1
|
Li XJ, Wang TQ, Qi L, Li FW, Xia YZ, Bin-Jin, Zhang CJ, Chen LX, Lin JQ. A one-step route for the conversion of Cd waste into CdS quantum dots by Acidithiobacillus sp. via unique biosynthesis pathways. RSC Chem Biol 2024:d4cb00195h. [PMID: 39802632 PMCID: PMC11718510 DOI: 10.1039/d4cb00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of Acidithiobacillus sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria. First, an exhaustive study was conducted to reveal the specific pathways involved in the biosynthesis of CdS QDs. The widely known homologous enzyme, cysteine desulfhydrase, which catalyzes the synthesis of CdS QDs from a cysteine substrate, is also present in Acidithiobacillus sp. and is referred to as the OSH enzyme. The structure of the OSH enzyme was determined through X-ray crystallography. Moreover, we identified two new pathways. One involved the SQR enzyme in Acidithiobacillus sp., which catalyzed the formation of sulfur globules and subsequently catalyzed further reactions with GSH to release H2S; subsequently, a CdS QD biosynthesis pathway was successfully constructed. The other pathway involved extracellular polyphosphate, a bacterial metabolic product, which with the addition of GSH and Cd2+, resulted in the formation of water-soluble fluorescent CdS QDs in the supernatant. Based on the above-described mechanism, after the bioleaching of Cd2+ from cadmium waste by Acidithiobacillus sp., CdS QDs were directly obtained from the bacterial culture supernatants. This work provides important insights into cleaner production and cadmium bioremediation with potential industrial applications.
Collapse
Affiliation(s)
- Xiao-Ju Li
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Tian-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Feng-Wei Li
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Yong-Zhen Xia
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Bin-Jin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| |
Collapse
|
2
|
Tang X, Li W, Chen T, Zhang R, Yan Y, Liu C, Gou H, Zhang F, Pan Q, Mao D, Zhu X. Orthogonal DNA Self-Assembly-Based Expansion Microscopy Platform for Amplified, Multiplexed Biomarker Imaging. SMALL METHODS 2024; 8:e2400505. [PMID: 39030815 DOI: 10.1002/smtd.202400505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Indexed: 07/22/2024]
Abstract
Expansion microscopy (ExM) facilitates nanoscale imaging under conventional microscopes, but it frequently encounters challenges such as fluorescence losses, low signal-to-noise ratio (SNR), and limited detection throughput. To address these issues, a method of orthogonal DNA self-assembly-based ExM (o-DAExM) platform is developed, which employs hybridization chain reaction instead of conventional fluorescence labeling units, showcasing signal amplification efficacy, enhancement of SNR, and expandable multiplexing capability at any stage of the ExM process. In this work, o-DAExM has been applied to compare with immunofluorescence-based ExM for cellular cytoskeleton imaging, and the resolved nanoscale spatial distributions of cytoskeleton show outstanding performance and reliability of o-DAExM. Furthermore, the study demonstrates the utility of o-DAExM in accurately revealing exosome heterogeneous information and multiplexed analysis of protein targets in single cells, which provides infinite possibilities in super-resolution imaging of cells and other samples. Therefore, o-DAExM offers a straightforward expansion and signal labeling method, highlighting future prospects to study nanoscale structures and functional networks in biological systems.
Collapse
Affiliation(s)
- Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Wenxing Li
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Runchi Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Yilin Yan
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Fanping Zhang
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| | - Dongsheng Mao
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
3
|
Fan N, Yang K, Bian X, Chen Y, Zhang L, Ai Z, Li X, Ding S, Li S, Cheng W. GlycoSS: A DNA Glycosignal Sieve for Deciphering Spatially Resolved EpCAM-Specific Glycoforms. ACS NANO 2024; 18:29106-29120. [PMID: 39374425 DOI: 10.1021/acsnano.4c10565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Malignant transformation of cancer is often accompanied by aberrant glycopatterns. Epithelial-mesenchymal transition (EMT) is a crucial biological process in cancer migration and invasion, accelerating cancer deterioration. High-precision analysis of protein-glycan spatial profiling in the EMT process is essential for elucidating glycosylation functions and cancer progression. However, the diversity of glycans in composition and conformation complicates their spatial analysis. Here, we develop a DNA glycosignal sieve (GlycoSS) visualization platform for screening glycoform expression with a protein spatial dimension. GlycoSS utilizes protein-anchored DNA nanoscanners of distinct lengths to control glycosignal readout, enabling protein-glycan distance modulations, and simultaneously orthogonally amplify glycoform output through signal amplification by an exchange reaction. Using GlycoSS, we screened EpCAM-specific hypoglycosylated glycoform signals in different breast cancer cell subtypes, especially characterizing the spatial distribution of glycans on the MCF-7 cell surface. Considering that the EpCAM-specific N-glycan dysregulation in EMT is pivotal, GlycoSS revealed dynamic glycan fluctuations during IGF-1-induced EMT, revealing that the N-glycans were positively associated with tumor malignancy and metastasis. GlycoSS is anticipated to accelerate the identification of aberrant N-glycosylation in tumor progression, advancing systemic glycobiology insights. Notably, GlycoSS is capable of analyzing diverse glycoprotein profiles, offering additional dimensions into the role of glycoprotein nanoenvironments in regulating membrane protein function.
