronic sensors have recently attracted tremendous attention in applications such as personal health monitoring, human movement detection, and sensory skins as they offer a promising alternative to counterparts made from traditional metallic conductors and bulky metallic conductors. However, the real-world use of most wearable sensors is often hindered by their limited stretchability and sensitivity, and ultimately, their difficulty to integrate into textiles. To overcome these limitations, wearable sensors can incorporate flexible conductive fibers as electrically active components. In this study, we adopt a scalable wet-spinning approach to directly produce flexible and conductive fibers from aqueous mixtures of Ti3C2Tx MXene and natural rubber (NR). The electrical conductivity and stretchability of these fibers were tuned by varying their MXene loading, enabling knittability into textiles for wearable sensors. As individual filaments, these MXene/NR fibers exhibit suitable conductivity dependence on strain variations, making them ideal for motivating sensors. Meanwhile, textiles from knitted MXene/NR fibers demonstrate great stability as capacitive touch sensors. Collectively, we believe that these elastic and conductive MXene/NR-based fibers and textiles are promising candidates for wearable sensors and smart textiles.
Collapse
Affiliation(s)
- Zirong Luo
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
| | - Na Kong
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, VIC 3216, Australia
| | - Ken Aldren S. Usman
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| | - Jinlong Tao
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
| | - Peter A. Lynch
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| | - Joselito M. Razal
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| | - Jizhen Zhang
- Chinese Agricultural Ministry Key Laboratory of Tropical Crop Product Processing, Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (Z.L.); (N.K.)
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia; (K.A.S.U.); (P.A.L.); (J.M.R.)
| |
Collapse
|
9
|
Su G, Wang N, Liu Y, Zhang R, Li Z, Deng Y, Tang BZ. From Fluorescence-Transfer-Lightening-Printing-Assisted Conductive Adhesive Nanocomposite Hydrogels toward Wearable Interactive Optical Information-Electronic Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400085. [PMID: 38469972 DOI: 10.1002/adma.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Indexed: 03/13/2024]
Abstract
The interactive flexible device, which monitors the human motion in optical and electrical synergistic modes, has attracted growing attention recently. The incorporation of information attribute within the optical signal is deemed advantageous for improving the interactive efficiency. Therefore, the development of wearable optical information-electronic strain sensors holds substantial promise, but integrating and synergizing various functions and realizing strain-mediated information transformation keep challenging. Herein, an amylopectin (AP) modified nanoclay/polyacrylamide-based nanocomposite (NC) hydrogel and an aggregation-induced-emission-active ink are fabricated. Through the fluorescence-transfer printing of the ink onto the hydrogel film in different strains with nested multiple symbolic information, a wearable interactive fluorescent information-electronic strain sensor is developed. In the sensor, the nanoclay plays a synergistic "one-stone-three-birds" role, contributing to "lightening" fluorescence (≈80 times emission intensity enhancement), ionic conductivity, and excellent stretchability (>1000%). The sensor has high biocompatibility, resilience (elastic recovery ratio: 97.8%), and strain sensitivity (gauge factor (GF): 10.9). Additionally, the AP endows the sensor with skin adhesiveness. The sensor can achieve electrical monitoring of human joint movements while displaying interactive fluorescent information transformation. This research poses an efficient strategy to develop multifunctional materials and provides a general platform for achieving next-generation interactive devices with prospective applications in wearable devices, human-machine interfaces, and artificial intelligence.
Collapse
Affiliation(s)
- Gongmeiyue Su
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ni Wang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yangkun Liu
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruoyao Zhang
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhao Li
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yulin Deng
- School of Medical Technology, Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen(CUHK-Shenzhen), Guangdong, 518172, P. R. China
| |
Collapse
|
10
|
Chen X, Chen J, Song X, Du T, Deng X, Deng Z, Hu XG, Zeng X, Yang Z, Yang H, Lan R. Bioinspired Mechanochromic Liquid Crystal Materials: From Fundamentals to Functionalities and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2403766. [PMID: 38780131 DOI: 10.1002/adma.202403766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Inspired by intriguing color changeable ability of natural animals, the design and fabrication of artificial mechanochromic materials capable of changing colors upon stretching or pressing have attracted intense scientific interest. Liquid crystal (LC) is a self-organized soft matter with anisotropic molecular alignment. Due to the sensitivity to various external stimulations, LC has been considered as an emerging and appealing responsive building block to construct intelligent materials and advanced devices. Recently, mechanochromic LC materials have becoming a hot topic in multifields from flexible artificial skins to visualized sensors and smart biomimetic devices. In this review, the recent progress of mechanochromic LCs is comprehensively summarized. Firstly, the mechanism and functionalities of mechanochromic LC is introduced, followed by preparation of various functional materials based on mechanochromic LCs. Then the applications of mechanochromic LCs are provided. Finally, the conclusion and outlooks of this field is given. This overview is hoped to provide inspiration in fabrication of advanced functional soft materials for scientists and engineers from multidisciplines including materials science, elastomers, chemistry, and physical science.
Collapse
Affiliation(s)
- Xinyu Chen
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jingyu Chen
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinyue Song
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Tongji Du
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinrui Deng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhaoping Deng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiang-Guo Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Xingping Zeng
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhen Yang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Huai Yang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ruochen Lan
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
11
|
Hu X, Zhang F, Liu R, Jiang J, Bao X, Liang Y. Fast and Strong Carbon Nanotube Yarn Artificial Muscles by Electro-osmotic Pump. ACS NANO 2024; 18:428-435. [PMID: 38126714 DOI: 10.1021/acsnano.3c07694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Previous electrochemically powered yarn muscles cannot be usefully operated between extreme negative and extreme positive potentials, since generated stresses during anion injection and cation injection partially cancel because they are in the same direction. We here report an ionomer-infiltrated hybrid carbon nanotube (CNT) yarn muscle that shows unipolar stress behavior in the sense that stress generation between extreme potentials is additive, resulting in an enhanced stress generation. Moreover, the stress generated by this muscle unexpectedly increases with the potential scan rate, which contradicts the fact that scan-rate-induced stress decreases for neat CNT muscles. It is revealed by the electro-osmotic pump effect that the effective ion size injected into the muscle increases with an increase in the scan rate. We demonstrate an electrochemically powered gel-elastomer-yarn muscle adhesive that generates and delivers muscle-contraction-mimicking stimulation to a target tissue.
Collapse
Affiliation(s)
- Xinghao Hu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Fengrui Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Runmin Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jinchang Jiang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xianfu Bao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yiming Liang
- Intelligent Robotics Research Center, Zhejiang Lab, Hangzhou 311100, People's Republic of China
| |
Collapse
|
12
|
Xue E, Liu L, Wu W, Wang B. Soft Fiber/Textile Actuators: From Design Strategies to Diverse Applications. ACS NANO 2024; 18:89-118. [PMID: 38146868 DOI: 10.1021/acsnano.3c09307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke. In this review article, we provide a timely and comprehensive overview of fiber/textile actuators, including structures, fabrication methods, actuation principles, and applications. After discussing the hierarchical structure and deformation of the fiber/textile actuator, we discuss various spinning strategies, detailing the merits and drawbacks of each. Next, we present the actuation principles of fiber/fabric actuators, along with common external stimuli. In addition, we provide a summary of the emerging applications of fiber/textile actuators. Concluding with an assessment of existing challenges and future opportunities, this review aims to provide a valuable perspective on the enticing realm of fiber/textile-based actuators.
