1
|
Qin Q, Xu Y. Hydroxypropyl Cellulose-Based Meter-Long Structurally Colored Fibers for Advanced Fabrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404761. [PMID: 39432405 DOI: 10.1002/advs.202404761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Structurally colored fibers are attractive alternatives to chemically colored fibers due to their rich optical properties, color stability, and environmental friendliness. However, the fabrication of structurally colored fibers using cost-effective raw materials with the possibility to scale up remains challenging. Here, a simple and scalable approach is developed to fabricate continuous meter-long structurally colored fibers exhibiting brilliant structural colors across the visible spectrum and helix orientation-dependent polarization states. The fibers are fabricated by extrusion of concentrated aqueous solutions of chemically crosslinked hydroxypropyl cellulose (HPC). The wavelengths and polarization states can be tuned by solution concentration, relaxation time, and collector's surface energy. The HPC-based structurally colored fibers display excellent optical stability to mechanical straining, repeated drying/water impregnation, and prolonged heating at 150 °C. It is demonstrated that the HPC-based structurally colored fibers can be woven into structurally colored fabrics with wavelength- and polarization-coded optical patterns. The current work presents a strategy to tune the chiral nematic order, which constitutes an important step toward mass production of structurally colored fibers with stable and rich optical properties using easily available raw materials.
Collapse
Affiliation(s)
- Qinan Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Fine SG, Branovsky SE, Chazot CAC. Structural Color Out of the Blue: A Quantitative Framework for the Self-Assembly Kinetics of Cholesteric Cellulosic Mesophases. Biomacromolecules 2024; 25:4977-4990. [PMID: 38949966 DOI: 10.1021/acs.biomac.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Cholesteric mesophases based on cellulose ethers, such as ethyl cellulose and hydroxypropyl cellulose, have been studied widely for their remarkable ability to display macroscopic structural color. However, the typical time scales involved in the multiscale self-assembly of cholesteric liquid crystals, from individual nanoscale helical arrangements to discrete microscopic domains, and their dependence on the gel's viscoelastic properties remain underexplored. Here, we establish a quantitative relationship between the kinetics of structural color formation after shear deformation and cholesteric order development at the nano- and microscales. Utilizing rheology in tandem with static and time-resolved reflectivity measurements, we underscore the strong influence of polymer diffusivity and chain elasticity on self-assembly kinetics in cholesteric cellulose ether gels. We show that our phenomenological model can be employed to assess the structure-property relationships of multiple polysaccharide systems, elucidating key design guidelines for the development and processing of structurally colored cholesteric mesophases.
Collapse
Affiliation(s)
- Simona G Fine
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Sara E Branovsky
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Cécile A C Chazot
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Huang Y, Qian Y, Chang Y, Yu J, Li Q, Tang M, Yang X, Liu Z, Li H, Zhu Z, Li W, Zhang F, Qing G. Intense Left-handed Circularly Polarized Luminescence in Chiral Nematic Hydroxypropyl Cellulose Composite Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308742. [PMID: 38270293 DOI: 10.1002/adma.202308742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Integrating optically active components into chiral photonic cellulose to fabricate circularly polarized luminescent materials has transformative potential in disease detection, asymmetric reactions, and anticounterfeiting techniques. However, the lack of cellulose-based left-handed circularly polarized light (L-CPL) emissions hampers the progress of these chiral functionalizations. Here, this work proposes an unprecedented strategy: incorporating a chiral nematic organization of hydroxypropyl cellulose with robust aggregation-induced emission luminogens to generate intense L-CPL emission. By utilizing N,N-dimethylformamide as a good solvent for fluorescent components and cellulose matrices, this work produces a right-handed chiral nematic structure film with a uniform appearance in reflective and fluorescent states. Remarkably, this system integrates a high asymmetric factor (0.51) and an impressive emission quantum yield (55.8%) into one fascinating composite. More meaningfully, this approach is versatile, allowing for the incorporation of luminogen derivatives emitting multicolored L-CPL. These chiral fluorescent films possess exceptional mechanical flexibility (toughness up to 0.9 MJ m-3) and structural stability even under harsh environmental exposures, making them promising for the fabrication of various products. Additionally, these films can be cast on the fabrics to reveal multilevel and durable anticounterfeiting capabilities or used as a chiral light source to induce enantioselective photopolymerization, thereby offering significant potential for diverse practical applications.
Collapse
Affiliation(s)
- Yuxiao Huang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yi Qian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yongxin Chang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jiaqi Yu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Xindi Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhepai Liu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Hui Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Zece Zhu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Wei Li
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fusheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Guangyan Qing
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing and Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
4
|
Shen Y, Wang C, Liu Z, Zhang X, Su R, Wang Y, Qi W. Multicomponent structural color membrane based on soft lithography array for high-sensitive Raman detection. J Colloid Interface Sci 2023; 652:518-528. [PMID: 37607414 DOI: 10.1016/j.jcis.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Inspired by ordered photonic crystals and structural color materials in nature, we successfully prepared hydroxypropyl cellulose (HPC) photonic films with ordered surface arrays by double-imprint soft lithography. Then we introduced another important material of the cellulose family, cellulose nanocrystals (CNC), which has liquid crystal nature and birefringent properties of the particles, into the system to realize the single-point shrinkage of the film array and the control of structural color. Through multi-component doping and concentration control, we further optimized the multi-scale structure of the materials, and obtained HPC/CNCs composite photonic films with excellent properties in color, stability and flexibility, whose elastic modulus and tensile properties are significantly higher than those of single-component. Further loading of SiO2@PDA enhances the color saturation and realizes the in-situ reduction of metal ions on the film surface. This plasma film can track a variety of substances with high sensitivity and long-term stability, showing potential application prospects in the field of surface-enhanced Raman scattering (SERS), which provides a potential possibility for chiral structures to be used in the field of biosensor detection and circularly polarized luminescence.
Collapse
Affiliation(s)
- Yuhe Shen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Chaoxuan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zekai Liu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xuelin Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China.
