1
|
Zheng G, Xiong W, Xu Y, Zeng B, Yuan C, Dai L. Chain Friction and Lubrication Balanced Ultra-Tough Polyacrylates With Wide-Span Switchable Stiffness for Strain-Programmable Deformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405105. [PMID: 39221526 DOI: 10.1002/adma.202405105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Natural mollusks perform complex mechanical actions through reversible large-strain deformation and stiffness switching, which are challenging to achieve simultaneously in synthetic materials. Herein, it is shown that a set of polyacrylates designed according to a chain friction and lubrication balanced strategy shows ultra-stretchability (λ up to 324), high resilience (near 100% recovery at strain ≥ 100), and wide-span stiffness switching (up to 2073 times). The typical emulsion polymerization method and casting technique are adopted to fabricate the polyacrylate films. Quaternary ammonium surfactants are used as the emulsifier and reserved in the polymer matrix to enhance the chain segment lubrication with their long alkyl group but improve the whole chain friction through the formation of nano-eutectics. These polyacrylates undergo multimodal mechanical responses, including temperature- or time-programmed deformation and load-bearing like artificial muscles. This molecular design principle and synthetic method provide a robust platform for the fabrication of ultra-tough polymers for soft robots with multiple customized functions.
Collapse
Affiliation(s)
- Guojun Zheng
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenjie Xiong
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Yiting Xu
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Birong Zeng
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Conghui Yuan
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Lizong Dai
- College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
2
|
Gu H, Dong X, Zhang Q, Chi D, Zhang Y, Cheng Z, Lv T, Xie Z, Xu Y, Zhang D, Liu Y. Intelligent Reversible Reconfigurable Metamaterials Based on a Two-Way Shape Memory Polymer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54627-54635. [PMID: 39347963 DOI: 10.1021/acsami.4c11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of intelligent reversible reconfigurable metamaterials has great significance in constructing three-dimensional metamaterials and introducing reversible tunability into metamaterials. Here, we introduce an intelligent metamaterial consisting of a two-way shape memory polymer (2W-SMP) ethylene vinyl acetate copolymer (EVA) actuator substrate and a patterned flexible-rigid film. Mechanical buckling of the 2W-SMP substrate was controlled by thermal stimulation. This makes it possible to afford an ability to initiate 3D structure formation or shape reconfiguration remotely in an on-demand fashion. In addition, the shape of the 2W-SMP substrate is temperature-dependent, allowing repeatable reversible deformation through temperature control after a single programming. Therefore, the electromagnetic properties of metamaterials can also be repeatedly and reversibly tuned between 9.15 and 10.82 GHz. Experimental demonstrations include the deformation and tunable electromagnetic properties of intelligent reversible reconfigurable metamaterial cells. The results create many opportunities for advanced programmable three-dimensional metamaterials.
Collapse
Affiliation(s)
- Haoyu Gu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiaoyu Dong
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Qiankun Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dequan Chi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Zhongjun Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Tong Lv
- Research Institute of Aerospace Special Materials and Processing Technology, Beijing 100174, P. R. China
| | - Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yongjun Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Dongjie Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yuyan Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
3
|
Huang J, Qiu L, Ni C, Chen G, Zhao Q. Shape Memory Polymers with Patternable Recovery Onset Regulated by Light. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408324. [PMID: 39097949 DOI: 10.1002/adma.202408324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Shape memory polymers (SMPs) show attractive prospects in emerging fields such as soft robots and biomedical devices. Although their typical trigger-responsive character offers the essential shape-changing controllability, having to access external stimulation is a major bottleneck toward many applications. Recently emerged autonomous SMPs exhibit unique stimuli-free shape-shifting behavior with its controllability achieved via a delayed and programmable recovery onset. Achieving multi-shape morphing in an arbitrary fashion, however, is infeasible. In this work, a molecular design that allows to spatio-temporally define the recovery onset of an autonomous shape memory hydrogel (SMH) is reported. By introducing nitrocinnamate groups onto an SMH, its crosslinking density can be adjusted by light. This affects greatly the phase separation kinetics, which is the basis for the autonomous shape memory behavior. Consequently, the recovery onset can be regulated between 0 to 85 min. With masked light, multiple recovery onsets in an arbitrarily defined pattern which correspondingly enable multi-shape morphing can be realized. This ability to achieve highly sophisticated morphing without relying on any external stimulation greatly extends the versatility of SMPs.