Collapse
Affiliation(s)
- Enbo Xue
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| |
Collapse
|
13
|
Lee CY, Lin YT, Hong SH, Wang CH, Jeng US, Tung SH, Liu CL. Mixed Ionic-Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56072-56083. [PMID: 37982689 DOI: 10.1021/acsami.3c09934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Mixed ionic-electronic conducting (MIEC) thermoelectric (TE) materials offer higher ionic conductivity and ionic Seebeck coefficient compared to those of purely ionic-conducting TE materials. These characteristics make them suitable for direct use in thermoelectric generators (TEGs) as the charge carriers can be effectively transported from one electrode to the other via the external circuit. In the present study, MIEC hydrogels are fabricated via the chemical cross-linking of polyacrylamide (PAAM) and polydopamine (PDA) to form a double network. In addition, electrically conducting carboxylated carbon nanotubes (CNT-COOH) are dispersed evenly within the hydrogel via sonication and interaction with the PDA. Moreover, the electrical properties of the hydrogel are further improved via the in situ polymerization of polyaniline (PANI). The presence of CNT-COOH facilitates the ionic conductivity and enhances the ionic Seebeck coefficient via ionic-electronic interactions between sodium ions and carboxyl groups on CNT-COOH, which can be observed in X-ray photoelectron spectroscopy results, thereby promoting the charge transport properties. As a result, the optimum device exhibits a remarkable ionic conductivity of 175.3 mS cm-1 and a high ionic Seebeck coefficient of 18.6 mV K-1, giving an ionic power factor (PFi) of 6.06 mW m-1 K-2 with a correspondingly impressive ionic figure of merit (ZTi) of 2.65. These values represent significant achievements within the field of gel-state organic TE materials. Finally, a wearable module is fabricated by embedding the PAAM/PDA/CNT-COOH/PANI hydrogel into a poly(dimethylsiloxane) mold. This configuration yields a high power density of 171.4 mW m-2, thus highlighting the considerable potential for manufacturing TEGs for wearable devices capable of harnessing waste heat.
Collapse
Affiliation(s)
- Chia-Yu Lee
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Ting Lin
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Huan Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Hsin Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Mi Y, Zhao Z, Wu H, Lu Y, Wang N. Porous Polymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2023; 15:4383. [PMID: 38006107 PMCID: PMC10675394 DOI: 10.3390/polym15224383] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Since the invention of the triboelectric nanogenerator (TENG), porous polymer materials (PPMs), with different geometries and topologies, have been utilized to enhance the output performance and expand the functionality of TENGs. In this review, the basic characteristics and preparation methods of various PPMs are introduced, along with their applications in TENGs on the basis of their roles as electrodes, triboelectric surfaces, and structural materials. According to the pore size and dimensionality, various types of TENGs that are built with hydrogels, aerogels, foams, and fibrous media are classified and their advantages and disadvantages are analyzed. To deepen the understanding of the future development trend, their intelligent and multifunctional applications in human-machine interfaces, smart wearable devices, and self-powering sensors are introduced. Finally, the future directions and challenges of PPMs in TENGs are explored to provide possible guidance on PPMs in various TENG-based intelligent devices and systems.
Collapse
Affiliation(s)
- Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Han Wu
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| |
Collapse
|
15
|
Wang DC, Lei SN, Zhong S, Xiao X, Guo QH. Cellulose-Based Conductive Materials for Energy and Sensing Applications. Polymers (Basel) 2023; 15:4159. [PMID: 37896403 PMCID: PMC10610528 DOI: 10.3390/polym15204159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cellulose-based conductive materials (CCMs) have emerged as a promising class of materials with various applications in energy and sensing. This review provides a comprehensive overview of the synthesis methods and properties of CCMs and their applications in batteries, supercapacitors, chemical sensors, biosensors, and mechanical sensors. Derived from renewable resources, cellulose serves as a scaffold for integrating conductive additives such as carbon nanotubes (CNTs), graphene, metal particles, metal-organic frameworks (MOFs), carbides and nitrides of transition metals (MXene), and conductive polymers. This combination results in materials with excellent electrical conductivity while retaining the eco-friendliness and biocompatibility of cellulose. In the field of energy storage, CCMs show great potential for batteries and supercapacitors due to their high surface area, excellent mechanical strength, tunable chemistry, and high porosity. Their flexibility makes them ideal for wearable and flexible electronics, contributing to advances in portable energy storage and electronic integration into various substrates. In addition, CCMs play a key role in sensing applications. Their biocompatibility allows for the development of implantable biosensors and biodegradable environmental sensors to meet the growing demand for health and environmental monitoring. Looking to the future, this review emphasizes the need for scalable synthetic methods, improved mechanical and thermal properties, and exploration of novel cellulose sources and modifications. Continued innovation in CCMs promises to revolutionize sustainable energy storage and sensing technologies, providing environmentally friendly solutions to pressing global challenges.
Collapse
Affiliation(s)
- Duan-Chao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Sheng-Nan Lei
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Shenjie Zhong
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311231, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
16
|
Zhang J, Tang X, Wei J, Cong S, Zhu S, Li Y, Yao J, Lyu W, Jin H, Zhao M, Zhao Z, Li Q. Rainbow-Colored Carbon Nanotubes via Rational Surface Engineering for Smart Visualized Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303593. [PMID: 37635182 PMCID: PMC10582442 DOI: 10.1002/advs.202303593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Surface engineering is effective for developing materials with novel properties, multifunctionality, and smart features that can enable their use in emerging applications. However, surface engineering of carbon nanotubes (CNTs) to add color properties and functionalities has not been well established. Herein, a new surface engineering strategy is developed to achieve rainbow-colored CNTs with high chroma, high brightness, and strong color travel for visual hydrogen sensing. This approach involved constructing a bilayer structure of W and WO3 on CNTs (CNT/W/WO3 ) and a trilayer structure of W, WO3 , and Pd on CNTs (CNT/W/WO3 /Pd) with tunable thicknesses. The resulting CNT/W/WO3 composite film exhibits a wide range of visible colors, including yellow, orange, magenta, violet, blue, cyan, and green, owing to strong thin-film interference. This coloring method outperforms other structural coloring methods in both brightness and chroma. The smart CNT/W/WO3 /Pd films with porous characteristics quickly and precisely detect the hydrogen leakage site. Furthermore, the smart CNT/W/WO3 /Pd films allow a concentration as low as 0.6% H2 /air to be detected by the naked eye in 58 s, offering a very practical and safe approach for the detection and localization of leaks in onboard hydrogen tanks.
Collapse
Affiliation(s)
- Jing Zhang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Xueqing Tang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jie Wei
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Shan Cong
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Siqi Zhu
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Yaowu Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jian Yao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Weibang Lyu
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Hehua Jin
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Zhigang Zhao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qingwen Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| |
Collapse
|
17
|
Hu X, Bao X, Zhang M, Fang S, Liu K, Wang J, Liu R, Kim SH, Baughman RH, Ding J. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303035. [PMID: 37209369 DOI: 10.1002/adma.202303035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Indexed: 05/22/2023]
Abstract
There has been enormous interest in technologies that generate electricity from ambient energy such as solar, thermal, and mechanical energy, due to their potential for providing sustainable solutions to the energy crisis. One driving force behind the search for new energy-harvesting technologies is the desire to power sensor networks and portable devices without batteries, such as self-powered wearable electronics, human health monitoring systems, and implantable wireless sensors. Various energy harvesting technologies have been demonstrated in recent years. Among them, electrochemical, hydroelectric, triboelectric, piezoelectric, and thermoelectric nanogenerators have been extensively studied because of their special physical properties, ease of application, and sometimes high obtainable efficiency. Multifunctional carbon nanotubes (CNTs) have attracted much interest in energy harvesting because of their exceptionally high gravimetric power outputs and recently obtained high energy conversion efficiencies. Further development of this field, however, still requires an in-depth understanding of harvesting mechanisms and boosting of the electrical outputs for wider applications. Here, various CNT-based energy harvesting technologies are comprehensively reviewed, focusing on working principles, typical examples, and future improvements. The last section discusses the existing challenges and future directions of CNT-based energy harvesters.
