1
|
Li D, Deng W, Wang Y, Tian Y, Wang D. Thiolated non-conjugated nano polymer network for advanced mercury removal from water. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136817. [PMID: 39667150 DOI: 10.1016/j.jhazmat.2024.136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
Developing advanced adsorbents for selectively deducing mercury (Hg) in water to one billionth level is of great significance for public health and ecological security, but achieving the balance among efficiency, cost and environmental friendliness of adsorbents still faces enormous challenges. Herein, we present a high thiol content non-conjugated nano polymer network (PVB-SH) through simple microemulsion polymerization for efficient Hg ion (Hg(II)) removal. The PVB-SH is prepared by conventional commercial reagents and does not consume toxic organic solutions. This nano network reveals uniformly distributed nano sizes, leading to good accessibility of adsorption sites. The long and flexible polymer chains in the network allow two thiol sites to coordinate with one Hg(II), displaying significantly stronger binding than 1:1 coordination. Therefore, PVB-SH shows high affinity toward Hg(II) (Kd = 3.04 × 107 mL/g) and can selectively reduce Hg(II) in water to extremely low level of 0.14 μg/L, well below the safe limit of 2 μg/L. PVB-SH possesses excellent renewability (removal efficiency = 99.58 % after 10 regenerations), good resistance to various environmental factors (pH, ions and organic matter) and long-term stability in acid, alkali, and salt solutions. Impressively, PVB-SH is further made into a membrane by simple phase-inversion and can effectively purify 1592.4 L/m2 Hg(II) polluted drinking water before the breakthrough point of 2 μg/L. These results demonstrate the good practical potential of PVB-SH for decontamination of Hg from aqueous media.
Collapse
Affiliation(s)
- Daikun Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanying Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dingyong Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Gong W, Yang TQ, He WY, Li YX, Hu JN. On-demand removable hydrogel film derived from gallic acid-phycocyanin and polyvinyl alcohol for fruit preservation. Food Chem 2025; 463:141404. [PMID: 39362103 DOI: 10.1016/j.foodchem.2024.141404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
Postharvest spoilage of fruits accounts for significant losses ranging between 20 %-30 %, leading to considerable resource wastage and economic downturns. The development of an effective fresh-keeping packaging material is of paramount importance. This study introduces an innovative on-demand removable active fruit fresh-keeping film (GPP), created by embedding a GP (gallic acid-phycocyanin) fiber mesh hydrogel with functional properties into a polyvinyl alcohol (PVA) matrix. The resultant GPP hydrogel-based film demonstrates outstanding UV and water vapor barrier capabilities, mechanical stability, resistance to external mechanical stress, universal surface adhesion, antibacterial efficacy, and on-demand removal attributes, while being devoid of potential toxicity hazards. Utilizing grapes and blueberries as representative fruits, it is shown that the GPP hydrogel film significantly preserves the fruits' hardness, pH, total soluble solids content (TSS), and minimizes the rate of weight loss, thereby prolonging the shelf life to 13 days for grapes and 20 days for blueberries at ambient temperature. These results underscore the potential of this hydrogel-based film as an invaluable material for fruit preservation within the food industry.
Collapse
Affiliation(s)
- Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ting-Qi Yang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Wan-Ying He
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Xin Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Rong H, Sun S, Lu M, Zhang Y, Liu L, Guo Z, Zhang Z, Ye Z, Zhang J, Chen B, Li S, Dong A. Super-hydrophilic and super-lubricating Zwitterionic hydrogel coatings coupled with polyurethane to reduce postoperative dura mater adhesions and infections. Acta Biomater 2025; 192:206-217. [PMID: 39675498 DOI: 10.1016/j.actbio.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
The dura trauma or large defects due to neurosurgical procedures can result in potential complications. Dural replacements have proven effective to reduce the risk of seizures, meningitis, cerebrospinal fluid leakage, cerebral herniation, and infection. Although various artificial dural patches have been developed, addressing iatrogenic infections and cerebral adhesions resulting from patches implantation remains a challenge. This study employed a network interpenetration modification strategy to introduce super-hydrophilic and super-lubricity zwitterionic hydrogel coatings on polyurethane Neuro-Patch® (NP®) dura mater patch. The successful modification with the hydrogel coating preserved the intrinsic properties of the NP®, such as their anti-leakage and tensile strength capabilities, while effectively reducing biofouling on the surface of the patches. Additionally, by constructing subdural implantation for each dura mater substitute in rabbits, we observed that artificial dura mater patches modified with the hydrogel coating effectively reduced the incidence of postoperative cerebral adhesions and infections. This suggests a promising application prospect of the hydrogel coating in dural repair. STATEMENT OF SIGNIFICANCE: The development of dural substitutes with anti-leakage, anti-adhesion and anti-infection functions is the key to the treatment of dural defects and cerebrospinal fluid leakage during trauma or neurosurgery. In this study, the amphoteric ionic hydrogel coating was firmly modified on the surface of polyurethane with a mild modification process to give the patch super-hydrophilic and super-lubricating properties. The adhesion of non-specific proteins and bacteria is effectively reduced. The rabbit dural defect repair model showed that the introduction of zwitterionic hydrogel coating effectively reduced the occurrence of postoperative infection, and no tissue adhesion was observed. Taken together, this study offers a promising way to enhance the performance of artificial dural patches, potentially benefiting patients undergoing neurosurgery.
Collapse
Affiliation(s)
- Hui Rong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Shupeng Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Manhua Lu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Yiqun Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Lingyuan Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ziwei Guo
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zimeng Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhanpeng Ye
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, PR China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Budong Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Key Laboratory of Cerebral Blood Flow Reconstruction and Head and Neck Tumor New Technology Translation, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin 300350, PR China; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, 300350, PR China
| | - Shuangyang Li
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering(MOE), Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
4
|
Jung JH, Kang YB, Choi C. Fabrication of Long-Lasting Superhydrophilic Anti-Fogging Film Via Rapid and Simple UV Process. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409463. [PMID: 39520070 PMCID: PMC11714152 DOI: 10.1002/advs.202409463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Surface fogging is a common phenomenon that can result in restricted visibility, reduced light absorption, and image distortion. Although both hydrophobic and hydrophilic surfaces are effective in preventing this phenomenon, typical coatings in both have limitations, including low durability and the need for frequent reapplication. To address these issues, a highly durable anti-fogging film that lasts over five weeks, even under high moisture conditions, while maintaining a promising degree of transparency (> 60%) is developed. A novel statistical random copolymer containing superhydrophilic and photo-crosslinkable segments that can be simultaneously crosslinked and chemically bonded to various substrates via a simple ultraviolet (UV) irradiation process is synthesized. Notably, the chemical bonding between the anti-fogging coating and substrate improves not only the durability but also the resistance to external forces and environmental changes. Furthermore, this film is versatile and applicable to diverse substrates, such as car windshields, polymer films, and aluminum foil. The innovative strategy offers a simple, rapid process and durable anti-fogging performance with broad applications in the automotive industry, optical devices, and building materials.
Collapse
Affiliation(s)
- Jae Hwan Jung
- Department of Polymer Science and EngineeringKumoh National Institute of Technology61 Daehak‐roGumiGyeongbuk39177Republic of Korea
| | - Yu Bin Kang
- Department of Polymer Science and EngineeringKumoh National Institute of Technology61 Daehak‐roGumiGyeongbuk39177Republic of Korea
| | - Chungryong Choi
- Department of Polymer Science and EngineeringKumoh National Institute of Technology61 Daehak‐roGumiGyeongbuk39177Republic of Korea
| |
Collapse
|
5
|
Chen X, Feng Y, Zhang P, Ni Z, Xue Y, Liu J. Hydrogel Fibers-Based Biointerfacing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413476. [PMID: 39578344 DOI: 10.1002/adma.202413476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/12/2024] [Indexed: 11/24/2024]
Abstract
The unique 1D structure of fibers offers intriguing attributes, including a high length-to-diameter ratio, miniatured size, light-weight, and flexibility, making them suitable for various biomedical applications, such as health monitoring, disease treatment, and minimally invasive surgeries. However, traditional fiber devices, typically composed of rigid, dry, and non-living materials, are intrinsically different from the soft, wet, and living essence of biological tissues, thereby posing grand challenges for long-term, reliable, and seamless interfacing with biological systems. Hydrogel fibers have recently emerged as a promising candidate, in light of their similarity to biological tissues in mechanical, chemical and biological aspects, as well as distinct fiber geometry. In this review, a comprehensive overview of recent progress in hydrogel fibers-based biointerfacing technology is provided. It thoroughly summarizes the manufacturing strategy and functional design, especially for hydrogel fibers with distinct optical and electron conductive performance, as well as responsiveness to triggers including thermal, magnetic field and ultrasonic wave, etc. Such unique attributes enable various biomedical applications, which are also examined in detail. Future challenges and potential directions, including biosafety, long-term reliability, sterilization, multi-modalities integration and intelligent therapeutic systems, are raised. This review will serve as a valuable resource for further advancement and implementation as next-generation biointerfacing technology.