Collapse
Affiliation(s)
- Jiacheng Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Lintao Qiu
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Chujun Ni
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Zhou K, Sun R, Wojciechowski JP, Wang R, Yeow J, Zuo Y, Song X, Wang C, Shao Y, Stevens MM. 4D Multimaterial Printing of Soft Actuators with Spatial and Temporal Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312135. [PMID: 38290081 DOI: 10.1002/adma.202312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Soft actuators (SAs) are devices which can interact with delicate objects in a manner not achievable with traditional robotics. While it is possible to design a SA whose actuation is triggered via an external stimulus, the use of a single stimulus creates challenges in the spatial and temporal control of the actuation. Herein, a 4D printed multimaterial soft actuator design (MMSA) whose actuation is only initiated by a combination of triggers (i.e., pH and temperature) is presented. Using 3D printing, a multilayered soft actuator with a hydrophilic pH-sensitive layer, and a hydrophobic magnetic and temperature-responsive shape-memory polymer layer, is designed. The hydrogel responds to environmental pH conditions by swelling or shrinking, while the shape-memory polymer can resist the shape deformation of the hydrogel until triggered by temperature or light. The combination of these stimuli-responsive layers allows for a high level of spatiotemporal control of the actuation. The utility of the 4D MMSA is demonstrated via a series of cargo capture and release experiments, validating its ability to demonstrate active spatiotemporal control. The MMSA concept provides a promising research direction to develop multifunctional soft devices with potential applications in biomedical engineering and environmental engineering.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yuyang Zuo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Xin Song
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chunliang Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yue Shao
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Naik DA, Matonis S, Balakrishnan G, Bettinger CJ. Intestinal retentive systems - recent advances and emerging approaches. J Mater Chem B 2023; 12:64-78. [PMID: 38047746 DOI: 10.1039/d3tb01842c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Intestinal retentive devices (IRDs) are devices designed to anchor within the lumen of the intestines for long-term residence in the gastrointestinal tract. IRDs can enable impactful medical device technologies including sustained oral drug delivery systems, indwelling sensors, or real-time diagnostics. The design and testing of IRDs present a myriad of challenges, including precise deployment of the device at desired intestinal locations, secure anchoring within the gastrointestinal tract to allow for natural function, and safe removal of the IRD at user-defined times. Advancing the state-of-the-art of IRD is an interdisciplinary effort that requires innovations such as new materials, novel anchoring mechanisms, and medical device design with consistent input from clinical practitioners and end-users. This perspective briefly reviews the current state-of-the-art for IRDs and charts a path forward to inform the design of future concepts. Specifically, this article will highlight materials, retention mechanisms, and test beds to measure the efficacy of IRDs and their mechanisms. Finally, potential synergies between IRD and other medical device technologies are presented to identify future opportunities.
Collapse
Affiliation(s)
- Durva A Naik
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Spencer Matonis
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Gaurav Balakrishnan
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
| | - Christopher J Bettinger
- Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Wean Hall 3325, Pittsburgh, PA 15213, USA.
- Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Scott Hall 4N201, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
7
|
Ni C, Chen D, Yin Y, Wen X, Chen X, Yang C, Chen G, Sun Z, Wen J, Jiao Y, Wang C, Wang N, Kong X, Deng S, Shen Y, Xiao R, Jin X, Li J, Kong X, Zhao Q, Xie T. Shape memory polymer with programmable recovery onset. Nature 2023; 622:748-753. [PMID: 37704734 DOI: 10.1038/s41586-023-06520-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Stimulus-responsive shape-shifting polymers1-3 have shown unique promise in emerging applications, including soft robotics4-7, medical devices8, aerospace structures9 and flexible electronics10. Their externally triggered shape-shifting behaviour offers on-demand controllability essential for many device applications. Ironically, accessing external triggers (for example, heating or light) under realistic scenarios has become the greatest bottleneck in demanding applications such as implantable medical devices8. Certain shape-shifting polymers rely on naturally present stimuli (for example, human body temperature for implantable devices)8 as triggers. Although they forgo the need for external stimulation, the ability to control recovery onset is also lost. Naturally triggered, yet actively controllable, shape-shifting behaviour is highly desirable but these two attributes are conflicting. Here we achieved this goal with a four-dimensional printable shape memory hydrogel that operates via phase separation, with its shape-shifting kinetics dominated by internal mass diffusion rather than by heat transport used for common shape memory polymers8-11. This hydrogel can undergo shape transformation at natural ambient temperature, critically with a recovery onset delay. This delay is programmable by altering the degree of phase separation during device programming, which offers a unique mechanism for shape-shifting control. Our naturally triggered shape memory polymer with a tunable recovery onset markedly lowers the barrier for device implementation.
Collapse
Affiliation(s)
- Chujun Ni
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Di Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Yu Yin
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xin Wen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiaolan Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chen Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Guancong Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhuo Sun
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jihang Wen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yurong Jiao
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chunyang Wang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Wang
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangxing Kong
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Shihong Deng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Youqing Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Xiuming Jin
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Li
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo, China.
