1
|
Wu J, Guo Y, Tian X, Fu K, Yan J. High-Modulus Homochiral Torsional Oxide Ceramic Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414936. [PMID: 39846295 DOI: 10.1002/adma.202414936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (Al2O3) ceramics by chemical plating a thin copper layer on alumina filaments. These filaments with a high modulus of ≈180 GPa can be twisted into chiral coiled artificial muscles, exhibiting a unique electric thermal actuation mechanism. This tough and robust alumina artificial muscle can carry objects equivalent to 0.28 million times its weight and provide high actuation stress of up to 483.5 MPa. In addition, it exhibits 18 times higher contraction power and 240 times higher energy density than human muscles, as well as a high energy conversion efficiency of up to 7.59%, which far exceeds most reported actuated carbon and polymer artificial muscles. This work has achieved large-scale manufacturing of high-modulus oxide ceramic muscles for the first time.
Collapse
Affiliation(s)
- Jiawei Wu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yongshi Guo
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xuwang Tian
- College of Materials Science and Engineering, Key Laboratory of Automobile Materials, Ministry of Education, Jilin University, Changchun, 130012, China
| | - Kun Fu
- Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Jianhua Yan
- College of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
2
|
Cheng C, Li B, Feng Z, Liu R, Bi Y, Li Q, Wei J, Yang Z. Helical Assemblies of Colloidal Nanocrystals with Long-Range Order and Their Fusion into Continuous Structures. J Am Chem Soc 2025; 147:1803-1812. [PMID: 39764731 DOI: 10.1021/jacs.4c13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules. The synchronized aggregation kinetics between colloidal silver or gold nanocrystals and π-conjugated perylene diimide molecules enables the nanocrystals to precisely follow the helical pathways of the molecular assemblies. This results in the formation of helical nanocrystal assemblies extending over tens of micrometers. These helically organized nanocrystals, exhibiting high positional precision, display linear size-dependent chiroptical properties. Furthermore, more intricate helical assemblies, featuring triple, quadruple, and quintuple nanocrystal strands, can be observed in addition to the commonly encountered double helical assemblies. Finally, these helical assemblies, composed of discrete Ag nanocrystals, can fuse into continuous Ag2S helical structures following a sulfidation reaction, ultimately leading to the formation of diverse metal sulfide helices through cation exchange processes.
Collapse
Affiliation(s)
- Caikun Cheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Benyou Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhenyu Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yuting Bi
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
3
|
Ding M, Yang X, Liu Y, Zeng S, Duan G, Huang Y, Liang Z, Zhang P, Ji J, Jiang S. A review of advanced helical fibers: formation mechanism, preparation, properties, and applications. MATERIALS HORIZONS 2024; 11:5843-5873. [PMID: 39221699 DOI: 10.1039/d4mh00737a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
As a unique structural form, helical structures have a wide range of application prospects. In the field of biology, helical structures are essential for the function of biological macromolecules such as proteins, so the study of helical structures can help to deeply understand life phenomena and develop new biotechnology. In materials science, helical structures can give rise to special physical and chemical properties, such as in the case of spiral nanotubes, helical fibers, etc., which are expected to be used in energy, environment, medical and other fields. The helical structure also has unique charm and application value in the fields of aesthetics and architecture. In addition, helical fibers have attracted a lot of attention because of their tendrils' vascular geometry and indispensable structural properties. In this paper, the development of helical fibers is briefly reviewed from the aspects of mechanism, synthesis process and application. Due to their good chemical and physical properties, helical fibers have a good application prospect in many fields. Potential problems and future opportunities for helical fibers are also presented for future studies.
Collapse
Affiliation(s)
- Minmin Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yanbo Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
| | - Shiyi Zeng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yong Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, Zhejiang, China.