Collapse
Affiliation(s)
- Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhipeng Ni
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Wang L, Xue Y, Li S, Zhang X, Miao Z, Zeng Z, Ruan D, Shen Y, Yuan H, Zhao Y, Li D, Luo Z, Wong TW, Li T, Li L, Yang X, Yang W. Tough and Functional Hydrogel Coating by Electrostatic Spraying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408780. [PMID: 39707674 DOI: 10.1002/smll.202408780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/03/2024] [Indexed: 12/23/2024]
Abstract
Hydrogel coatings impart superior surface properties to materials, but their application on large and complicated substrates is hindered by two challenges: limited wetting conditions and intricate curing processes. To overcome the challenges, lyophilized adhesive hydrogel powders (LAHPs) are developed, which consist of poly(acrylic acid-co-3-(trimethoxysilyl)propyl methacrylate) crosslinked with chitosan. These powders are electrostatic sprayed onto substrates to address wetting issues and rehydrated to form bulk hydrogel coatings to circumvent curing challenges. This approach enables the application of hydrogel coatings with a smooth surface and adjustable thickness on various materials, irrespective of category, geometry, or size. The coatings exhibit remarkable mechanical properties (strength of 2.62 MPa, elastic modulus of 6.84 MPa, and stretchability exceeding 3 folds) and robust adhesion (adhesion energy ≈900 J m-2) through a three-step bonding process involving electrostatic attraction, hydrogen bonding, and covalent bonding. Notably, these coatings confer multiple functional attributes to the substrate, including lubricity, hydrophilicity, nucleation inhibition, and pH-responsive actuation. Moreover, incorporating LAHPs with functional agents or rehydrating with functional solutions opens possibilities for diverse functional hydrogel coatings, such as thermal responsiveness and NH3 indication. Leveraging the virtues of simplicity, flexibility, convenience, and broad applicability, this strategy presents an enticing pathway for the widespread applications of hydrogel coatings.
Collapse
Affiliation(s)
- Lei Wang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yaoting Xue
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Siyang Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaochen Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhikun Miao
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zehao Zeng
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dongrui Ruan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yifeng Shen
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Hui Yuan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yukai Zhao
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dong Li
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Advanced Membrane Technology Research Centre, University Teknologi Malaysia, Skudai, 81310, Malaysia
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Shen H, Li M, Cui W, Ran R. Temperature-Governed Microstructure of Poly(vinyl alcohol) Hydrogels Prepared through Mixed-Solvent-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62732-62742. [PMID: 39491477 DOI: 10.1021/acsami.4c14907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
The formation of phase-separated structures in hydrogels plays a crucial role in determining their optical and mechanical properties. Traditionally, phase-separated hydrogels are prepared through a two-step process involving initial hydrogel synthesis followed by post-treatment. In this study, we present an approach for temperature-governed phase separation microstructure modulation in hydrogels, harnessing the cononsolvency effect. This method allows the phase-separated structure to develop during hydrogel synthesis, significantly simplifying the preparation process. Importantly, we found that the preparation temperature has a substantial effect on the internal structure of the phase-separated hydrogel. We systematically investigated how the temperature influences the phase structure, optical properties, and mechanical performance of these hydrogels. The resulting hydrogels demonstrate excellent moisturizing and antifreezing capabilities. Additionally, the incorporation of sodium chloride imparts remarkable electrical conductivity to the hydrogels, making them suitable for strain sensing applications across a wide temperature range.
Collapse
Affiliation(s)
- Huanwei Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Min Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Luo X, Wan R, Zhang Z, Song M, Yan L, Xu J, Yang H, Lu B. 3D-Printed Hydrogel-Based Flexible Electrochromic Device for Wearable Displays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404679. [PMID: 39120556 PMCID: PMC11481265 DOI: 10.1002/advs.202404679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/10/2024]
Abstract
Flexible electrochromic devices (FECDs) are widely explored for diverse applications including wearable electronics, camouflage, and smart windows. However, the manufacturing process of patterned FECDs remains complex, costly, and non-customizable. To address this challenge, a strategy is proposed to prepare integrated FECDs via multi-material direct writing 3D printing. By designing novel viologen/polyvinyl alcohol (PVA) hydrogel inks and systematically evaluating the printability of various inks, seamless interface integration can be achieved, enabling streamlined manufacturing of patterned FECDs with continuous production capabilities. The resultant 3D-printed FECDs exhibit excellent electrochromic and mechanical properties, including high optical contrast (up to 54% at 360 nm), nice cycling stability (less than 5% electroactivity reduction after 10 000 s), and mechanical stability (less than 19% optimal contrast decrease after 5000 cycles of bending). The potential applications of these 3D-printed hydrogel-based FECDs are further demonstrated in wearable electronics, camouflage, and smart windows.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of PharmacyJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
| | - Rongtai Wan
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of PharmacyJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
| | - Zhaoxian Zhang
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of PharmacyJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
| | - Manting Song
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of PharmacyJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
| | - Lixia Yan
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of PharmacyJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
| | - Jingkun Xu
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of Chemistry and Materials ScienceEast China University of TechnologyNanchangJiangxi330013P. R. China
| | - Hanjun Yang
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of PharmacyJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
| | - Baoyang Lu
- Jiangxi Province Key Laboratory of Flexible ElectronicsFlexible Electronics Innovation InstituteJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
- School of Chemistry and Chemical EngineeringJiangxi Science and Technology Normal UniversityNanchangJiangxi330013P. R. China
| |
Collapse
|
9
|
Tang J, Zhang Y, Qi C, Li B, Wu Y, Ma S, Ma Y, Yu Q, Yang W, Xi P, Yu B, Zhou F. Robust and Lubricating Interface Semi-Interpenetrating Network on Inert Polymer Substrates Enabled by Subsurface-Initiated Polymerization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403303. [PMID: 39031810 DOI: 10.1002/smll.202403303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Lubricating hydrogel coatings on inert rubber and plastic surfaces significantly reduce friction and wear, thus enhancing material durability and lifespan. However, achieving optimal hydration lubrication typically requires a porous polymer network, which unfortunately reduces their mechanical strength and limits their applicability where robust durability and wear-resistance are essential. In the research, a hydrogel coating with remarkable wear resistance and surface stability is developed by forming a semi-interpenetrating polymer network with polymer substrate at the interface. By employing a good solvent swelling method, monomers, and photoinitiators are embedded within the substrates' subsurface, followed by in situ polymerization under ultraviolet light, creating a robust semi-interpenetrating and entangled network structure. This approach, offering a thicker energy-dissipating layer, outperforms traditional surface modifications in wear resistance while preserving anti-fatigue, hydrophilicity, oleophobicity, and other properties. Adaptable to various rubber and plastic substrates by using suitable solvents, this method provides an efficient solution for creating durable, lubricating surfaces, broadening the potential applications in multiple industries.
Collapse
Affiliation(s)
- Jie Tang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlei Zhang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Changmin Qi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wufang Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Pinxian Xi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
10
|
Yakufu M, Wang Z, Li C, Jia Q, Ma C, Zhang P, Abudushalamu M, Akber S, Yan L, Xikeranmu M, Song X, Abudourousuli A, Shu L. Carbene-mediated gelatin and hyaluronic acid hydrogel paints with ultra adhesive ability for arthroscopic cartilage repair. Int J Biol Macromol 2024; 273:133122. [PMID: 38876236 DOI: 10.1016/j.ijbiomac.2024.133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
In articular cartilage defect, particularly in arthroscopy, regenerative hydrogels are urgently needed. It should be able to firmly adhere to the cartilage tissue and maintain sufficient mechanical strength to withstand approximately 10 kPa of arthroscopic hydraulic flushing. In this study, we report a carbene-mediated ultra adhesive hybrid hydrogel paints for arthroscopic cartilage repair, which combined the photo initiation of double crosslinking system with the addition of diatomite, as a further reinforcing agent and biological inorganic substances. The double network consisting of ultraviolet initiated polymerization of hyaluronic acid methacrylate (HAMA) and carbene insertion chemistry of diazirine-grafted gelatin (GelDA) formed an ultra-strong adhesive hydrogel paint (H2G5DE). Diatomite helped the H2G5DE hydrogel paint firmly adhere to the cartilage defect, withstanding nearly 100 kPa of hydraulic pressure, almost 10 times that in clinical arthroscopy. Furthermore, the H2G5DE hydrogel supported cell growth, proliferation, and migration, thus successfully repairing cartilage defects. Overall, this study demonstrates a proof-of-concept of ultra-adhesive polysaccharide hydrogel paints, which can firmly adhere to the articular cartilage defects, can resist continuous hydraulic pressure, can promote effective cartilage regeneration, and is very suitable for minimally invasive arthroscopy.
