1
|
Chen S, Jin J, Wang W, Wang S, Du X, Wang F, Ma L, Wang J, Wang C, Zhang X, Liu Q. Thermally tunable anti-ambipolar heterojunction devices. Phys Chem Chem Phys 2024; 26:23438-23446. [PMID: 39221572 DOI: 10.1039/d4cp02937b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Two-dimensional materials and their van der Waals heterostructures have emerged as a research focal point for constructing various innovative electronic devices due to their distinct photonic and electronic properties. Among them, anti-ambipolar devices, characterized by their unique nonlinear electrical behavior, have garnered attention as novel multifunctional components, positioning them as potential contenders for building multi-state logic devices. Utilizing the properties of few-layer As0.4P0.6 and PdSe2, we have constructed an anti-ambipolar heterojunction device. At 300 K, the device exhibits a peak voltage (Vpeak) of -3 V and a peak-to-valley ratio (PVR) close to 8 × 103, and the PVR can be modulated by bias voltage. Furthermore, by characterizing the anti-ambipolar attributes at different temperatures ranging from 80 K to 330 K, we have elucidated the thermally tunable feature of the device. At 330 K, a certain PVR (∼103) and a large Vpeak (∼-16 V) are obtained, while a PVR exceeding 108 has been achieved at 80 K. This temperature-related sensitivity empowers the device with significant potential and thermal tunability in various applications.
Collapse
Affiliation(s)
- Shengyao Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics, School of Physics, Nankai University, Tianjin 300457, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiyou Jin
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxiang Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shu Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoshan Du
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| | - Feng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Ma
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| | - Junqi Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| | - Cong Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinzheng Zhang
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics, School of Physics, Nankai University, Tianjin 300457, China.
| | - Qian Liu
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics, School of Physics, Nankai University, Tianjin 300457, China.
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology &University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Xia Y, Lin N, Zha J, Huang H, Zhang Y, Liu H, Tong J, Xu S, Yang P, Wang H, Zheng L, Zhang Z, Yang Z, Chen Y, Chan HP, Wang Z, Tan C. 2D Reconfigurable Memory Device Enabled by Defect Engineering for Multifunctional Neuromorphic Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403785. [PMID: 39007279 DOI: 10.1002/adma.202403785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Indexed: 07/16/2024]
Abstract
In this era of artificial intelligence and Internet of Things, emerging new computing paradigms such as in-sensor and in-memory computing call for both structurally simple and multifunctional memory devices. Although emerging two-dimensional (2D) memory devices provide promising solutions, the most reported devices either suffer from single functionalities or structural complexity. Here, this work reports a reconfigurable memory device (RMD) based on MoS2/CuInP2S6 heterostructure, which integrates the defect engineering-enabled interlayer defects and the ferroelectric polarization in CuInP2S6, to realize a simplified structure device for all-in-one sensing, memory and computing. The plasma treatment-induced defect engineering of the CuInP2S6 nanosheet effectively increases the interlayer defect density, which significantly enhances the charge-trapping ability in synergy with ferroelectric properties. The reported device not only can serve as a non-volatile electronic memory device, but also can be reconfigured into optoelectronic memory mode or synaptic mode after controlling the ferroelectric polarization states in CuInP2S6. When operated in optoelectronic memory mode, the all-in-one RMD could diagnose ophthalmic disease by segmenting vasculature within biological retinas. On the other hand, operating as an optoelectronic synapse, this work showcases in-sensor reservoir computing for gesture recognition with high energy efficiency.
Collapse
Affiliation(s)
- Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Ning Lin
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jiajia Zha
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong SAR, 999077, China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yiwen Zhang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Handa Liu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jinyi Tong
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Songcen Xu
- Department of Electrical and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Peng Yang
- College of Integrated Circuits and Optoelectronic Chips, Shenzhen Technology University, Shenzhen, 518118, China
| | - Huide Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Long Zheng
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China
| | - Ye Chen
- Department of Chemistry, Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Hau Ping Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Zhongrui Wang
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
3
|
Bian R, He R, Pan E, Li Z, Cao G, Meng P, Chen J, Liu Q, Zhong Z, Li W, Liu F. Developing fatigue-resistant ferroelectrics using interlayer sliding switching. Science 2024; 385:57-62. [PMID: 38843352 DOI: 10.1126/science.ado1744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/24/2024] [Indexed: 07/06/2024]
Abstract
Ferroelectric materials have switchable electrical polarization that is appealing for high-density nonvolatile memories. However, inevitable fatigue hinders practical applications of these materials. Fatigue-free ferroelectric switching could dramatically improve the endurance of such devices. We report a fatigue-free ferroelectric system based on the sliding ferroelectricity of bilayer 3R molybdenum disulfide (3R-MoS2). The memory performance of this ferroelectric device does not show the wake-up effect at low cycles or a substantial fatigue effect after 106 switching cycles under different pulse widths. The total stress time of the device under an electric field is up to 105 s, which is long relative to other devices. Our theoretical calculations reveal that the fatigue-free feature of sliding ferroelectricity is due to the immobile charge defects in sliding ferroelectricity.
Collapse
Affiliation(s)
- Renji Bian
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Ri He
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Er Pan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zefen Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guiming Cao
- School of Information Science and Technology, Xi Chang University, Xi Chang 615013, China
- Key Laboratory of Liangshan Agriculture Digital Transformation of Sichuan Provincial Education Department, Xi Chang University, Xi Chang 615013, China
| | - Peng Meng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiangang Chen
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qing Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhicheng Zhong
- Key Laboratory of Magnetic Materials Devices & Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
- State Key Laboratory of Photovoltaic Science and Technology, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
4
|
Liu Y, Wu Y, Duan R, Fu J, Ovesen M, Lai SCE, Yeo TE, Chee JY, Chen Y, Teo SL, Tan HR, Zhang W, Yang JKW, Thygesen KS, Liu Z, Zhang YW, Teng J. Linear Electro-Optic Effect in 2D Ferroelectric for Electrically Tunable Metalens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401838. [PMID: 38748700 DOI: 10.1002/adma.202401838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The advent of 2D ferroelectrics, characterized by their spontaneous polarization states in layer-by-layer domains without the limitation of a finite size effect, brings enormous promise for applications in integrated optoelectronic devices. Comparing with semiconductor/insulator devices, ferroelectric devices show natural advantages such as non-volatility, low energy consumption and high response speed. Several 2D ferroelectric materials have been reported, however, the device implementation particularly for optoelectronic application remains largely hypothetical. Here, the linear electro-optic effect in 2D ferroelectrics is discovered and electrically tunable 2D ferroelectric metalens is demonstrated. The linear electric-field modulation of light is verified in 2D ferroelectric CuInP2S6. The in-plane phase retardation can be continuously tuned by a transverse DC electric field, yielding an effective electro-optic coefficient rc of 20.28 pm V-1. The CuInP2S6 crystal exhibits birefringence with the fast axis oriented along its (010) plane. The 2D ferroelectric Fresnel metalens shows efficacious focusing ability with an electrical modulation efficiency of the focusing exceeding 34%. The theoretical analysis uncovers the origin of the birefringence and unveil its ultralow light absorption across a wide wavelength range in this non-excitonic system. The van der Waals ferroelectrics enable room-temperature electrical modulation of light and offer the freedom of heterogeneous integration with silicon and another material system for highly compact and tunable photonics and metaoptics.
Collapse
Affiliation(s)
- Yuanda Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yaze Wu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Ruihuan Duan
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jichao Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Martin Ovesen
- CAMD, Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Samuel Chang En Lai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Think-E Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Jing Yee Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yunjie Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Siew Lang Teo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Hui Ru Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wang Zhang
- Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Joel K W Yang
- Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | | | - Zheng Liu
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Nanyang Technological University, Singapore, 637371, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
5
|
Van Winkle M, Dowlatshahi N, Khaloo N, Iyer M, Craig IM, Dhall R, Taniguchi T, Watanabe K, Bediako DK. Engineering interfacial polarization switching in van der Waals multilayers. NATURE NANOTECHNOLOGY 2024; 19:751-757. [PMID: 38504024 DOI: 10.1038/s41565-024-01642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
In conventional ferroelectric materials, polarization is an intrinsic property limited by bulk crystallographic structure and symmetry. Recently, it has been demonstrated that polar order can also be accessed using inherently non-polar van der Waals materials through layer-by-layer assembly into heterostructures, wherein interfacial interactions can generate spontaneous, switchable polarization. Here we show that deliberate interlayer rotations in multilayer van der Waals heterostructures modulate both the spatial ordering and switching dynamics of polar domains. The engendered tunability is unparalleled in conventional bulk ferroelectrics or polar bilayers. By means of operando transmission electron microscopy we show how alterations of the relative rotations of three WSe2 layers produce structural polytypes with distinct arrangements of polar domains with either a global or localized switching response. Furthermore, the presence of uniaxial strain generates structural anisotropy that yields a range of switching behaviours, coercivities and even tunable biased responses. We also provide evidence of mechanical coupling between the two interfaces of the trilayer, a key consideration for the control of switching dynamics in polar multilayer structures more broadly.