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
8
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
9
|
Zhang L, Zhang Z, Weisbecker H, Yin H, Liu Y, Han T, Guo Z, Berry M, Yang B, Guo X, Adams J, Xie Z, Bai W. 3D morphable systems via deterministic microfolding for vibrational sensing, robotic implants, and reconfigurable telecommunication. SCIENCE ADVANCES 2022; 8:eade0838. [PMID: 36542721 PMCID: PMC9770994 DOI: 10.1126/sciadv.ade0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
DNA and proteins fold in three dimensions (3D) to enable functions that sustain life. Emulation of such folding schemes for functional materials can unleash enormous potential in advancing a wide range of technologies, especially in robotics, medicine, and telecommunication. Here, we report a microfolding strategy that enables formation of 3D morphable microelectronic systems integrated with various functional materials, including monocrystalline silicon, metallic nanomembranes, and polymers. By predesigning folding hosts and configuring folding pathways, 3D microelectronic systems in freestanding forms can transform across various complex configurations with modulated functionalities. Nearly all transitional states of 3D microelectronic systems achieved via the microfolding assembly can be easily accessed and modulated in situ, offering functional versatility and adaptability. Advanced morphable microelectronic systems including a reconfigurable microantenna for customizable telecommunication, a 3D vibration sensor for hand-tremor monitoring, and a bloomable robot for cardiac mapping demonstrate broad utility of these assembly schemes to realize advanced functionalities.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Zongwen Zhang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Hannah Weisbecker
- Department of Biology, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Haifeng Yin
- MCAllister Heart Institute Core, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Tianhong Han
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Ziheng Guo
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Matt Berry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Binbin Yang
- Department of Electrical and Computer Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Xu Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Jacob Adams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, DUT-BSU Joint Institute, Dalian University, Dalian 116024, P.R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P.R. China
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| |
Collapse
|
10
|
Choe A, Kwon Y, Shin YE, Yeom J, Kim J, Ko H. Adaptive IR- and Water-Gating Textiles Based on Shape Memory Fibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55217-55226. [PMID: 36448211 DOI: 10.1021/acsami.2c15974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Thermoregulation is an essential function of the human body for adapting to the surrounding temperature. Stimuli-responsive smart textiles can provide effective protection of the human skin temperature from a continuously changing environment. Herein, we develop a smart textile based on shape memory polymer (SMP) fibers for adaptive regulation of IR and water transmission on human skin. An SMP textile is fabricated with hierarchical micro/nanoporous structures to enhance thermal insulation performance, and silver nanowires are coated on one side to provide asymmetric IR reflectivity and hydrophilicity. The porous SMP textile shows great tunability of thermal insulation and asymmetric wettability by deformation and recovery of the shape and structure in response to stimuli. The degree of thermal insulation is controlled by 65.7% of the original value, and the surface temperature of the SMP textile on a hot plate is successfully controlled in the IR images due to adaptive IR reflectivity. Additionally, the directional transportation of water droplets can be switched on/off according to the shape of the SMP textiles, which can be employed for sweat removal from the human skin. This IR- and water-gating smart textile can provide a feasible strategy for protecting the human skin from external environmental changes.
Collapse
Affiliation(s)
- Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yeju Kwon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Young-Eun Shin
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeeyoon Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
11
|
Xia N, Zhu G, Wang X, Dong Y, Zhang L. Multicomponent and multifunctional integrated miniature soft robots. SOFT MATTER 2022; 18:7464-7485. [PMID: 36189642 DOI: 10.1039/d2sm00891b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Miniature soft robots with elaborate structures and programmable physical properties could conduct micromanipulation with high precision as well as access confined and tortuous spaces, which promise benefits in medical tasks and environmental monitoring. To improve the functionalities and adaptability of miniature soft robots, a variety of integrated design and fabrication strategies have been proposed for the development of miniaturized soft robotic systems integrated with multicomponents and multifunctionalities. Combining the latest advancement in fabrication technologies, intelligent materials and active control methods enable these integrated robotic systems to adapt to increasingly complex application scenarios including precision medicine, intelligent electronics, and environmental and proprioceptive sensing. Herein, this review delivers an overview of various integration strategies applicable for miniature soft robotic systems, including semiconductor and microelectronic techniques, modular assembly based on self-healing and welding, modular assembly based on bonding agents, laser machining techniques, template assisted methods with modular material design, and 3D printing techniques. Emerging applications of the integrated miniature soft robots and perspectives for the future design of small-scale intelligent robots are discussed.
Collapse
Affiliation(s)
- Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Guangda Zhu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xin Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yue Dong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Son H, Park Y, Na Y, Yoon C. 4D Multiscale Origami Soft Robots: A Review. Polymers (Basel) 2022; 14:polym14194235. [PMID: 36236182 PMCID: PMC9571758 DOI: 10.3390/polym14194235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Time-dependent shape-transferable soft robots are important for various intelligent applications in flexible electronics and bionics. Four-dimensional (4D) shape changes can offer versatile functional advantages during operations to soft robots that respond to external environmental stimuli, including heat, pH, light, electric, or pneumatic triggers. This review investigates the current advances in multiscale soft robots that can display 4D shape transformations. This review first focuses on material selection to demonstrate 4D origami-driven shape transformations. Second, this review investigates versatile fabrication strategies to form the 4D mechanical structures of soft robots. Third, this review surveys the folding, rolling, bending, and wrinkling mechanisms of soft robots during operation. Fourth, this review highlights the diverse applications of 4D origami-driven soft robots in actuators, sensors, and bionics. Finally, perspectives on future directions and challenges in the development of intelligent soft robots in real operational environments are discussed.