Collapse
Affiliation(s)
- Maihemuti Yakufu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Chunbao Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing 100048, PR China.
| | - Qiyu Jia
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, PR China.
| | - Chuang Ma
- Department of Trauma Orthopedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, PR China
| | - Peng Zhang
- Department of Sports Medicine, Characteristic Medical Center of Chinese People's Armed Police Forces, Tianjin 300162, PR China
| | - Muyashaer Abudushalamu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Sajida Akber
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Li Yan
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Milibanguli Xikeranmu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Xinghua Song
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China
| | - Adili Abudourousuli
- Animal Expermental Center,Xinjiang Medical University, Urumqi 830017, PR China
| | - Li Shu
- Orthopaedic Research Center, Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830002, PR China.
| |
Collapse
|
11
|
Wei C, Zhang Y, Tang Z, Zhang C, Wu J, Wu B. Surface Reconstruction of Silicone-Based Amphiphilic Polymers for Mitigating Marine Biofouling. Polymers (Basel) 2024; 16:1570. [PMID: 38891516 PMCID: PMC11174759 DOI: 10.3390/polym16111570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Poly(dimethylsiloxane) (PDMS) coatings are considered to be environmentally friendly antifouling coatings. However, the presence of hydrophobic surfaces can enhance the adhesion rate of proteins, bacteria and microalgae, posing a challenge for biofouling removal. In this study, hydrophilic polymer chains were synthesised from methyl methacrylate (MMA), Poly(ethylene glycol) methyl ether methacrylate (PEG-MA) and 3-(trimethoxysilyl) propyl methacrylate (TPMA). The crosslinking reaction between TPMA and PDMS results in the formation of a silicone-based amphiphilic co-network with surface reconstruction properties. The hydrophilic and hydrophobic domains are covalently bonded by condensation reactions, while the hydrophilic polymers migrate under water to induce surface reconstruction and form hydrogen bonds with water molecules to form a dense hydrated layer. This design effectively mitigates the adhesion of proteins, bacteria, algae and other marine organisms to the coating. The antifouling performance of the coatings was evaluated by assessing their adhesion rates to proteins (BSA-FITC), bacteria (B. subtilis and P. ruthenica) and algae (P. tricornutum). The results show that the amphiphilic co-network coating (e.g., P-AM-15) exhibits excellent antifouling properties against protein, bacterial and microalgal fouling. Furthermore, an overall assessment of its antifouling performance and stability was conducted in the East China Sea from 16 May to 12 September 2023, which showed that this silicon-based amphiphilic co-network coating remained intact with almost no marine organisms adhering to it. This study provides a novel approach for the development of high-performance silicone-based antifouling coatings.
Collapse
Affiliation(s)
| | | | | | | | - Jianhua Wu
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, School of Marine Engineering, JiMei University, Xiamen 361021, China; (C.W.); (Y.Z.); (Z.T.); (C.Z.)
| | - Bo Wu
- Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, School of Marine Engineering, JiMei University, Xiamen 361021, China; (C.W.); (Y.Z.); (Z.T.); (C.Z.)
| |
Collapse
|
12
|
Zhang M, Li W, Yin L, Chen M, Zhang J, Li G, Zhao Y, Yang Y. Multifunctional double-network hydrogel with antibacterial and anti-inflammatory synergistic effects contributes to wound healing of bacterial infection. Int J Biol Macromol 2024; 271:132672. [PMID: 38810855 DOI: 10.1016/j.ijbiomac.2024.132672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Wound infection not only hinders the time sequence of tissue repair, but also may lead to serious complications. Multifunctional wound dressings with biocompatibility, excellent mechanical properties and antibacterial properties can promote wound healing during skin infection and reduce the use of antibiotics. In this study, a multifunctional dual-network antibacterial hydrogel was constructed based on the electrostatic interaction of two polyelectrolytes, hydroxypropyl trimethyl ammonium chloride chitosan (HACC) and sodium alginate (SA). Attributing to the suitable physical crosslinking between HACC and SA, the hydrogel not only has good biocompatibility, mechanical property, but also has broad-spectrum antibacterial properties. In vivo results showed that the hydrogel could regulate M2 polarization, promote early vascular regeneration, and create a good microenvironment for wound healing. Therefore, this hydrogel is an effective multifunctional wound dressing. Consequently, we propose a novel hydrogel with combined elements to expedite the intricate repair of wound infection.
Collapse
Affiliation(s)
- Miao Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Wanhua Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Long Yin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Min Chen
- Medical School, Nantong University, Nantong 226001, PR China
| | - Jianye Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China; Medical School, Nantong University, Nantong 226001, PR China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, PR China; Medical School, Nantong University, Nantong 226001, PR China.
| |
Collapse
|
13
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
14
|
Jiang B, Zhang Y, Wang R, Wang T, Zeng E. Innovative Acrylic Resin-Hydrogel Double-Layer Coating: Achieving Dual-Anchoring, Enhanced Adhesion, and Superior Anti-Biofouling Properties for Marine Applications. Gels 2024; 10:320. [PMID: 38786238 PMCID: PMC11121321 DOI: 10.3390/gels10050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Traditional anti-corrosion and anti-fouling coatings struggle against the harsh marine environment. Our study tackled this by introducing a novel dual-layer hydrogel (A-H DL) coating system. This system combined a Cu2O-SiO2-acrylic resin primer for anchoring and controlled copper ion release with a dissipative double-network double-anchored hydrogel (DNDAH) boasting superior mechanical strength and anti-biofouling performance. An acrylamide monomer was copolymerized and cross-linked with a coupling agent to form the first irreversible network and first anchoring, providing the DNDAH coating with mechanical strength and structural stability. Alginate gel microspheres (AGMs) grafted with the same coupling agent formed the second reversible network and second anchoring, while coordinating with Cu2+ released from the primer to form a system buffering Cu2+ release, enabling long-term antibacterial protection and self-healing capabilities. FTIR, SEM, TEM, and elemental analyses confirmed the composition, morphology, and copper distribution within the A-H DL coating. A marine simulation experiment demonstrated exceptional stability and anti-fouling efficacy. This unique combination of features makes A-H DL a promising solution for diverse marine applications, from ship hulls to aquaculture equipment.
Collapse
Affiliation(s)
- Boning Jiang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
| | - Yuhan Zhang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
| | - Ruiyang Wang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
| | - Ting Wang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - En Zeng
- Rongbang Chemical Co., Ltd., Suining 629000, China
| |
Collapse
|
15
|
Garg A, Alfatease A, Hani U, Haider N, Akbar MJ, Talath S, Angolkar M, Paramshetti S, Osmani RAM, Gundawar R. Drug eluting protein and polysaccharides-based biofunctionalized fabric textiles- pioneering a new frontier in tissue engineering: An extensive review. Int J Biol Macromol 2024; 268:131605. [PMID: 38641284 DOI: 10.1016/j.ijbiomac.2024.131605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/20/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
In the ever-evolving landscape of tissue engineering, medicated biotextiles have emerged as a game-changer. These remarkable textiles have garnered significant attention for their ability to craft tissue scaffolds that closely mimic the properties of natural tissues. This comprehensive review delves into the realm of medicated protein and polysaccharide-based biotextiles, exploring a diverse array of fabric materials. We unravel the intricate web of fabrication methods, ranging from weft/warp knitting to plain/stain weaving and braiding, each lending its unique touch to the world of biotextiles creation. Fibre production techniques, such as melt spinning, wet/gel spinning, and multicomponent spinning, are demystified to shed light on the magic behind these ground-breaking textiles. The biotextiles thus crafted exhibit exceptional physical and chemical properties that hold immense promise in the field of tissue engineering (TE). Our review underscores the myriad applications of drug-eluting protein and polysaccharide-based textiles, including TE, tissue repair, regeneration, and wound healing. Additionally, we delve into commercially available products that harness the potential of medicated biotextiles, paving the way for a brighter future in healthcare and regenerative medicine. Step into the world of innovation with medicated biotextiles-where science meets the art of healing.
Collapse
Affiliation(s)
- Ankitha Garg
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Adel Alfatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia.
| | - Nazima Haider
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammad J Akbar
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia.
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Mysuru 570015, Karnataka, India.
| | - Ravi Gundawar
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
16
|
Cui J, Liu L, Chen B, Hu J, Song M, Dai H, Wang X, Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications. Int J Biol Macromol 2024; 265:130994. [PMID: 38518950 DOI: 10.1016/j.ijbiomac.2024.130994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Biofouling remains a persistent challenge within the domains of biomedicine, tissue engineering, marine industry, and membrane separation processes. Multifunctional hydrogels have garnered substantial attention due to their complex three-dimensional architecture, hydrophilicity, biocompatibility, and flexibility. These hydrogels have shown notable advances across various engineering disciplines. The antifouling efficacy of hydrogels typically covers a range of strategies to mitigate or inhibit the adhesion of particulate matter, biological entities, or extraneous pollutants onto their external or internal surfaces. This review provides a comprehensive review of the antifouling properties and applications of hydrogels. We first focus on elucidating the fundamental principles for the inherent resistance of hydrogels to fouling. This is followed by a comprehensive investigation of the methods employed to enhance the antifouling properties enabled by the hydrogels' composition, network structure, conductivity, photothermal properties, release of reactive oxygen species (ROS), and incorporation of silicon and fluorine compounds. Additionally, we explore the emerging prospects of antifouling hydrogels to alleviate the severe challenges posed by surface contamination, membrane separation and wound dressings. The inclusion of detailed mechanistic insights and the judicious selection of antifouling hydrogels are geared toward identifying extant gaps that must be bridged to meet practical requisites while concurrently addressing long-term antifouling applications.
Collapse
Affiliation(s)
- Junting Cui
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Lan Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China
| | - Beiyue Chen
- Nanjing Xiaozhuang University, College of Electronics Engineering, Nanjing 211171, China
| | - Jiayi Hu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Mengyao Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212000, China.