Collapse
Affiliation(s)
- Xinghao Hu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xianfu Bao
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kangyu Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jian Wang
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runmin Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
18
|
Li K, Shen H, Xue W. Wet-Driven Bionic Actuators from Wool Artificial Yarn Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16232-16243. [PMID: 36942675 DOI: 10.1021/acsami.2c22659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nature-similar muscle is one of the ultimate goals of advanced artificial muscle materials. Currently, a variety of chemical and natural materials have been gradually developed for the preparation of artificial muscles. However, due to the scarcity, biological exclusion, and poor flexibility of the abovementioned materials, it is still a challenging process to maximize the imitation of behaviors shown by real muscles and commercial development. Here, this article presents multidimensional wool yarn artificial muscles, and the wet response behavior of fibers is induced in yarn muscles successfully by virtue of weakening the water-repellent effect of wool scales. Wool artificial muscles are cost-effective and widely available and have good biocompatibility. In addition, wool fiber assemblies are structurally stable, soft, and flexible to be processed into artificial muscles with torsional, contractile, and even multilayered structures, enabling various wet-driven behaviors. On the basis of the theoretical model and numerical simulation, we explained and verified the working mechanism employed in wool artificial yarn muscles. Finally, the yarn muscle was integrated into a wool muscle group through the textile technology, followed by the application to robot bionic arms, displaying the great potential of wool artificial yarn muscles in bionic drivers and the intelligent textile industry.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Hua Shen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Wenliang Xue
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| |
Collapse
|
19
|
Choi KH, Kim SJ, Kim H, Jang HW, Yi H, Park MC, Choi C, Ju H, Lim JA. Fibriform Organic Electrochemical Diodes with Rectifying, Complementary Logic and Transient Voltage Suppression Functions for Wearable E-Textile Embedded Circuits. ACS NANO 2023; 17:5821-5833. [PMID: 36881690 DOI: 10.1021/acsnano.2c12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a fibriform electrochemical diode capable of performing rectifying, complementary logic and device protection functions for future e-textile circuit systems is fabricated. The diode was fabricated using a simple twisted assembly of metal/polymer semiconductor/ion gel coaxial microfibers and conducting microfiber electrodes. The fibriform diode exhibited a prominent asymmetrical current flow with a rectification ratio of over 102, and its performance was retained after repeated bending deformations and washings. Fundamental studies on the electrochemical interactions of polymer semiconductors with ions reveal that the Faradaic current generated in polymer semiconductors by electrochemical reactions results in an abrupt current increase under a forward bias, in which the threshold voltages of the device are determined by the oxidation or reduction potential of the polymer semiconductor. Textile-embedded full-wave rectifiers and logic gate circuits were implemented by simply integrating the fibriform diodes, exhibiting AC-to-DC signal conversion and logic operation functions, respectively. It was also confirmed that the proposed fibriform diode can suppress transient voltages and thus protect a low-voltage operational wearable e-textile circuit.
Collapse
Affiliation(s)
- Kwang-Hun Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Jin Kim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoungjun Kim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, Korea University of Science and Technology of Korea (UST), Seoul 02792, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| | - Hyunjung Yi
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Materials Science and Engineering, YU-KIST Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Min-Chul Park
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Changsoon Choi
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyunsu Ju
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jung Ah Lim
- Center for Optoelectronic Materials and Devices, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Nano and Information Technology, KIST School, Korea University of Science and Technology of Korea (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
20
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
21
|
Han WC, Lee YJ, Kim SU, Lee HJ, Kim YS, Kim DS. Versatile Mechanochromic Sensor based on Highly Stretchable Chiral Liquid Crystalline Elastomer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206299. [PMID: 36464625 DOI: 10.1002/smll.202206299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 06/17/2023]
Abstract
A mechanochromic strain sensor that is capable of distinguishing the orientation, the location, and the degree of deformation based on the highly stretchable membrane of main-chain chiral liquid crystalline elastomer (MCLCE) is proposed. The MCLCE film is designed to exhibit uniform and significant color shift upon the small strain by using step-growth polymerization of liquid crystal (LC) oligomer and its phase-stabilization in solvent mesogen. As conformally placed on the bottom elastomer sheet, the MCLCE film shows multimodal, instantaneous color change for sensing arbitrary in-plane deformation, out-of-plane bending, and nonzero Gaussian deformation. Based on high freedom in the device design, it is also demonstrated that this sensor can display color patterns or encrypted images in response to the localized weight or strain. The simple and straightforward concept proposed here can be applicable in the fields of wearable devices, displays, and soft robotics.
Collapse
Affiliation(s)
- Woong Chan Han
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| | - Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA
| | - Se-Um Kim
- Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Hye Joo Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| | - Young-Seok Kim
- Display Research Center, Korea Electronics Technology Institute, 25, Saenari-ro, Bundang-gu, Seoungnam-si, Kyounggi-do, 13509, Republic of Korea
| | - Dae Seok Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608737, Republic of Korea
| |
Collapse
|
22
|
Li L, Sun T, Lu S, Chen Z, Xu S, Jian M, Zhang J. Graphene Interlocking Carbon Nanotubes for High-Strength and High-Conductivity Fibers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5701-5708. [PMID: 36661854 DOI: 10.1021/acsami.2c21518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Carbon nanotubes (CNTs) are promising building blocks for the fabrication of novel fibers with structural and functional properties. However, the mechanical and electrical performances of carbon nanotube fibers (CNTFs) are far lower than the intrinsic properties of individual CNTs. Exploring methods for the controllable assembly and continuous preparation of high-performance CNTFs is still challenging. Herein, a graphene/chlorosulfonic acid-assisted wet-stretching method is developed to produce highly densified and well-aligned graphene/carbon nanotube fibers (G/CNTFs) with excellent mechanical and electrical performances. Graphene with small size and high quality can bridge the adjacent CNTs to avoid the interfacial slippage under deformation, which facilitates the formation of a robust architecture with abundant conductive pathways. Their ordered structure and enhanced interfacial interactions endow the fibers with both high strength (4.7 GPa) and high electrical conductivity (more than 2 × 106 S/m). G/CNTF-based lightweight wires show good flexibility and knittability, and the high-performance fiber heaters exhibit ultrafast electrothermal response over 1000 °C/s and a low operation voltage of 3 V. This method paves the way for optimizing the microstructures and producing high-strength and high-conductivity CNTFs, which are promising candidates for the high-value fiber-based applications.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Tongzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, P. R. China
| | - Shichao Lu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Zhuo Chen
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shichen Xu
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Jin Zhang
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
23
|
Tan F, Yu B, Wang Y, Bai Q, Zhang Z. Hierarchically Structured Nanoporous Palladium with Ordered/Disordered Channels for Ultrahigh and Fast Strain. NANO LETTERS 2023; 23:505-513. [PMID: 36630150 DOI: 10.1021/acs.nanolett.2c03833] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metallic actuators have increasingly shown the potential to replace conventional piezoelectric ceramics and conducting polymers. However, it is still a great challenge to achieve strain amplitudes over 4% while maintaining fast strain responses. Herein, we fabricated bulk nanoporous palladium (NP-Pd) with microsheet-array-like hierarchically nanoporous (MAHNP) structure by dealloying a eutectic Al-Pd precursor. The hierarchical structure consists of array-like microsized channels/sheets and disordered nanosized networks. The locally ordered channels play a critical role in fast mass transport while nanoligaments accumulate a large surface area for hydrogen adsorption/absorption and desorption. Therefore, the MAHNP-Pd not only obtains a fast strain rate with the maximum value close to 1 × 10-4 s-1 but also exhibits an ultrahigh strain amplitude of 4.68%, exceeding all reported values for bulk electrochemical metallic actuators to date. Additionally, the superiority of the MAHNP structure is demonstrated in transport kinetics as benchmarked with the scenario of unimodal NP-Pd.