Collapse
Affiliation(s)
- Madeline Van Winkle
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Nikita Dowlatshahi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Nikta Khaloo
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Mrinalni Iyer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Isaac M Craig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Rohan Dhall
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
6
|
Chen C, Zhou Y, Tong L, Pang Y, Xu J. Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2400332. [PMID: 38739927 DOI: 10.1002/adma.202400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Indexed: 05/16/2024]
Abstract
The quantity of sensor nodes within current computing systems is rapidly increasing in tandem with the sensing data. The presence of a bottleneck in data transmission between the sensors, computing, and memory units obstructs the system's efficiency and speed. To minimize the latency of data transmission between units, novel in-memory and in-sensor computing architectures are proposed as alternatives to the conventional von Neumann architecture, aiming for data-intensive sensing and computing applications. The integration of 2D materials and 2D ferroelectric materials has been expected to build these novel sensing and computing architectures due to the dangling-bond-free surface, ultra-fast polarization flipping, and ultra-low power consumption of the 2D ferroelectrics. Here, the recent progress of 2D ferroelectric devices for in-sensing and in-memory neuromorphic computing is reviewed. Experimental and theoretical progresses on 2D ferroelectric devices, including passive ferroelectrics-integrated 2D devices and active ferroelectrics-integrated 2D devices, are reviewed followed by the integration of perception, memory, and computing application. Notably, 2D ferroelectric devices have been used to simulate synaptic weights, neuronal model functions, and neural networks for image processing. As an emerging device configuration, 2D ferroelectric devices have the potential to expand into the sensor-memory and computing integration application field, leading to new possibilities for modern electronics.
Collapse
Affiliation(s)
- Chunsheng Chen
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaoqiang Zhou
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lei Tong
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yue Pang
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianbin Xu
- Department of Electronic Engineering and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Cheng J, Yuan JH, Li PY, Wang J, Wang Y, Zhang YW, Zheng Y, Zhang P. Applying the Wake-Up-like Effect to Enhance the Capabilities of Two-Dimensional Ferroelectric Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38712685 DOI: 10.1021/acsami.4c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
For traditional ferroelectric field-effect transistors (FeFETs), enhancing the polarization domain of bulk ferroelectric materials is essential to improve device performance. However, there has been limited investigation into the enhancement of polarization field in two-dimensional (2D) ferroelectric material such as CuInP2S6 (CIPS). In this study, similar to bulk ferroelectric materials, CIPS exhibited enhanced polarization field upon application of external cyclic voltage. Moreover, unlike traditional ferroelectric materials, the polarization enhancement of CIPS is not due to redistribution of the defect but rather originates from a mechanism: the long-distance migration of Cu ions. We termed this mechanism the "wake-up-like effect". After incorporating the wake-up-like effect into the graphene/CIPS/WSe2 FeFET device, we successfully increased the hysteresis window and enhanced the current on/off ratio by 4 orders of magnitude. Moreover, the FeFET yielded remarkable achievements, such as multilevel nonvolatile memory with 21 distinct conductance levels, a high on/off ratio exceeding 106, a long retention time exceeding 103 s, and neuromorphic computing with 93% accuracy at recognizing handwritten digits. Introducing the wake-up-like effect to 2D CIPS may pave the way for innovative approaches to achieve advanced multilevel nonvolatile memory and neuromorphic computing capabilities for next-generation micro-nanoelectronic devices.
Collapse
Affiliation(s)
- Jie Cheng
- The State Key Laboratory of Precision Manufacturing for Extreme Service Performance, School of Mechanical and Electrical Engineering, Central South University, Changsha 410073, China
| | - Jun-Hui Yuan
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Pei Yue Li
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Jiafu Wang
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Yuan Wang
- Institute of Microelectronics, State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa 999078, Macau, China
| | - You Wei Zhang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Zheng
- The State Key Laboratory of Precision Manufacturing for Extreme Service Performance, School of Mechanical and Electrical Engineering, Central South University, Changsha 410073, China
| | - Pan Zhang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing 100871, China
- Institute of Microelectronics, State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
8
|
Liu Q, Cui S, Bian R, Pan E, Cao G, Li W, Liu F. The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. ACS NANO 2024; 18:1778-1819. [PMID: 38179983 DOI: 10.1021/acsnano.3c05711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In recent years, there has been growing interest in functional devices based on two-dimensional (2D) materials, which possess exotic physical properties. With an ultrathin thickness, the optoelectrical and electrical properties of 2D materials can be effectively tuned by an external field, which has stimulated considerable scientific activities. Ferroelectric fields with a nonvolatile and electrically switchable feature have exhibited enormous potential in controlling the electronic and optoelectronic properties of 2D materials, leading to an extremely fertile area of research. Here, we review the 2D materials and relevant devices integrated with ferroelectricity. This review starts to introduce the background about the concerned themes, namely 2D materials and ferroelectrics, and then presents the fundamental mechanisms, tuning strategies, as well as recent progress of the ferroelectric effect on the optical and electrical properties of 2D materials. Subsequently, the latest developments of 2D material-based electronic and optoelectronic devices integrated with ferroelectricity are summarized. Finally, the future outlook and challenges of this exciting field are suggested.
Collapse
Affiliation(s)
- Qing Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Silin Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Renji Bian
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Er Pan
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guiming Cao
- School of Information Science and Technology, Xi Chang University, 615013 Xi'an, China
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Fucai Liu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313099, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
9
|
Wang P, Li J, Xue W, Ci W, Jiang F, Shi L, Zhou F, Zhou P, Xu X. Integrated In-Memory Sensor and Computing of Artificial Vision Based on Full-vdW Optoelectronic Ferroelectric Field-Effect Transistor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305679. [PMID: 38029338 PMCID: PMC10797471 DOI: 10.1002/advs.202305679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Indexed: 12/01/2023]
Abstract
The development and application of artificial intelligence have led to the exploitation of low-power and compact intelligent information-processing systems integrated with sensing, memory, and neuromorphic computing functions. The 2D van der Waals (vdW) materials with abundant reservoirs for arbitrary stacking based on functions and enabling continued device downscaling offer an attractive alternative for continuously promoting artificial intelligence. In this study, full 2D SnS2 /h-BN/CuInP2 S6 (CIPS)-based ferroelectric field-effect transistors (Fe-FETs) and utilized light-induced ferroelectric polarization reversal to achieve excellent memory properties and multi-functional sensing-memory-computing vision simulations are designed. The device exhibits a high on/off current ratio of over 105 , long retention time (>104 s), stable cyclic endurance (>350 cycles), and 128 multilevel current states (7-bit). In addition, fundamental synaptic plasticity characteristics are emulated including paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), long-term potentiation, and long-term depression. A ferroelectric optoelectronic reservoir computing system for the Modified National Institute of Standards and Technology (MNIST) handwritten digital recognition achieved a high accuracy of 93.62%. Furthermore, retina-like light adaptation and Pavlovian conditioning are successfully mimicked. These results provide a strategy for developing a multilevel memory and novel neuromorphic vision systems with integrated sensing-memory-processing.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials ScienceShanxi Normal UniversityTaiyuan030031China
| | - Jie Li
- School of MicroelectronicsSouthern University of Science and TechnologyShenzhen518000China
| | - Wuhong Xue
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials ScienceShanxi Normal UniversityTaiyuan030031China
| | - Wenjuan Ci
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials ScienceShanxi Normal UniversityTaiyuan030031China
| | - Fengxian Jiang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials ScienceShanxi Normal UniversityTaiyuan030031China
| | - Lei Shi
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials ScienceShanxi Normal UniversityTaiyuan030031China
| | - Feichi Zhou
- School of MicroelectronicsSouthern University of Science and TechnologyShenzhen518000China
| | - Peng Zhou
- ASIC & System State Key Lab School of MicroelectronicsFudan UniversityShanghai200433China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & School of Chemistry and Materials ScienceShanxi Normal UniversityTaiyuan030031China
| |
Collapse
|
10
|
Ma Y, Yan Y, Luo L, Pazos S, Zhang C, Lv X, Chen M, Liu C, Wang Y, Chen A, Li Y, Zheng D, Lin R, Algaidi H, Sun M, Liu JZ, Tu S, Alshareef HN, Gong C, Lanza M, Xue F, Zhang X. High-performance van der Waals antiferroelectric CuCrP 2S 6-based memristors. Nat Commun 2023; 14:7891. [PMID: 38036500 PMCID: PMC10689492 DOI: 10.1038/s41467-023-43628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Layered thio- and seleno-phosphate ferroelectrics, such as CuInP2S6, are promising building blocks for next-generation nonvolatile memory devices. However, because of the low Curie point, the CuInP2S6-based memory devices suffer from poor thermal stability (<42 °C). Here, exploiting the electric field-driven phase transition in the rarely studied antiferroelectric CuCrP2S6 crystals, we develop a nonvolatile memristor showing a sizable resistive-switching ratio of ~ 1000, high switching endurance up to 20,000 cycles, low cycle-to-cycle variation, and robust thermal stability up to 120 °C. The resistive switching is attributed to the ferroelectric polarization-modulated thermal emission accompanied by the Fowler-Nordheim tunneling across the interfaces. First-principles calculations reveal that the good device performances are associated with the exceptionally strong ferroelectric polarization in CuCrP2S6 crystal. Furthermore, the typical biological synaptic learning rules, such as long-term potentiation/depression and spike amplitude/spike time-dependent plasticity, are also demonstrated. The results highlight the great application potential of van der Waals antiferroelectrics in high-performance synaptic devices for neuromorphic computing.