Collapse
Affiliation(s)
- Hyegyo Son
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yunha Park
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
| | - Youngjin Na
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| | - ChangKyu Yoon
- Department of Mechanical Systems Engineering, Sookmyung Women’s University, Seoul 04310, Korea
- Institute of Advanced Materials and Systems, Sookmyung Women’s University, Seoul 04310, Korea
- Correspondence: (Y.N.); (C.Y.)
| |
Collapse
|
13
|
Chen X, Zhang J, Yu Y, Wang H, Ma G, Wang D, Cao H, Yang J. Ultrasound-Triggered on Demand Lidocaine Release Relieves Postoperative Pain. Front Bioeng Biotechnol 2022; 10:925047. [PMID: 35898649 PMCID: PMC9310090 DOI: 10.3389/fbioe.2022.925047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Safe and non-invasive on-demand relief is a crucial and effective treatment for postoperative pain because it considers variable timing and intensity of anesthetics. Ultrasound modulation is a promising technique for this treatment because it allows convenient timed and non-invasive controlled drug release. Here, we created an ultrasound-triggered lidocaine (Lido) release platform using an amino acid hydrogel functioning as three-dimensional (3D) scaffold material (Lido-PPIX@ER hydrogel). It allows control of the timing, intensity and duration of lidocaine (Lido) to relieve postoperative pain. The hydrogel releases Lido due to the elevated reactive oxygen species (ROS) levels generated by PPIX under ultrasound triggering. The Lido-PPIX@ER hydrogel under individualized ultrasound triggering released lidocaine and provided effective analgesia for more than 72 h. The withdrawal threshold was higher than that in the control group at all time points measured. The hydrogel showed repeatable and adjustable ultrasound-triggered nerve blocks in vivo, the duration of which depended on the extent and intensity of insonation. On histopathology, no systemic effect or tissue reaction was observed in the ultrasound-triggered Lido-PPIX@ER hydrogel-treated group. The Lido-PPIX@ER hydrogel with individualized (highly variable) ultrasound triggering is a convenient and effective method that offers timed and spatiotemporally controlled Lido release to manage postoperative pain. This article presents the delivery system for a new effective strategy to reduce pain, remotely control pain, and offer timed and spatiotemporally controlled release of Lido to manage postoperative pain.
Collapse
Affiliation(s)
- Xiaohong Chen
- The Frist Affiliated Hospital of Soochow University, Suzhou, China
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jianfeng Zhang
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yan Yu
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Haoran Wang
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Genshan Ma
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Di Wang
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Hanzhong Cao
- Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Jianping Yang
- The Frist Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Gao M, Meng Y, Shen C, Pei Q. Stiffness Variable Polymers Comprising Phase-Changing Side-Chains: Material Syntheses and Application Explorations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109798. [PMID: 35119148 DOI: 10.1002/adma.202109798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Stiffness variable materials have been applied in a variety of engineering fields that require adaptation, automatic modulation, and morphing because of their unique property to switch between a rigid, load-bearing state and a soft, compliant state. Stiffness variable polymers comprising phase-changing side-chains (s-SVPs) have densely grafted, highly crystallizable long alkyl side-chains in a crosslinked network. Such a bottlebrush network-like structure gives rise to rigidity modulation as a result of the reversible crystallization and melting of the side chains. The corresponding modulus changes can be more than 1000-fold within a narrow temperature span, from ≈102 MPa to ≈102 kPa or lower. Other important properties of the s-SVP, such as stretchability, optical transmittance, and adhesion, can also be altered. This work reviews the underlying molecular mechanisms in the s-SVP's, discusses the material's structure-property relationship, and summarizes important applications explored so far, including reversible shape transformation, bistable electromechanical transduction, optical modulation, and reversible adhesion.
Collapse
Affiliation(s)
- Meng Gao
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
- College of Light Industry Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yuan Meng
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Claire Shen
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| | - Qibing Pei
- Soft Materials Research Laboratory, Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
15
|
Wang Z, Jiang H, Wu G, Li Y, Zhang T, Zhang Y, Wang X. Shape-Programmable Three-Dimensional Microfluidic Structures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15599-15607. [PMID: 35319180 PMCID: PMC9552124 DOI: 10.1021/acsami.1c24799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microfluidic devices are gaining extensive interest due to their potential applications in wide-ranging areas, including lab-on-a-chip devices, fluid delivery, and artificial vascular networks. Most current microfluidic devices are in a planar design with fixed configurations once formed, which limits their applications such as in engineered vascular networks in biology and programmable drug delivery systems. Here, shape-programmable three-dimensional (3D) microfluidic structures, which are assembled from a bilayer of channel-embedded polydimethylsiloxane (PDMS) and shape-memory polymers (SMPs) via compressive buckling, are reported. 3D microfluidics in diverse geometries including those in open-mesh configurations are presented. In addition, they can be programmed into temporary shapes and recover their original shape under thermal stimuli due to the shape memory effect of the SMP component, with fluid flow in the microfluidic channels well maintained in both deformed and recovered shapes. Furthermore, the shape-fixing effect of SMPs enables freestanding open-mesh 3D microfluidic structures without the need for a substrate to maintain the 3D shape as used in previous studies. By adding magnetic particles into the PDMS layer, magnetically responsive 3D microfluidic structures are enabled to achieve fast, remote programming of the structures via a portable magnet. A 3D design phase diagram is constructed to show the effects of the magnetic PDMS/SMP thickness ratio and the volume fraction of magnetic particles on the shape programmability of the 3D microfluidic structures. The developed shape-programmable, open-mesh 3D microfluidic structures offer many opportunities for applications including tissue engineering, drug delivery, and many others.