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Wu X, Zhang T, Libera M. Controlling the roll-to-helix transformation in electron-beam-patterned gel-based micro-ribbons. SOFT MATTER 2024; 20:7946-7956. [PMID: 39344815 DOI: 10.1039/d4sm00666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Helix formation has been of ongoing interest because of its role in both natural and synthetic materials systems. It has been extensively studied in gel-based ribbons where swelling anisotropies drive out-of-plane bending. In contrast to approaches based on photolithography or mechanical bilayer construction, we use electron-beam patterning to create microscale ribbons at ∼1-100 μm length scales in pure homopolymer precursor films of poly(acrylic acid) (PAA). The radiation chemistry creates a ribbon comprising a crosslinked hydrophobic top layer and a hydrophilic gel bottom layer with a continuous through-thickness variation in between. The classic roll-to-helix transition occurs as the ribbon aspect ratio increases. Notably, we see examples of single-loop rolls, multi-loop rolls, minimal-pitch helices, plus a transition structure comprising both helical and roll-like features. Finite-element modelling recapitulates key aspects of these conformations. Increasing the pH from below to above the PAA pKa increases the out-of-plane bending to the extent that the ribbons plastically deform and nonminimal-pitch helices form across a wide range of aspect ratios and irradiation conditions. The nonminimal pitch is caused by an in-plane anisotropy associated with the plastic deformation. We mimic this anisotropy by patterning ribbons comprising micro-tiles separated by gaps which receive electron exposure due to proximity effects. We observe a transition from roll to helix to tube with increasing gap angle. The chirality is completely determined by the gap orientation (±θ). However, in contrast to established approaches to generate in-plane anisotropies based on mechanical properties, finite-element modelling indicates that anisotropic through-thickness swelling of the gap material plays a dominant role in helix formation and suggests that this micro-composite ribbon behaves like a rigid origami metamaterial where deformation at the creases (the gaps) between structural elements controls the shape shifting.
Collapse
Affiliation(s)
- Xinpei Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA
| | - Matthew Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
5
|
Wu X, Teng F, Firlar E, Zhang T, Libera M. Elasto-plastic effects on shape-shifting electron-beam-patterned gel-based micro-helices. MATERIALS HORIZONS 2024; 11:3427-3436. [PMID: 38712865 DOI: 10.1039/d4mh00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Shape-shifting helical gels have been created by various routes, notably by photolithography. We explore electron-beam lithography as an alternative to prescribe microhelix formation in tethered patterns of pure poly(acrylic acid). Simulations indicate the nanoscale spatial distribution of deposited energy that drives the loss of acid groups and crosslinking. Upon exposure to buffer, a patterned line converts to a 3D helix whose cross section comprises a crosslinked and hydrophobic core surrounded by a high-swelling pH-responsive corona. Through-thickness asymmetries generate out-of-plane bending to drive helix formation. The relative core and corona fractions are determined by the electron dose which in turn controls the helical radius and pitch. Increasing pH substantially raises the swelling stress and the rod elongates plastically. The pitch concurrently changes from minimal to non-minimal. The in-plane asymmetry driving this change can be attributed to shear-band formation in the hydrophobic core. Subsequent pH cycling drives elastic cycling of the helical properties. These findings illustrate the effects of elastoplastic deformation on helical properties and elaborate unique attributes of electron lithography as an alternate means to create shape-shifting structures.
Collapse
Affiliation(s)
- Xinpei Wu
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| | - Feiyue Teng
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
- presently with the Brookhaven National Laboratory, Upton, NY, USA
| | - Emre Firlar
- Rutgers CryoEM & Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
- presently with Bristol Myers Squibb, Molecular Structure & Design, Princeton, NJ, USA
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY, USA
| | - Matthew Libera
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ, USA.
| |
Collapse
|
6
|
Yan D, Luo J, Wang S, Han X, Lei X, Jiao K, Wu X, Qian L, Zhang X, Zhao X, Di J, Zhang Z, Gao Z, Zhang J. Carbon Nanotube-Directed 7 GPa Heterocyclic Aramid Fiber and Its Application in Artificial Muscles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306129. [PMID: 37533318 DOI: 10.1002/adma.202306129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Poly(p-phenylene-benzimidazole-terephthalamide) (PBIA) fibers with excellent mechanical properties are widely used in fields that require impact-resistant materials such as ballistic protection and aerospace. The introduction of heterocycles in polymer chains increases their flexibility and makes it easier to optimize the fiber structure. However, the inadequate orientation of polymer chains is one of the main reasons for the large difference between the measured and theoretical mechanical properties of PBIA fibers. Herein, carbon nanotubes (CNTs) are selected as an orientation seed. Their structural features allow CNTs to orient during the spinning process, which can induce an orderly arrangement of polymers and improve the orientation of the fiber microstructure. To ensure the complete 1D topology of long CNTs (≈10 µm), PBIA is used as an efficient dispersant to overcome dispersion challenges. The p-CNT/PBIA fibers (10 µm single-walled carbon nanotube 0.025 wt%) exhibit an increase of 22% in tensile strength and 23% in elongation, with a maximum tensile strength of 7.01 ± 0.31 GPa and a reinforcement efficiency of 893.6. The artificial muscle fabricated using CNT/PBIA fibers exhibits a 34.8% contraction and a 25% lifting of a 2 kg dumbbell, providing a promising paradigm for high-performance organic fibers as high-load smart actuators.