Collapse
Affiliation(s)
- Yinchang Ma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yuan Yan
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Vic, 3010, Australia
| | - Linqu Luo
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sebastian Pazos
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xiang Lv
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Maolin Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chen Liu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yizhou Wang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Aitian Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yan Li
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Dongxing Zheng
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Rongyu Lin
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Hanin Algaidi
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Minglei Sun
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Vic, 3010, Australia
| | - Shaobo Tu
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Husam N Alshareef
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Cheng Gong
- Department of Electrical and Computer Engineering and Quantum Technology Center, University of Maryland, College Park, MD, 20742, USA
| | - Mario Lanza
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Fei Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311215, China.
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Zhang C, Ning J, Wang D, Zhang J, Hao Y. A review on advanced band-structure engineering with dynamic control for nonvolatile memory based 2D transistors. NANOTECHNOLOGY 2023; 35:042001. [PMID: 37524059 DOI: 10.1088/1361-6528/acebf4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
With advancements in information technology, an enormous amount of data is being generated that must be quickly accessible. However, conventional Si memory cells are approaching their physical limits and will be unable to meet the requirements of intense applications in the future. Notably, 2D atomically thin materials have demonstrated multiple novel physical and chemical properties that can be used to investigate next-generation electronic devices and breakthrough physical limits to continue Moore's law. Band structure is an important semiconductor parameter that determines their electrical and optical properties. In particular, 2D materials have highly tunable bandgaps and Fermi levels that can be achieved through band structure engineering methods such as heterostructure, substrate engineering, chemical doping, intercalation, and electrostatic doping. In particular, dynamic control of band structure engineering can be used in recent advancements in 2D devices to realize nonvolatile storage performance. This study examines recent advancements in 2D memory devices that utilize band structure engineering. The operational mechanisms and memory characteristics are described for each band structure engineering method. Band structure engineering provides a platform for developing new structures and realizing superior performance with respect to nonvolatile memory.
Collapse
Affiliation(s)
- Chi Zhang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| | - Jing Ning
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| | - Dong Wang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
- Xidian-Wuhu Research Institute, Wuhu 241000, People's Republic of China
| | - Jincheng Zhang
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| | - Yue Hao
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, People's Republic of China
- Shaanxi Joint Key Laboratory of Graphene, Xidian University, Xi'an 710071, People's Republic of China
| |
Collapse
|
12
|
Su Y, Ding C, Yao Y, Fu R, Xue M, Liu X, Lin J, Wang F, Zhan X, Wang Z. Orietation-controlled synthesis and Raman study of 2D SnTe. NANOTECHNOLOGY 2023; 34:505206. [PMID: 37729885 DOI: 10.1088/1361-6528/acfb8b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Tin telluride (SnTe), as a narrow bandgap semiconductor material, has great potential for developing photodetectors with wide spectra and ultra-fast response. At the same time, it is also an important topological crystal insulator material, with different topological surface states on several common surfaces. Here, we introduce different Sn sources and control the growth of regular SnTe nanosheets along the (100) and (111) planes through the atmospheric pressure chemical vapor deposition method. It has been proven through various characterizations that the synthesized SnTe is a high-quality single crystal. In addition, the angular resolved Raman spectra of SnTe nanosheets grown on different crystal planes are first demonstrated. The experimental results showed that square SnTe nanosheets grown along the (100) plane exhibit in-plane anisotropy. At the same time, we use micro-nanofabrication technology to manufacture SnTe-based field effect transistors and photodetectors to explore their electrical and optoelectronic properties. It has been confirmed that transistors based on grown SnTe nanosheets exhibit p-type semiconductor characteristics and have a high response to infrared light. This work provides a new approach for the controllable synthesis of SnTe and adds new content to the research of SnTe-based infrared detectors.
Collapse
Affiliation(s)
- Yanfei Su
- Department of Physics, Shanghai University of Electric Power, Shanghai 201306, People's Republic of China
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Chuyun Ding
- Department of Physics, Shanghai University of Electric Power, Shanghai 201306, People's Republic of China
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Yuyu Yao
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rao Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mengfei Xue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiaolin Liu
- Department of Physics, Shanghai University of Electric Power, Shanghai 201306, People's Republic of China
| | - Jia Lin
- Department of Physics, Shanghai University of Electric Power, Shanghai 201306, People's Republic of China
| | - Feng Wang
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xueying Zhan
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Zhenxing Wang
- National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Wang K, Li D, Wang J, Hao Y, Anderson H, Yang L, Hong X. Interface-Tuning of Ferroelectricity and Quadruple-Well State in CuInP 2S 6 via Ferroelectric Oxide. ACS NANO 2023; 17:15787-15795. [PMID: 37552805 DOI: 10.1021/acsnano.3c03567] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Ferroelectric van der Waals CuInP2S6 possesses intriguing quadruple-well states and negative piezoelectricity. Its technological implementation has been impeded by the relatively low Curie temperature (bulk TC ∼ 42 °C) and the lack of precise domain control. Here we show that CuInP2S6 can be immune to the finite size effect and exhibits enhanced ferroelectricity, piezoelectricity, and polar alignment in the ultrathin limit when it is interfaced with ferroelectric oxide PbZr0.2Ti0.8O3 films. Piezoresponse force microscopy studies reveal that the polar domains in thin CuInP2S6 fully conform to those of the underlying PbZr0.2Ti0.8O3, where the piezoelectric coefficient changes sign and increases sharply with reducing thickness. High temperature in situ domain imaging points to a significantly enhanced TC of >200 °C for 13 nm CuInP2S6 on PbZr0.2Ti0.8O3. Density functional theory modeling and Monte Carlo simulations show that the enhanced polar alignment and TC can be attributed to interface-mediated structure distortion in CuInP2S6. Our study provides an effective material strategy to engineer the polar properties of CuInP2S6 for flexible nanoelectronic, optoelectronic, and mechanical applications.
Collapse
Affiliation(s)
- Kun Wang
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States
| | - Du Li
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Jia Wang
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States
| | - Yifei Hao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States
| | - Hailey Anderson
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States
| | - Li Yang
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130-4899, United States
| | - Xia Hong
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0299, United States
| |
Collapse
|
14
|
Wang H, Wen Y, Zeng H, Xiong Z, Tu Y, Zhu H, Cheng R, Yin L, Jiang J, Zhai B, Liu C, Shan C, He J. 2D Ferroic Materials for Nonvolatile Memory Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305044. [PMID: 37486859 DOI: 10.1002/adma.202305044] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The emerging nonvolatile memory technologies based on ferroic materials are promising for producing high-speed, low-power, and high-density memory in the field of integrated circuits. Long-range ferroic orders observed in 2D materials have triggered extensive research interest in 2D magnets, 2D ferroelectrics, 2D multiferroics, and their device applications. Devices based on 2D ferroic materials and heterostructures with an atomically smooth interface and ultrathin thickness have exhibited impressive properties and significant potential for developing advanced nonvolatile memory. In this context, a systematic review of emergent 2D ferroic materials is conducted here, emphasizing their recent research on nonvolatile memory applications, with a view to proposing brighter prospects for 2D magnetic materials, 2D ferroelectric materials, 2D multiferroic materials, and their relevant devices.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hui Zeng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ziren Xiong
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yangyuan Tu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Hao Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Baoxing Zhai
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430079, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
15
|
Zhao Y, Chi M, Liu J, Zhai J. Asymmetric two-dimensional ferroelectric transistor with anti-ambipolar transport characteristics. DISCOVER NANO 2023; 18:83. [PMID: 37382739 DOI: 10.1186/s11671-023-03860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023]
Abstract
Two-dimensional (2D) ferroelectric transistors hold unique properties and positions, especially talking about low-power memories, in-memory computing, and multifunctional logic devices. To achieve better functions, appropriate design of new device structures and material combinations is necessary. We present an asymmetric 2D heterostructure integrating MoTe2, h-BN, and CuInP2S6 as a ferroelectric transistor, which exhibits an unusual property of anti-ambipolar transport characteristic under both positive and negative drain biases. Our results demonstrate that the anti-ambipolar behavior can be modulated by external electric field, achieving a peak-to-valley ratio up to 103. We also provide a comprehensive explanation for the occurrence and modulation of the anti-ambipolar peak based on a model describing linked lateral-and-vertical charge behaviors. Our findings provide insights for designing and constructing anti-ambipolar transistors and other 2D devices with significant potential for future applications.