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
5
|
Frka-Petesic B, Parton TG, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q, Lu Z, Ogawa Y, Haataja JS, Droguet BE, Parker RM, Vignolini S. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev 2023; 123:12595-12756. [PMID: 38011110 PMCID: PMC10729353 DOI: 10.1021/acs.chemrev.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 11/29/2023]
Abstract
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas G. Parton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Camila Honorato-Rios
- Department
of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aurimas Narkevicius
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Ballu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Qingchen Shen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zihao Lu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yu Ogawa
- CERMAV-CNRS,
CS40700, 38041 Grenoble cedex 9, France
| | - Johannes S. Haataja
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box
15100, Aalto, Espoo FI-00076, Finland
| | - Benjamin E. Droguet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard M. Parker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Tan QW, Li D, Li LY, Wang ZL, Wang XL, Wang YZ, Song F. A Rule for Response Sensitivity of Structural-Color Photonic Colloids. NANO LETTERS 2023; 23:9841-9850. [PMID: 37737087 DOI: 10.1021/acs.nanolett.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
To mimic natural photonic crystals having color regulation capacities dynamically responsive to the surrounding environment, periodic assembly structures have been widely constructed with response materials. Beyond monocomponent materials with stimulus responses, binary and multiphase systems generally offer extended color space and complex functionality. Constructing a rule for predicting response sensitivity can provide great benefits for the tailored design of intelligently responsive photonic materials. Here, we elucidate mathematical relationships between the response sensitivity of dynamically structural-color changes and the location distances of photonic co-phases in three-dimensional Hansen space that can empirically express the strength of their interaction forces, including dispersion force, polarity force, and hydrogen bonding. Such an empirical rule is proven to be applicable for some typical alcohols, acetone, and acetic acid regardless of their molecular structures, as verified by angle resolution spectroscopy, in situ infrared spectroscopy, and molecular simulation. The theoretical method we demonstrate provides rational access to custom-designed responsive structural coloration.
Collapse
Affiliation(s)
- Qiang-Wu Tan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Dong Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lin-Yue Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zi-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Ferreira FV, Souza AG, Ajdary R, de Souza LP, Lopes JH, Correa DS, Siqueira G, Barud HS, Rosa DDS, Mattoso LH, Rojas OJ. Nanocellulose-based porous materials: Regulation and pathway to commercialization in regenerative medicine. Bioact Mater 2023; 29:151-176. [PMID: 37502678 PMCID: PMC10368849 DOI: 10.1016/j.bioactmat.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
We review the recent progress that have led to the development of porous materials based on cellulose nanostructures found in plants and other resources. In light of the properties that emerge from the chemistry, shape and structural control, we discuss some of the most promising uses of a plant-based material, nanocellulose, in regenerative medicine. Following a brief discussion about the fundamental aspects of self-assembly of nanocellulose precursors, we review the key strategies needed for material synthesis and to adjust the architecture of the materials (using three-dimensional printing, freeze-casted porous materials, and electrospinning) according to their uses in tissue engineering, artificial organs, controlled drug delivery and wound healing systems, among others. For this purpose, we map the structure-property-function relationships of nanocellulose-based porous materials and examine the course of actions that are required to translate innovation from the laboratory to industry. Such efforts require attention to regulatory aspects and market pull. Finally, the key challenges and opportunities in this nascent field are critically reviewed.
Collapse
Affiliation(s)
- Filipe V. Ferreira
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Alana G. Souza
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
| | - Lucas P. de Souza
- College of Engineering and Physical Sciences, Aston Institute of Materials Research, Aston University, Birmingham, UK
| | - João H. Lopes
- Department of Chemistry, Division of Fundamental Sciences (IEF), Technological Institute of Aeronautics (ITA), São Jose dos Campos, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600, Dübendorf, Switzerland
| | - Hernane S. Barud
- Biopolymers and Biomaterials Laboratory (BIOPOLMAT), University of Araraquara (UNIARA), Araraquara, 14801-340, São Paulo, Brazil
| | - Derval dos S. Rosa
- Center for Engineering, Modeling, and Applied Social Sciences (CECS), Federal University of ABC (UFABC), Santo André, Brazil
| | - Luiz H.C. Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation – Rua XV de Novembro, 1452, São Carlos, SP, 13560-979, Brazil
| | - Orlando J. Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P. O. Box 16300, Aalto, Espoo, FIN-00076, Finland
- Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and, Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
8
|
Baron RI, Biliuta G, Macsim AM, Dinu MV, Coseri S. Chemistry of Hydroxypropyl Cellulose Oxidized by Two Selective Oxidants. Polymers (Basel) 2023; 15:3930. [PMID: 37835978 PMCID: PMC10574994 DOI: 10.3390/polym15193930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Along with the increased usage of cellulose in the manufacture of novel materials, those of its derivatives that have good solubility in water or organic solvents have become increasingly important. In this study, hydroxypropyl cellulose (HPC), a cellulosic derivative with distinct features, was utilized to investigate how two of the most-selective oxidation methods currently available in the literature act on the constituent OH groups of both the side chain and the anhydroglycosidic unit in HPC. The oxidation reactions were carried out first using TEMPO, sodium hypochlorite, and sodium bromide, then sodium periodate (NaIO4), for 5 h. A combination of these two protocols was applied. The amount of aldehyde and number of carboxylic groups introduced after oxidation was determined, while the changes in the morphological features of oxidized HPC were, additionally, assessed. Furthermore, utilizing Fourier-transform infrared spectra, X-ray diffraction, and thermogravimetric studies, the chemical structure, crystallinity, and thermal stability of the oxidized HPC samples were examined and compared.
Collapse
Affiliation(s)
- Raluca Ioana Baron
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (G.B.); (M.V.D.)
| | | | | | | | - Sergiu Coseri
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania; (G.B.); (M.V.D.)