Collapse
Affiliation(s)
- Zizheng Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Hao Jiang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Guangfu Wu
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Teng Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired Syracuse, Syracuse University, Syracuse, New York 13244, United States
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
16
|
Taylor JM, Luan H, Lewis JA, Rogers JA, Nuzzo RG, Braun PV. Biomimetic and Biologically Compliant Soft Architectures via 3D and 4D Assembly Methods: A Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108391. [PMID: 35233865 DOI: 10.1002/adma.202108391] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Recent progress in soft material chemistry and enabling methods of 3D and 4D fabrication-emerging programmable material designs and associated assembly methods for the construction of complex functional structures-is highlighted. The underlying advances in this science allow the creation of soft material architectures with properties and shapes that programmably vary with time. The ability to control composition from the molecular to the macroscale is highlighted-most notably through examples that focus on biomimetic and biologically compliant soft materials. Such advances, when coupled with the ability to program material structure and properties across multiple scales via microfabrication, 3D printing, or other assembly techniques, give rise to responsive (4D) architectures. The challenges and prospects for progress in this emerging field in terms of its capacities for integrating chemistry, form, and function are described in the context of exemplary soft material systems demonstrating important but heretofore difficult-to-realize biomimetic and biologically compliant behaviors.
Collapse
Affiliation(s)
- Jay M Taylor
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 104 South Goodwin Ave., Urbana, IL, 61801, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jennifer A Lewis
- John A. Paulson School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Departments of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ralph G Nuzzo
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
- Surface and Corrosion Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinasväg 51, Stockholm, 10044, Sweden
| | - Paul V Braun
- Department of Materials Science and Engineering, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 104 South Goodwin Ave., Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 S Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Green and sustainable cellulose-based shape memory composites with excellent conductivity for temperature warning. Carbohydr Polym 2022; 276:118767. [PMID: 34823787 DOI: 10.1016/j.carbpol.2021.118767] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Green and sustainable cellulose-based composites containing poly(ε-caprolactone) (PCL) with temperature-induced shape memory properties and conductivity performance are presented. The composites are fabricated by in situ polymerization of ε-caprolactone (ε-CL) monomer in three-dimensional porous cellulose gels, and then silver-porous cellulose gel/poly(ε-caprolactone) (Ag-Cell/PCL) composites are fabricated by depositing Ag onto the surface of porous cellulose gel/poly(ε-caprolactone) (Cell/PCL) composites. The addition of PCL not only improves the mechanical properties of the Cell/PCL composites but also endows them with excellent shape memory properties. The Cell/PCL composites exhibit a high shape-fixing rate (98.9%) and can recover to their original shape within 8 s without external force. In addition, the Ag-Cell/PCL composites show superior and stable conductivity under different bending angles. Finally, a temperature warning sensor with fast performance is successfully designed using Ag-Cell/PCL composites. This work provides a means to develop temperature warning systems based on shape memory polymers.
Collapse
|
18
|
UV-Vis-NIR Light-deformable Shape-memory Polyurethane Doped with Liquid-crystal Mixture and GO towards Biomimetic Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Truong TA, Nguyen TK, Zhao H, Nguyen NK, Dinh T, Park Y, Nguyen T, Yamauchi Y, Nguyen NT, Phan HP. Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105748. [PMID: 34874620 DOI: 10.1002/smll.202105748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.
Collapse
Affiliation(s)
- Thanh-An Truong
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nhat-Khuong Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Toan Dinh
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Thanh Nguyen
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
20
|
Ren H, Xie L, Xu Y, Zhao Q, Zheng N. UV
curable micro‐structured shape memory epoxy with tunable performance. J Appl Polym Sci 2021. [DOI: 10.1002/app.51319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hua Ren
- Ningbo Research Institute Zhejiang University Ningbo China
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Lulin Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Yang Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| | - Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Center for Chemistry of High‐Performance and Novel Materials, Department of Chemistry Zhejiang University Hangzhou China
| |
Collapse
|
21
|
Wu J, Yao S, Zhang H, Man W, Bai Z, Zhang F, Wang X, Fang D, Zhang Y. Liquid Crystal Elastomer Metamaterials with Giant Biaxial Thermal Shrinkage for Enhancing Skin Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2106175. [PMID: 34561930 DOI: 10.1002/adma.202106175] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Liquid crystal elastomers (LCEs) are a class of soft active materials of increasing interest, because of their excellent actuation and optical performances. While LCEs show biomimetic mechanical properties (e.g., elastic modulus and strength) that can be matched with those of soft biological tissues, their biointegrated applications have been rarely explored, in part, due to their high actuation temperatures (typically above 60 °C) and low biaxial actuation performances (e.g., actuation strain typically below 10%). Here, unique mechanics-guided designs and fabrication schemes of LCE metamaterials are developed that allow access to unprecedented biaxial actuation strain (-53%) and biaxial coefficient of thermal expansion (-33 125 ppm K-1 ), significantly surpassing those (e.g., -20% and -5950 ppm K-1 ) reported previously. A low-temperature synthesis method with use of optimized composition ratios enables LCE metamaterials to offer reasonably high actuation stresses/strains at a substantially reduced actuation temperature (46 °C). Such biocompatible LCE metamaterials are integrated with medical dressing to develop a breathable, shrinkable, hemostatic patch as a means of noninvasive treatment. In vivo animal experiments of skin repair with both round and cross-shaped wounds demonstrate advantages of the hemostatic patch over conventional strategies (e.g., medical dressing and suturing) in accelerating skin regeneration, while avoiding scar and keloid generation.