Collapse
Affiliation(s)
- Fuquan Tan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan250061, P. R. China
| | - Bin Yu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan250061, P. R. China
| | - Yan Wang
- School of Materials Science and Engineering, University of Jinan, West Road of Nan Xinzhuang 336, Jinan250022, P. R. China
| | - Qingguo Bai
- School of Applied Physics and Materials, Wuyi University, Dongcheng Village 22, Jiangmen529020, P. R. China
| | - Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan250061, P. R. China
| |
Collapse
|
24
|
Avant-Garde Polymer and Nano-Graphite-Derived Nanocomposites—Versatility and Implications. Mol Vis 2023. [DOI: 10.3390/c9010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Graphite (stacked graphene layers) has been modified in several ways to enhance its potential properties/utilities. One approach is to convert graphite into a unique ‘nano-graphite’ form. Nano-graphite consists of few-layered graphene, multi-layered graphene, graphite nanoplatelets, and other graphene aggregates. Graphite can be converted to nano-graphite using physical and chemical methods. Nano-graphite, similar to graphite, has been reinforced in conducting polymers/thermoplastics/rubbery matrices to develop high-performance nanocomposites. Nano-graphite and polymer/nano-graphite nanomaterials have characteristics that are advantageous over those of pristine graphitic materials. This review basically highlights the essential features, design versatilities, and applications of polymer/nano-graphite nanocomposites in solar cells, electromagnetic shielding, and electronic devices.
Collapse
|
25
|
Jing Y, Su F, Yu X, Fang H, Wan Y. Advances in artificial muscles: A brief literature and patent review. Front Bioeng Biotechnol 2023; 11:1083857. [PMID: 36741767 PMCID: PMC9893653 DOI: 10.3389/fbioe.2023.1083857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Artificial muscles are an active research area now. Methods: A bibliometric analysis was performed to evaluate the development of artificial muscles based on research papers and patents. A detailed overview of artificial muscles' scientific and technological innovation was presented from aspects of productive countries/regions, institutions, journals, researchers, highly cited papers, and emerging topics. Results: 1,743 papers and 1,925 patents were identified after retrieval in Science Citation Index-Expanded (SCI-E) and Derwent Innovations Index (DII). The results show that China, the United States, and Japan are leading in the scientific and technological innovation of artificial muscles. The University of Wollongong has the most publications and Spinks is the most productive author in artificial muscle research. Smart Materials and Structures is the journal most productive in this field. Materials science, mechanical and automation, and robotics are the three fields related to artificial muscles most. Types of artificial muscles like pneumatic artificial muscles (PAMs) and dielectric elastomer actuator (DEA) are maturing. Shape memory alloy (SMA), carbon nanotubes (CNTs), graphene, and other novel materials have shown promising applications in this field. Conclusion: Along with the development of new materials and processes, researchers are paying more attention to the performance improvement and cost reduction of artificial muscles.
Collapse
Affiliation(s)
- Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Yuan Jing,
| | - Fangfang Su
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaona Yu
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
26
|
García-Beltrán G, Mercado-Zúñiga C, René Torres-SanMiguel C, Gallegos-García G, Torres-Torres C. Photonic encryption by optical activity in Kerr-like carbon-based nanofluids with plasmonic nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
27
|
Jang Y, Moon JH, Lee C, Lee SM, Kim H, Song GH, Spinks GM, Wallace GG, Kim SJ. A Coiled Carbon Nanotube Yarn-Integrated Surface Electromyography System To Monitor Isotonic and Isometric Movements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45149-45155. [PMID: 36169191 DOI: 10.1021/acsami.2c11811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A surface electromyogram (sEMG) electrode collects electrical currents generated by neuromuscular activity by a noninvasive technique on the skin. It is particularly attractive for wearable systems for various human activities and health care monitoring. However, it remains challenging to discriminate EMG signals from isotonic (concentric/eccentric) and isometric movements. By applying nanotechnology, we provide a coiled carbon nanotube (CNT) yarn-integrated sEMG device to overcome sEMG-based motion recognition. When the arm was contracted at different angles, the sEMG-derived root mean square amplitude signals were constant regardless of the angle of the moving arm. However, the coiled CNT yarn-derived open circuit voltage (OCV) signals proportionally increased when the arm's angle increased, and presented negative and positive values depending on the moving direction of the arm. Moreover, isometric contraction is characterized by the onset of EMG signals without an OCV signal, and isotonic contraction is determined by both EMG signals and OCV signals. Taken together, the integration of EMG and coiled CNT yarn electrodes provides complementary information, including the strength, direction, and degree of muscle movement. Therefore, we suggest that our system has high potential as a wearable system to monitor human motions in industrial and human system applications.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Korea
| | - Ji Hwan Moon
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Chanho Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sung Min Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Heesoo Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gyu Hyeon Song
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Geoffrey M Spinks
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
28
|
Zhu Y, Yue H, Aslam MJ, Bai Y, Zhu Z, Wei F. Controllable Preparation and Strengthening Strategies towards High-Strength Carbon Nanotube Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3478. [PMID: 36234606 PMCID: PMC9565896 DOI: 10.3390/nano12193478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) with superior mechanical properties are expected to play a role in the next generation of critical engineering mechanical materials. Crucial advances have been made in CNTs, as it has been reported that the tensile strength of defect-free CNTs and carbon nanotube bundles can approach the theoretical limit. However, the tensile strength of macro carbon nanotube fibers (CNTFs) is far lower than the theoretical level. Although some reviews have summarized the development of such fiber materials, few of them have focused on the controllable preparation and performance optimization of high-strength CNTFs at different scales. Therefore, in this review, we will analyze the characteristics and latest challenges of multiscale CNTFs in preparation and strength optimization. First, the structure and preparation of CNTs are introduced. Then, the preparation methods and tensile strength characteristics of CNTFs at different scales are discussed. Based on the analysis of tensile fracture, we summarize some typical strategies for optimizing tensile performance around defect and tube-tube interaction control. Finally, we introduce some emerging applications for CNTFs in mechanics. This review aims to provide insights and prospects for the controllable preparation of CNTFs with ultra-high tensile strength for emerging cutting-edge applications.
Collapse
Affiliation(s)
- Yukang Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongjie Yue
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Muhammad Junaid Aslam
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yunxiang Bai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Qian S, Liu M, Dou Y, Fink Y, Yan W. A 'Moore's law' for fibers enables intelligent fabrics. Natl Sci Rev 2022; 10:nwac202. [PMID: 36684517 PMCID: PMC9843301 DOI: 10.1093/nsr/nwac202] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Fabrics are an indispensable part of our everyday life. They provide us with protection, offer privacy and form an intimate expression of ourselves through their esthetics. Imparting functionality at the fiber level represents an intriguing path toward innovative fabrics with a hitherto unparalleled functionality and value. The fiber technology based on thermal drawing of a preform, which is identical in its materials and geometry to the final fiber, has emerged as a powerful platform for the production of exquisite fibers with prerequisite composition, geometric complexity and control over feature size. A 'Moore's law' for fibers is emerging, delivering higher forms of function that are important for a broad spectrum of practical applications in healthcare, sports, robotics, space exploration, etc. In this review, we survey progress in thermally drawn fibers and devices, and discuss their relevance to 'smart' fabrics. A new generation of fabrics that can see, hear and speak, sense, communicate, harvest and store energy, as well as store and process data is anticipated. We conclude with a critical analysis of existing challenges and opportunities currently faced by thermally drawn fibers and fabrics that are expected to become sophisticated platforms delivering value-added services for our society.
Collapse
Affiliation(s)
| | | | - Yuhai Dou
- Institute for Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wei Yan
- Corresponding author. E-mail:
| |
Collapse
|
30
|
Wang W, Yu A, Wang Y, Jia M, Guo P, Ren L, Guo D, Pu X, Wang ZL, Zhai J. Elastic Kernmantle E-Braids for High-Impact Sports Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202489. [PMID: 35758560 PMCID: PMC9443433 DOI: 10.1002/advs.202202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The kernmantle construction, a kind of braiding structure that is characterized by the kern absorbing most of the stress and the mantle protecting the kern, is widely employed in the field of loading and rescue services, but rarely in flexible electronics. Here, a novel kernmantle electronic braid (E-braid) for high-impact sports monitoring, is proposed. The as-fabricated E-braids not only demonstrate high strength (31 Mpa), customized elasticity, and nice machine washability (>500 washes) but also exhibit excellent electrical stability (>200 000 cycles) during stretching. For demonstration, the E-braids are mounted to different parts of the trampoline for athletes' locomotor behavior monitoring. Furthermore, the E-braids are proved to act as multifarious intelligent sports gear or wearable equipment such as electronic jump rope and respiration monitoring belt. This study expands the kernmantle structure to soft flexible electronics and then accelerates the development of quantitative analysis in modern sports industry and athletes' healthcare.