Collapse
Affiliation(s)
- Yilin Zhao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengshuang Chi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jitao Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyi Zhai
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Duan Y, Song M, Sun F, Xu Y, Shi F, Wang H, Zheng Y, He C, Liu X, Wei C, Deng X, Chen L, Liu F, Wang D. Controlling Isomerization of Photoswitches to Modulate 2D Logic-in-Memory Devices by Organic-Inorganic Interfacial Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207443. [PMID: 36905234 PMCID: PMC10161064 DOI: 10.1002/advs.202207443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Indexed: 05/06/2023]
Abstract
Logic-in-memory devices are a promising and powerful approach to realize data processing and storage driven by electrical bias. Here, an innovative strategy is reported to achieve the multistage photomodulation of 2D logic-in-memory devices, which is realized by controlling the photoisomerization of donor-acceptor Stenhouse adducts (DASAs) on the surface of graphene. Alkyl chains with various carbon spacer lengths (n = 1, 5, 11, and 17) are introduced onto DASAs to optimize the organic-inorganic interfaces: 1) Prolonging the carbon spacers weakens the intermolecular aggregation and promotes isomerization in the solid state. 2) Too long alkyl chains induce crystallization on the surface and hinder the photoisomerization. Density functional theory calculation indicates that the photoisomerization of DASAs on the graphene surface is thermodynamically promoted by increasing the carbon spacer lengths. The 2D logic-in-memory devices are fabricated by assembling DASAs onto the surface. Green light irradiation increases the drain-source current (Ids ) of the devices, while heat triggers a reversed transfer. The multistage photomodulation is achieved by well-controlling the irradiation time and intensity. The strategy based on the dynamic control of 2D electronics by light integrates molecular programmability into the next generation of nanoelectronics.
Collapse
Affiliation(s)
- Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Miaomiao Song
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yi Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fanfan Shi
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hong Wang
- Department of Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
- Department of Orthopedic, Sichuan Provincial People's Hospital and Sichuan Academy of Medical Science and Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Chao He
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xilin Liu
- Department of Orthopedic, Sichuan Provincial People's Hospital and Sichuan Academy of Medical Science and Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu, 610072, P. R. China
| | - Chen Wei
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Longquan Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
17
|
Wang C, You L, Cobden D, Wang J. Towards two-dimensional van der Waals ferroelectrics. NATURE MATERIALS 2023; 22:542-552. [PMID: 36690757 DOI: 10.1038/s41563-022-01422-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/27/2022] [Indexed: 05/05/2023]
Abstract
The discovery of ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials has brought important functionalities to the 2D materials family, and may trigger a revolution in next-generation nanoelectronics and spintronics. In this Perspective, we briefly review recent progress in the field of 2D vdW ferroelectrics, focusing on the mechanisms that drive spontaneous polarization in 2D systems, unique properties brought about by the reduced lattice dimensionality and promising applications of 2D vdW ferroelectrics. We finish with an outlook for challenges that need to be addressed and our view on possible future research directions.
Collapse
Affiliation(s)
- Chuanshou Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Lu You
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, China.
| | - David Cobden
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China.
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
18
|
Iqbal MA, Xie H, Qi L, Jiang WC, Zeng YJ. Recent Advances in Ferroelectric-Enhanced Low-Dimensional Optoelectronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205347. [PMID: 36634972 DOI: 10.1002/smll.202205347] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Ferroelectric (FE) materials, including BiFeO3 , P(VDF-TrFE), and CuInP2 S6 , are a type of dielectric material with a unique, spontaneous electric polarization that can be reversed by applying an external electric field. The combination of FE and low-dimensional materials produces synergies, sparking significant research interest in solar cells, photodetectors (PDs), nonvolatile memory, and so on. The fundamental aspects of FE materials, including the origin of FE polarization, extrinsic FE materials, and FE polarization quantification are first discussed. Next, the state-of-the-art of FE-based optoelectronic devices is focused. How FE materials affect the energy band of channel materials and how device structures influence PD performance are also summarized. Finally, the future directions of this rapidly growing field are discussed.
Collapse
Affiliation(s)
- Muhammad Ahsan Iqbal
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haowei Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lu Qi
- Key Laboratory of Advanced Optical Precision Manufacturing Technology of Guangdong Higher Education Institutes, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Wei-Chao Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
19
|
Wang W, Meng Y, Zhang Y, Zhang Z, Wang W, Lai Z, Xie P, Li D, Chen D, Quan Q, Yin D, Liu C, Yang Z, Yip S, Ho JC. Electrically Switchable Polarization in Bi 2 O 2 Se Ferroelectric Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210854. [PMID: 36621966 DOI: 10.1002/adma.202210854] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Atomically 2D layered ferroelectric semiconductors, in which the polarization switching process occurs within the channel material itself, offer a new material platform that can drive electronic components toward structural simplification and high-density integration. Here, a room-temperature 2D layered ferroelectric semiconductor, bismuth oxychalcogenides (Bi2 O2 Se), is investigated with a thickness down to 7.3 nm (≈12 layers) and piezoelectric coefficient (d33 ) of 4.4 ± 0.1 pm V-1 . The random orientations and electrically dependent polarization of the dipoles in Bi2 O2 Se are separately uncovered owing to the structural symmetry-breaking at room temperature. Specifically, the interplay between ferroelectricity and semiconducting characteristics of Bi2 O2 Se is explored on device-level operation, revealing the hysteresis behavior and memory window (MW) formation. Leveraging the ferroelectric polarization originating from Bi2 O2 Se, the fabricated device exhibits "smart" photoresponse tunability and excellent electronic characteristics, e.g., a high on/off current ratio > 104 and a large MW to the sweeping range of 47% at VGS = ±5 V. These results demonstrate the synergistic combination of ferroelectricity with semiconducting characteristics in Bi2 O2 Se, laying the foundation for integrating sensing, logic, and memory functions into a single material system that can overcome the bottlenecks in von Neumann architecture.
Collapse
Affiliation(s)
- Weijun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - You Meng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuxuan Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Wei Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhengxun Lai
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Pengshan Xie
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Dengji Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Dong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Quan Quan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Di Yin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Chuntai Liu
- Key Laboratory of Advanced Materials Processing & Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002, P. R. China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - SenPo Yip
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
| | - Johnny C Ho
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
20
|
Lai H, Lu Z, Lu Y, Yao X, Xu X, Chen J, Zhou Y, Liu P, Shi T, Wang X, Xie W. Fast, Multi-Bit, and Vis-Infrared Broadband Nonvolatile Optoelectronic Memory with MoS 2 /2D-Perovskite Van der Waals Heterojunction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208664. [PMID: 36453570 DOI: 10.1002/adma.202208664] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Nonvolatile optoelectronic memory (NVOM) integrating the functions of optical sensing and long-term memory can efficiently process and store a large amount of visual scene information, which has become the core requirement of multiple intelligence scenarios. However, realizing NVOM with vis-infrared broadband response is still challenging. Herein, the room temperature vis-infrared broadband NVOM based on few-layer MoS2 /2D Ruddlesden-Popper perovskite (2D-RPP) van der Waals heterojunction is realized. It is found that the 2D-RPP converts the initial n-type MoS2 into p-type and facilitates hole transfer between them. Furthermore, the 2D-RPP rich in interband states serves as an effective electron trapping layer as well as broadband photoresponsive layer. As a result, the dielectric-free MoS2 /2D-RPP heterojunction enables the charge to transfer quickly under external field, which enables a large memory window (104 V), fast write speed of 20 µs, and optical programmable characteristics from visible light (405 nm) to telecommunication wavelengths (i.e., 1550 nm) at room temperature. Trapezoidal optical programming can produce up to 100 recognizable states (>6 bits), with operating energy as low as 5.1 pJ per optical program. These results provide a route to realize fast, low power, multi-bit optoelectronic memory from visible to the infrared wavelength.