Collapse
Affiliation(s)
- Dan Yan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Jiajun Luo
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center of Nano Chemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shijun Wang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Lei
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Jiao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Xianqian Wu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Qian
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xinshi Zhang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center of Nano Chemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiangtao Di
- Advanced Materials Division, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhong Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhenfei Gao
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Jin Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center of Nano Chemistry, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
Zhao S, Lu X, Wang K, Zhao D, Wang X, Ren L, Ren L. A TEC Cooling Soft Robot Driven by Twisted String Actuators. Biomimetics (Basel) 2023; 8:221. [PMID: 37366816 DOI: 10.3390/biomimetics8020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Similar to biological muscles in nature, artificial muscles have unique advantages for driving bionic robots. However, there is still a large gap between the performance of existing artificial muscles and biological muscles. Twisted polymer actuators (TPAs) convert rotary motion from torsional to linear motion. TPAs are known for their high energy efficiency and large linear strain and stress outputs. A simple, lightweight, low-cost, self-sensing robot powered using a TPA and cooled using a thermoelectric cooler (TEC) was proposed in this study. Because TPA burns easily at high temperatures, traditional soft robots driven by TPAs have low movement frequencies. In this study, a temperature sensor and TEC were combined to develop a closed-loop temperature control system to ensure that the internal temperature of the robot was 5 °C to cool the TPAs quickly. The robot could move at a frequency of 1 Hz. Moreover, a self-sensing soft robot was proposed based on the TPA contraction length and resistance. When the motion frequency was 0.01 Hz, the TPA had good self-sensing ability and the root-mean-square error of the angle of the soft robot was less than 3.89% of the measurement amplitude. This study not only proposed a new cooling method for improving the motion frequency of soft robots but also verified the autokinetic performance of the TPAs.
Collapse
Affiliation(s)
- Shun Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Xuewei Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Kunyang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Di Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Xu Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Lei Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
- Weihai Institute for Bionics, Jilin University, Weihai 264402, China
| |
Collapse
|
8
|
Leng X, Mei G, Zhang G, Liu Z, Zhou X. Tethering of twisted-fiber artificial muscles. Chem Soc Rev 2023; 52:2377-2390. [PMID: 36919405 DOI: 10.1039/d2cs00489e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Twisted-fiber artificial muscles, a new type of soft actuator, exhibit significant potential for use in applications related to lightweight smart devices and soft robotics. Fiber twisting generates internal torque and a spiral architecture, exhibiting rotation, contraction, or elongation as a result of fiber volume change. Untethering a twisted fiber often results in fiber untwisting and loss of stored torque energy. Preserving the torque in twisted fibers during actuation is necessary to realize a reversible and stable artificial muscle performance; this is a key issue that has not yet been systematically discussed and reviewed. This review summarizes the mechanisms for preserving the torque within twisted fibers and the potential applications of such systems. The potential challenges and future directions of research related to twisted-fiber artificial muscles are also discussed.
Collapse
Affiliation(s)
- Xueqi Leng
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Zou H, Liu W, Wang C, Zhou L, Liu N, Wu ZQ. Polyfluorene- block-poly(phenyl isocyanide) Copolymers: One-Pot Synthesis, Helical Assembly, and Circularly Polarized Luminescence. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Wei Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chao Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Na Liu
- School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Road, Changchun, Jilin Province 130021, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province 130012, China
| |
Collapse
|
10
|
Li W, Guan Q, Li M, Saiz E, Hou X. Nature's strategy to construct tough responsive hydrogel actuators and their applications. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
11
|
Tang X, Liao X, Cai X, Wu J, Wu X, Zhang Q, Yan Y, Zheng S, Jiang H, Fan J, Cai S, Zhang W, Liu Y. Self-Assembly of Helical Nanofibrous Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202216310. [PMID: 36445778 DOI: 10.1002/anie.202216310] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
Despite significant progress on the design and synthesis of covalent organic frameworks (COFs), precise control over microstructures of such materials remains challenging. Herein, two chiral COFs with well-defined one-handed double-helical nanofibrous morphologies were constructed via an unprecedented template-free method, capitalizing on the diastereoselective formation of aminal linkages. Detailed time-dependent experiments reveal the spontaneous transformation of initial rod-like aggregates into the double-helical microstructures. We have further demonstrated that the helical chirality and circular dichroism signal can be facilely inversed by simply adjusting the amount of acetic acid during synthesis. Moreover, by transferring chirality to achiral fluorescent molecular adsorbents, the helical COF nanostructures can effectively induce circularly polarized luminescence with the highest luminescent asymmetric factor (glum ) up to ≈0.01.