Collapse
Affiliation(s)
- Wei Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Aifang Yu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Yulong Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Mengmeng Jia
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Pengwen Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lele Ren
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Di Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Xiong Pu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junyi Zhai
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
31
|
Guo H, Yan J, Jiang L, Deng S, Lin X, Qu L. Femtosecond Laser Bessel Beam Fabrication of a Supercapacitor with a Nanoscale Electrode Gap for High Specific Volumetric Capacitance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39220-39229. [PMID: 35994368 DOI: 10.1021/acsami.2c10037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supercapacitors are widely used in electronic systems as energy storage devices. The fabrication of a miniaturized supercapacitor with high specific capacitance has attracted much attention in recent years. Here, we propose a new method to fabricate supercapacitors with a nanoscale electrode gap by using a femtosecond laser. The original femtosecond laser was converted to a nondiffraction Bessel light field with nanoscale beam width and microscale focal depth. Nanoscale processing precision was achieved by regulating the Bessel beam. We fabricated graphene supercapacitors with different electrode gap widths (varying from the microscale to the nanoscale) using this method. Supercapacitors fabricated by this method have advantages in both size miniaturization (electrode gap width down to ∼500 nm) and electrochemical performance improvement (a specific volumetric capacitance of 195 F/cm3). This work demonstrates that the femtosecond laser Bessel beam processing method provides a reliable pathway to fabricate miniaturized supercapacitors with high specific capacitance and other nanoscale electronic devices.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianfeng Yan
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lan Jiang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shengfa Deng
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xinzhu Lin
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liangti Qu
- Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
32
|
Hassan A, Abbas S, Jie L, Youming L, Quanfang C. Investigation of the Advanced Novel Carbon Nanotube (CNT) Yarn and Carbon Nanotube Aluminum/Copper Composite Windings for a Single-Phase Induction Motor. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07060-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Huang M, Wang H, Liu G, Wei H, Hu J, Wang Y, Gong X, Mao S, Danilov M, Rusetskyi I, Tang J. Excellent Photonic and Mechanical Properties of Macromorphic Fibers Formed by Eu 3+-Complex-Anchored, Unzipped, Multiwalled Carbon Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4933. [PMID: 35888400 PMCID: PMC9320603 DOI: 10.3390/ma15144933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 12/10/2022]
Abstract
The macromorphic properties of carbon nanotubes perform poorly because of their size limitations: nanosize in diameters and microsize in length. In this work, to realize these dual purposes, we first used an electrochemical method to tear the surface of multiwalled carbon nanotubes (MWCNTs) to anchor photonic Eu3+-complexes there. Through the polar reactive groups endowed by the tearing, the Eu3+-complexes coordinate at the defected structures, obtaining the Eu3+-complex-anchored, unzipped, multiwalled carbon nanotubes (E-uMWCNTs). The controllable surface-breaking retains the MWCNTs' original, excellent mechanical properties. Then, to obtain the macromorphic structure with infinitely long fibers, a wet-spinning process was applied via the binding of a small quantity of polyvinyl alcohol (PVA). Thus, the wet-spun fibers with high contents of E-uMWCNTs (E-uMWCNT-Fs) were produced, in which the E-uMWCNTs took 33.3 wt%, a high ratio in E-uMWCNT-Fs. On the other hand, due to the reinforcing effect of E-uMWCNTs, the highest tensile strength can reach 228.2 MPa for E-uMWCNT-Fs. Meanwhile, the E-uMWCNT-Fs show high-efficiency photoluminescence and excellent media resistance performance due to the embedding effect of PVA on the E-uMWCNTs. Therefore, E-uMWCNT-Fs can exhibit excellent luminescence properties in aqueous solutions at pH 4~12 and in some high-concentration metal-ion solutions. Those distinguished performances promise outstanding innovations of this work.
Collapse
Affiliation(s)
- Mengjie Huang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Haihang Wang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Gaohan Liu
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Heng Wei
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Jie Hu
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Yao Wang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Xuezhong Gong
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Sui Mao
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| | - Michail Danilov
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the Ukrainian NAS, 32/34 Palladin Avenue, 03142 Kyiv, Ukraine;
| | - Ihor Rusetskyi
- V.I. Vernadskii Institute of General and Inorganic Chemistry of the Ukrainian NAS, 32/34 Palladin Avenue, 03142 Kyiv, Ukraine;
| | - Jianguo Tang
- Institute of Hybrid Materials, National Centre of International Joint Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation on Hybrid Materials, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (M.H.); (H.W.); (G.L.); (H.W.); (J.H.); (Y.W.); (X.G.); (S.M.)
| |
Collapse
|
34
|
Muralidhar S, Gangaraju V, Shastri M, Marilingaiah NR, dey A, Singh SK, Rangappa D. Silk Fiber Multiwalled Carbon Nanotube-Based Micro-/Nanofiber Composite as a Conductive Fiber and a Force Sensor. ACS OMEGA 2022; 7:20809-20818. [PMID: 35755328 PMCID: PMC9219082 DOI: 10.1021/acsomega.2c01392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Silk cocoon fibers (SFs) are natural polymers that are made up of fibroin protein. These natural fibers have higher mechanical stability and good elasticity properties. In this work, we coated multiwalled carbon nanotubes (MWCNTs) on the surface of SFs using a simple stirring technique with vinegar as the medium. This SF-MWCNT micro-/nanofiber composite was prepared without any adhesives. The characterization results revealed that the SF-MWCNT micro-/nanofiber composite exhibited excellent electrical conductivity (995 Ω cm-1), tensile strength (up to 200% greater elongation), and durability characteristics. In addition, this micro-/nanofiber composite shows a change in resistance from 1450 to 960 Ω cm-1 for an applied mechanical force of 0.3-1 N kg-1. Based on our findings, SF-MWCNT micro-/nanofiber composite-based conductive fibers (CFs) and force sensors (FSs) were developed.
Collapse
Affiliation(s)
- Sindhu
Sree Muralidhar
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| | - Vinay Gangaraju
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| | - Mahesh Shastri
- Department
of Electronics and communications, Nagarjuna
College of Engineering and Technology, Devanahalli 562110, India
| | - Navya Rani Marilingaiah
- Department
of Applied Sciences, Dayanand Sagar University, Kumaraswamy Layout, Bengaluru 560111, India
| | - Arjun dey
- Thermal
Systems Group, ISRO Satellite Centre, Bangalore 560017, India
| | - Sushil Kumar Singh
- Acoustic
Sensor Division, Solid State Physics Laboratory, Defence Research Development Organization (DRDO), New Delhi 110054, India
| | - Dinesh Rangappa
- Department
of Applied Sciences, Visvesvaraya Technological
University, Center for Postgraduate Studies, Muddenahalli, Chikkaballapur District, Bengaluru 562 101, India
| |
Collapse
|
35
|
Xiang Y, Li B, Li B, Bao L, Sheng W, Ma Y, Ma S, Yu B, Zhou F. Toward a Multifunctional Light-Driven Biomimetic Mudskipper-Like Robot for Various Application Scenarios. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20291-20302. [PMID: 35442618 DOI: 10.1021/acsami.2c03852] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The systematicness, flexibility, and complexity of natural biological organisms are a constant stream of inspiration for researchers. Therefore, mimicking the natural intelligence system to develop microrobotics has attracted broad interests. However, developing a multifunctional device for various application scenarios has great challenges. Herein, we present a bionic multifunctional actuation device─a light-driven mudskipper-like actuator that is composed of a porous silicone elastomer and graphene oxide. The actuator exhibits a reversible and well-integrated response to near-infrared (NIR) light due to the photothermal-induced contractile stress in the actuation film, which promotes generation of cyclical and rapid locomotion upon NIR light being switched on and off, such as bending in air and crawling in liquid. Furthermore, through rational device design and modulation of light, the mechanically versatile device can float and swim controllably following a predesigned route at the liquid/air interface. More interestingly, the actuator can jump from liquid medium to air with an extremely short response time (400 ms), a maximum speed of 2 m s-1, and a height of 14.3 cm under the stimulation of near-infrared light. The present work possesses great potential in the applications of bioinspired actuators in various fields, such as microrobots, sensors, and locomotion.