Collapse
Affiliation(s)
- Haojie Lai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Zhengli Lu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yueheng Lu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xuanchun Yao
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xin Xu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yang Zhou
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Pengyi Liu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Tingting Shi
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiaomu Wang
- School of Electronic Science and Technology, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
21
|
Li W, Guo Y, Luo Z, Wu S, Han B, Hu W, You L, Watanabe K, Taniguchi T, Alava T, Chen J, Gao P, Li X, Wei Z, Wang LW, Liu YY, Zhao C, Zhan X, Han ZV, Wang H. A Gate Programmable van der Waals Metal-Ferroelectric-Semiconductor Vertical Heterojunction Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208266. [PMID: 36398430 DOI: 10.1002/adma.202208266] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Ferroelectricity, one of the keys to realize non-volatile memories owing to the remanent electric polarization, is an emerging phenomenon in the 2D limit. Yet the demonstrations of van der Waals (vdW) memories using 2D ferroelectric materials as an ingredient are very limited. Especially, gate-tunable ferroelectric vdW memristive device, which holds promises in future multi-bit data storage applications, remains challenging. Here, a gate-programmable multi-state memory is shown by vertically assembling graphite, CuInP2 S6 , and MoS2 layers into a metal(M)-ferroelectric(FE)-semiconductor(S) architecture. The resulted devices seamlessly integrate the functionality of both FE-memristor (with ON-OFF ratios exceeding 105 and long-term retention) and metal-oxide-semiconductor field effect transistor (MOS-FET). Thus, it yields a prototype of gate tunable giant electroresistance with multi-levelled ON-states in the FE-memristor in the vertical vdW assembly. First-principles calculations further reveal that such behaviors originate from the specific band alignment between the FE-S interface. Our findings pave the way for the engineering of ferroelectricity-mediated memories in future implementations of 2D nanoelectronics.
Collapse
Affiliation(s)
- Wanying Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Material Science and Engineering, University of Science and Technology of China, Anhui, 230026, P. R. China
| | - Yimeng Guo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
- School of Material Science and Engineering, University of Science and Technology of China, Anhui, 230026, P. R. China
| | - Zhaoping Luo
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Shuhao Wu
- School of Information Science and Engineering (ISE), Shandong University, Qingdao, 266000, P. R. China
| | - Bo Han
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Weijin Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Lu You
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou, 215006, P. R. China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Thomas Alava
- Université Grenoble Alpes, CEA, LETI, Grenoble, 38000, France
| | - Jiezhi Chen
- School of Information Science and Engineering (ISE), Shandong University, Qingdao, 266000, P. R. China
| | - Peng Gao
- International Center for Quantum Materials, and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, P. R. China
| | - Xiuyan Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Lin-Wang Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Chengxin Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xuepeng Zhan
- School of Information Science and Engineering (ISE), Shandong University, Qingdao, 266000, P. R. China
| | - Zheng Vitto Han
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, P. R. China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, P. R. China
| | - Hanwen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| |
Collapse
|
22
|
Anisotropic electronic transport properties in two-dimensional ferroelectric In 2Se 3 monolayer. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Xie H, Kang C, Iqbal MA, Weng X, Wu K, Tang W, Qi L, Zeng YJ. Ferroelectric Tuning of ZnO Ultraviolet Photodetectors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3358. [PMID: 36234488 PMCID: PMC9565710 DOI: 10.3390/nano12193358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The ferroelectric field effect transistor (Fe-FET) is considered to be one of the most important low-power and high-performance devices. It is promising to combine a ferroelectric field effect with a photodetector to improve the photodetection performance. This study proposes a strategy for ZnO ultraviolet (UV) photodetectors regulated by a ferroelectric gate. The ZnO nanowire (NW) UV photodetector was tuned by a 2D CuInP2S6 (CIPS) ferroelectric gate, which decreased the dark current and enhanced the responsivity and detectivity to 2.40 × 104 A/W and 7.17 × 1011 Jones, respectively. This strategy was also applied to a ZnO film UV photodetector that was tuned by a P(VDF-TrFE) ferroelectric gate. Lower power consumption and higher performance can be enabled by ferroelectric tuning of ZnO ultraviolet photodetectors, providing new inspiration for the fabrication of high-performance photodetectors.
Collapse
|
24
|
Jin T, Mao J, Gao J, Han C, Loh KP, Wee ATS, Chen W. Ferroelectrics-Integrated Two-Dimensional Devices toward Next-Generation Electronics. ACS NANO 2022; 16:13595-13611. [PMID: 36099580 DOI: 10.1021/acsnano.2c07281] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferroelectric materials play an important role in a wide spectrum of semiconductor technologies and device applications. Two-dimensional (2D) van der Waals (vdW) ferroelectrics with surface-insensitive ferroelectricity that is significantly different from their traditional bulk counterparts have further inspired intensive interest. Integration of ferroelectrics into 2D-layered-material-based devices is expected to offer intriguing working principles and add desired functionalities for next-generation electronics. Herein, fundamental properties of ferroelectric materials that are compatible with 2D devices are introduced, followed by a critical review of recent advances on the integration of ferroelectrics into 2D devices. Representative device architectures and corresponding working mechanisms are discussed, such as ferroelectrics/2D semiconductor heterostructures, 2D ferroelectric tunnel junctions, and 2D ferroelectric diodes. By leveraging the favorable properties of ferroelectrics, a variety of functional 2D devices including ferroelectric-gated negative capacitance field-effect transistors, programmable devices, nonvolatile memories, and neuromorphic devices are highlighted, where the application of 2D vdW ferroelectrics is particularly emphasized. This review provides a comprehensive understanding of ferroelectrics-integrated 2D devices and discusses the challenges of applying them into commercial electronic circuits.
Collapse
Affiliation(s)
- Tengyu Jin
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jingyu Mao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jing Gao
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Cheng Han
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, P. R. China
| | - Kian Ping Loh
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, P. R. China
| |
Collapse
|
25
|
Ming W, Huang B, Zheng S, Bai Y, Wang J, Wang J, Li J. Flexoelectric engineering of van der Waals ferroelectric CuInP 2S 6. SCIENCE ADVANCES 2022; 8:eabq1232. [PMID: 35984879 PMCID: PMC9390982 DOI: 10.1126/sciadv.abq1232] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/08/2022] [Indexed: 05/28/2023]
Abstract
Van der Waals layered CuInP2S6 (CIPS) is an ideal candidate for developing two-dimensional microelectronic heterostructures because of its room temperature ferroelectricity, although field-driven polarization reversal of CIPS is intimately coupled with ionic migration, often causing erratic and damaging switching that is highly undesirable for device applications. In this work, we develop an alternative switching mechanism for CIPS using flexoelectric effect, abandoning external electric fields altogether, and the method is motivated by strong correlation between polarization and topography variation of CIPS. Phase-field simulation identifies a critical radius of curvature around 5 μm for strain gradient to be effective, which is realized by engineered topographic surfaces using silver nanowires and optic grating upon which CIPS is transferred to. We also demonstrate mechanical modulation of CIPS on demand via strain gradient underneath a scanning probe, making it possible to engineer multiple polarization states of CIPS for device applications.
Collapse
Affiliation(s)
- Wenjie Ming
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Xiangtan University, Xiangtan, Hunan 411105, China
- Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Boyuan Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sizheng Zheng
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yinxin Bai
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Wang
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
26
|
Li Y, Zhang ZC, Li J, Chen XD, Kong Y, Wang FD, Zhang GX, Lu TB, Zhang J. Low-voltage ultrafast nonvolatile memory via direct charge injection through a threshold resistive-switching layer. Nat Commun 2022; 13:4591. [PMID: 35933437 PMCID: PMC9357017 DOI: 10.1038/s41467-022-32380-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
The explosion in demand for massive data processing and storage requires revolutionary memory technologies featuring ultrahigh speed, ultralong retention, ultrahigh capacity and ultralow energy consumption. Although a breakthrough in ultrafast floating-gate memory has been achieved very recently, it still suffers a high operation voltage (tens of volts) due to the Fowler-Nordheim tunnelling mechanism. It is still a great challenge to realize ultrafast nonvolatile storage with low operation voltage. Here we propose a floating-gate memory with a structure of MoS2/hBN/MoS2/graphdiyne oxide/WSe2, in which a threshold switching layer, graphdiyne oxide, instead of a dielectric blocking layer in conventional floating-gate memories, is used to connect the floating gate and control gate. The volatile threshold switching characteristic of graphdiyne oxide allows the direct charge injection from control gate to floating gate by applying a nanosecond voltage pulse (20 ns) with low magnitude (2 V), and restricts the injected charges in floating gate for a long-term retention (10 years) after the pulse. The high operation speed and low voltage endow the device with an ultralow energy consumption of 10 fJ. These results demonstrate a new strategy to develop next-generation high-speed low-energy nonvolatile memory.