| |
Collapse
|
9
|
Parker RM, Parton TG, Chan CLC, Bay M, Frka-Petesic B, Vignolini S. Bioinspired Photonic Materials from Cellulose: Fabrication, Optical Analysis, and Applications. ACCOUNTS OF MATERIALS RESEARCH 2023; 4:522-535. [PMID: 37383657 PMCID: PMC10294254 DOI: 10.1021/accountsmr.3c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Indexed: 06/30/2023]
Abstract
Polysaccharides are a class of biopolymers that are widely exploited in living organisms for a diversity of applications, ranging from structural reinforcement to energy storage. Among the numerous types of polysaccharides found in the natural world, cellulose is the most abundant and widespread, as it is found in virtually all plants. Cellulose is typically organized into nanoscale crystalline fibrils within the cell wall to give structural integrity to plant tissue. However, in several species, such fibrils are organized into helicoidal nanostructures with a periodicity comparable to visible light (i.e., in the range 250-450 nm), resulting in structural coloration. As such, when taking bioinspiration as a design principle, it is clear that helicoidal cellulose architectures are a promising approach to developing sustainable photonic materials. Different forms of cellulose-derived materials have been shown to produce structural color by exploiting self-assembly processes. For example, crystalline nanoparticles of cellulose can be extracted from natural sources, such as cotton or wood, by strong acid hydrolysis. Such "cellulose nanocrystals" (CNCs) have been shown to form colloidal suspensions in water that can spontaneously self-organize into a cholesteric liquid crystal phase, mimicking the natural helicoidal architecture. Upon drying, this nanoscale ordering can be retained into the solid state, enabling the specific reflection of visible light. Using this approach, colors from across the entire visible spectrum can be produced, alongside striking visual effects such as iridescence or a metallic shine. Similarly, polymeric cellulose derivatives can also organize into a cholesteric liquid crystal. In particular, edible hydroxypropyl cellulose (HPC) is known to produce colorful mesophases at high concentrations in water (ca. 60-70 wt %). This solution state behavior allows for interesting visual effects such as mechanochromism (enabling its use in low-cost colorimetric pressure or strain sensors), while trapping the structure into the solid state enables the production of structurally colored films, particles and 3D printed objects. In this article, we summarize the state-of-the-art for CNC and HPC-based photonic materials, encompassing the underlying self-assembly processes, strategies to design their photonic response, and current approaches to translate this burgeoning green technology toward commercial application in a wide range of sectors, from packaging to cosmetics and food. This overview is supported by a summary of the analytical techniques required to characterize these photonic materials and approaches to model their optical response. Finally, we present several unresolved scientific questions and outstanding technical challenges that the wider community should seek to address to develop these sustainable photonic materials.
Collapse
Affiliation(s)
| | | | - Chun Lam Clement Chan
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Mélanie
M. Bay
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bruno Frka-Petesic
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Li X, Yang Y, Valenzuela C, Zhang X, Xue P, Liu Y, Liu C, Wang L. Mechanochromic and Conductive Chiral Nematic Nanostructured Film for Bioinspired Ionic Skins. ACS NANO 2023. [PMID: 37338401 DOI: 10.1021/acsnano.3c04199] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Chameleon skin is naturally adaptive and can sense environmental changes and transform sensing into bioelectrical and optical signals by manipulating ion transduction and photonic nanostructures. The increasing interest in mimicking biological skins has considerably promoted the development of advanced photonic materials with an increasing ionic conductivity. Herein, we report the judicious design and fabrication of a bioinspired mechanochromic chiral nematic nanostructured film with good ionic conductivity by infiltrating fluorine-rich ionic liquids (FILs) into a swollen self-assembled cellulose nanocrystal (CNC) film with helical nanoarchitectures. Notably, the introduction of 2-hydroxyethyl acrylate considerably enhances the compatibility of hydrophobic FILs and hydrophilic CNCs. The resulting FIL-CNC nanostructured films exhibited excellent mechanochromism, good ionic conductivity, and outstanding optical/electrical dual-signal sensing performance when used as a bioinspired ionic skin for real-time monitoring of human motions. Owing to the integration of FILs, the underwater stability of the chiral liquid crystal nanostructures of CNCs was significantly enhanced. Notably, underwater contact/contactless sensing modes and encrypted information transmission have been achieved with the FIL-CNC nanostructured film. This study can offer great insights for the advancement of biomimetic multifunctional artificial skins and emerging interactive devices, which can find important applications in wearable iontronics, human-machine interactions, and intelligent robots.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yanzhao Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pan Xue
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuan Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Changjun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
- Binhai Industrial Research Institute, Tianjin University, Tianjin 300452, China
| |
Collapse
|
11
|
Kamita G, Vignolini S, Dumanli AG. Edible cellulose-based colorimetric timer. NANOSCALE HORIZONS 2023. [PMID: 37066860 DOI: 10.1039/d3nh00006k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A biocompatible and edible colorimetric timer is obtained by exploiting the dynamic colour changes of the cholesteric liquid crystalline mesophases of hydroxypropyl cellulose (HPC) in aqueous suspensions. The edible timer is encapsulated between semi permeable membranes made of shellac. The cholesteric organisation of the HPC provides vibrant colouration, while the shellac layers allow tuning of the evaporation rate of water from the mesophase, which results in a colour change. Due to the biocompatibility of the components and the direct read-out of the system, i.e. the colour change can be visually detected, and the developed timer can be implemented as a colorimetric sensor with potential to be used in food packaging, and as a smart labelling system.
Collapse
Affiliation(s)
- Gen Kamita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ahu Gümrah Dumanli
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- The School of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
12
|
Balcerowski T, Ozbek B, Akbulut O, Dumanli AG. Hierarchical Organization of Structurally Colored Cholesteric Phases of Cellulose via 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205506. [PMID: 36504424 DOI: 10.1002/smll.202205506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Structural color-a widespread phenomenon observed throughout nature is caused by light interference from ordered phases of matter. While state-of-the-art nanofabrication techniques can produce structural organization in small areas, cost-effective and scalable techniques are still lacking to generate tunable color at sub-micron length scales. In this work, structurally colored hydroxypropyl cellulose filaments are produced with a suppressed angular color response by 3D printing. The systematic study of the morphology of the filaments reveals the key stages in the induction of a two-degree hierarchical order through 3D printing. The first degree of order originated from the changing of the cholesteric pitch at a few hundred nm scale via chemical modification and tuning of the solid content of the lyotropic phase. Upon 3D printing, the secondary hierarchical order of periodic wrinkling is introduced through the Helfrich-Hurault deformation of the shear-aligned cholesteric phases. In single-layered filaments, four morphological zones with varying orders of wrinkles are identified. Detailed morphological characterization is carried out using SEM to shed light on the mechanism of the wrinkling behavior. Through this work, the possibility of modifying the wrinkling behavior is demonstrated and thus the angle dependence of the color response by changing the printing conditions.