Collapse
Affiliation(s)
- Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xiangji Liao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinting Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xueying Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Qianni Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yilun Yan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Huawei Jiang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China.,SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan, 511517, China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| |
Collapse
|
12
|
Rotational multimaterial printing of filaments with subvoxel control. Nature 2023; 613:682-688. [PMID: 36653452 DOI: 10.1038/s41586-022-05490-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 10/27/2022] [Indexed: 01/19/2023]
Abstract
Helical structures are ubiquitous in nature and impart unique mechanical properties and multifunctionality1. So far, synthetic architectures that mimic these natural systems have been fabricated by winding, twisting and braiding of individual filaments1-7, microfluidics8,9, self-shaping1,10-13 and printing methods14-17. However, those fabrication methods are unable to simultaneously create and pattern multimaterial, helically architected filaments with subvoxel control in arbitrary two-dimensional (2D) and three-dimensional (3D) motifs from a broad range of materials. Towards this goal, both multimaterial18-23 and rotational24 3D printing of architected filaments have recently been reported; however, the integration of these two capabilities has yet to be realized. Here we report a rotational multimaterial 3D printing (RM-3DP) platform that enables subvoxel control over the local orientation of azimuthally heterogeneous architected filaments. By continuously rotating a multimaterial nozzle with a controlled ratio of angular-to-translational velocity, we have created helical filaments with programmable helix angle, layer thickness and interfacial area between several materials within a given cylindrical voxel. Using this integrated method, we have fabricated functional artificial muscles composed of helical dielectric elastomer actuators with high fidelity and individually addressable conductive helical channels embedded within a dielectric elastomer matrix. We have also fabricated hierarchical lattices comprising architected helical struts containing stiff springs within a compliant matrix. Our additive-manufacturing platform opens new avenues to generating multifunctional architected matter in bioinspired motifs.
Collapse
|
13
|
Guo H, Puttreddy R, Salminen T, Lends A, Jaudzems K, Zeng H, Priimagi A. Halogen-bonded shape memory polymers. Nat Commun 2022; 13:7436. [PMID: 36470884 PMCID: PMC9723116 DOI: 10.1038/s41467-022-34962-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Halogen bonding (XB), a non-covalent interaction between an electron-deficient halogen atom and a Lewis base, is widely adopted in organic synthesis and supramolecular crystal engineering. However, the roadmap towards materials applications is hindered by the challenges in harnessing this relatively weak intermolecular interaction to devise human-commanded stimuli-responsive soft materials. Here, we report a liquid crystalline network comprising permanent covalent crosslinks and dynamic halogen bond crosslinks, which possess reversible thermo-responsive shape memory behaviour. Our findings suggest that I···N halogen bond, a paradigmatic motif in crystal engineering studies, enables temporary shape fixation at room temperature and subsequent shape recovery in response to human body temperature. We demonstrate versatile shape programming of the halogen-bonded polymer networks through human-hand operation and propose a micro-robotic injection model for complex 1D to 3D shape morphing in aqueous media at 37 °C. Through systematic structure-property-performance studies, we show the necessity of the I···N crosslinks in driving the shape memory effect. The halogen-bonded shape memory polymers expand the toolbox for the preparation of smart supramolecular constructs with tailored mechanical properties and thermoresponsive behaviour, for the needs of, e.g., future medical devices.