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China.
| |
Collapse
|
17
|
Wang J, Li XY, Qian HL, Wang XW, Wang YX, Ren KF, Ji J. Robust, Sprayable, and Multifunctional Hydrogel Coating through a Polycation Reinforced (PCR) Surface Bridging Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310216. [PMID: 38237136 DOI: 10.1002/adma.202310216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The sprayable hydrogel coatings that can establish robust adhesion onto diverse materials and devices hold enormous potential; however, a significant challenge persists due to monomer hydration, which impedes even coverage during spraying and induces inadequate adhesion post-gelation. Herein, a polycation-reinforced (PCR) surface bridging strategy is presented to achieve tough and sprayable hydrogel coatings onto diverse materials. The polycations offer superior wettability and instant electrostatic interactions with plasma-treated substrates, facilitating an effective spraying application. This PCR-based hydrogel coatings demonstrate tough adhesion performance to inert PTFE and silicone, including remarkable shear strength (161 ± 49 kPa for PTFE), interfacial toughness (198 ± 27 J m-2 for PTFE), and notable tolerance to cyclic tension (10 000 cycles, 200% strain, silicone). Meanwhile, this method can be applied to various hydrogel formulations, offering diverse functionalities, including underwater adhesion, lubrication, and drug delivery. Furthermore, the PCR concept enables the conformal construction of durable hydrogel coatings onto sophisticated medical devices like cardiovascular stents. Given its simplicity and adaptability, this approach paves an avenue for incorporating hydrogels onto solid surfaces and potentially promotes untapped applications.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| | - Xin-Yi Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
18
|
Hu Q, Du Y, Bai Y, Xing D, Lang S, Li K, Li X, Nie Y, Liu G. Sprayable Zwitterionic Antibacterial Hydrogel With High Mechanical Resilience and Robust Adhesion for Joint Wound Treatment. Macromol Rapid Commun 2024; 45:e2300683. [PMID: 38237945 DOI: 10.1002/marc.202300683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Wound healing in movable parts, including the joints and neck, remains a critical challenge due to frequent motions and poor flexibility of dressings, which may lead to mismatching of mechanical properties and poor fitting between dressings and wounds; thus, increasing the risk of bacterial infection. This study proposes a sprayable zwitterionic antibacterial hydrogel with outstanding flexibility and desirable adhesion. This hydrogel precursor is fabricated by combining zwitterionic sulfobetaine methacrylate (SBMA) with poly(sulfobetaine methacrylate-co-dopamine methacrylamide)-modified silver nanoparticles (PSBDA@AgNPs) through robust electrostatic interactions. About 150 s of exposure to UV light, the SBMA monomer polymerizes to form PSB chains entangled with PSBDA@AgNPs, transformed into a stable and adhesion PSB-PSB@Ag hydrogel at the wound site. The resulting hydrogel has adhesive strength (15-38 kPa), large tensile strain (>400%), suitable shape adaptation, and excellent mechanical resilience. Moreover, the hydrogel displays pH-responsive behavior; the acidic microenvironment at the infected wound sites prompts the hydrogel to rapidly release AgNPs and kill bacteria. Further, the healing effect of the hydrogel is demonstrated on the rat neck skin wound, showing improved wound closing rate due to reduced inflammation and enhanced angiogenesis. Overall, the sprayable zwitterionic antibacterial hydrogel has significant potential to promote joint skin wound healing.
Collapse
Affiliation(s)
- Qinsheng Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Orthopedic Surgery, Yaan People's Hospital, Yaan, 625000, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dandan Xing
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinyun Li
- Dazhou Hospital of Integrated Traditional Chinese and Western Medicine, Dazhou, Sichuan, 635000, China
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
19
|
Li Y, Liu J, Zhang Q, Hu N, Jiang Z, Kan Q, Kang G. Growth of Double-Network Tough Hydrogel Coatings by Surface-Initiated Polymerization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10822-10831. [PMID: 38381141 DOI: 10.1021/acsami.4c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Hydrogel coatings exhibit versatile applications in biomedicine, flexible electronics, and environmental science. However, current coating methods encounter challenges in simultaneously achieving strong interfacial bonding, robust hydrogel coatings, and the ability to coat substrates with controlled thickness. This paper introduces a novel approach to grow a double-network (DN) tough hydrogel coating on various substrates. The process involves initial substrate modification using a silane coupling agent, followed by the deposition of an initiator layer on its surface. Subsequently, the substrate is immersed in a DN hydrogel precursor, where the coating grows under ultraviolet (UV) illumination. Precise control over the coating thickness is achieved by adjusting the UV illumination duration and the initiator quantity. The experimental measurement of adhesion reveals strong bonding between the DN hydrogel coating and diverse substrates, reaching up to 1012.9 J/m2 between the DN hydrogel coating and a glass substrate. The lubricity performance of the DN hydrogel coating is experimentally characterized, which is dependent on the coating thickness, applied pressure, and sliding velocity. The incorporation of 3D printing technology into the current coating method enables the creation of intricate hydrogel coating patterns on a flat substrate. Moreover, the hydrogel coating's versatility is demonstrated through its effective applications in oil-water separation and antifogging glasses, underscoring its wide-ranging potential. The robust DN hydrogel coating method presented here holds promise for advancing hydrogel applications across diverse fields.
Collapse
Affiliation(s)
- Yuhong Li
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Qifang Zhang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Nan Hu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Zhouhu Jiang
- State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qianhua Kan
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Guozheng Kang
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| |
Collapse
|
20
|
Dong B, Yu D, Lu P, Song Z, Chen W, Zhang F, Li B, Wang H, Liu W. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Carbohydr Polym 2024; 326:121621. [PMID: 38142077 DOI: 10.1016/j.carbpol.2023.121621] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
Conductive hydrogels have received increasing attention in the field of wearable electronics, but they also face many challenges such as temperature tolerance, biocompatibility, and stability of mechanical properties. In this paper, a double network hydrogel of MXene/TEMPO bacterial cellulose (TOBC) system is proposed. Through solvent replacement, the hydrogel exhibits wide temperature tolerance (-20-60 °C) and stable mechanical properties. A large number of hydrogen bonds, MXene/TOBC dynamic three-dimensional network system, and micellar interactions endow the hydrogel with excellent mechanical properties (elongation at break ~2800 %, strength at break ~420 kPa) and self-healing ability. The introduction of tannic acid prevents the oxidation of MXene and the loss of electrical properties of the hydrogel. In addition, the sensor can also quickly (74 ms) and sensitive (gauge factor = 15.65) wirelessly monitor human motion, and the biocompatibility can well avoid the stimulation when it comes into contact with the human body. This series of research work reveals the fabrication of MXene-like flexible wearable electronic devices based on self-healing, good cell compatibility, high sensitivity, wide temperature tolerance and durability, which can be used in smart wearable, wireless monitoring, human-machine Interaction and other aspects show great application potential.
Collapse
Affiliation(s)
- Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China.
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd., Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Bin Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| |
Collapse
|
21
|
Yang G, Lin W, Shah BA, Liang J, Lu X, Yuan B. Superhydrophilic and Antifriction Thin Hydrogel Formed under Mild Conditions for Medical Bare Metal Guide Wires. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1482-1491. [PMID: 38147690 DOI: 10.1021/acsami.3c15211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Medical guide wires play a crucial role in the process of intravascular interventional therapy. However, it is essential for bare metal guide wires to possess both hydrophilic lubricity and coating durability, avoiding tissue damage caused by friction inside the blood vessel during the interventional procedure. Additionally, it is still a huge challenge for diverse metal materials to bind with polymer coatings easily. Herein, we present a hydrogel coating scheme and its preparation method for various wires under mild conditions for environmental protection purposes. The preparation process involves surface pretreatment, including low-temperature heating and silanization, followed by a two-step dip coating and ultraviolet polymerization. The whole process leads to the formation of an interpenetrating cross-linked hydrogel network from the substrate to the surface section. This study confirms the superhydrophilicity and lubricity of three metal wires with the designed coating, especially reducing the friction significantly by ≥ 95%. The thin coating (average thickness <6.2 μm) demonstrates strong adhesion with various substrates and exhibits resistance to 25 or even 125 cycles of friction, indicating excellent stability and preventing easy detachment. The finally prepared composite nickel-titanium (NiTi) guide wire with stainless steel (SS) and platinum-tungsten (Pt-W) coils (overall diameter of ∼0.36 mm) shows satisfactory performance with a friction of 0.183 N for 25 cycles, meeting the clinical requirements (average friction ≤0.2 N) for interventional operation. These findings highlight the potential of this study in advancing the development of medical devices, particularly in the field of intravascular interventional therapy.
Collapse
Affiliation(s)
- Guangyao Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Weihao Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| | - Basit Ali Shah
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jinxia Liang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xun Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Bin Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Engineering Technology Research Center of Advanced Energy Storage Materials, Guangzhou 510640, P. R. China
| |
Collapse
|
22
|
Luu CH, Nguyen N, Ta HT. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Adv Healthc Mater 2024; 13:e2301039. [PMID: 37725037 PMCID: PMC11468451 DOI: 10.1002/adhm.202301039] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Indexed: 09/21/2023]
Abstract
The use of biomaterials in implanted medical devices remains hampered by platelet adhesion and blood coagulation. Thrombus formation is a prevalent cause of failure of these blood-contacting devices. Although systemic anticoagulant can be used to support materials and devices with poor blood compatibility, its negative effects such as an increased chance of bleeding, make materials with superior hemocompatibility extremely attractive, especially for long-term applications. This review examines blood-surface interactions, the pathogenesis of clotting on blood-contacting medical devices, popular surface modification techniques, mechanisms of action of anticoagulant coatings, and discusses future directions in biomaterial research for preventing thrombosis. In addition, this paper comprehensively reviews several novel methods that either entirely prevent interaction between material surfaces and blood components or regulate the reaction of the coagulation cascade, thrombocytes, and leukocytes.