Collapse
Affiliation(s)
- Ningke Fan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ketong Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xintong Bian
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yirong Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhujun Ai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Siqiao Li
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Zhang Q, Yu S, Shang J, He S, Liu X, Wang F. Spatiotemporally Programmed Disassembly of Multifunctional Integrated DNAzyme Nanoplatfrom for Amplified Intracellular MicroRNA Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305672. [PMID: 37670211 DOI: 10.1002/smll.202305672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Indexed: 09/07/2023]
Abstract
The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn2+ -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn2+ -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn2+ into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn2+ -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Shanshan Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Shizhen He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, China
| |
Collapse
|
5
|
Luo M, Lan F, Li W, Chen S, Zhang L, Situ B, Li B, Liu C, Pan W, Gao Z, Zhang Y, Zheng L. Design strategies and advanced applications of primer exchange reactions in biosensing: A review. Anal Chim Acta 2023; 1283:341824. [PMID: 37977767 DOI: 10.1016/j.aca.2023.341824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/19/2023]
Abstract
Early disease diagnosis relies on the sensitive detection and imaging of biomarkers. Signal amplification is one of the most commonly used methods to improve detection sensitivity. Primer exchange reaction (PER) is a novel signal amplification technique that has garnered attention because of its simple and sensitive features. The classical PER involves a single catalytic hairpin, which enables the attachment of custom sequences to the primer chain, generating a long repeat sequence that can bind numerous signaling molecules and achieve powerful signal amplification. Currently, numerous PER-based signal amplification strategies are available that can improve detection sensitivity and promote the development of the signal amplification field. This review focuses on the mechanism of typical PER, the diversification of PER, and PER-based biosensors for various targets. Finally, the challenges and prospects of PER development are discussed.
Collapse
Affiliation(s)
- Min Luo
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Fei Lan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wenbin Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Siting Chen
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lifeng Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Bo Situ
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bo Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chunchen Liu
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Weilun Pan
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhuowei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Ye Zhang
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Zheng
- Laboratory Medicine Center, Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Zhang J, Guan M, Lv M, Liu Y, Zhang H, Zhang Z, Zhang K. Localized Imaging of Programmed Death-Ligand 1 on Individual Tumor-Derived Extracellular Vesicles for Prediction of Immunotherapy Response. ACS NANO 2023; 17:20120-20134. [PMID: 37819165 DOI: 10.1021/acsnano.3c05799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Programmed death-ligand 1 (PD-L1) on tumor-derived small extracellular vesicles (EVs) is a biomarker for prediction of the immunotherapy response. However, conventional bulk measurement can hardly analyze the expression of PD-L1 on individual tumor-derived EVs. Herein, a method for localized imaging of tumor-derived individual EVs PD-L1 (LITIE) is developed. In this assay, EVs in plasma were directly captured on a biochip. Then the liposome-mediated membrane fusion strategy was used to image miR-21 in EVs to discriminate miR-21-positive EVs from the whole EVs populations. Subsequently, the primer exchange reaction (PER) is applied to generate localized and amplified fluorescent signals for imaging PD-L1 on identified tumor-derived EVs. When applied in clinical sample tests, the LITIE assay could effectively distinguish breast cancer patients from healthy donors or patients with benign tumors. Interestingly, in a mice melanoma model, the LITIE assay showed the ability to predict immunotherapy response even before drug treatment. Thus, we think the strategy of measuring individual tumor-derived EVs PD-L1 could serve as an alternative way for screening clinical responders suitable for immunotherapy.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Mengting Guan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min Lv
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yingying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
7
|