Collapse
Affiliation(s)
- Yuan Li
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhi Cheng Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiaqiang Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xu-Dong Chen
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Ya Kong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fu-Dong Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Guo-Xin Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
27
|
Jiang Y, Zhang L, Wang R, Li H, Li L, Zhang S, Li X, Su J, Song X, Xia C. Asymmetric Ferroelectric-Gated Two-Dimensional Transistor Integrating Self-Rectifying Photoelectric Memory and Artificial Synapse. ACS NANO 2022; 16:11218-11226. [PMID: 35730563 DOI: 10.1021/acsnano.2c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ferroelectric field-effect transistors (Fe-FET) are promising candidates for future information devices. However, they suffer from low endurance and short retention time, which retards the application of processing memory in the same physical processes. Here, inspired by the ferroelectric proximity effects, we design a reconfigurable two-dimensional (2D) MoS2 transistor featuring with asymmetric ferroelectric gate, exhibiting high memory and logic ability with a program/erase ratio of over 106 and a self-rectifying ratio of 103. Interestingly, the robust electric and optic cycling are obtained with a large switching ratio of 106 and nine distinct resistance states upon optical excitation with excellent nonvolatile characteristics. Meanwhile, the operation of memory mimics the synapse behavior in response to light spikes with different intensity and number. This design realizes an integration of robust processing memory in one single device, which demonstrates a considerable potential of an asymmetric ferroelectric gate in the development of Fe-FETs for logic processing and nonvolatile memory applications.
Collapse
Affiliation(s)
- Yurong Jiang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Linlin Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Rui Wang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Hongzhi Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Lin Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Suicai Zhang
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Xueping Li
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Jian Su
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Xiaohui Song
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| | - Congxin Xia
- School of Physics, Henan Key Laboratory of Photovoltaic Materials, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
28
|
Baek S, Yoo HH, Ju JH, Sriboriboon P, Singh P, Niu J, Park J, Shin C, Kim Y, Lee S. Ferroelectric Field-Effect-Transistor Integrated with Ferroelectrics Heterostructure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200566. [PMID: 35570404 PMCID: PMC9313508 DOI: 10.1002/advs.202200566] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Indexed: 05/28/2023]
Abstract
To address the demands of emerging data-centric computing applications, ferroelectric field-effect transistors (Fe-FETs) are considered the forefront of semiconductor electronics owing to their energy and area efficiency and merged logic-memory functionalities. Herein, the fabrication and application of an Fe-FET, which is integrated with a van der Waals ferroelectrics heterostructure (CuInP2 S6 /α-In2 Se3 ), is reported. Leveraging enhanced polarization originating from the dipole coupling of CIPS and α-In2 Se3 , the fabricated Fe-FET exhibits a large memory window of 14.5 V at VGS = ±10 V, reaching a memory window to sweep range of ≈72%. Piezoelectric force microscopy measurements confirm the enhanced polarization-induced wider hysteresis loop of the double-stacked ferroelectrics compared to single ferroelectric layers. The Landau-Khalatnikov theory is extended to analyze the ferroelectric characteristics of a ferroelectric heterostructure, providing detailed explanations of the hysteresis behaviors and enhanced memory window formation. The fabricated Fe-FET shows nonvolatile memory characteristics, with a high on/off current ratio of over 106 , long retention time (>104 s), and stable cyclic endurance (>104 cycles). Furthermore, the applicability of the ferroelectrics heterostructure is investigated for artificial synapses and for hardware neural networks through training and inference simulation. These results provide a promising pathway for exploring low-dimensional ferroelectronics.
Collapse
Affiliation(s)
- Sungpyo Baek
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon440‐746Korea
| | - Hyun Ho Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon440‐746Korea
| | - Jae Hyeok Ju
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon440‐746Korea
| | - Panithan Sriboriboon
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon440‐746Korea
| | - Prashant Singh
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon440‐746Korea
| | - Jingjie Niu
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon440‐746Korea
| | - Jin‐Hong Park
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon440‐746Korea
| | - Changhwan Shin
- School of Electrical EngineeringKorea UniversitySeoul02841Korea
| | - Yunseok Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon440‐746Korea
| | - Sungjoo Lee
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon440‐746Korea
- Department of Nano EngineeringSungkyunkwan UniversitySuwon440‐746Korea
| |
Collapse
|
29
|
Singh P, Baek S, Yoo HH, Niu J, Park JH, Lee S. Two-Dimensional CIPS-InSe van der Waal Heterostructure Ferroelectric Field Effect Transistor for Nonvolatile Memory Applications. ACS NANO 2022; 16:5418-5426. [PMID: 35234041 DOI: 10.1021/acsnano.1c09136] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Channel current conduction modulation with the spontaneous polarization of ferroelectric films in ferroelectric field-effect transistors (FeFETs) has been widely investigated. Low interface quality and thermodynamic instability owing to the presence of dangling bonds in the conventional ferroelectrics have limited the memory retention and endurance of FeFETs. This, in turn, prevents their commercialization. However, the atomically thin nature of 2D ferroelectric, semiconducting, and insulating films facilitate the achievement of trap-free interfaces as van der Waal heterostructures (vdWHs) to develop FeFETs with long data retention and endurance characteristics. Here, we demonstrate a 2D vdWH FeFET fabricated with ferroelectric CuInP2S6 (CIPS), hexagonal boron nitride (h-BN) as the dielectric, and InSe as the ferroelectric semiconductor channel. The device shows an excellent performance as nonvolatile memory (NVM) with its large memory window (4.6 V at a voltage sweep of 5 V), high drain current on/off ratio (>104), high endurance, and long data retention (>104 s). These results demonstrate the considerable potential of vdWHs for the development of FeFETs for logic and NVM applications.
Collapse
Affiliation(s)
- Prashant Singh
- SKKUAdvanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Sungpyo Baek
- SKKUAdvanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Hyun Ho Yoo
- SKKUAdvanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Jingjie Niu
- SKKUAdvanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin-Hong Park
- SKKUAdvanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Sungjoo Lee
- SKKUAdvanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
30
|
Zhu S, Li D, Wang Q, He Z, Wu Y, Lin H, Huang LB, Huang H, Gao S, Wang J, Gong Z, Qin Q, Wang X. Exciton Emissions in Bilayer WSe 2 Tuned by the Ferroelectric Polymer. J Phys Chem Lett 2022; 13:1636-1643. [PMID: 35143214 DOI: 10.1021/acs.jpclett.1c04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a hybrid structure of multilayer transition-metal dichalcogenides (TMDs) and a ferroelectric polymer is designed to achieve passive control of optical properties in situ. The electrical polarization in the ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) polymer can regulate the photoluminescence (PL) in bilayer WSe2. The total PL emission intensity is substantially suppressed or enhanced under large gate voltage in bilayer WSe2. This is because electrons transfer between the conduction band K valley and the conduction band Λ valley by the electrostatic field in the P(VDF-TrFE) polymer. This electron transfer further adjusts the proportion of direct and indirect excitons and, in turn, changes the overall optical radiation efficiency. We also illustrate that the engineered PL originates from the external electric-field-dependent transferred electron effect. The theoretical result matches the experimental data well. This work demonstrates a device platform in which passive regulation is achieved using 2D TMDs modulated by polarized ferroelectric materials.
Collapse
Affiliation(s)
- Sixin Zhu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, Guangdong, People's Republic of China
| | - Dan Li
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Qiang Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Zirui He
- Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongpeng Wu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Huihong Lin
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, Guangdong, People's Republic of China
| | - Long-Biao Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hai Huang
- Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Shangpeng Gao
- Department of Materials Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianlu Wang
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Zhirui Gong
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Qi Qin
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xingjun Wang
- State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| |
Collapse
|
31
|
Chen J, Guo R, Wang X, Zhu C, Cao G, You L, Duan R, Zhu C, Hadke SS, Cao X, Salim T, Buenconsejo PJS, Xu M, Zhao X, Zhou J, Deng Y, Zeng Q, Wong LH, Chen J, Liu F, Liu Z. Solid-Ionic Memory in a van der Waals Heterostructure. ACS NANO 2022; 16:221-231. [PMID: 35001610 DOI: 10.1021/acsnano.1c05841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Defect states dominate the performance of low-dimensional nanoelectronics, which deteriorate the serviceability of devices in most cases. But in recent years, some intriguing functionalities are discovered by defect engineering. In this work, we demonstrate a bifunctional memory device of a MoS2/BiFeO3/SrTiO3 van der Waals heterostructure, which can be programmed and erased by solely one kind of external stimuli (light or electrical-gate pulse) via engineering of oxygen-vacancy-based solid-ionic gating. The device shows multibit electrical memory capability (>22 bits) with a large linearly tunable dynamic range of 7.1 × 106 (137 dB). Furthermore, the device can be programmed by green- and red-light illuminations and then erased by UV light pulses. Besides, the photoresponse under red-light illumination reaches a high photoresponsivity (6.7 × 104 A/W) and photodetectivity (2.12 × 1013 Jones). These results highlighted solid-ionic memory for building up multifunctional electronic and optoelectronic devices.