Collapse
Affiliation(s)
- Cuong Hung Luu
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Nam‐Trung Nguyen
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Hang Thu Ta
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| |
Collapse
|
23
|
Chen B, Zhu D, Zhu R, Wang C, Cui J, Zheng Z, Wang X. Universal adhesion using mussel foot protein inspired hydrogel with dynamic interpenetration for topological entanglement. Int J Biol Macromol 2024; 256:127868. [PMID: 37939758 DOI: 10.1016/j.ijbiomac.2023.127868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Achieving adhesion of hydrogels to universal materials with desirable strength remains a challenge despite emerging application of hydrogels. Herein we present a mussel foot protein (Mfp) inspired polyelectrolyte hydrogel of poly(ethylenimine)/poly(acrylic acid)-dopamine (PEI/PAADA) developed for universal tough adhesion. The highly-concentrated electrostatic and hydrogen-bonding interactions in PEI/PAADA hydrogel resulted in a tensile strength, strain at break, and toughness of 0.297 MPa, 2784 % and 5.440 MJ m-3, respectively. Moreover, the hydrogel can heal itself from physical damages, even can be recycled after totally dried via rehydration because of the high flexibility and reversibility of its dynamic bonds. Combining the strategies of topological stitching and direct bonding, Mfp-derived catechol and PEI/PAA backbone in PEI/PAADA corporately facilitated robust adhesion of universal materials with shear strength of up to 4.4 MPa and peeling strength of 870 J m-2, which is over 10 times greater than that of commercial fibrin gel. The adhesive also exhibited self-healing capability for at least 5 cycles, good stability in 1 M NaCl solution and characteristic debonding catalyzed by calcium. Moreover, in vitro cell behavior and in vivo wound healing assays suggested the potential of PEI/PAADA as wound dressing.
Collapse
Affiliation(s)
- Buyun Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dandan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruixin Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenhao Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahua Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
24
|
Wei L, Li Y, Qiu X, Zhang X, Song X, Zhao Y, Yu Q, Shao J, Ge S, Huang J. An underwater stable and durable gelatin composite hydrogel coating for biomedical applications. J Mater Chem B 2023; 11:11372-11383. [PMID: 38009934 DOI: 10.1039/d3tb01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Developing underwater stable and durable hydrogel coatings with drag-reducing, drug release, and antibacterial properties is essential for lots of biomedical applications. However, most hydrogel coatings cannot meet the requirement of underwater stability and versatility, which severely limits their widespread use. In this work, an underwater stable, durable and substrate-independent gelatin composite hydrogel (GMP) coating is developed through covalent crosslinks, where a silane coupling agent with an unsaturated double bond is grafted onto a substrate of co-deposited polydopamine and polyethylenimine. GMP coating can be easily coated onto various medical device surfaces, such as artificial joints, catheters, tracheal tubes and titanium alloys, showing excellent structural stability and mechanical tunability under extreme conditions of ultrasonic treatment for 1 h (400 W of ultrasonic power) or underwater shearing for 14 days (400 rpm). Besides, friction experiment reveals that GMP coating exhibits good lubrication properties (coefficient of friction < 0.003). The drug-loading and bacterial inhibition ring tests show that the GMP coating has a tunable drug release ability with the final releasing ratios of 70-95% by changing the content of poly (ethylene glycol) diacrylate. This work offers a scalable approach of fabricating bio-functional and stable hydrogel coatings, which can be potentially used in biomedical applications.
Collapse
Affiliation(s)
- Luxing Wei
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 25006, China
| | - Yuan Li
- Sinopec Research Institute of Petroleum Engineering, Fracturing & Acidizing and Natural Gas Production Research Institute, Dongying, Shandong, 257000, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Xiaoyu Song
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 25006, China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qing Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong, 25006, China
| |
Collapse
|
25
|
Mao S, Liu W, Xie Z, Zhang D, Zhou J, Xu Y, Fu B, Zheng SY, Zhang L, Yang J. In Situ Growth of Functional Hydrogel Coatings by a Reactive Polyurethane for Biomedical Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38036509 DOI: 10.1021/acsami.3c10683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Surface modification of thermoplastic polyurethane (TPU) could significantly enhance its suitability for biomedical devices and public health products. Nevertheless, customized modification of polyurethane surfaces with robust interfacial bonding and diverse functions via a simple method remains an enormous challenge. Herein, a novel thermoplastic polyurethane with a photoinitiated benzophenone unit (BPTPU) is designed and synthesized, which can directly grow functional hydrogel coating on polyurethane (PU) in situ by initiating polymerization of diverse monomers under ultraviolet irradiation, without the involvement of organic solvent. The resulting coating not only exhibits tissue-like softness, controllable thickness, lubrication, and robust adhesion strength but also provides customized functions (i.e., antifouling, stimuli-responsive, antibacterial, and fluorescence emission) to the original passive polymer substrates. Importantly, BPTPU can be blended with commercial TPU to produce the BPTPU-based tube by an extruder. Only a trace amount of BPTPU can endow the tube with good photoinitiated capacity. As a proof of concept, the hydrophilic hydrogel-coated BPTPU is shown to mitigate foreign body response in vivo and prevent thrombus formation in rat blood circulation without anticoagulants in vitro. This work offers a new strategy to guide the design of functional polyurethane, an elastomer-hydrogel composite, and holds great prospects for clinical translation.
Collapse
Affiliation(s)
- Shihua Mao
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wei Liu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiahui Zhou
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Baiping Fu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ling Zhang
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
26
|
Li Y, Zhang B, Liu X, Wan H, Qin Y, Yan H, Wang Y, An Y, Yang Y, Dai Y, Yang L, Wang Y. A bio-inspired nanoparticle coating for vascular healing and immunomodulatory by cGMP-PKG and NF-kappa B signaling pathways. Biomaterials 2023; 302:122288. [PMID: 37677917 DOI: 10.1016/j.biomaterials.2023.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Drug-eluting stents (DESs) implantation is an effective method to tackle in-stent restenosis (ISR), which has been considered as an efficient treatment for coronary atherosclerosis. Although fruitful results have been achieved in treating coronary artery diseases (CAD), concern has arisen regarding the long-term safety and efficacy of DESs, primarily due to adverse events such as delayed re-endothelialization, persistent inflammatory response, and late stent thrombosis (LST). Taking inspiration from the immunomodulatory functions of camouflage strategies, this study designed a bio-inspired nanoparticle-coated stent. Briefly, the platelet membrane-coated poly (lactic-co-glycolic acid)/Rapamycin nanoparticles (PNP) were sprayed onto stents, forming a homogenous nanoparticle coating. The bilayer of poly (lactic-co-glycolic acid) (PLGA) and platelet membrane works synergistically to promote the sustained-release effect of rapamycin. In vitro studies revealed that the PNP-coated surfaces promoted the competitive adhesion of endothelia cells while inhibiting smooth muscle cells. Subsequent in vivo studies demonstrated that these surfaces expedite re-endothelialization and elicit immunomodulatory effects by regulating the cGMP-PKG and NF-kappa B signaling pathways, influencing the biosynthesis cofactors and immune system signaling. The study successfully deviced a novel and biomimetic drug-eluting stent system, unraveling its detailed functions and molecular mechanism of action for enhanced vascular healing.
Collapse
Affiliation(s)
- Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongqi An
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuan Yang
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Yan Dai
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
27
|
Zhou S, Chen P, Xiao C, Ge Y, Gao H. Recent advances in dynamic dual mode systems for daytime radiative cooling and solar heating. RSC Adv 2023; 13:31738-31755. [PMID: 37908645 PMCID: PMC10613950 DOI: 10.1039/d3ra05506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Thermal management, including heating and cooling, plays an important role in human productive activities and daily life. Nevertheless, in the actual environment, almost all the ambient scenarios come with the challenge that the objects are located in a quite dynamic and variable environment, which includes fluctuations in aspects such as space, time, sunlight, season, and temperature. It is imperative to develop low-energy or even zero-energy thermal-management technologies with renewable and clean energy. In this review, we summarised the latest technological advances and the prospects in this burgeoning field. First, we present the fundamental principles of the daytime passive radiative cooling (PDRC) thermal management device. Next, In the domain of dual-mode systems, they are classified into various types based on the diverse mechanisms of transitioning between cooling and heating states, including electrical responsive, mechanical responsive, temperature responsive, and solution responsive. Furthermore, we conducted an in-depth analysis of the principles and design methodologies associated with these categories, followed by a comparative assessment of their performance in radiative cooling and solar heating applications. Finally, this review presents the challenges and opportunities of dynamic dual mode thermal management, while also identifying future directions.
Collapse
Affiliation(s)
- Shiqing Zhou
- College of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Pengyue Chen
- College of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Chunhong Xiao
- College of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Yuqing Ge
- College of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| | - Hongwen Gao
- College of Environmental Science and Engineering, Tongji University 1239 Siping Road Shanghai 200092 P. R. China
| |
Collapse
|
28
|
Yan Y, Shi Y, Liu C, Shao J, Sun N, Ma B, Li Y, Huang J, Ge S. Cartilage-Inspired Inhomogeneous Salt-Hydrogel for Hydrated Drag-Reducing and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48632-48644. [PMID: 37788004 DOI: 10.1021/acsami.3c10271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Articular cartilages exhibit load-bearing capacity and durability due to their inhomogeneous structure. Inspired by this unique structure, a tough and inhomogeneous salt-hydrogel was developed by trapping sodium acetate (NaAc) crystals in polyacrylamide (PAM) polymer networks and then partially redissolving the NaAc crystals. The compressive and tensile stresses of the salt-hydrogel increase significantly by more than 20 times when oversaturated Ac- and Na+ are introduced into the gel network. Such an enhancement in mechanical strength is primarily attributed to the formation of NaAc crystals within the gel network. Further investigations reveal that the mechanical strength of the salt-hydrogel is temperature-dependent as the NaAc crystals gradually redissolve in the gel network with increasing temperature. Furthermore, redissolving NaAc crystals in an aqueous solution can yield an inhomogeneous salt-hydrogel. The topmost soft surface of the salt-hydrogel offers hydration lubrication, while the inhomogeneous network confers load-bearing capacity and durability. Compared to regular hydrogels, the inhomogeneous salt-hydrogel surface can realize drag reduction and remain smooth without damage after the friction tests. Moreover, a salt-hydrogel coating is also fabricated to visually demonstrate its drag-reducing property. In addition, this salt-hydrogel possesses conductivity and can be utilized in the development of inhomogeneous salt-hydrogel fibers (diameter = 438 ± 7 μm) for strain detection. The produced salt-hydrogel fiber exhibits excellent durability and reproducibility as a strain sensor, capable of detecting both small strains (e.g., 1%) and large strains (e.g., 40%). This work provides fundamental insights into developing hydrogels with an inhomogeneous network and explores their potential applications (e.g., hydrated drag-reducing, strain sensing).