Collapse
Affiliation(s)
- Jun Wu
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Shenglian Yao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hang Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Weitao Man
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, 102218, P. R. China
| | - Zhili Bai
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Fan Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiumei Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Daining Fang
- Institute of Advanced Structure Technology, Beijing Key Laboratory of Lightweight Multi-Functional Composite Materials and Structures, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Luan H, Zhang Q, Liu TL, Wang X, Zhao S, Wang H, Yao S, Xue Y, Kwak JW, Bai W, Xu Y, Han M, Li K, Li Z, Ni X, Ye J, Choi D, Yang Q, Kim JH, Li S, Chen S, Wu C, Lu D, Chang JK, Xie Z, Huang Y, Rogers JA. Complex 3D microfluidic architectures formed by mechanically guided compressive buckling. SCIENCE ADVANCES 2021; 7:eabj3686. [PMID: 34669471 PMCID: PMC8528415 DOI: 10.1126/sciadv.abj3686] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microfluidic technologies have wide-ranging applications in chemical analysis systems, drug delivery platforms, and artificial vascular networks. This latter area is particularly relevant to 3D cell cultures, engineered tissues, and artificial organs, where volumetric capabilities in fluid distribution are essential. Existing schemes for fabricating 3D microfluidic structures are constrained in realizing desired layout designs, producing physiologically relevant microvascular structures, and/or integrating active electronic/optoelectronic/microelectromechanical components for sensing and actuation. This paper presents a guided assembly approach that bypasses these limitations to yield complex 3D microvascular structures from 2D precursors that exploit the full sophistication of 2D fabrication methods. The capabilities extend to feature sizes <5 μm, in extended arrays and with various embedded sensors and actuators, across wide ranges of overall dimensions, in a parallel, high-throughput process. Examples include 3D microvascular networks with sophisticated layouts, deterministically designed and constructed to expand the geometries and operating features of artificial vascular networks.
Collapse
Affiliation(s)
- Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Qihui Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tzu-Li Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Shiwei Zhao
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shenglian Yao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yeguang Xue
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wubin Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27514, USA
| | - Yameng Xu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Kan Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Zhengwei Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Xinchen Ni
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Jilong Ye
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory of Tribology, Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, Gyeonggi 17104, Republic of Korea
| | - Quansan Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jae-Hwan Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Di Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Jan-Kai Chang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Wearifi Inc., Evanston, IL 60201, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo, Zhejiang 315016, China
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (Y.H.); (J.A.R.)
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (Y.H.); (J.A.R.)
| |
Collapse
|
23
|
Son C, Kim S. Dual Adaptation of a Flexible Shape Memory Polymer Adhesive. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27656-27662. [PMID: 34077179 DOI: 10.1021/acsami.1c05434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A shape memory polymer (SMP) adhesive forms a conformal and hermetic contact with a target surface at the soft, rubbery state and provides a high-strength dry adhesion at the rigid, glassy state. In particular, recent SMP adhesive studies show SMP's ability to adhere to various rough and even underwater yet rigid surfaces. However, achieving and retaining the strong adhesion on flexible target surfaces such as common fabrics has not been reported since a flexible target surface would easily be peeled off from an SMP adhesive, which is too rigid to accommodate the target surface flexing. Here, we introduce the dual adaptation of an SMP adhesive composed of a thin SMP layer and a backing fabric, which involves the shape adaptation to make a strong adhesive contact and the flexure adaptation to tolerate a target surface flexing. To discover the criteria for optimizing both shape and flexure adaptations, we present the theoretical rationale as well as the computational and experimental studies in this work. Based on the findings here, we design a thin SMP adhesive and demonstrate its dry and underwater adhesive performances on common clothes to highlight its potential applications.