Collapse
Affiliation(s)
| | - Rui Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | | | | | - Guiming Cao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lu You
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Fucai Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zheng Liu
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, Singapore 637553, Singapore
| |
Collapse
|
32
|
Shu Z, Chen Y, Feng Z, Liang H, Li W, Liu Y, Duan H. Asymmetric Nanofractures Determined the Nonreciprocal Peeling for Self-Aligned Heterostructure Nanogaps and Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1718-1726. [PMID: 34978176 DOI: 10.1021/acsami.1c19776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Planar heterostructures composed of two or more adjacent structures with different materials are a kind of building blocks for various applications in surface plasmon resonance sensors, rectifiers, photovoltaic devices, and ambipolar devices, but their reliable fabrication with controllable shape, size, and positioning accuracy remains challenging. In this work, we propose a concept for fabricating planar heterostructures via directional stripping and controlled nanofractures of metallic films, with which self-aligned, multimaterial, multiscale heterostructures with arbitrary geometries and sub-20 nm gaps can be obtained. By using a split ring as the template, the asymmetric nanofracture of the deposited film at the split position results in nonreciprocal peeling of the film in the split ring. Compared to the conventional processes, the final heterostructures are defined only by their outlines, thus providing the ability to fabricate complex heterostructures with higher resolutions. We demonstrate that this method can be used to fabricate heterodimers, multimaterial oligomers, and multiscale asymmetrical electrodes. An Ag-MoS2-Au photodiode with a strong rectification effect is fabricated based on the nanogap heterostructures prepared by this method. This technology provides a unique and reliable approach to define nanogap heterostructures, which are supposed to have potential applications in nanoelectronics, nanoplasmonics, nano-optoelectronics, and electrochemistry.
Collapse
Affiliation(s)
- Zhiwen Shu
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Yiqin Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Zhanyong Feng
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Huikang Liang
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| | - Wanying Li
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Centre for High Efficiency Grinding, Hunan University, Changsha 410082, China
| |
Collapse
|
33
|
Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Sci Bull (Beijing) 2021; 66:2288-2296. [PMID: 36654457 DOI: 10.1016/j.scib.2021.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/22/2021] [Accepted: 06/15/2021] [Indexed: 01/20/2023]
Abstract
Exploring materials with multiple properties who can endow a simple device with integrated functionalities has attracted enormous attention in the microelectronic field. One reason is the imperious demand for processors with continuously higher performance and totally new architecture. Combining ferroelectric with semiconducting properties is a promising solution. Here, we show that logic, in-memory computing, and optoelectrical logic and non-volatile computing functionalities can be integrated into a single transistor with ferroelectric semiconducting α-In2Se3 as the channel. Two-input AND, OR, and non-volatile NOR and NAND logic operations with current on/off ratios reaching up to five orders, good endurance (1000 operation cycles), and fast operating speed (10 μs) are realized. In addition, optoelectrical OR logic and non-volatile implication (IMP) operations, as well as ternary-input optoelectrical logic and in-memory computing functions are achieved by introducing light as an additional input signal. Our work highlights the potential of integrating complex logic functions and new-type computing into a simple device based on emerging ferroelectric semiconductors.
Collapse
|
34
|
Zhao Z, Rakheja S, Zhu W. Nonvolatile Reconfigurable 2D Schottky Barrier Transistors. NANO LETTERS 2021; 21:9318-9324. [PMID: 34677980 DOI: 10.1021/acs.nanolett.1c03557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonvolatile reconfigurable transistors can be used to implement highly flexible and compact logic circuits with low power consumption in maintaining the configuration. In this paper, we build nonvolatile reconfigurable transistors based on 2D CuInP2S6/MoTe2 heterostructures. The ferroelectric polarization-induced electron and hole doping in the heterostructure are investigated. By introducing the ferroelectric doping into the source/drain contacts, we demonstrate reconfigurable Schottky barrier transistors, whose polarity (n-type or p-type) can be dynamically programmed, where the configuration is nonvolatile in nature. These transistors exhibit a tunable photoresponse, where the n-n doping state leads to negative photocurrent, whereas the p-p doping state gives rise to a positive photocurrent. The transistor with asymmetric (n-p or p-n) contacts exhibits a strong photovoltaic effect. These reconfigurable logic and optoelectronic transistors will enable a new type of device fabric for future computing systems and sensing networks.
Collapse
Affiliation(s)
- Zijing Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shaloo Rakheja
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wenjuan Zhu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
35
|
Sun Y, Niu G, Ren W, Meng X, Zhao J, Luo W, Ye ZG, Xie YH. Hybrid System Combining Two-Dimensional Materials and Ferroelectrics and Its Application in Photodetection. ACS NANO 2021; 15:10982-11013. [PMID: 34184877 DOI: 10.1021/acsnano.1c01735] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodetectors are one of the most important components for a future "Internet-of-Things" information society. Compared to the mainstream semiconductor-based photodetectors, emerging devices based on two-dimensional (2D) materials and ferroelectrics as well as their hybrid systems have been extensively studied in recent decades due to their outstanding performances and related interesting physical, electrical, and optoelectronic phenomena. In this paper, we review the photodetection based on 2D materials and ferroelectric hybrid systems. The fundamentals of 2D and ferroelectric materials as well as the interaction in the hybrid system will be introduced. Ferroelectricity modulated optoelectronic properties in the hybrid system will be discussed in detail. After the basics and figures of merit of photodetectors are summarized, the 2D-ferroelectrics devices with different structures including p-n diodes, Schottky diodes, and field-effect transistors will be reviewed and compared. The polarization of ferroelectrics offers the possibility of the modulation and enhancement of the photodetection in the hybrid detectors, which will be discussed in depth. Finally, the challenges and perspectives of the photodetectors based on 2D ferroelectrics will be proposed. This Review outlines the important aspects of the recent development of the hybrid system of 2D and ferroelectric materials, which could interact with each other and thus lead to photodetectors with higher performances. Such a Review will be helpful for the research of emerging physical phenomena and for the design of multifunctional nanoscale electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Yanxiao Sun
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Gang Niu
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Wei Ren
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Xiangjian Meng
- National Laboratory for Infrared Physics Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, P. R. China
| | - Jinyan Zhao
- Electronic Materials Research Laboratory Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, Shaanxi, P. R. China
| | - Wenbo Luo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China
| | - Zuo-Guang Ye
- Department of Chemistry and 4D Laboratories, Simon Fraser University, Burnaby V5A 1S6, British Columbia, Canada
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles 90024, California, United States
| |
Collapse
|
36
|
Yin L, Cheng R, Wen Y, Liu C, He J. Emerging 2D Memory Devices for In-Memory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007081. [PMID: 34105195 DOI: 10.1002/adma.202007081] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
It is predicted that the conventional von Neumann computing architecture cannot meet the demands of future data-intensive computing applications due to the bottleneck between the processing and memory units. To try to solve this problem, in-memory computing technology, where calculations are carried out in situ within each nonvolatile memory unit, has been intensively studied. Among various candidate materials, 2D layered materials have recently demonstrated many new features that have been uniquely exploited to build next-generation electronics. Here, the recent progress of 2D memory devices is reviewed for in-memory computing. For each memory configuration, their operation mechanisms and memory characteristics are described, and their pros and cons are weighed. Subsequently, their versatile applications for in-memory computing technology, including logic operations, electronic synapses, and random number generation are presented. Finally, the current challenges and potential strategies for future 2D in-memory computing systems are also discussed at the material, device, circuit, and architecture levels. It is hoped that this manuscript could give a comprehensive review of 2D memory devices and their applications in in-memory computing, and be helpful for this exciting research area.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chuansheng Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
37
|
Luo ZD, Yang MM, Liu Y, Alexe M. Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor-Structure Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005620. [PMID: 33577112 DOI: 10.1002/adma.202005620] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Semiconductor technology, which is rapidly evolving, is poised to enter a new era for which revolutionary innovations are needed to address fundamental limitations on material and working principle level. 2D semiconductors inherently holding novel properties at the atomic limit show great promise to tackle challenges imposed by traditional bulk semiconductor materials. Synergistic combination of 2D semiconductors with functional ferroelectrics further offers new working principles, and is expected to deliver massively enhanced device performance for existing complementary metal-oxide-semiconductor (CMOS) technologies and add unprecedented applications for next-generation electronics. Herein, recent demonstrations of novel device concepts based on 2D semiconductor/ferroelectric heterostructures are critically reviewed covering their working mechanisms, device construction, applications, and challenges. In particular, emerging opportunities of CMOS-process-compatible 2D semiconductor/ferroelectric transistor structure devices for the development of a rich variety of applications are discussed, including beyond-Boltzmann transistors, nonvolatile memories, neuromorphic devices, and reconfigurable nanodevices such as p-n homojunctions and self-powered photodetectors. It is concluded that 2D semiconductor/ferroelectric heterostructures, as an emergent heterogeneous platform, could drive many more exciting innovations for modern electronics, beyond the capability of ubiquitous silicon systems.