Collapse
Affiliation(s)
- Yonggan Yan
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Yanping Shi
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan 250101, China
| | - Chenghu Liu
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan 250101, China
| | - Jinlong Shao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Nengzhe Sun
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Yuan Li
- Sinopec Research Institute of Petroleum Engineering, Fracturing & Acidizing and Natural Gas Production Research Institute, Dongying 257000, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| |
Collapse
|
29
|
He X, Yang R, Xu C, Zhao Z, Cheng YF, Egberts P, Zeng H, Lu Q. Blowing-inspired ex situ preparation of ultrathin hydrogel coatings for visibly monitoring humidity and alkaline gas. NANOSCALE 2023; 15:13952-13964. [PMID: 37581607 DOI: 10.1039/d3nr02821f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Compared with the in situ preparation of ultrathin hydrogel coatings through successive yet tedious steps, ex situ strategies decouple the steps and greatly enhance the maneuverability and convenience of preparing hydrogel coatings. However, the difficulty in preparing sub-micron-thick coatings limits the applicability of ex situ methods in nanotechnology. Herein, we report the ex situ preparation of centimeter-scale ultrathin hydrogel coatings by applying omnidirectional stretching toward pre-gelated hydrogels with necking behaviors. This process involves blowing a bubble directly from a pre-gelated hydrogel and subsequently transferring the resulting hydrogel bubble to different substrates. The as-fabricated coatings exhibit peak-shaped thickness variations, with the thinnest part as low as ∼5 nm and the thickest part controllable from ∼200 nm to several microns. This method can be universally applied to hydrogels with necking behavior triggered by internal particles with partial hydrophobicity. Due to the overall near- or sub-micron thickness and unique thickness distribution, the coatings present concentric rings of different interference colors. With such an observable optical characteristic, the as-prepared hydrogel coatings are applied as sensors to visibly monitor humidity changes or alkaline gas through the visibly observable expansion or contraction of concentric interferometry rings, which is triggered by adsorbing/desorbing the surrounding water or alkaline molecules and the resultant swelling/deswelling of the coatings, respectively. With the universality of the method, we believe that the ex situ strategy can be used as a simple yet efficient environmental nanotechnology to fabricate various types of nanometer-thick hydrogel coatings as detectors to sensitively and visibly monitor surrounding stimuli on demand.
Collapse
Affiliation(s)
- Xiao He
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Ruijie Yang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Chaochen Xu
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ziqian Zhao
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Y Frank Cheng
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Philip Egberts
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Hongbo Zeng
- Department of Chemical & Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
30
|
Peng J, Li K, Du Y, Yi F, Wu L, Liu G. A robust mixed-charge zwitterionic polyurethane coating integrated with antibacterial and anticoagulant functions for interventional blood-contacting devices. J Mater Chem B 2023; 11:8020-8032. [PMID: 37530181 DOI: 10.1039/d3tb01443f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Antifouling coatings based on zwitterionic polymers have been widely applied for surface modification of interventional blood-contacting devices to combat thrombosis and infection. However, the weak adhesion stability of the zwitterionic coating to the device surface is still the key challenge. In this work, biocompatible mixed-charge zwitterionic polyurethane (MPU) polymers, that bear equal amounts of cationic quaternary amine groups and anionic carboxyl groups, were developed and further uniformly dip-coated onto a thermoplastic polyurethane (TPU) substrate with a commercial aliphatic isocyanate cross-linker (AIC). During the curing process, AIC not only crosslinks MPU chains into a polymer network but also reacts with hydroxyl groups of TPU to interlink the polymer network to the substrate, resulting in a cross-linking reinforced MPU coating (CMPU) with excellent mechanical robustness and adhesion strength. Taking advantage of the mixed-charge feature, the final zwitterionic CMPU coating exhibits both excellent antifouling and antibacterial activities against protein adsorption and bacterial growth, respectively, which is beneficial for effectively inhibiting the occurrence of in vivo infection. Moreover, anticoagulation studies show that CMPU-coated TPU catheters can also prevent the formation of blood clots in ex vivo rabbit blood circuits without anticoagulants. Hence, the designed CMPU coating has immense potential to address thrombosis and infection for interventional blood-contacting devices.
Collapse
Affiliation(s)
- Jinyu Peng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Kaijun Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Feng Yi
- Department of Emergency, Yueyang Central Hospital, Yueyang 414100, China.
| | - Lei Wu
- Department of Emergency, Yueyang Central Hospital, Yueyang 414100, China.
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
31
|
Yao M, Yan Z, Sun X, Guo B, Yu C, Zhao Z, Li X, Tan Z, Zhang H, Yao F, Li J. Strongly adhesive zwitterionic composite hydrogel paints for surgical sutures and blood-contacting devices. Acta Biomater 2023; 166:201-211. [PMID: 37150278 DOI: 10.1016/j.actbio.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Hydrogels show eminent advantages in biomedical and pharmaceutical fields. However, their application as coating materials for biomedical devices is limited by several key challenges, such as lack of universality, weak mechanical strength, and low adhesion to the substrate. Here we report versatile and tough adhesion composite hydrogel paints (CHPs), which consist of zwitterionic copolymers and microgels, both with reactive groups. The CHPs exhibit tunable rheology and thickness, hydrophilicity, biofouling resistance, durability, and convenient fabrication on metal, polymer, and inorganic surfaces with arbitrary shapes. As a proof-of-concept, the CHP-surgical sutures demonstrate exceptional lubrication, drug delivery, anti-infection, and anti-fibrous capsule properties. Moreover, the CHP-PVC tubing effectively prevents thrombus formation in vitro and ex vivo rabbit blood circulation without anticoagulants. This work provides valuable insights for enhancing and developing integrated hydrogel technologies for biomedical devices. STATEMENT OF SIGNIFICANCE: The combination of hydrogel and biomedical devices can enable numerous existing applications in medicine. In this study, inspired by the principle of microgel reinforcement in industrial paints, we propose a simple and versatile zwitterionic composite hydrogel paints (CHPs) strategy, which can be easily applied to diverse substrates with arbitrary shapes by covalent grafting between complementary groups by brush, dip, or spray. The CHPs integrated universality, tough adhesion, mechanical durability, and anti-biofouling properties because of their unique chemical composition and coating structure design. This strategy provides a simple and versatile route for surface modification of biomedical devices.
Collapse
Affiliation(s)
- Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xia Sun
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia, Canada
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhouying Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
| |
Collapse
|
32
|
Liu J, Hu N, Xie Y, Wang P, Chen J, Kan Q. Polyacrylic Acid Hydrogel Coating for Underwater Adhesion: Preparation and Characterization. Gels 2023; 9:616. [PMID: 37623071 PMCID: PMC10453224 DOI: 10.3390/gels9080616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Underwater adhesion involves bonding substrates in aqueous environments or wet surfaces, with applications in wound dressing, underwater repairs, and underwater soft robotics. In this study, we investigate the underwater adhesion properties of a polyacrylic acid hydrogel coated substrate. The underwater adhesion is facilitated through hydrogen bonds formed at the interface. Our experimental results, obtained through probe-pull tests, demonstrate that the underwater adhesion is rapid and remains unaffected by contact pressure and pH levels ranging from 2.5 to 7.0. However, it shows a slight increase with a larger adhesion area. Additionally, we simulate the debonding process and observe that the high-stress region originates from the outermost bonding region and propagates towards the center, spanning the thickness of the target substrate. Furthermore, we showcase the potential of using the underwater adhesive hydrogel coating to achieve in-situ underwater bonding between a flexible electronic demonstration device and a hydrogel contact lens. This work highlights the advantages of employing hydrogel coatings in underwater adhesion applications and serves as inspiration for the advancement of underwater adhesive hydrogel coatings capable of interacting with a wide range of substrates through diverse chemical and physical interactions at the interface.