Collapse
Affiliation(s)
- Yangyang Xiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bianhong Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Luyao Bao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
36
|
An Overview of Hierarchical Design of Textile-Based Sensor in Wearable Electronics. CRYSTALS 2022. [DOI: 10.3390/cryst12040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Smart textiles have recently aroused tremendous interests over the world because of their broad applications in wearable electronics, such as human healthcare, human motion detection, and intelligent robotics. Sensors are the primary components of wearable and flexible electronics, which convert various signals and external stimuli into electrical signals. While traditional electronic sensors based on rigid silicon wafers can hardly conformably attach on the human body, textile materials including fabrics, yarns, and fibers afford promising alternatives due to their characteristics including light weight, flexibility, and breathability. Of fundamental importance are the needs for fabrics simultaneously having high electrical and mechanical performance. This article focused on the hierarchical design of the textile-based flexible sensor from a structure point of view. We first reviewed the selection of newly developed functional materials for textile-based sensors, including metals, conductive polymers, carbon nanomaterials, and other two-dimensional (2D) materials. Then, the hierarchical structure design principles on different levels from microscale to macroscale were discussed in detail. Special emphasis was placed on the microstructure control of fibers, configurational engineering of yarn, and pattern design of fabrics. Finally, the remaining challenges toward industrialization and commercialization that exist to date were presented.
Collapse
|
37
|
Hwang YH, Noh B, Lee J, Lee HS, Park Y, Choi KC. High-Performance and Reliable White Organic Light-Emitting Fibers for Truly Wearable Textile Displays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104855. [PMID: 35072356 PMCID: PMC9008425 DOI: 10.1002/advs.202104855] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Light-emitting fibers have been intensively developed for the realization of textile displays and various lighting applications, as promising free-form electronics with outstanding interconnectivity. These advances in the fiber displays have been made possible by the successful implementation of the core technologies of conventional displays, including high optoelectronic performance and essential elements, in the fiber form-factor. However, although white organic light-emitting diodes (WOLEDs), as a fundamental core technology of displays, are essential for realizing full-color displays and solid-state lighting, fiber-based WOLEDs are still challenging due to structural issues and the lack of approaches to implementing WOLEDs on fiber. Herein, the first fiber WOLED is reported, exhibiting high optoelectronic performance and a reliable color index, comparable to those of conventional planar WOLEDs. As key features, it is found that WOLEDs can be successfully introduced on a cylindrical fiber using a dip-coatable single white-emission layer based on simulation and optimization of the white spectra. Furthermore, to ensure durability from usage, the fiber WOLED is encapsulated by an Al2 O3 /elastomer bilayer, showing stable operation under repetitive bending and pressure, and in water. This pioneering work is believed to provide building blocks for realizing complete textile display technologies by complementing the lack of the core technology.
Collapse
Affiliation(s)
- Yong Ha Hwang
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Byeongju Noh
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Junwoo Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Ho Seung Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Yongjin Park
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kyung Cheol Choi
- School of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| |
Collapse
|
38
|
Hao J, Zhu Z, Hu C, Liu Z. Photosensitive-Stamp-Inspired Scalable Fabrication Strategy of Wearable Sensing Arrays for Noninvasive Real-Time Sweat Analysis. Anal Chem 2022; 94:4547-4555. [PMID: 35238536 DOI: 10.1021/acs.analchem.2c00593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wearable sweat sensing is essential to the development of personalized health monitoring in a noninvasive manner with molecular-level insight. Hence, there is an increasing demand for convenient, facile, and efficient fabrication of wearable sensing arrays. Inspired by a photosensitive stamp (PS), we present herein a simple, low-cost, and eco-friendly vacuum filtration-transfer printing method (termed PS-VFTP) for the scalable preparation of single-walled carbon nanotube (SWCNT) based flexible electrode arrays. This method can economically yield customized flexible SWCNT arrays with praiseworthy performance, such as high reproducibility, precision, uniformity, conductivity, and mechanical stability. In addition, the flexible SWCNT arrays can be easily functionalized into high-performance electrochemical sensors for the simultaneous monitoring of sweat metabolites (glucose, lactate) and electrolytes (Na+, K+). The integration of wearable sensing arrays with a signal acquisition and processing circuit system in the intelligent wearable sensors empowers them to realize noninvasive, real-time, and in situ sweat analysis during exercise. More meaningfully, such a PS-VFTP strategy can be easily expanded to the economical manufacturing of other flexible electronic devices.
Collapse
Affiliation(s)
- Junxing Hao
- College of Chemistry and Chemical Engineering, Hubei University, 430062 Wuhan, People's Republic of China
| | - Zeqiang Zhu
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 430074 Wuhan, People's Republic of China
| | - Chengguo Hu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, People's Republic of China
| | - Zhihong Liu
- College of Chemistry and Chemical Engineering, Hubei University, 430062 Wuhan, People's Republic of China.,College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, People's Republic of China
| |
Collapse
|
39
|
Abstract
Wearable technologies are making a significant impact on people’s way of living thanks to the advancements in mobile communication, internet of things (IoT), big data and artificial intelligence. Conventional wearable technologies present many challenges for the continuous monitoring of human health conditions due to their lack of flexibility and bulkiness in size. Recent development in e-textiles and the smart integration of miniature electronic devices into textiles have led to the emergence of smart clothing systems for remote health monitoring. A novel comprehensive framework of smart clothing systems for health monitoring is proposed in this paper. This framework provides design specifications, suitable sensors and textile materials for smart clothing (e.g., leggings) development. In addition, the proposed framework identifies techniques for empowering the seamless integration of sensors into textiles and suggests a development strategy for health diagnosis and prognosis through data collection, data processing and decision making. The conceptual technical specification of smart clothing is also formulated and presented. The detailed development of this framework is presented in this paper with selected examples. The key challenges in popularizing smart clothing and opportunities of future development in diverse application areas such as healthcare, sports and athletics and fashion are discussed.
Collapse
|
40
|
Effect of Curing Temperature of Epoxy Matrix on the Electrical Response of Carbon Nanotube Yarn Monofilament Composites. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6020043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to evaluate the capability of carbon nanotube yarn (CNTY)-based composites for self-sensing of temperature, the temperature-dependent electrical resistance of CNTY monofilament composites was investigated using two epoxy resins: one that cures at 130 °C (CNTY/ERHT) and one that cures at room temperature (CNTY/ERRT). The effect of the curing kinetics of these epoxy resins on the electrical response of the embedded CNTY was investigated in prior studies. It was observed that the viscosity and curing kinetics affect the level of wetting and resin infiltration, which govern the electrical response of the embedded CNTY. In this work, the cyclic thermoresistive characterization of CNTY monofilament composites was conducted under heating–cooling, incremental heating–cooling, and incremental dwell cycles in order to study the effect of the curing temperature of the epoxy matrix on the electrical response of the CNTY monofilament composites. Both monofilament composites showed nearly linear and negative temperature coefficients of resistance (TCR) of −7.07 × 10−4 °C−1 for specimens cured at a high temperature and −5.93 × 10−4 °C−1 for specimens cured at room temperature. The hysteresis loops upon heating–cooling cycles were slightly smaller for high-temperature cured specimens in comparison to those cured at room temperature. A combination of factors, such as resin infiltration, curing mechanisms, intrinsic thermoresistivity of CNTY, variations in tunneling and contact resistance between the nanotubes and CNT bundles, and the polymer structure, are paramount factors in the thermoresistive sensitivity of the CNTY monofilament composites.