Collapse
Affiliation(s)
- Hongshuang Guo
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Rakesh Puttreddy
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Turkka Salminen
- grid.502801.e0000 0001 2314 6254Tampere Microscopy Center, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Alons Lends
- grid.419212.d0000 0004 0395 6526Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, LV-1006 Latvia
| | - Kristaps Jaudzems
- grid.419212.d0000 0004 0395 6526Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, LV-1006 Latvia
| | - Hao Zeng
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| | - Arri Priimagi
- grid.502801.e0000 0001 2314 6254Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 3, FI-33720 Tampere, Finland
| |
Collapse
|
14
|
Ma H, Cheng Z, Li X, Li B, Fu Y, Jiang J. Advances and Challenges of Cellulose Functional Materials in Sensors. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
15
|
Valdur KA, Tamm T, Aabloo A, Must I. A Self-Commutated Helical Polypyrrole Actuator Fabricated by Filament Patterning. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3161694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Ryu HT, Oh SM, Tae K, Yi BJ. DNA-Helix Inspired Wire Routing in Cylindrical Structures and Its Application to Flexible Surgical Devices. Soft Robot 2022; 9:337-353. [PMID: 34107752 PMCID: PMC9057904 DOI: 10.1089/soro.2020.0145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In general wire-driven continuum robot mechanisms, the wires are used to control the motion of the devices attached at the distal end. The slack and taut wire is one of the challenging issues to solve in flexible mechanism. This phenomenon becomes worse when the continuum robot is inserted into the natural orifices of the human body, which inherently have uncertain curvilinear geometries consisting of multiple curvatures. Inspired by the unique characteristic of DNA-helix structure that the length of the helix remains almost constant regardless of the deflection of the DNA structure, this article proposes a new idea to design useful flexible mechanism to resolve slack of wires. Using modern Lie-group screw theory, the analytic model for length of helix wire wrapped around a single flexible backbone is proposed and then extended to a general model with multiple flexible backbones and different curvatures. Taking advantage of this helix type wire mechanism, we designed and implemented a flexible surgical device suitable for laryngopharyngeal surgery. The effectiveness of the proposed flexible mechanism is demonstrated through both simulation and phantom experiment.
Collapse
Affiliation(s)
- Hwan-Taek Ryu
- Department of Intelligent Robotic Engineering, Hanyang University, Ansan, Republic of Korea
| | - Se-Min Oh
- Department of Dual System Hub Organization, Korea Polytechnic University, Siheung, Republic of Korea
| | - Kyung Tae
- Department of Otolaryngology-Head and Neck Surgery, Hanyang University, Seoul, Republic of Korea
| | - Byung-Ju Yi
- School of Electrical Engineering, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
17
|
Son W, Lee JM, Kim SH, Kim HW, Cho SB, Suh D, Chun S, Choi C. High-Power Hydro-Actuators Fabricated from Biomimetic Carbon Nanotube Coiled Yarns with Fast Electrothermal Recovery. NANO LETTERS 2022; 22:2470-2478. [PMID: 35254078 DOI: 10.1021/acs.nanolett.2c00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioinspired yarn/fiber structured hydro-actuators have recently attracted significant attention. However, most water-driven mechanical actuators are unsatisfactory because of the slow recovery process and low full-time power density. A rapidly recoverable high-power hydro-actuator is reported by designing biomimetic carbon nanotube (CNT) yarns. The hydrophilic CNT (HCNT) coiled yarn was prepared by storing pre-twist into CNT sheets and subsequent electrochemical oxidation (ECO) treatment. The resulting yarn demonstrated structural stability even when one end was cut off without the possible loss of pre-stored twists. The HCNT coiled yarn actuators provided maximal contractile work of 863 J/kg at 11.8 MPa stress when driven by water. Moreover, the recovery time of electrically heated yarns at a direct current voltage of 5 V was 95% shorter than that of neat yarns without electric heating. Finally, the electrothermally recoverable hydro-actuators showed a high actuation frequency (0.17 Hz) and full-time power density (143.8 W/kg).