Collapse
Affiliation(s)
- Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China; (N.H.); (Y.X.); (Q.K.)
| | - Nan Hu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China; (N.H.); (Y.X.); (Q.K.)
| | - Yao Xie
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China; (N.H.); (Y.X.); (Q.K.)
| | - Peng Wang
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
| | - Jingxiang Chen
- Facility Design and Instrumentation Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
| | - Qianhua Kan
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China; (N.H.); (Y.X.); (Q.K.)
| |
Collapse
|
33
|
Li S, Zhu P, Xue Y, Wang L, Wong TW, Yang X, Zhou H, Li T, Yang W. Inhibition of Heterogeneous Nucleation in Water by Hydrogel Coating. RESEARCH (WASHINGTON, D.C.) 2023; 6:0190. [PMID: 37426472 PMCID: PMC10325670 DOI: 10.34133/research.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
Heterogeneous nucleation plays a critical role in the phase transition of water, which can cause damage in various systems. Here, we report that heterogeneous nucleation can be inhibited by utilizing hydrogel coatings to isolate solid surfaces and water. Hydrogels, which contain over 90% water when fully swelled, exhibit a high degree of similarity to water. Due to this similarity, there is a great energy barrier for heterogeneous nucleation along the water-hydrogel interface. Additionally, hydrogel coatings, which possess polymer networks, exhibit higher fracture energy and more robust adhesion to solid surfaces compared to water. This high fracture and adhesion energy acts as a deterrent for fracture nucleation within the hydrogel or along the hydrogel-solid interface. With a hydrogel layer approximately 100 μm thick, the boiling temperature of water under atmospheric pressure can be raised from 100 to 108 °C. Notably, hydrogel coatings also result in remarkable reductions in cavitation pressure on multiple solid surfaces. We have demonstrated the efficacy of hydrogel coatings in preventing damages resulting from acceleration-induced cavitation. Hydrogel coatings have the potential to alter the energy landscape of heterogeneous nucleation on the water-solid interface, making them an exciting avenue for innovation in heat transfer and fluidic systems.
Collapse
Affiliation(s)
- Siyang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Panpan Zhu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yaoting Xue
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Lei Wang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Tuck-Whye Wong
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- School of Biomedical Engineering and Health Sciences and Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Skudai 81310, Malaysia
| | - Xuxu Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Haofei Zhou
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Tiefeng Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Wei Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Xue H, Wang D, Jin M, Gao H, Wang X, Xia L, Li D, Sun K, Wang H, Dong X, Zhang C, Cong F, Lin J. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. MICROSYSTEMS & NANOENGINEERING 2023; 9:79. [PMID: 37313471 PMCID: PMC10258200 DOI: 10.1038/s41378-023-00524-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 06/15/2023]
Abstract
Noninvasive brain-computer interfaces (BCIs) show great potential in applications including sleep monitoring, fatigue alerts, neurofeedback training, etc. While noninvasive BCIs do not impose any procedural risk to users (as opposed to invasive BCIs), the acquisition of high-quality electroencephalograms (EEGs) in the long term has been challenging due to the limitations of current electrodes. Herein, we developed a semidry double-layer hydrogel electrode that not only records EEG signals at a resolution comparable to that of wet electrodes but is also able to withstand up to 12 h of continuous EEG acquisition. The electrode comprises dual hydrogel layers: a conductive layer that features high conductivity, low skin-contact impedance, and high robustness; and an adhesive layer that can bond to glass or plastic substrates to reduce motion artifacts in wearing conditions. Water retention in the hydrogel is stable, and the measured skin-contact impedance of the hydrogel electrode is comparable to that of wet electrodes (conductive paste) and drastically lower than that of dry electrodes (metal pin). Cytotoxicity and skin irritation tests show that the hydrogel electrode has excellent biocompatibility. Finally, the developed hydrogel electrode was evaluated in both N170 and P300 event-related potential (ERP) tests on human volunteers. The hydrogel electrode captured the expected ERP waveforms in both the N170 and P300 tests, showing similarities in the waveforms generated by wet electrodes. In contrast, dry electrodes fail to detect the triggered potential due to low signal quality. In addition, our hydrogel electrode can acquire EEG for up to 12 h and is ready for recycled use (7-day tests). Altogether, the results suggest that our semidry double-layer hydrogel electrodes are able to detect ERPs in the long term in an easy-to-use fashion, potentially opening up numerous applications in real-life scenarios for noninvasive BCI.
Collapse
Affiliation(s)
- Hailing Xue
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Dongyang Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Mingyan Jin
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Hanbing Gao
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xuhui Wang
- Key Laboratory of Energy Materials and School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Long Xia
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Dong’ang Li
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Kai Sun
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Xufeng Dong
- Key Laboratory of Energy Materials and School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
35
|
Trombino S, Sole R, Curcio F, Cassano R. Polymeric Based Hydrogel Membranes for Biomedical Applications. MEMBRANES 2023; 13:576. [PMID: 37367780 DOI: 10.3390/membranes13060576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The development of biomedical applications is a transdisciplinary field that in recent years has involved researchers from chemistry, pharmacy, medicine, biology, biophysics, and biomechanical engineering. The fabrication of biomedical devices requires the use of biocompatible materials that do not damage living tissues and have some biomechanical characteristics. The use of polymeric membranes, as materials meeting the above-mentioned requirements, has become increasingly popular in recent years, with outstanding results in tissue engineering, for regeneration and replenishment of tissues constituting internal organs, in wound healing dressings, and in the realization of systems for diagnosis and therapy, through the controlled release of active substances. The biomedical application of hydrogel membranes has had little uptake in the past due to the toxicity of cross-linking agents and to the existing limitations regarding gelation under physiological conditions, but now it is proving to be a very promising field This review presents the important technological innovations that the use of membrane hydrogels has promoted, enabling the resolution of recurrent clinical problems, such as post-transplant rejection crises, haemorrhagic crises due to the adhesion of proteins, bacteria, and platelets on biomedical devices in contact with blood, and poor compliance of patients undergoing long-term drug therapies.
Collapse
Affiliation(s)
- Sonia Trombino
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Sole
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Federica Curcio
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Arcavacata, 87036 Rende, Italy
| |
Collapse
|
36
|
Chen H, Feng R, Xia T, Wen Z, Li Q, Qiu X, Huang B, Li Y. Progress in Surface Modification of Titanium Implants by Hydrogel Coatings. Gels 2023; 9:gels9050423. [PMID: 37233014 DOI: 10.3390/gels9050423] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Although titanium and titanium alloys have become the preferred materials for various medical implants, surface modification technology still needs to be strengthened in order to adapt to the complex physiological environment of the human body. Compared with physical or chemical modification methods, biochemical modification, such as the introduction of functional hydrogel coating on implants, can fix biomolecules such as proteins, peptides, growth factors, polysaccharides, or nucleotides on the surface of the implants, so that they can directly participate in biological processes; regulate cell adhesion, proliferation, migration, and differentiation; and improve the biological activity on the surface of the implants. This review begins with a look at common substrate materials for hydrogel coatings on implant surfaces, including natural polymers such as collagen, gelatin, chitosan, and alginate, and synthetic materials such as polyvinyl alcohol, polyacrylamide, polyethylene glycol, and polyacrylic acid. Then, the common construction methods of hydrogel coating (electrochemical method, sol-gel method and layer-by-layer self-assembly method) are introduced. Finally, five aspects of the enhancement effect of hydrogel coating on the surface bioactivity of titanium and titanium alloy implants are described: osseointegration, angiogenesis, macrophage polarization, antibacterial effects, and drug delivery. In this paper, we also summarize the latest research progress and point out the future research direction. After searching, no previous relevant literature reporting this information was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Rui Feng
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|
37
|
Li Z, Liu P, Chen S, Liu X, Yu Y, Li T, Wan Y, Tang N, Liu Y, Gu Y. Bioinspired marine antifouling coatings: Antifouling mechanisms, design strategies and application feasibility studies. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
38
|
Hydrogel/β-FeOOH-Coated Poly(vinylidene fluoride) Membranes with Superhydrophilicity/Underwater Superoleophobicity Facilely Fabricated via an Aqueous Approach for Multifunctional Applications. Polymers (Basel) 2023; 15:polym15040839. [PMID: 36850123 PMCID: PMC9961681 DOI: 10.3390/polym15040839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
Hydrogel coatings that can endow various substrates with superior properties (e.g., biocompatibility, hydrophilicity, and lubricity) have wide applications in the fields of oil/water separation, antifouling, anti-bioadhesion, etc. Currently, the engineering of multifunctional hydrogel-coated materials with superwettability and water purification property using a simple and sustainable strategy is still largely uninvestigated but has a beneficial effect on the world. Herein, we successfully prepared poly(2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogel/β-FeOOH-coated poly(vinylidene fluoride) (PVDF/PAMPS/β-FeOOH) membrane through free-radical polymerization and the in situ mineralization process. In this work, owing to the combination of hydrophilic PAMPS hydrogel coating and β-FeOOH nanorods anchored onto PVDF membrane, the resultant PVDF/PAMPS/β-FeOOH membrane achieved outstanding superhydrophilicity/underwater superoleophobicity. Moreover, the membrane not only effectively separated surfactant-stabilized oil/water emulsions, but also possessed a long-term use capacity. In addition, excellent photocatalytic activity against organic pollutants was demonstrated so that the PVDF/PAMPS/β-FeOOH membrane could be utilized to deal with wastewater. It is envisioned that these hydrogel/β-FeOOH-coated PVDF membranes have versatile applications in the fields of oil/water separation and wastewater purification.