Collapse
|
41
|
Bio-Inspired Hierarchical Carbon Nanotube Yarn with Ester Bond Cross-Linkages towards High Conductivity for Multifunctional Applications. NANOMATERIALS 2022; 12:nano12020208. [PMID: 35055227 PMCID: PMC8779581 DOI: 10.3390/nano12020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
The cross-linked hierarchical structure in biological systems provides insight into the development of innovative material structures. Specifically, the sarcoplasmic reticulum muscle is able to transmit electrical impulses in skeletal muscle due to its cross-linked hierarchical tubular cell structure. Inspired by the cross-linked tubular cell structure, we designed and built chemical cross-links between the carbon nanotubes within the carbon nanotube yarn (CNT yarn) structure by an esterification reaction. Consequently, compared with the pristine CNT yarn, its electrical conductivity dramatically enhanced 348%, from 557 S/cm to 1950 S/cm. Furthermore, when applied with three voltages, the electro-thermal temperature of esterified CNT yarn reached 261 °C, much higher than that of pristine CNT yarn (175 °C). In addition, the esterified CNT yarn exhibits a linear and stable piezo-resistive response, with a 158% enhanced gauge factor (the ratio of electrical resistance changing to strain change ~1.9). The superconductivity, flexibility, and stable sensitivity of the esterified flexible CNT yarn demonstrate its great potential in the applications of intelligent devices, smart clothing, or other advanced composites.
Collapse
|
42
|
Na YW, Cheon JY, Kim JH, Jung Y, Lee K, Park JS, Park JY, Song KS, Lee SB, Kim T, Yang SJ. All-in-one flexible supercapacitor with ultrastable performance under extreme load. SCIENCE ADVANCES 2022; 8:eabl8631. [PMID: 34985946 PMCID: PMC8730631 DOI: 10.1126/sciadv.abl8631] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Fiber-type solid-state supercapacitors are being widely investigated as stable power supply for next-generation wearable and flexible electronics. Integrating both high charge storage capability and superior mechanical properties into one fiber is crucial to realize fiber-type solid-state supercapacitors. In this study, we design a “jeweled necklace”–like hybrid composite fiber comprising double-walled carbon nanotube yarn and metal-organic frameworks (MOFs). Subsequent heat treatment transforms MOFs into MOF-derived carbon (MDC), thereby maximizing energy storage capability while retaining the superior mechanical properties. The hybrid fibers with tunable properties, including thickness and MDC loading amount, exhibit a high energy density of 7.54 milliwatt-hour per cubic centimeter at a power density of 190.94 milliwatt per cubic centimeter. The mechanical robustness of the hybrid fibers allows them to operate under various mechanical deformation conditions. Furthermore, it is demonstrated that the resulting superstrong fiber delivers sufficient power to switch on light-emitting diodes by itself while suspending 10-kilogram weight.
Collapse
Affiliation(s)
- You Wan Na
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Jae Yeong Cheon
- Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Jae Ho Kim
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Yeonsu Jung
- Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Kyunbae Lee
- Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Jae Seo Park
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Ji Yong Park
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Ki Su Song
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| | - Sang Bok Lee
- Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Taehoon Kim
- Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Seung Jae Yang
- Advanced Nanohybrids Laboratory, Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
43
|
Chen J, Zhang J, Hu J, Luo N, Sun F, Venkatesan H, Zhao N, Zhang Y. Ultrafast-Response/Recovery Flexible Piezoresistive Sensors with DNA-Like Double Helix Yarns for Epidermal Pulse Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104313. [PMID: 34757634 DOI: 10.1002/adma.202104313] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/14/2021] [Indexed: 06/13/2023]
Abstract
A key challenge in textile sensors is to adequately solve the hysteresis for more broad and exacting applications. Unlike the conventional strategy in integrating elastic polymers into the textile, the hysteretic issue is critically addressed here through the structural design of yarns to provide a twisting force. The underlying mechanism is fully discussed based on theory and modeling, which are in good agreement with experimental data. Impressively, the pressure sensor outperforms almost all reported textile-based sensors in terms of recovery index, which refers to the ability to overcome the lagged deformation reflected by the hysteresis (5.3%) and relaxation time (2 ms). Besides, the sensor superiority is also demonstrated by way of its ultrafast response time (2 ms). Thanks to these merits, this pressure sensor is demonstrated to be capable of monitoring epidermal pulses and meanwhile shows great potential to advance the standardization and modernization of pulse palpation in traditional Chinese medicine.
Collapse
Affiliation(s)
- Jianming Chen
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Jun Zhang
- School of Design, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Ningqi Luo
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-textiles, College of Textiles Science & Clothing, Jiangnan University, Wuxi, 214122, China
| | - Harun Venkatesan
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, China
| | - Yuanting Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
44
|
Kiefer R, Elhi F, Peikolainen AL, Tamm T. Wider Potential Windows of Cellulose Multiwall Carbon Nanotube Fibers Leading to Qualitative Multifunctional Changes in an Organic Electrolyte. Polymers (Basel) 2021; 13:4439. [PMID: 34960990 PMCID: PMC8708784 DOI: 10.3390/polym13244439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
The trend across the whole of society is to focus on natural and/or biodegradable materials such as cellulose (Cell) over synthetic polymers. Among other usage scenarios, Cell can be combined with electroactive components such as multiwall carbon nanotubes (CNT) to form composites, such as Cell-CNT fibers, for applications in actuators, sensors, and energy storage devices. In this work, we aim to show that by changing the potential window, qualitative multifunctionality of the composites can be invoked, in both electromechanical response as well as energy storage capability. Cell-CNT fibers were investigated in different potential ranges (0.8 V to -0.3 V, 0.55 V to -0.8 V, 1 V to -0.8 V, and 1.5 V to -0.8 V), revealing the transfer from cation-active to anion-active as the potential window shifted towards more positive potentials. Moreover, increasing the driving frequency also shifts the mode from cation- to anion-active. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy were conducted to determine the ion species participating in charge compensation under different conditions.
Collapse
Affiliation(s)
- Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Fred Elhi
- Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (F.E.); (A.-L.P.); (T.T.)
| | - Anna-Liisa Peikolainen
- Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (F.E.); (A.-L.P.); (T.T.)
| | - Tarmo Tamm
- Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; (F.E.); (A.-L.P.); (T.T.)
| |
Collapse
|
45
|
Yang Z, Yin C, Lu H, Wu H, Shamin S, Ba L. Strain-Durable High-Conductivity Nylon-6 Fiber with 1D Nanomaterial Lamellar Cladding for Massive Production. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57759-57767. [PMID: 34839665 DOI: 10.1021/acsami.1c14515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrically conductive polymer fibers with high woven properties are in demand by broad application fields. The design of these materials for massive production requires high electrical conductivity, efficient fabrication yield, and economic accessibility. Here, we proposed a technique for fabricating continuous polymer fibers coated with 1D materials. By alternately coating conducting carbon black/polyurethane (PU) composites, single-walled carbon nanotubes (SWCNTs), and/or Ag nanowires (AgNWs) on Nylon-6 continuous fiber, lamellar cladding forms a compact conducting shell on the core fiber. The conductive fiber was continuously fabricated using the coaxial micro-painting technique of a 1D material solution. By keeping the size of the droplet constant at the vicinity of the tip of the flexible micro-painter, the Plateau-Rayleigh (P-R) instability of the wetting layer was depressed at fiber velocity far beyond inertial wetting. The fiber with a 2 μm-thick shell exhibits a conductivity of 53 ± 8 Ω/cm at a coating weight ratio of ∼6 wt % silver corresponding to a fiber conductivity of about 1665 S/cm. The much higher strain durability of the fiber coated with SWCNTs and AgNWs' lamellar structure than the fiber coated with only silver nanowires was explained by the local interlayer conducting paths from the AgNW layer to the SWCNT layer. The fiber maintains 90% conductivity after 105 repeated folding or knotting on the monofilament. The conducting yarns were designed and fabricated into electric circuits in textile. As a typical biomedical and flexible electronic application, a low-frequency electrocardiogram (ECG) signal on these circuits was demonstrated.