Collapse
Affiliation(s)
- Tadeusz Balcerowski
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Burak Ozbek
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Ozge Akbulut
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Ahu Gümrah Dumanli
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
13
|
Dodero A, Djeghdi K, Bauernfeind V, Airoldi M, Wilts BD, Weder C, Steiner U, Gunkel I. Robust Full-Spectral Color Tuning of Photonic Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205438. [PMID: 36464635 DOI: 10.1002/smll.202205438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Creation of color through photonic morphologies manufactured by molecular self-assembly is a promising approach, but the complexity and lack of robustness of the fabrication processes have limited their technical exploitation. Here, it is shown that photonic spheres with full-color tuning across the entire visible spectrum can be readily and reliably achieved by the emulsification of solutions containing a block copolymer (BCP) and two swelling additives. Solvent diffusion out of the emulsion droplets gives rise to 20-150 µm-sized spheres with an onion-like lamellar morphology. Controlling the lamellar thickness by differential swelling with the two additives enables color tuning of the Bragg interference-based reflection band across the entire visible spectrum. By studying five different systems, a set of important principles for manufacturing photonic colloids is established. Two swelling additives are required, one of which must exhibit strong interactions with one of the BCP blocks. The additives should be chosen to enhance the dielectric contrast, and the formation kinetics of the spheres must be sufficiently slow to enable the emergence of the photonic morphology. The proposed approach is versatile and robust and allows the scalable production of photonic pigments with possible future applications in inks for cosmetics and arts, coatings, and displays.
Collapse
Affiliation(s)
- Andrea Dodero
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Kenza Djeghdi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Viola Bauernfeind
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Martino Airoldi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Bodo D Wilts
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Straße 2A, Salzburg, 5020, Austria
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| | - Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700, Switzerland
| |
Collapse
|
14
|
Lim SI, Jang E, Yu D, Koo J, Kang DG, Lee KM, Godman NP, McConney ME, Kim DY, Jeong KU. When Chirophotonic Film Meets Wrinkles: Viewing Angle Independent Corrugated Photonic Crystal Paper. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206764. [PMID: 36314392 DOI: 10.1002/adma.202206764] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Light manipulation strategies of nature have fascinated humans for centuries. In particular, structural colors are of considerable interest due to their ability to control the interaction between light and matter. Here, wrinkled photonic crystal papers (PCPs) are fabricated to demonstrate the consistent reflection of colors regardless of viewing angles. The nanoscale molecular self-assembly of a cholesteric liquid crystal (CLC) with a microscale corrugated surface is combined. Fully polymerizable CLC paints are uniaxially coated onto a wrinkled interpenetrating polymer network (IPN) substrate. Photopolymerization of the helicoidal nanostructures results in a flexible and free-standing PCP. The facile method of fabricating the wrinkled PCPs provides a scalable route for the development of novel chirophotonic materials with precisely controlled helical pitch and curvature dimensions. The reflection notch position of the flat PCP shifts to a lower wavelength when the viewing angle increased, while the selective reflection wavelength of wrinkled PCP is remained consistent regardless of viewing angles. The optical reflection of the 1D stripe-wrinkled PCP is dependent on the wrinkle direction. PCPs with different corrugated directions can be patterned to reduce the angular-dependent optical reflection of wrinkles. Furthermore, 2D wavy-wrinkled PCP is successfully developed that exhibit directionally independent reflection of color.
Collapse
Affiliation(s)
- Seok-In Lim
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Eunji Jang
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dongmin Yu
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jahyeon Koo
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong-Gue Kang
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Wanju, 55324, Republic of Korea
| | - Kyung Min Lee
- US Air Force Research Laboratory Wright-Patterson Air Force Base, Dayton, Ohio, 45433, USA
| | - Nicholas P Godman
- US Air Force Research Laboratory Wright-Patterson Air Force Base, Dayton, Ohio, 45433, USA
| | - Michael E McConney
- US Air Force Research Laboratory Wright-Patterson Air Force Base, Dayton, Ohio, 45433, USA
| | - Dae-Yoon Kim
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Wanju, 55324, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
15
|
Gao Y, Sun D, Chen J, Xi K, Da X, Guo H, Zhang D, Gao T, Lu T, Gao G, Shi L, Ding S. Photoelastic Organogel with Multiple Stimuli Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204140. [PMID: 36058641 DOI: 10.1002/smll.202204140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The photoelastic effect has many uses in mechanics today, but it is usually disregarded in flexible materials. Using 2-phenoxyethyl acrylate as a monomer and 4-cyano-4'-pentylbiphenyl (5CB) as a solvent, a multiple responsive photoelastic organogel (PO) with strong birefringence but low modulus is created. 5CB is a liquid crystal molecule that does not participate in the polymerization process and is always present as tiny molecules in the polymer. It endows the PO low modulus and high birefringence, as well as the ability to drive the birefringence using an electric field. This PO not only has high sensitivity and fast response as a photoelastic strain sensor, but also has a very sensitive response to heat, especially in the range of human body temperature. It also has a high dielectric constant and a strong correlation between the interference color and the applied electric field, allowing for easy writing and erasure of encrypted data. This unique multisignal response feature and low modulus that mimics human skin bring up new opportunities in the potential applications such as multiple information encryption, anticounterfeiting, and multifunctional wearable sensors.
Collapse
Affiliation(s)
- Yiyang Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an, 710049, P. R. China
| | - Danqi Sun
- State Key Laboratory for Strength and Vibration of Mechanical Structure, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Chen
- School of Chemistry, Xi'an Jiaotong University, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an, 710049, P. R. China
| | - Kai Xi
- School of Chemistry, Xi'an Jiaotong University, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an, 710049, P. R. China
| | - Xinyu Da
- School of Chemistry, Xi'an Jiaotong University, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an, 710049, P. R. China
| | - Haoyu Guo
- State Key Laboratory for Strength and Vibration of Mechanical Structure, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Dongyang Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an, 710049, P. R. China
| | - Ting Gao
- Chengdu Galaxy Power Co., Ltd., Chengdu, 610505, P. R. China
| | - Tongqing Lu
- State Key Laboratory for Strength and Vibration of Mechanical Structure, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guoxin Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an, 710049, P. R. China
| | - Lei Shi
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Shujiang Ding
- School of Chemistry, Xi'an Jiaotong University, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an, 710049, P. R. China
| |
Collapse
|
16
|
Ma LL, Li CY, Pan JT, Ji YE, Jiang C, Zheng R, Wang ZY, Wang Y, Li BX, Lu YQ. Self-assembled liquid crystal architectures for soft matter photonics. LIGHT, SCIENCE & APPLICATIONS 2022; 11:270. [PMID: 36100592 PMCID: PMC9470592 DOI: 10.1038/s41377-022-00930-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 06/03/2023]
Abstract
Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.