Hu X, Cheng S, Luo X, Xian Y, Zhang C. Polymerase-Driven Logic Signal Amplification for the Detection of Small Extracellular Vesicle Surface Proteins and the Identification of Breast Cancer. Anal Chem 2023. [PMID: 37366594 DOI: 10.1021/acs.analchem.3c01080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Small extracellular vesicles (sEVs) derived from tumors contain a vast amount of cellular information and are regarded as a potential diagnostic biomarker for noninvasive cancer diagnosis. Nevertheless, it remains challenging to accurately measure sEVs from clinical samples due to the low abundance of these vesicles as well as their phenotypic heterogeneity. Herein, a polymerase-driven logic signal amplification system (PLSAS) was developed for the high-sensitivity detection of sEV surface proteins and breast cancer (BC) identification. Aptamers were introduced to serve as sensing modules to specifically recognize target proteins. By changing the input DNA sequences, two polymerase-driven primer exchange reaction systems were rationally designed for DNA logic computing. This allows for autonomous targeting of a limited number of targets using "OR" and "AND" logic, leading to a significant increase in fluorescence signals and enabling the specific and ultrasensitive detection of sEV surface proteins. In this work, we investigated surface proteins of mucin 1 (MUC1) and the epithelial cell adhesion molecule (EpCAM) as model proteins. When MUC1 or EpCAM proteins were used as single signal input in the "OR" DNA logic system, the detection limit of sEVs was 24 or 58 particles/μL, respectively. And MUC1 and EpCAM proteins of sEVs can be simultaneously detected in the AND logic method, which can significantly reduce the effect of phenotypic heterogeneity of sEVs to distinguish the source of sEVs derived from various mammary cell lines, such as MCF-7, MDA MB 231, SKBR3, and MCF-10A. The approach has achieved high discrimination in serologically tested positive BC samples (AUC 98.1%) and holds significant potential in advancing the early diagnosis and prognostic assessments of BC.
Collapse
Affiliation(s)
- Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Ding Y, Zhu W, Huang C, Zhang Y, Wang J, Wang X. Quantum dot-labeled phage-encoded RBP 55 as a fluorescent nanoprobe for sensitive and specific detection of Salmonella in food matrices. Food Chem 2023; 428:136724. [PMID: 37418877 DOI: 10.1016/j.foodchem.2023.136724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023]
Abstract
As a commonly pathogenic bacterium, the rapid detection of Salmonella outbreaks and assurance of food safety require a highly efficient detection method. Herein, a novel approach to Salmonella detection using quantum dot-labeled phage-encoded RBP 55 as a fluorescent nanoprobe is reported. RBP 55, a novel phage receptor binding protein (RBP), was identified and characterized from phage STP55. RBP 55 was functionalized onto quantum dots (QDs) to form fluorescent nanoprobes. The assay was based on the combination of immunomagnetic separation and RBP 55-QDs, which formed a sandwich composite structure. The results showed a good linear correlation between the fluorescence values and the concentration of Salmonella (101-107 CFU/mL) with a low detection limit of 2 CFU/mL within 2 h. The method was used to successfully detect Salmonella in spiked food samples. This approach can be used for the simultaneous detection of multiple pathogens by labeling different phage-encoded RBPs using polychromatic QDs in the future.
Collapse
Affiliation(s)
- Yifeng Ding
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjuan Zhu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenxi Huang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yiming Zhang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jia Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaohong Wang
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Li Y, Huang D, Pei Y, Wu Y, Xu R, Quan F, Gao H, Zhang J, Hou H, Zhang K, Li J. CasSABER for Programmable In Situ Visualization of Low and Nonrepetitive Gene Loci. Anal Chem 2023; 95:2992-3001. [PMID: 36703533 DOI: 10.1021/acs.analchem.2c04867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Site-specific imaging of target genes using CRISPR probes is essential for understanding the molecular mechanisms of gene function and engineering tools to modulate its downstream pathways. Herein, we develop CRISPR/Cas9-mediated signal amplification by exchange reaction (CasSABER) for programmable in situ imaging of low and nonrepetitive regions of the target gene in the cell nucleus. The presynthesized primer-exchange reaction (PER) probe is able to hybridize multiple fluorophore-bearing imager strands to specifically light up dCas9/sgRNA target-bound gene loci, enabling in situ imaging of fixed cellular gene loci with high specificity and signal-to-noise ratio. In combination with a multiround branching strategy, we successfully detected nonrepetitive gene regions using a single sgRNA. As an intensity-codable and orthogonal probe system, CasSABER enables the adjustable amplification of local signals in fixed cells, resulting in the simultaneous visualization of multicopy and single-copy gene loci with similar fluorescence intensity. Owing to avoiding the complexity of controlling in situ mutistep enzymatic reactions, CasSABER shows good reliability, sensitivity, and ease of implementation, providing a rapid and cost-effective molecular toolkit for studying multigene interaction in fundamental research and gene diagnosis.