Collapse
Affiliation(s)
- Zhihao Yang
- State Key Laboratory of Bioelectronics, School of Biology and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chaoyi Yin
- State Key Laboratory of Bioelectronics, School of Biology and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Haiyang Lu
- State Key Laboratory of Bioelectronics, School of Biology and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Wu
- State Key Laboratory of Bioelectronics, School of Biology and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Sara Shamin
- State Key Laboratory of Bioelectronics, School of Biology and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Long Ba
- State Key Laboratory of Bioelectronics, School of Biology and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
46
|
Abstract
Electro-responsive actuators (ERAs) hold great promise for cutting-edge applications in e-skins, soft robots, unmanned flight, and in vivo surgery devices due to the advantages of fast response, precise control, programmable deformation, and the ease of integration with control circuits. Recently, considering the excellent physical/chemical/mechanical properties (e.g., high carrier mobility, strong mechanical strength, outstanding thermal conductivity, high specific surface area, flexibility, and transparency), graphene and its derivatives have emerged as an appealing material in developing ERAs. In this review, we have summarized the recent advances in graphene-based ERAs. Typical the working mechanisms of graphene ERAs have been introduced. Design principles and working performance of three typical types of graphene ERAs (e.g., electrostatic actuators, electrothermal actuators, and ionic actuators) have been comprehensively summarized. Besides, emerging applications of graphene ERAs, including artificial muscles, bionic robots, human-soft actuators interaction, and other smart devices, have been reviewed. At last, the current challenges and future perspectives of graphene ERAs are discussed.
Collapse
|
47
|
Textiles in soft robots: Current progress and future trends. Biosens Bioelectron 2021; 196:113690. [PMID: 34653713 DOI: 10.1016/j.bios.2021.113690] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/19/2022]
Abstract
Soft robotics have substantial benefits of safety, adaptability, and cost efficiency compared to conventional rigid robotics. Textiles have applications in soft robotics either as an auxiliary material to reinforce the conventional soft material or as an active soft material. Textiles of various types and configurations have been fabricated into key components of soft robotics in adaptable formats. Despite significant advancements, the efficiency and characteristics of textile actuators in practical applications remain unsatisfactory. To address these issues, novel structural and material designs as well as new textile technologies have been introduced. Herein, we aim at giving an insight into the current state of the art in textile technology for soft robotic manufacturing. We firstly discuss the fundamental actuation mechanisms for soft robotics. We then provide a critical review on the recently developed functional textiles as reinforcements, sensors, and actuators in soft robotics. Finally, the future trends and current strategies that can be employed in textile-based actuator manufacturing process have been explored to address the critical challenges in soft robotics.
Collapse
|
48
|
Zhang F, Ma PC, Wang J, Zhang Q, Feng W, Zhu Y, Zheng Q. Anisotropic conductive networks for multidimensional sensing. MATERIALS HORIZONS 2021; 8:2615-2653. [PMID: 34617540 DOI: 10.1039/d1mh00615k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the past decade, flexible physical sensors have attracted great attention due to their wide applications in many emerging areas including health-monitoring, human-machine interfaces, smart robots, and entertainment. However, conventional sensors are typically designed to respond to a specific stimulus or a deformation along only one single axis, while directional tracking and accurate monitoring of complex multi-axis stimuli is more critical in practical applications. Multidimensional sensors with distinguishable signals for simultaneous detection of complex postures and movements in multiple directions are highly demanded for the development of wearable electronics. Recently, many efforts have been devoted to the design and fabrication of multidimensional sensors that are capable of distinguishing stimuli from different directions accurately. Benefiting from their unique decoupling mechanisms, anisotropic architectures have been proved to be promising structures for multidimensional sensing. This review summarizes the present state and advances of the design and preparation strategies for fabricating multidimensional sensors based on anisotropic conducting networks. The fabrication strategies of different anisotropic structures, the working mechanism of various types of multidimensional sensing and their corresponding unique applications are presented and discussed. The potential challenges faced by multidimensional sensors are revealed to provide an insightful outlook for the future development.
Collapse
Affiliation(s)
- Fei Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Peng-Cheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China
| | - Jiangxin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China.
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, P. R. China
| | - Yanwu Zhu
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China.
| |
Collapse
|
49
|
Rinoldi C, Zargarian SS, Nakielski P, Li X, Liguori A, Petronella F, Presutti D, Wang Q, Costantini M, De Sio L, Gualandi C, Ding B, Pierini F. Nanotechnology-Assisted RNA Delivery: From Nucleic Acid Therapeutics to COVID-19 Vaccines. SMALL METHODS 2021; 5:e2100402. [PMID: 34514087 PMCID: PMC8420172 DOI: 10.1002/smtd.202100402] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Indexed: 05/07/2023]
Abstract
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Seyed Shahrooz Zargarian
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Pawel Nakielski
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| | - Xiaoran Li
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Anna Liguori
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
| | - Francesca Petronella
- Institute of Crystallography CNR‐ICNational Research Council of ItalyVia Salaria Km 29.300Monterotondo – Rome00015Italy
| | - Dario Presutti
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Qiusheng Wang
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Marco Costantini
- Institute of Physical ChemistryPolish Academy of Sciencesul. M. Kasprzaka 44/52Warsaw01‐224Poland
| | - Luciano De Sio
- Department of Medico‐Surgical Sciences and BiotechnologiesResearch Center for BiophotonicsSapienza University of RomeCorso della Repubblica 79Latina04100Italy
- CNR‐Lab. LicrylInstitute NANOTECArcavacata di Rende87036Italy
| | - Chiara Gualandi
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of BolognaUniversity of BolognaVia Selmi 2Bologna40126Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials TechnologyCIRI‐MAMUniversity of BolognaViale Risorgimento 2Bologna40136Italy
| | - Bin Ding
- Innovation Center for Textile Science and TechnologyDonghua UniversityWest Yan'an Road 1882Shanghai200051China
| | - Filippo Pierini
- Department of Biosystems and Soft MatterInstitute of Fundamental Technological ResearchPolish Academy of Sciencesul. Pawińskiego 5BWarsaw02‐106Poland
| |
Collapse
|
50
|
Jang Y, Kim SM, Kim E, Lee DY, Kang TM, Kim SJ. Biomimetic cell-actuated artificial muscle with nanofibrous bundles. MICROSYSTEMS & NANOENGINEERING 2021; 7:70. [PMID: 34567782 PMCID: PMC8433352 DOI: 10.1038/s41378-021-00280-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Biohybrid artificial muscle produced by integrating living muscle cells and their scaffolds with free movement in vivo is promising for advanced biomedical applications, including cell-based microrobotic systems and therapeutic drug delivery systems. Herein, we provide a biohybrid artificial muscle constructed by integrating living muscle cells and their scaffolds, inspired by bundled myofilaments in skeletal muscle. First, a bundled biohybrid artificial muscle was fabricated by the integration of skeletal muscle cells and hydrophilic polyurethane (HPU)/carbon nanotube (CNT) nanofibers into a fiber shape similar to that of natural skeletal muscle. The HPU/CNT nanofibers provided a stretchable basic backbone of the 3-dimensional fiber structure, which is similar to actin-myosin scaffolds. The incorporated skeletal muscle fibers contribute to the actuation of biohybrid artificial muscle. In fact, electrical field stimulation reversibly leads to the contraction of biohybrid artificial muscle. Therefore, the current development of cell-actuated artificial muscle provides great potential for energy delivery systems as actuators for implantable medibot movement and drug delivery systems. Moreover, the innervation of the biohybrid artificial muscle with motor neurons is of great interest for human-machine interfaces.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Sung Min Kim
- Department of Physical Education and Human-Tech Convergence Program (BK21 Four), Hanyang University, Seoul, 04763 South Korea
| | - Eunyoung Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Dong Yeop Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Tong Mook Kang
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419 South Korea
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|