Collapse
Affiliation(s)
- Ling-Ling Ma
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chao-Yi Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jin-Tao Pan
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue-E Ji
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chang Jiang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ren Zheng
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ze-Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Bing-Xiang Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Abbasi Moud A. Chiral Liquid Crystalline Properties of Cellulose Nanocrystals: Fundamentals and Applications. ACS OMEGA 2022; 7:30673-30699. [PMID: 36092570 PMCID: PMC9453985 DOI: 10.1021/acsomega.2c03311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
By using an independent self-assembly process that is occasionally controlled by evaporation, cellulose nanocrystals (CNCs) may create films (pure or in conjunction with other materials) that have iridescent structural colors. The self-forming chiral nematic structures and environmental safety of a new class of photonic liquid crystals (LCs), referred to as CNCs and CNC-embedded materials, make them simple to make and treat. The structure of the matrix interacts with light to give structural coloring, as opposed to other dye pigments, which interact with light by adsorption and reflection. Understanding how CNC self-assembly constructs structures is vital in several fields, including physics, science, and engineering. To constructure this review, the colloidal characteristics of CNC particles and their behavior during the formation of liquid crystals and gelling were studied. Then, some of the recognized applications for these naturally occurring nanoparticles were summarized. Different factors were considered, including the CNC aspect ratio, surface chemistry, concentration, the amount of time needed to produce an anisotropic phase, and the addition of additional substances to the suspension medium. The effects of alignment and the drying process conditions on structural changes are also covered. The focus of this study however is on the optical properties of the films as well as the impact of the aforementioned factors on the final transparency, iridescent colors, and versus the overall response of these bioinspired photonic materials. Control of the examined factors was found to be necessary to produce reliable materials for optoelectronics, intelligent inks and papers, transparent flexible support for electronics, and decorative coatings and films.
Collapse
|
18
|
Vynck K, Pacanowski R, Agreda A, Dufay A, Granier X, Lalanne P. The visual appearances of disordered optical metasurfaces. NATURE MATERIALS 2022; 21:1035-1041. [PMID: 35590040 DOI: 10.1038/s41563-022-01255-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Nanostructured materials have recently emerged as a promising approach for material appearance design. Research has mainly focused on creating structural colours by wave interference, leaving aside other important aspects that constitute the visual appearance of an object, such as the respective weight of specular and diffuse reflectances, object macroscopic shape, illumination and viewing conditions. Here we report the potential of disordered optical metasurfaces to harness visual appearance. We develop a multiscale modelling platform for the predictive rendering of macroscopic objects covered by metasurfaces in realistic settings, and show how nanoscale resonances and mesoscale interferences can be used to spectrally and angularly shape reflected light and thus create unusual visual effects at the macroscale. We validate this property with realistic synthetic images of macroscopic objects and centimetre-scale samples observable with the naked eye. This framework opens new perspectives in many branches of fine and applied visual arts.
Collapse
Affiliation(s)
- Kevin Vynck
- LP2N, Université Bordeaux, IOGS, CNRS, Talence, France.
- Institute of Light and Matter, Université Claude Bernard Lyon 1, CNRS, Villeurbanne, France.
| | - Romain Pacanowski
- LP2N, Université Bordeaux, IOGS, CNRS, Talence, France
- INRIA Bordeaux Sud-Ouest, Talence, France
| | - Adrian Agreda
- LP2N, Université Bordeaux, IOGS, CNRS, Talence, France
| | | | | | | |
Collapse
|
19
|
Nematic-to-Isotropic Phase Transition in Poly(L-Lactide) with Addition of Cyclodextrin during Abiotic Degradation Study. Int J Mol Sci 2022; 23:ijms23147693. [PMID: 35887040 PMCID: PMC9319020 DOI: 10.3390/ijms23147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Poly(L-lactide) is capable of self-assembly into a nematic mesophase under the influence of temperature and mechanical stresses. Therefore, subsequent poly(L-lactide) films were obtained and characterized, showing nematic liquid crystal properties both before and after degradation. Herein, we present that, by introducing β-cyclodextrin into the polymer matrix, it is possible to obtain a chiral nematic mesophase during pressing, regardless of temperature and time. The obtained poly(L-lactide) films exhibiting liquid crystal properties were subjected to degradation tests and the influence of degradation on these properties was determined. Thermotropic phase behavior was investigated using polarized optical microscopy, X-ray diffraction, and differential scanning calorimetry. The degradation process demonstrated an influence on the liquid crystal properties of pressed polymer films. The colored planar texture of the chiral nematic mesophase, which was not observed prior to degradation in films without the addition of β-cyclodextrin, appeared after incubation in water as a result of the entrapment of degradation products in the polymer matrix. These unusual tailor-made properties, obtained in liquid crystals in (bio)degradable polymers using a simple method, demonstrate the potential for advanced photonic applications.
Collapse
|
20
|
Cholesteric cellulose liquid crystal ink for three-dimensional structural coloration. Proc Natl Acad Sci U S A 2022; 119:e2204113119. [PMID: 35639690 DOI: 10.1073/pnas.2204113119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SignificanceWe propose a printable structural color ink composed of cholesteric cellulose liquid crystals together with gelatin and a thermal-responsive hydrogel. The ink is endowed with vivid structural colors and printability due to its constituents. Based on this, we print a series of graphics and three-dimensional (3D) objects with vivid color appearances. Moreover, the printed objects possess dual thermal responsiveness, which results in visible color change around body temperature. These performances, together with the biocompatibility of the constituents, indicate that the present ink represents a leap forward to the next-generation 3D printing and would unlock a wide range of real-life applications.
Collapse
|
21
|
Matsumoto K, Ogiwara Y, Iwata N, Furumi S. Rheological Properties of Cholesteric Liquid Crystal with Visible Reflection from an Etherified Hydroxypropyl Cellulose Derivative. Polymers (Basel) 2022; 14:polym14102059. [PMID: 35631940 PMCID: PMC9144066 DOI: 10.3390/polym14102059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/05/2023] Open
Abstract
Optical properties of hydroxypropyl cellulose (HPC) derivatives have been widely investigated for their ability to exhibit cholesteric liquid crystal (CLC) phase. However, there are only a limited number of studies on their rheological properties even though they are quite important for the applications of such HPC derivatives to the versatile CLC photonic devices. In this article, we report on the optical and rheological properties of an HPC derivative possessing pentyl ether groups in the side-chains. The etherified HPC derivative exhibited thermotropic CLC phase with light reflection in the temperature range between 25 °C and 120 °C. After the HPC derivative was heated once at isotropic phase, followed by being cooled to the CLC phase, the reflection peak could not be observed, even at the CLC phase. At this stage, the HPC derivative exhibited solid-like rheological responses compared to that of sheared at a constant shear rate of 1.0 s−1. Such differences in the optical and rheological properties of the HPC derivative can be ascribed to the difference in CLC orientation state. From the rheological results, the etherified HPC derivative showed liquid-like behavior rather than the esterified HPC derivatives. This evidence provides a promising clue for fabricating high-quality CLC devices by the facile CLC orientation.