Collapse
Affiliation(s)
- Zheng-Dong Luo
- Department of Physics, The University of Warwick, Coventry, CV4 7AL, UK
| | - Ming-Min Yang
- Center for Emergent Matter Science, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yang Liu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marin Alexe
- Department of Physics, The University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
38
|
Xu DD, Ma RR, Fu AP, Guan Z, Zhong N, Peng H, Xiang PH, Duan CG. Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric. Nat Commun 2021; 12:655. [PMID: 33510155 PMCID: PMC7844287 DOI: 10.1038/s41467-021-20945-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Solid-liquid interface is a key concept of many research fields, enabling numerous physical phenomena and practical applications. For example, electrode-electrolyte interfaces with electric double layers have been widely used in energy storage and regulating physical properties of functional materials. Creating a specific interface allows emergent functionalities and effects. Here, we show the artificial control of ferroelectric-liquid interfacial structures to switch polarization states reversibly in a van der Waals layered ferroelectric CuInP2S6 (CIPS). We discover that upward and downward polarization states can be induced by spontaneous physical adsorption of dodecylbenzenesulphonate anions and N,N-diethyl-N-methyl-N-(2-methoxyethyl)-ammonium cations, respectively, at the ferroelectric-liquid interface. This distinctive approach circumvents the structural damage of CIPS caused by Cu-ion conductivity during electrical switching process. Moreover, the polarized state features super-long retention time (>1 year). The interplay between ferroelectric dipoles and adsorbed organic ions has been studied systematically by comparative experiments and first-principles calculations. Such ion adsorption-induced reversible polarization switching in a van der Waals ferroelectric enriches the functionalities of solid-liquid interfaces, offering opportunities for liquid-controlled two-dimensional ferroelectric-based devices. Whether it is possible to achieve polarization inversion in a ferroelectric without any energy consumption is an open question. Here, the authors demonstrate an energy-free approach to control the polarization state of CuInP2S6, a typical room-temperature van der Waals layered ferroelectric.
Collapse
Affiliation(s)
- Dong-Dong Xu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ru-Ru Ma
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ai-Ping Fu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhao Guan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Hui Peng
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
39
|
Zhang D, Luo ZD, Yao Y, Schoenherr P, Sha C, Pan Y, Sharma P, Alexe M, Seidel J. Anisotropic Ion Migration and Electronic Conduction in van der Waals Ferroelectric CuInP 2S 6. NANO LETTERS 2021; 21:995-1002. [PMID: 33404251 DOI: 10.1021/acs.nanolett.0c04023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Van der Waals (vdW) thio- and seleno-phosphates have recently gained considerable attention for the use as "active" dielectrics in two-dimensional/quasi-two-dimensional electronic devices. Bulk ionic conductivity in these materials has been identified as a key factor for the control of their electronic properties. However, direct evidence of specific ion species' migration at the nanoscale, particularly under electric fields, and its impact on material properties has been elusive. Here, we report on direct evidence of a phase-selective anisotropic Cu-ion-hopping mechanism in copper indium thiophosphate (CuInP2S6) through detailed scanning probe microscopy measurements. A two-step Cu-hopping path including a first intralayer hopping (in-plane) and second interlayer hopping (out-of-plane) crossing the vdW gap is unveiled. Evidence of electrically controlled Cu ion migration is further verified by nanoscale energy-dispersive X-ray spectroscopy (EDS) mapping. These findings offer new insight into anisotropic ionic manipulation in layered vdW ferroelectric/dielectric materials for emergent vdW electronic device design.
Collapse
Affiliation(s)
- Dawei Zhang
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Zheng-Dong Luo
- Department of Physics, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Yin Yao
- Electron Microscopy Unit (EMU), Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Peggy Schoenherr
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chuhan Sha
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ying Pan
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pankaj Sharma
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Marin Alexe
- Department of Physics, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Jan Seidel
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Liu X, Zhou X, Pan Y, Yang J, Xiang H, Yuan Y, Liu S, Luo H, Zhang D, Sun J. Charge-Ferroelectric Transition in Ultrathin Na 0.5 Bi 4.5 Ti 4 O 15 Flakes Probed via a Dual-Gated Full van der Waals Transistor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004813. [PMID: 33145852 DOI: 10.1002/adma.202004813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Ferroelectric field-effect transistors (FeFETs) have recently attracted enormous attention owing to their applications in nonvolatile memories and low-power logic electronics. However, the current mainstream thin-film-based ferroelectrics lack good compatibility with the emergent 2D van der Waals (vdW) heterostructures. In this work, the synthesis of thin ferroelectric Na0.5 Bi4.5 Ti4 O15 (NBIT) flakes by a molten-salt method is reported. With a dry-transferred NBIT flake serving as the top-gate dielectric, dual-gate molybdenum disulfide (MoS2 ) FeFETs are fabricated in a full vdW stacking structure. Barrier-free graphene contacts allow the investigation of intrinsic carrier transport of MoS2 governed by lattice scattering. Thanks to the high dielectric constant of ≈94 in NBIT, a metal to insulator transition with a high electron concentration of 3.0 × 1013 cm-2 is achieved in MoS2 under top-gate modulation. The electron field-effect mobility as high as 182 cm2 V-1 s-1 at 88 K is obtained. The as-fabricated MoS2 FeFET exhibits clockwise hysteresis transfer curves that originate from charge trapping/release with either top-gate or back-gate modulation. Interestingly, hysteresis behavior can be controlled from clockwise to counterclockwise using dual-gate. A multifunctional device utilizing this unique property of NBIT, which is switchable electrostatically between short-term memory and nonvolatile ferroelectric memory, is envisaged.
Collapse
Affiliation(s)
- Xiaochi Liu
- School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, 410083, China
| | - Xuefan Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Yuchuan Pan
- School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, 410083, China
| | - Junqiang Yang
- School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, 410083, China
| | - Haiyan Xiang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yahua Yuan
- School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, 410083, China
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Dou Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Jian Sun
- School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, 410083, China
| |
Collapse
|
41
|
Xu L, Duan Z, Zhang P, Wang X, Zhang J, Shang L, Jiang K, Li Y, Zhu L, Gong Y, Hu Z, Chu J. Ferroelectric-Modulated MoS 2 Field-Effect Transistors as Multilevel Nonvolatile Memory. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44902-44911. [PMID: 32931241 DOI: 10.1021/acsami.0c09951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ferroelectric field-effect transistors (FeFETs) with semiconductors as the channel material and ferroelectrics as the gate insulator are attractive and/or promising devices for application in nonvolatile memory. In FeFETs, the conductivity states of the semiconductor are utilized to explore the polarization directions of the ferroelectric material. Herein, we report FeFETs based on a few layers of MoS2 on a 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal with switchable multilevel states. It was found that the On-Off ratios can reach as high as 106. We prove that the interaction effect of ferroelectric polarization and interface charge traps has a great influence on the transport behaviors and nonvolatile memory characteristics of MoS2/PMN-PT FeFETs. In order to further study the underlying physical mechanism, we have researched the time-dependent electrical properties in the temperature range from 300 to 500 K. The separation of effects from ferroelectric polarization and interfacial traps on electrical behaviors of FeFETs provides us with an opportunity to better understand the operation mechanism, which suggests a fantastic way for multilevel, low-power consumption, and high-density nonvolatile memory devices.
Collapse
Affiliation(s)
- Liping Xu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhihua Duan
- Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, Shanghai 200234, China
| | - Peng Zhang
- School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Xiang Wang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jinzhong Zhang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liyan Shang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Kai Jiang
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yawei Li
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Liangqing Zhu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yongji Gong
- School of Materials Science & Engineering, Beihang University, Beijing 100191, China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
| | - Junhao Chu
- Technical Center for Multifunctional Magneto-Optical Spectroscopy (Shanghai), Engineering Research Center of Nanophotonics & Advanced Instrument (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
| |
Collapse
|