Collapse
Affiliation(s)
- ChangHee Son
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Seok Kim
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Mechanical Engineering, Pohand University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
24
|
Li Y, Liu X, Huang Q, Ohta AT, Arai T. Bubbles in microfluidics: an all-purpose tool for micromanipulation. LAB ON A CHIP 2021; 21:1016-1035. [PMID: 33538756 DOI: 10.1039/d0lc01173h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In recent decades, the integration of microfluidic devices and multiple actuation technologies at the microscale has greatly contributed to the progress of related fields. In particular, microbubbles are playing an increasingly important role in microfluidics because of their unique characteristics that lead to specific responses to different energy sources and gas-liquid interactions. Many effective and functional bubble-based micromanipulation strategies have been developed and improved, enabling various non-invasive, selective, and precise operations at the microscale. This review begins with a brief introduction of the morphological characteristics and formation of microbubbles. The theoretical foundations and working mechanisms of typical micromanipulations based on acoustic, thermodynamic, and chemical microbubbles in fluids are described. We critically review the extensive applications and the frontline advances of bubbles in microfluidics, including microflow patterns, position and orientation control, biomedical applications, and development of bubble-based microrobots. We lastly present an outlook to provide directions for the design and application of microbubble-based micromanipulation tools and attract the attention of relevant researchers to the enormous potential of microbubbles in microfluidics.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
25
|
Zhang F, Li S, Shen Z, Cheng X, Xue Z, Zhang H, Song H, Bai K, Yan D, Wang H, Zhang Y, Huang Y. Rapidly deployable and morphable 3D mesostructures with applications in multimodal biomedical devices. Proc Natl Acad Sci U S A 2021; 118:e2026414118. [PMID: 33836614 PMCID: PMC7980465 DOI: 10.1073/pnas.2026414118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structures that significantly and rapidly change their shapes and sizes upon external stimuli have widespread applications in a diversity of areas. The ability to miniaturize these deployable and morphable structures is essential for applications in fields that require high-spatial resolution or minimal invasiveness, such as biomechanics sensing, surgery, and biopsy. Despite intensive studies on the actuation mechanisms and material/structure strategies, it remains challenging to realize deployable and morphable structures in high-performance inorganic materials at small scales (e.g., several millimeters, comparable to the feature size of many biological tissues). The difficulty in integrating actuation materials increases as the size scales down, and many types of actuation forces become too small compared to the structure rigidity at millimeter scales. Here, we present schemes of electromagnetic actuation and design strategies to overcome this challenge, by exploiting the mechanics-guided three-dimensional (3D) assembly to enable integration of current-carrying metallic or magnetic films into millimeter-scale structures that generate controlled Lorentz forces or magnetic forces under an external magnetic field. Tailored designs guided by quantitative modeling and developed scaling laws allow formation of low-rigidity 3D architectures that deform significantly, reversibly, and rapidly by remotely controlled electromagnetic actuation. Reconfigurable mesostructures with multiple stable states can be also achieved, in which distinct 3D configurations are maintained after removal of the magnetic field. Demonstration of a functional device that combines the deep and shallow sensing for simultaneous measurements of thermal conductivities in bilayer films suggests the promising potential of the proposed strategy toward multimodal sensing of biomedical signals.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Zhangming Shen
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xu Cheng
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Zhaoguo Xue
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Hang Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Honglie Song
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Ke Bai
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Dongjia Yan
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Heling Wang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| | - Yihui Zhang
- Key Laboratory of Applied Mechanics of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China;
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60201
| |
Collapse
|
26
|
Li Y, Luo C, Yu K, Wang X. Remotely Controlled, Reversible, On-Demand Assembly and Reconfiguration of 3D Mesostructures via Liquid Crystal Elastomer Platforms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8929-8939. [PMID: 33577299 DOI: 10.1021/acsami.0c21371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) mesostructures are gaining rapidly growing interest due to their potential applications in a broad range of areas. Despite intensive studies, remotely controlled, reversible, on-demand assembly and reconfiguration of 3D mesostructures, which are desired for many applications, including robotics, minimally invasive biomedical devices, and deployable systems, remain a challenge. Here, we introduce a facile strategy to utilize liquid crystal elastomers (LCEs), a soft polymer capable of large, reversible shape changes, as a platform for reversible assembly and programming of 3D mesostructures via compressive buckling of two-dimensional (2D) precursors in a remote and on-demand fashion. The highly stretchable, reversible shape-switching behavior of the LCE substrate, resulting from the soft elasticity of the material and the reversible nematic-isotropic transition of liquid crystal (LC) molecules upon remote thermal stimuli, provides deterministic thermal-mechanical control over the reversible assembly and reconfiguration processes. Demonstrations include experimental results and finite element simulations of 3D mesostructures with diverse geometries and material compositions, showing the versatility and reliability of the approach. Furthermore, a reconfigurable light-emitting system is assembled and morphed between its "on" and "off" status via the LCE platform. These results provide many exciting opportunities for areas from remotely programmable 3D mesostructures to tunable electronic systems.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Chaoqian Luo
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Kai Yu
- Department of Mechanical Engineering, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
27
|
Kuang X, Mu Q, Roach DJ, Qi HJ. Shape-programmable and healable materials and devices using thermo- and photo-responsive vitrimer. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2399-7532/abbdc1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Zhang L, Zhao J, Xu J, Zhao J, Zhu Y, Li Y, You J. Switchable Isotropic/Anisotropic Wettability and Programmable Droplet Transportation on a Shape-Memory Honeycomb. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42314-42320. [PMID: 32830490 DOI: 10.1021/acsami.0c11224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Programmable droplet transportation is required urgently but is still challenging. In this work, breath figure was employed to fabricate shape-memory poly(lactic acid) (PLLA) honeycombs in which tiny crystals and an amorphous network act as the shape-fixed phase and recovery phase, respectively. Upon uniaxial tension, circle pores from the breath figure were deformed to elliptical pores, producing contact angle differences and anisotropic wetting behaviors in two directions. Both pore geometry and anisotropic wettability can be tailored via the draw ratio. On the PLLA honeycomb surface with a lower draw ratio, the contact angle difference is too small to induce droplet transportation along the desired direction. In the case of a higher draw ratio, however, the movement of water droplets has been controlled absolutely along the tension direction. The transition between them can be achieved reversibly during uniaxial tension and recovery processes based on the shape-memory effect. The enhanced flow control, which can be attributed to the synergism between optimal hydrophobicity and enlarged anisotropic wetting behaviors, endows water droplets with the ability to turn a corner spontaneously on a V-shaped surface including two regions exhibiting different oriented directions.