Collapse
Affiliation(s)
| | | | - Naoto Iwata
- Correspondence: (N.I.); (S.F.); Tel.: +81-3-3260-4271 (N.I & S.F.)
| | - Seiichi Furumi
- Correspondence: (N.I.); (S.F.); Tel.: +81-3-3260-4271 (N.I & S.F.)
| |
Collapse
|
22
|
Datta B, Spero EF, Martin-Martinez FJ, Ortiz C. Socially-Directed Development of Materials for Structural Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100939. [PMID: 35373398 DOI: 10.1002/adma.202100939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Advancing a socially-directed approach to materials research and development is an imperative to address contemporary challenges and mitigate future detrimental environmental and social impacts. This paper reviews, synergizes, and identifies cross-disciplinary opportunities at the intersection of materials science and engineering with humanistic social sciences fields. Such integrated knowledge and methodologies foster a contextual understanding of materials technologies embedded within, and impacting broader societal systems, thus informing decision making upstream and throughout the entire research and development process toward more socially responsible outcomes. Technological advances in the development of structural color, which arises due to the incoherent and coherent scattering of micro-and nanoscale features and possesses a vast design space, are considered in this context. Specific areas of discussion include material culture, narratives, and visual perception, material waste and use, environmental and social life cycle assessment, and stakeholder and community engagement. A case study of the technical and social implications of bio-based cellulose (as a source for structurally colored products) is provided. Socially-directed research and development of materials for structural color hold significant capacity for improved planetary and societal impact across industries such as aerospace, consumer products, displays and sensors, paints and dyes, and food and agriculture.
Collapse
Affiliation(s)
- Bianca Datta
- MIT Media Lab, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, MA, 02139, USA
| | - Ellan F Spero
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
| | - Francisco J Martin-Martinez
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
- Department of Chemistry, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Christine Ortiz
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Station1, 280 Merrimack Street, Lawrence, MA, 01843, USA
| |
Collapse
|
23
|
Janeczek H, Duale K, Sikorska W, Godzierz M, Kordyka A, Marcinkowski A, Hercog A, Musioł M, Kowalczuk M, Christova D, Rydz J. Poly(l-Lactide) Liquid Crystals with Tailor-Made Properties Toward a Specific Nematic Mesophase Texture. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:3323-3334. [PMID: 35310687 PMCID: PMC8924921 DOI: 10.1021/acssuschemeng.1c08282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/18/2022] [Indexed: 05/13/2023]
Abstract
This paper presents the liquid crystal (LC) properties of poly(l-lactide) (PLLA). Mesophase behavior is investigated using polarized optical microscopy, X-ray diffraction, and differential scanning calorimetry. The performed analyses confirm that pressed PLLA films exhibit the unique capability of self-assembling into a nematic mesophase under the influence of mechanical pressure, temperature, and time. It was originally demonstrated that the chiral nematic mesophase can be obtained by introducing fine powders into the polymer. Based on the research conducted, it was proved that the pressed PLLA films have a chiral nematic mesophase with a nematic-to-isotropic phase transition and a large mesophase stability range overlapping the temperature of the human body, which can persist for years at ambient temperature. The obtained films show tailor-made properties toward a nematic mesophase with a specific texture, including colored planar texture of the chiral nematic mesophase and blue-phase (BP) LC texture. The BP, described for the first time in plain PLLA, occurred over a wider than usual temperature range of stability between isotropic and chiral nematic thermotropic phases (ΔT ≈ 9 °C), which is an advantage of the obtained polymer material, in addition to ease of preparation. This opens up new prospects for advanced photonic green applications.
Collapse
Affiliation(s)
- Henryk Janeczek
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Khadar Duale
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Wanda Sikorska
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Marcin Godzierz
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Aleksandra Kordyka
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Andrzej Marcinkowski
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Anna Hercog
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Marta Musioł
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| | - Marek Kowalczuk
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
- School
of Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, U.K.
| | - Darinka Christova
- Institute
of Polymers, Bulgarian Academy of Sciences, Akad. Georgi Bonchev Str., Bl. 103A, 1113 Sofia, Bulgaria
| | - Joanna Rydz
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowska 34, 41-800 Zabrze, Poland
| |
Collapse
|
24
|
Ma J, Yang Y, Valenzuela C, Zhang X, Wang L, Feng W. Mechanochromic, Shape‐Programmable and Self‐Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiazhe Ma
- School of Materials Science and Engineering Tianjin University Tianjin 300350
| | - Yanzhao Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350
| | - Cristian Valenzuela
- School of Materials Science and Engineering Tianjin University Tianjin 300350
| | - Xuan Zhang
- School of Materials Science and Engineering Tianjin University Tianjin 300350
| | - Ling Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300350
| | - Wei Feng
- School of Materials Science and Engineering Tianjin University Tianjin 300350
- Tianjin Key Laboratory of Composite and Functional Materials Tianjin 300350 P. R. China
| |
Collapse
|
25
|
Ma J, Yang Y, Valenzuela C, Zhang X, Wang L, Feng W. Mechanochromic, Shape-Programmable and Self-Healable Cholesteric Liquid Crystal Elastomers Enabled by Dynamic Covalent Boronic Ester Bonds. Angew Chem Int Ed Engl 2021; 61:e202116219. [PMID: 34962037 DOI: 10.1002/anie.202116219] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Indexed: 11/08/2022]
Abstract
Endowing a cholesteric liquid crystal elastomer (CLCE) exhibiting helicoidal nanostructure with dynamically tailorable functionalities is of paramount significance for its emerging applications in diverse fields such as adaptive optics and soft robotics. Here, a mechanochromic, shape-programmable and self-healable CLCE is judiciously designed and synthesized through integrating dynamic covalent boronic ester bonds into the main-chain CLCE polymer network. The circularly polarized reflection of CLCEs can be reversibly and dynamically tuned across the entire visible spectrum by mechanical stretching. Thanks to the introduction of dynamic boronic ester bonds, the CLCEs were found to show robust reprogrammable and self-healing capabilities. The research disclosed herein can provide new insights into the development of 4D (color and 3D shape) programmable photonic actuators towards bioinspired camouflage, adaptive optical systems, and next-generation intelligent machines.