Collapse
Affiliation(s)
- Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Di Huang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Yiran Pei
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Yonghua Wu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Ru Xu
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Fenglei Quan
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Hua Gao
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Junli Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou450001, China
- Beijing Institute of Life Science and Technology, Beijing100083, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Collaborative Innovation Center of New Drug Research and Safety Evaluation, State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou450001, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing100084, China
| |
Collapse
|
10
|
Sheng W, Zhang C, Mohiuddin TM, Al-Rawe M, Zeppernick F, Falcone FH, Meinhold-Heerlein I, Hussain AF. Multiplex Immunofluorescence: A Powerful Tool in Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24043086. [PMID: 36834500 PMCID: PMC9959383 DOI: 10.3390/ijms24043086] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Traditional immunohistochemistry (IHC) has already become an essential method of diagnosis and therapy in cancer management. However, this antibody-based technique is limited to detecting a single marker per tissue section. Since immunotherapy has revolutionized the antineoplastic therapy, developing new immunohistochemistry strategies to detect multiple markers simultaneously to better understand tumor environment and predict or assess response to immunotherapy is necessary and urgent. Multiplex immunohistochemistry (mIHC)/multiplex immunofluorescence (mIF), such as multiplex chromogenic IHC and multiplex fluorescent immunohistochemistry (mfIHC), is a new and emerging technology to label multiple biomarkers in a single pathological section. The mfIHC shows a higher performance in cancer immunotherapy. This review summarizes the technologies, which are applied for mfIHC, and discusses how they are employed for immunotherapy research.
Collapse
Affiliation(s)
- Wenjie Sheng
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Chaoyu Zhang
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - T. M. Mohiuddin
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Marwah Al-Rawe
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Franco H. Falcone
- Institute for Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
- Correspondence:
| |
Collapse
|
11
|
Azeem MM, Shafa M, Aamir M, Zubair M, Souayeh B, Alam MW. Nucleotide detection mechanism and comparison based on low-dimensional materials: A review. Front Bioeng Biotechnol 2023; 11:1117871. [PMID: 36937765 PMCID: PMC10018150 DOI: 10.3389/fbioe.2023.1117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The recent pandemic has led to the fabrication of new nucleic acid sensors that can detect infinitesimal limits immediately and effectively. Therefore, various techniques have been demonstrated using low-dimensional materials that exhibit ultrahigh detection and accuracy. Numerous detection approaches have been reported, and new methods for impulse sensing are being explored. All ongoing research converges at one unique point, that is, an impetus: the enhanced limit of detection of sensors. There are several reviews on the detection of viruses and other proteins related to disease control point of care; however, to the best of our knowledge, none summarizes the various nucleotide sensors and describes their limits of detection and mechanisms. To understand the far-reaching impact of this discipline, we briefly discussed conventional and nanomaterial-based sensors, and then proposed the feature prospects of these devices. Two types of sensing mechanisms were further divided into their sub-branches: polymerase chain reaction and photospectrometric-based sensors. The nanomaterial-based sensor was further subdivided into optical and electrical sensors. The optical sensors included fluorescence (FL), surface plasmon resonance (SPR), colorimetric, and surface-enhanced Raman scattering (SERS), while electrical sensors included electrochemical luminescence (ECL), microfluidic chip, and field-effect transistor (FET). A synopsis of sensing materials, mechanisms, detection limits, and ranges has been provided. The sensing mechanism and materials used were discussed for each category in terms of length, collectively forming a fusing platform to highlight the ultrahigh detection technique of nucleotide sensors. We discussed potential trends in improving the fabrication of nucleotide nanosensors based on low-dimensional materials. In this area, particular aspects, including sensitivity, detection mechanism, stability, and challenges, were addressed. The optimization of the sensing performance and selection of the best sensor were concluded. Recent trends in the atomic-scale simulation of the development of Deoxyribonucleic acid (DNA) sensors using 2D materials were highlighted. A critical overview of the challenges and opportunities of deoxyribonucleic acid sensors was explored, and progress made in deoxyribonucleic acid detection over the past decade with a family of deoxyribonucleic acid sensors was described. Areas in which further research is needed were included in the future scope.