Collapse
Affiliation(s)
- Liang Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jingxin Zhao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jinyan Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiaqin Zhao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yutian Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yongjin Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jichun You
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
29
|
Lee JH, Choi JC, Won S, Lee JW, Lee JG, Kim HR, Wie JJ. Light-driven complex 3D shape morphing of glassy polymers by resolving spatio-temporal stress confliction. Sci Rep 2020; 10:10840. [PMID: 32616756 PMCID: PMC7331612 DOI: 10.1038/s41598-020-67660-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
Programmable 3D shape morphing of hot-drawn polymeric sheets has been demonstrated using photothermal local shrinkage of patterned hinges. However, the hinge designs have been limited to simple linear hinges used to generate in-plane local folding or global curvature. Herein, we report an unprecedented design strategy to realize localized curvature engineering in 3D structures employing radial hinges and stress-releasing facets on 2D polymeric sheets. The shape and height of the 3D structures are readily controlled by varying the number of radial patterns. Moreover, they are numerically predictable by finite elemental modeling simulation with consideration of the spatio-temporal stress distribution, as well as of stress competition effects. Localized curvature engineering provides programming capabilities for various designs including soft-turtle-shell, sea-shell shapes, and saddle architectures with the desired chirality. The results of local curvilinear actuation with quantifiable stress implies options to advance the applicability of self-folded architectures embodying coexisting curved and linear geometric surfaces.
Collapse
Affiliation(s)
- Jong Hyeok Lee
- Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Jun-Chan Choi
- School of Electronics Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sukyoung Won
- Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Jae-Won Lee
- School of Electronics Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jae Gyeong Lee
- Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Hak-Rin Kim
- School of Electronics Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| | - Jeong Jae Wie
- Department of Polymer Science and Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
30
|
Ling Y, Pang W, Li X, Goswami S, Xu Z, Stroman D, Liu Y, Fei Q, Xu Y, Zhao G, Sun B, Xie J, Huang G, Zhang Y, Yan Z. Laser-Induced Graphene for Electrothermally Controlled, Mechanically Guided, 3D Assembly and Human-Soft Actuators Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908475. [PMID: 32173920 DOI: 10.1002/adma.201908475] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 05/18/2023]
Abstract
Mechanically guided, 3D assembly has attracted broad interests, owing to its compatibility with planar fabrication techniques and applicability to a diversity of geometries and length scales. Its further development requires the capability of on-demand reversible shape reconfigurations, desirable for many emerging applications (e.g., responsive metamaterials, soft robotics). Here, the design, fabrication, and modeling of soft electrothermal actuators based on laser-induced graphene (LIG) are reported and their applications in mechanically guided 3D assembly and human-soft actuators interaction are explored. Over 20 complex 3D architectures are fabricated, including reconfigurable structures that can reshape among three distinct geometries. Also, the structures capable of maintaining 3D shapes at room temperature without the need for any actuation are realized by fabricating LIG actuators at an elevated temperature. Finite element analysis can quantitatively capture key aspects that govern electrothermally controlled shape transformations, thereby providing a reliable tool for rapid design optimization. Furthermore, their applications are explored in human-soft actuators interaction, including elastic metamaterials with human gesture-controlled bandgap behaviors and soft robotic fingers which can measure electrocardiogram from humans in an on-demand fashion. Other demonstrations include artificial muscles, which can lift masses that are about 110 times of their weights and biomimetic frog tongues which can prey insects.
Collapse
Affiliation(s)
- Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Wenbo Pang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaopeng Li
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Shivam Goswami
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Zheng Xu
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
- The State Key Laboratory for Manufacturing and Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - David Stroman
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Yachao Liu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Qihui Fei
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Yadong Xu
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Bohan Sun
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Guoliang Huang
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zheng Yan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, 65211, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|