Collapse
Affiliation(s)
- Jiazhe Ma
- Tianjin University, Materials Science & Engineering, CHINA
| | - Yanzhao Yang
- Tianjin University, Materials Science & Engineering, CHINA
| | | | - Xuan Zhang
- Tianjin University, Materials Science & Engineering, CHINA
| | - Ling Wang
- Tianjin University, Materials Science & Engineering, School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, CHINA
| | - Wei Feng
- Tianjin University, Materials Science & Engineering, CHINA
| |
Collapse
|
26
|
Guidetti G, Frka-Petesic B, Dumanli AG, Hamad WY, Vignolini S. Effect of thermal treatments on chiral nematic cellulose nanocrystal films. Carbohydr Polym 2021; 272:118404. [PMID: 34420763 DOI: 10.1016/j.carbpol.2021.118404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/21/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
The ability to manipulate the optical appearance of materials is essential in virtually all products and areas of technology. Structurally coloured chiral nematic cellulose nanocrystal (CNC) films proved to be an excellent platform to design optical appearance, as their response can be moulded by organising them in hierarchical architectures. Here, we study how thermal treatments influence the optical appearance of structurally coloured CNC films. We demonstrate that the CNCs helicoidal architecture and the chiral optical response can be maintained up to 250 °C after base treatment and cross-linking with glutaraldehyde, while, alternatively, an exposure to vacuum allows for the helicoidal arrangement to be further preserved up to 900 °C, thus producing aromatic chiral carbon. The ability to retain the helicoidal arrangement, and thus the visual appearance, in CNC films up to 250 °C is highly desirable for high temperature colour-based industrial applications and for passive colorimetric heat sensors. Similarly, the production of chiral carbon provides a new type of conductive carbon for electrochemical applications.
Collapse
Affiliation(s)
- Giulia Guidetti
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom.
| | - Bruno Frka-Petesic
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom.
| | - Ahu G Dumanli
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom.
| | - Wadood Y Hamad
- Bioproducts Innovation Centre of Excellence, FPInnovations, 2665 East Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Silvia Vignolini
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, United Kingdom.
| |
Collapse
|
27
|
Shao R, Meng X, Shi Z, Zhong J, Cai Z, Hu J, Wang X, Chen G, Gao S, Song Y, Ye C. Marangoni Flow Manipulated Concentric Assembly of Cellulose Nanocrystals. SMALL METHODS 2021; 5:e2100690. [PMID: 34927964 DOI: 10.1002/smtd.202100690] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Tunable assembly of cellulose nanocrystals (CNCs) is important for a variety of emerging applications in optics, sensing, and security. Most exploited assembly and optical property of CNCs are cholesteric assembly and corresponding circular dichroism. However, it still remains challenge to obtain homogenous and high-resolution cholesteric assembly. Distinct assembly and optical property of CNCs are highly demanded for advanced photonic materials with novel functions. Herein, a facile and programmable approach for assembling CNCs into a novel concentric alignment using capillary flow and Marangoni effect, which is in strike contrast to conventional cholesteric assembly, is demonstrated. The concentric assembly, as quantitatively evidenced by polarized synchrotron radiation Fourier transform infrared imaging, demonstrates Maltese cross optical pattern with good uniformity and high resolution. Furthermore, this Maltese cross can be readily regulated to "on/off" states by temperature. By combining with 3D inkjet technology, a functional binary system composed of "on"/"off" CNCs optical patterns with high spatial resolution, fast printing speed, good repeatability, and precisely controllable optical property is established for information encryption and decryption. This concentric assembly of CNCs and corresponding tunable optical property emerge as a promising candidate for information security, anticounterfeiting technology, and advanced optics.
Collapse
Affiliation(s)
- Rongrong Shao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiao Meng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Zhaojie Shi
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Jiajia Zhong
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Zheren Cai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhao Hu
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xiao Wang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Gang Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shenghua Gao
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhong Ye
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| |
Collapse
|
28
|
Barty‐King CH, Chan CLC, Parker RM, Bay MM, Vadrucci R, De Volder M, Vignolini S. Mechanochromic, Structurally Colored, and Edible Hydrogels Prepared from Hydroxypropyl Cellulose and Gelatin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102112. [PMID: 34323315 PMCID: PMC11468689 DOI: 10.1002/adma.202102112] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxypropyl cellulose (HPC) is an edible, cost-effective and widely used derivative of cellulose. Under lyotropic conditions in water, HPC forms a photonic, liquid crystalline mesophase with an exceptional mechanochromic response. However, due to insufficient physical cross-linking photonic HPC can flow freely as a viscous liquid, preventing the exploitation of this mechanochromic material in the absence of any external encapsulation or structural confinement. Here this challenge is addressed by mixing HPC and gelatin in water to form a self-supporting, viscoelastic, and edible supramolecular photonic hydrogel. It is demonstrated that the structural coloration, mechanochromism and non-Newtonian shear-thinning behavior of the lyotropic HPC solutions can all be retained into the gel state. Moreover, the rigidity of the HPC-gel provides a 69% shorter mechanochromic relaxation time back to its initial color when compared to the liquid HPC-water only system, broadening the dynamic color range of HPC by approximately 2.5× in response to a compressive pressure. Finally, the ability to formulate the HPC-gels in a scalable fashion from only water and "food-grade" constituents unlocks a wide range of potential applications, from response-tunable mechanochromic materials and colorant-free food decoration, to short-term sensors in, for example, biodegradable "smart labels" for food packaging.
Collapse
Affiliation(s)
- Charles H. Barty‐King
- Department of EngineeringUniversity of Cambridge17 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Chun Lam Clement Chan
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Richard M. Parker
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Mélanie M. Bay
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Roberto Vadrucci
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Michael De Volder
- Department of EngineeringUniversity of Cambridge17 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Silvia Vignolini
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
29
|
Ding K, Ai J, Deng Q, Huang B, Zhou C, Duan T, Duan Y, Han L, Jiang J, Che S. Chiral Mesostructured BiOBr Films with Circularly Polarized Colour Response. Angew Chem Int Ed Engl 2021; 60:19024-19029. [PMID: 34196086 DOI: 10.1002/anie.202105496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Achieving strong and broadband circularly polarized colour responses in chiral inorganic materials is challenging. Here, we fabricated chiral mesostructured bismuth oxybromide (BiOBr) films (CMBFs) via hydrothermal growth using chiral sugar alcohols as symmetry-breaking agents. The layered slabs of BiOBr crystals with weak van-der-Waals interactions are prone to mismatching due to the chiral driving force, resulting in hierarchically chiral arrangements of fine size. Three levels of chirality exist in the CMBFs: primary, helical distortion crystal lattices of a nanoflake, secondary, helical stacking of nanoflakes to form nanoplates, and tertiary, chiral vortexes arranged by nanoplates. The CMBFs displayed optical activities (OAs) over a wide wavelength range of 350-2500 nm with an anisotropic factor of up to 0.99, which led to a significant chirality-dependent colour response to circularly polarized light. The high selectivity can be considered as the result of enhanced resonance due to structural-handedness matching and the synergistic effect of multiple OAs.