Collapse
Affiliation(s)
- Wonkyeong Son
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Myeong Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Shi Hyeong Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, South Korea
| | - Hyeon Woo Kim
- Convergence Technology Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju-si 52851, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04736, Republic of Korea
| | - Sung Beom Cho
- Convergence Technology Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju-si 52851, Republic of Korea
| | - Dongseok Suh
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sungwoo Chun
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
18
|
Xu W, Jambhulkar S, Ravichandran D, Zhu Y, Lanke S, Bawareth M, Song K. A mini‐review of microstructural control during composite fiber spinning. POLYM INT 2022. [DOI: 10.1002/pi.6350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Weiheng Xu
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Sayli Jambhulkar
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Dharneedar Ravichandran
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Yuxiang Zhu
- Polytechnic School, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Shantanu Lanke
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy Arizona State University Tempe AZ USA
| | - Mohammed Bawareth
- Mechanical Engineering System, Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| | - Kenan Song
- Ira A. Fulton Schools of Engineering Arizona State University Mesa AZ USA
| |
Collapse
|
19
|
Yu P, Zhong W. Hemostatic materials in wound care. BURNS & TRAUMA 2021; 9:tkab019. [PMID: 34541007 PMCID: PMC8445204 DOI: 10.1093/burnst/tkab019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Blood plays an essential role in the human body. Hemorrhage is a critical cause of both military and civilian casualties. The human body has its own hemostatic mechanism that involves complex processes and has limited capacity. However, in emergency situations such as battlefields and hospitals, when the hemostatic mechanism of the human body itself cannot stop bleeding effectively, hemostatic materials are needed for saving lives. In this review, the hemostatic mechanisms and performance of the most commonly used hemostatic materials, (including fibrin, collagen, zeolite, gelatin, alginate, chitosan, cellulose and cyanoacrylate) and the commercial wound dressings based on these materials, will be discussed. These materials may have limitations, such as poor tissue adhesion, risk of infection and exothermic reactions, that may lessen their hemostatic efficacy and cause secondary injuries. High-performance hemostatic materials, therefore, have been designed and developed to improve hemostatic efficiency in clinical use. In this review, hemostatic materials with advanced performances, such as antibacterial capacity, superhydrophobicity/superhydrophilicity, superelasticity, high porosity and/or biomimicry, will be introduced. Future prospects of hemostatic materials will also be discussed in this review.
Collapse
Affiliation(s)
- Peiyu Yu
- Department of Biosystems Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
20
|
Chiral Recognition and Resolution Based on Helical Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2615-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Eschen K, Granberry R, Holschuh B, Abel J. Amplifying and Leveraging Generated Force Upon Heating and Cooling in SMA Knitted Actuators. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54155-54167. [PMID: 33201679 DOI: 10.1021/acsami.0c14206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work reexamines traditional shape memory alloy (SMA) loading paths commonly used in SMA-based actuator applications and presents a novel, superimposed condition in which SMA generates substantial forces upon heating and cooling. This atypical effect, which is investigated with a textile-based actuator, was found to be prominent at the completion of material phase transformation, at which point thermal expansion/contraction became the dominant force-generating mechanism. We demonstrate that amplification of generated forces can be accomplished by varying the applied thermal load, applied structural strain, as well as actuator architecture. Specifically, we present SMA knitted actuators as an actuator architecture that increases the effect by aggregating SMA wires within a complex strain profile-effectively providing a larger operational window for the effect to propagate. The amplification of blocking forces through this novel operational procedure suggests reconsidering traditional blocking force design paradigms and opens untapped actuator application spaces, such as the highlighted medical and aerospace wearable technologies.
Collapse
Affiliation(s)
- Kevin Eschen
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rachael Granberry
- College of Design, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Bradley Holschuh
- College of Design, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Julianna Abel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Yu Y, Kong K, Mu Z, Zhao Y, Liu Z, Tang R. Muscle-like Ultratough Hybrid Hydrogel Constructed by Heterogeneous Inorganic Polymerization on an Organic Network. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54212-54221. [PMID: 33201667 DOI: 10.1021/acsami.0c18242] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by inorganic oligomers and their polymerization, we herein develop a heterogeneous inorganic polymerization tactic that can be used to prepare a muscle-like hybrid hydrogel by inducing the polymerization of calcium phosphate oligomers (CPO) onto a polyvinyl alcohol (PVA) molecular chain network. In this heterogeneous process, the CPO units bond with PVA molecules via assistance from sodium alginate (SA), and then gradually polymerize along the organic chains to form ultrafine hydroxyapatite nanolines with a diameter of ∼1 nm. Because of the well integration of organic and inorganic phases from the heterogeneous polymerization, the hierarchical structured hydrogel can exhibit ultratough mechanical properties of ∼17.84 MPa in strength and ∼8.97 kJ m-2 in fracture energy, which exceed natural muscles and almost synthetic hydrogels. Moreover, the damaged hydrogel can be repaired readily by adding the precursors of CPO, PVA, and SA, which can induce in situ re-polymerization. The hydrogel also exhibits muscle-like rotational motion under aqueous conditions, which can be developed into a water-driven biomimetic motor. This study indicates that inorganic polymerization can achieve a novel organic-inorganic integration rather than conventional organic-inorganic composition, and it provides a novel tactic for design and manufacture of advanced materials.
Collapse
Affiliation(s)
- Yadong Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhao Mu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yueqi Zhao
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- State Key Laboratory for Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|