Collapse
|
39
|
Liu Q, Wang X, Hou Y, Cheng Y, Zhang J, Xiao L, Zhao J, Li W. Bio-inspired Hydrogel Actuator with Rapid Self-strengthening Behavior. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
40
|
Li B, Wang C, Tian X, Luo Y, Cao X, Luo Z. A facile method to fabricate supramolecular polyurea hydrogel coated mesh with long-term stable underwater superoleophobicity for oil/water separation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Low hysteresis, anti-freezing and conductive organohydrogel prepared by thiol-ene click chemistry for human-machine interaction. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Chauhan N, Saxena K, Jain U. Hydrogel based materials: A progressive approach towards advancement in biomedical applications. MATERIALS TODAY COMMUNICATIONS 2022; 33:104369. [DOI: 10.1016/j.mtcomm.2022.104369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Investigation of the Flame Retardant Properties of High-Strength Microcellular Flame Retardant/Polyurethane Composite Elastomers. Polymers (Basel) 2022; 14:polym14235055. [PMID: 36501450 PMCID: PMC9740006 DOI: 10.3390/polym14235055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Flame retardants (FRs) often reduce the mechanical properties of polymer materials, and FR/microcellular polyurethane elastomer (MPUE) composite materials have not been systemically studied. Hence, we conducted this study on FR/MPUE composites by using multiple liquid FRs and/or expandable graphite (EG). Compared with liquid flame retardants, the LOI of an expandable graphite/dimethyl methylphosphonate (EG/DMMP) (3:1) combination was significantly increased (~36.1%), and the vertical combustion grade reached V-0 without a dripping phenomenon. However, the corresponding tensile strength was decreased by 17.5%. With the incorporation of EG alone, although the corresponding LOI was not a match with that of DMMP/EG, there was no droplet phenomenon. In addition, even with 15 wt% of EG, there was no significant decline in the tensile strength. Cone calorimeter test results showed that PHRR, THR, PSPR, and TSR were significantly reduced, compared to the neat MPUE, when the EG content surpassed 10 wt%. The combustion process became more stable and thus the fire risk was highly reduced. It was found that flame retardancy and mechanical properties could be well balanced by adding EG alone. Our proposed strategy for synthesizing FR/MPUE composites with excellent flame retardancy and mechanical properties was easy, effective, low-cost and universal, which could have great practical significance in expanding the potential application fields of MPUEs.
Collapse
|
44
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
45
|
Zhang Y, Xu R, Zhao W, Zhao X, Zhang L, Wang R, Ma Z, Sheng W, Yu B, Ma S, Zhou F. Successive Redox‐Reaction‐Triggered Interface Radical Polymerization for Growing Hydrogel Coatings on Diverse Substrates. Angew Chem Int Ed Engl 2022; 61:e202209741. [DOI: 10.1002/anie.202209741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yunlei Zhang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Rongnian Xu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiyi Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
46
|
Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices. Nat Commun 2022; 13:5339. [PMID: 36096894 PMCID: PMC9468150 DOI: 10.1038/s41467-022-33081-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/31/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractZwitterionic hydrogels exhibit eminent nonfouling and hemocompatibility. Several key challenges hinder their application as coating materials for blood-contacting biomedical devices, including weak mechanical strength and low adhesion to the substrate. Here, we report a poly(carboxybetaine) microgel reinforced poly(sulfobetaine) (pCBM/pSB) pure zwitterionic hydrogel with excellent mechanical robustness and anti-swelling properties. The pCBM/pSB hydrogel coating was bonded to the PVC substrate via the entanglement network between the pSB and PVC chain. Moreover, the pCBM/pSB hydrogel coating can maintain favorable stability even after 21 d PBS shearing, 0.5 h strong water flushing, 1000 underwater bends, and 100 sandpaper abrasions. Notably, the pCBM/pSB hydrogel coated PVC tubing can not only mitigate the foreign body response but also prevent thrombus formation ex vivo in rats and rabbits blood circulation without anticoagulants. This work provides new insights to guide the design of pure zwitterionic hydrogel coatings for biomedical devices.
Collapse
|
47
|
Wang Y, Xu Y, Zhai W, Zhang Z, Liu Y, Cheng S, Zhang H. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat Commun 2022; 13:5056. [PMID: 36030284 PMCID: PMC9420117 DOI: 10.1038/s41467-022-32804-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
It is a great challenge to achieve robustly bonded, fully covered, and nanoscaled coating on the surface of electrospun nanofibers. Herein, we develop a controllable, facile, and versatile strategy to in-situ grow superlubricated nano-skin (SLNS) on the single electrospun nanofiber. Specifically, zwitterionic polymer chains are generated from the nanofiber subsurface in an inside-out way, which consequently form a robust network interpenetrating with the polymeric chains of the nanofiber matrix. The nanofibers with SLNS are superlubricated with the coefficient of friction (COF) lower than 0.025, which is about 16-fold of reduction than the original nanofibers. The time-COF plot is very stable after 12, 000 cycles of friction test, and no abrasion is observed. Additionally, the developed nanofibrous membranes possess favorable tensile property and biocompatibility. Furthermore, the nanofibrous membranes with SLNS achieve prevention of post-operative adhesion, which is confirmed in both rat tendon adhesion model and abdominal adhesion model. Compared with clinically-used antiadhesive membranes such as Interceed and DK-film, our nanofibrous membranes are not only more effective but also have the advantage of lower production cost. Therefore, this study demonstrates a potential of the superlubricated nanofibrous membranes in-situ grown based on a SLNS strategy for achieving prevention of post-operative adhesion in clinics.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.,Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Yuanhang Xu
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Weijie Zhai
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, 071000, Baoding, China
| | - Zhinan Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiaotong University, 200240, Shanghai, China
| | - Yuhong Liu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
| | - Shujie Cheng
- Basic Research Key Laboratory of General Surgery for Digital Medicine, Affiliated Hospital of Hebei University, 071000, Baoding, China.
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
48
|
Zhang Y, Xu R, Zhao W, Zhao X, Zhang L, Wang R, Ma Z, Sheng W, Yu B, Ma S, Zhou F. Successive Redox‐Reaction‐Triggered Interface Radical Polymerization for Growing Hydrogel Coatings on Diverse Substrates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunlei Zhang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Rongnian Xu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Weiyi Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Liqiang Zhang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Wenbo Sheng
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai 264006 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
49
|
Gao L, Zhao X, Zhang Y, Yang L, Wang R, Ma Z, Liang YM, Ma S, Zhou F. Bioinspired Polysaccharide Derivative with Efficient and Stable Lubrication for Silicon-Based Devices. Biomacromolecules 2022; 23:3766-3778. [PMID: 35980819 DOI: 10.1021/acs.biomac.2c00640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is becoming increasingly important to synthesize efficient biomacromolecule lubricants suitable for medical devices. Even though the development of biomimetic lubricants has made great progress, the current system suitable for hydrophobic silicone-based medical devices is highly limited. In this work, we synthesize one kind of novel polysaccharide-derived macromolecule lubricant of chitosan (CS) grafted polyethylene glycol (PEG) chains and catechol groups (CT) (CS-g-PEG-g-CT). CS-g-PEG-g-CT shows good adsorption ability by applying quantitative analysis of quartz crystal microbalance (QCM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and confocal fluorescence imaging technique, as well as the typical shear-thinning feature. CS-g-PEG-g-CT exhibits low and stable coefficients of friction (COFs) (0.01-0.02) on polydimethylsiloxane (PDMS) surfaces at a wide range of mass concentrations in diverse media including pure water, physiological saline, and PBS buffer solution and is even tolerant to various normal loads and sliding frequencies for complex pressurizing or shearing environments. Subsequently, systematic surface characterizations are used to verify the dynamic attachment ability of the CS-g-PEG-g-CT lubricant on the loading/shearing process. The lubrication mechanism of CS-g-PEG-g-CT can be attributed to the synergy of strong adsorption from catechol groups to form a uniform assembly layer, excellent hydration effect from PEG chains, and typical shear-thinning feature to dissipate viscous resistance. Surprisingly, CS-g-PEG-g-CT exhibits efficient lubricity on silicone-based commercial contact lenses and catheters. The current macromolecule lubricant demonstrates great real application potential in the fields of medical devices and disease treatments.
Collapse
Affiliation(s)
- Luyao Gao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Yunlei Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lumin Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Baiyin Zhongke Innovation Research Institute of Green Materials, Baiyin 730900, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
50
|
Nacre-inspired underwater superoleophobic films with high transparency and mechanical robustness. Nat Protoc 2022; 17:2647-2667. [PMID: 35970874 DOI: 10.1038/s41596-022-00725-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Abstract
Underwater superoleophobic materials have attracted increasing attention because of their remarkable potential applications, especially antifouling, self-cleaning and oil-water separation. A limitation of most superoleophobic materials is that they are non-transparent and have limited mechanical stability underwater. Here, we report a protocol for preparing a transparent and robust superoleophobic film that can be used underwater. It is formed by a hydrogel layer prepared by the superspreading of chitosan solution on a superhydrophilic substrate and biomimetic mineralization of this layer. In contrast to conventional hydrogel-based materials, this film exhibits significantly improved mechanical properties because of the combination of high-energy, ordered, inorganic aragonite (one crystalline polymorph of calcium carbonate) and homogeneous external hierarchical micro/nano structures, leading to robust underwater superoleophobicity and ultralow oil adhesion. Moreover, the mineralized film is suitable for neutral and alkaline environments and for containing organic solvent underwater and can be coated on different transparent materials, which has promising applications in underwater optics, miniature reactors and microfluidic devices. In this protocol, the time for the whole biomimetic mineralization process is only ~6 h, which is significantly shorter than that of traditional methods, such as gas diffusion and the Kitano method. The protocol can be completed in ~2 weeks and is suitable for researchers with intermediate expertise in organic chemistry and inorganic chemistry.
Collapse
|