Collapse
Affiliation(s)
- Kun Ding
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jing Ai
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Quanzheng Deng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Bin Huang
- School of Chemistry, Sun Yat-sen University, 135 Xingang Xi Road, Guangzhou, 510275, P. R. China
| | - Chao Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Tianwei Duan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Jingang Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
30
|
|
31
|
Duan C, Cheng Z, Wang B, Zeng J, Xu J, Li J, Gao W, Chen K. Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007306. [PMID: 34047461 DOI: 10.1002/smll.202007306] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
As a nanoscale renewable resource derived from lignocellulosic materials, cellulose nanocrystals (CNCs) have the features of high purity, high crystallinity, high aspect ratio, high Young's modulus, and large specific surface area. The most interesting trait is that they can form the entire films with bright structural colors through the evaporation-induced self-assembly (EISA) process under certain conditions. Structural color originates from micro-nano structure of CNCs matrixes via the interaction of nanoparticles with light, rather than the absorption and reflection of light from the pigment. CNCs are the new generation of photonic liquid crystal materials of choice due to their simple and convenient preparation processes, environmentally friendly fabrication approaches, and intrinsic chiral nematic structure. Therefore, understanding the forming mechanism of CNCs in nanoarchitectonics is crucial to multiple fields of physics, chemistry, materials science, and engineering application. Herein, a timely summary of the chiral photonic liquid crystal films derived from CNCs is systematically presented. The relationship of CNC, structural color, chiral nematic structure, film performance, and applications of chiral photonic liquid crystal films is discussed. The review article also summarizes the most recent achievements in the field of CNCs-based photonic functional materials along with the faced challenges.
Collapse
Affiliation(s)
- Chengliang Duan
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Jinsong Zeng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Jinpeng Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Wenhua Gao
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Research Center, School of Light Industry and Engineering, South China University of Technology, Guangzhou, CN510640, China
| |
Collapse
|
32
|
Bai L, Jin Y, Shang X, Jin H, Zhou Y, Shi L. Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. JOURNAL OF MATERIALS CHEMISTRY A 2021. [DOI: 10.1039/d1ta06798b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A novel electromechanical and mechanochromic dual-sensing ionic skin (DSI-skin) with multiple biological functions is achieved by mimicking biological skin.
Collapse
Affiliation(s)
- Long Bai
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Yong Jin
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Xiang Shang
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Hongyu Jin
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yutang Zhou
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| | - Liangjie Shi
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, P. R. China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
33
|
Jacucci G, Vignolini S, Schertel L. The limitations of extending nature's color palette in correlated, disordered systems. Proc Natl Acad Sci U S A 2020; 117:23345-23349. [PMID: 32900921 PMCID: PMC7519302 DOI: 10.1073/pnas.2010486117] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Living organisms have developed a wide range of appearances from iridescent to matte textures. Interestingly, angular-independent structural colors, where isotropy in the scattering structure is present, only produce coloration in the blue wavelength region of the visible spectrum. One might, therefore, wonder if such observation is a limitation of the architecture of the palette of materials available in nature. Here, by exploiting numerical modeling, we discuss the origin of isotropic structural colors without restriction to a specific light scattering regime. We show that high color purity and color saturation cannot be reached in isotropic short-range order structures for red hues. This conclusion holds even in the case of advanced scatterer morphologies, such as core-shell particles or inverse photonic glasses-explaining recent experimental findings reporting very poor performances of visual appearance for such systems.
Collapse
Affiliation(s)
- Gianni Jacucci
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Lukas Schertel
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
34
|
Orientation Control of Helical Nanofilament Phase and Its Chiroptical Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chiral liquid crystal phases show fascinating structural and optical properties due to their inherent helical characteristics. Among the various chiral liquid crystal phases, the helical nanofilament phase, made of achiral bent-shaped molecules, has been of keen research interest due to its unusual polar and chiral properties. This review is intended to introduce the recent progress in orientation control and its application to the helical nanofilament phase, which includes topographic confinement, photoalignment, and chiroptical applications such as photonic crystal and chirality sensor.
Collapse
|
35
|
Flexible and Structural Coloured Composite Films from Cellulose Nanocrystals/Hydroxypropyl Cellulose Lyotropic Suspensions. CRYSTALS 2020. [DOI: 10.3390/cryst10020122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lyotropic colloidal aqueous suspensions of cellulose nanocrystals (CNCs) can, after solvent evaporation, retain their chiral nematic arrangement. As water is removed the pitch value of the suspension decreases and structural colour-generating films, which are mechanically brittle in nature, can be obtained. Increasing their flexibility while keeping the chiral nematic structure and biocompatible nature is a challenging task. However, if achievable, this will promote their use in new and interesting applications. In this study, we report on the addition of different amounts of hydroxypropyl cellulose (HPC) to CNCs suspension within the coexistence of the isotropic-anisotropic phases and infer the influence of this cellulosic derivative on the properties of the obtained solid films. It was possible to add 50 wt.% of HPC to a CNCs aqueous suspension (to obtain a 50/50 solids ratio) without disrupting the LC phase of CNCs and maintaining a left-handed helical structure in the obtained films. When 30 wt.% of HPC was added to the suspension of CNCs, a strong colouration in the film was still observed. This colour shifts to the near-infrared region as the HPC content in the colloidal suspension increases to 40 wt.% or 50 wt.% The all-cellulosic composite films present an increase in the maximum strain as the concentration of HPC increases, as shown by the bending experiments and an improvement in their thermal properties.
Collapse
|
36
|
Philip‐Leverhulme‐Preise in Chemie 2019. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Philip Leverhulme Prizes for Chemistry 2019. Angew Chem Int Ed Engl 2020; 59:2549. [DOI: 10.1002/anie.202000098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|