Collapse
Affiliation(s)
- M. Mustafa Azeem
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Shafa
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Devices, Kunming University, Kunming, Yunnan, China
| | - Muhammad Aamir
- Department of Basic Science, Deanship of Preparatory Year, King Faisal University, Hofuf, Saudi Arabia
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Zubair
- Mechanical and Nuclear Engineering Department, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
12
|
Wei W, Lu H, Dai W, Zheng X, Dong H. Multiplexed Organelles Portrait Barcodes for Subcellular MicroRNA Array Detection in Living Cells. ACS NANO 2022; 16:20329-20339. [PMID: 36410732 DOI: 10.1021/acsnano.2c06252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiplexed profiling of microRNAs' subcellular expression and distribution is essential to understand their spatiotemporal function information, but it remains a crucial challenge. Herein, we report an encoding approach that leverages combinational fluorescent dye barcodes, organelle targeting elements, and an independent quantification signal, termed Multiplexed Organelles Portrait Barcodes (MOPB), for high-throughput profiling of miRNAs from organelles. The MOPB barcodes consist of heterochromatic fluorescent dye-loaded shell-core mesoporous silica nanoparticles modified with organelle targeting peptides and molecular beacon detection probes. Using mitochondria and endoplasmic reticulum as models, we encoded four Cy3/AMCA ER-MOPB and four Cy5/AMCA Mito-MOPB by varying the Cy3 and Cy5 intensity for distinguishing eight organelles' miRNAs. Significantly, the MOPB strategy successfully and accurately profiled eight subcellular organelle miRNAs' alterations in the drug-induced Ca2+ homeostasis breakdown. The approach should allow more widespread application of subcellular miRNAs and multiplexed subcellular protein biomarkers' monitoring for drug discovery, cellular metabolism, signaling transduction, and gene expression regulation readout.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Xiaonan Zheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
| |
Collapse
|
13
|
Ji X, Li Q, Song H, Fan C. Protein-Mimicking Nanoparticles in Biosystems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201562. [PMID: 35576606 DOI: 10.1002/adma.202201562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Proteins are essential elements for almost all life activities. The emergence of nanotechnology offers innovative strategies to create a diversity of nanoparticles (NPs) with intrinsic capacities of mimicking the functions of proteins. These artificial mimics are produced in a cost-efficient and controllable manner, with their protein-mimicking performances comparable or superior to those of natural proteins. Moreover, they can be endowed with additional functionalities that are absent in natural proteins, such as cargo loading, active targeting, membrane penetrating, and multistimuli responding. Therefore, protein-mimicking NPs have been utilized more and more often in biosystems for a wide range of applications including detection, imaging, diagnosis, and therapy. To highlight recent progress in this broad field, herein, representative protein-mimicking NPs that fall into one of the four distinct categories are summarized: mimics of enzymes (nanozymes), mimics of fluorescent proteins, NPs with high affinity binding to specific proteins or DNA sequences, and mimics of protein scaffolds. This review covers their subclassifications, characteristic features, functioning mechanisms, as well as the extensive exploitation of their great potential for biological and biomedical purposes. Finally, the challenges and prospects in future development of protein-mimicking NPs are discussed.
Collapse
Affiliation(s)
- Xiaoyuan Ji
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiyun Song
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Zhang L, Chu M, Ji C, Tan J, Yuan Q. Preparation, applications, and challenges of functional DNA nanomaterials. NANO RESEARCH 2022; 16:3895-3912. [PMID: 36065175 PMCID: PMC9430014 DOI: 10.1007/s12274-022-4793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
As a carrier of genetic information, DNA is a versatile module for fabricating nanostructures and nanodevices. Functional molecules could be integrated into DNA by precise base complementary pairing, greatly expanding the functions of DNA nanomaterials. These functions endow DNA nanomaterials with great potential in the application of biomedical field. In recent years, functional DNA nanomaterials have been rapidly investigated and perfected. There have been reviews that classified DNA nanomaterials from the perspective of functions, while this review primarily focuses on the preparation methods of functional DNA nanomaterials. This review comprehensively introduces the preparation methods of DNA nanomaterials with functions such as molecular recognition, nanozyme catalysis, drug delivery, and biomedical material templates. Then, the latest application progress of functional DNA nanomaterials is systematically reviewed. Finally, current challenges and future prospects for functional DNA nanomaterials are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Mengge Chu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| |
Collapse
|
15
|
Mao D, Lu C, Zhang R, Zhu L, Song Y, Feng C, Zhang Q, Chen T, Yang Y, Chen G, Zhu X, Tan W. Computer-Aided Design of DNA Self-Limited Assembly for Relative Quantification of Membrane Proteins. Anal Chem 2022; 94:10263-10270. [PMID: 35726775 DOI: 10.1021/acs.analchem.2c01909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunofluorescence imaging of cells plays a vital role in biomedical research and clinical diagnosis. However, when it is applied to relative quantification of proteins, it suffers from insufficient fluorescence intensity or partial overexposure, resulting in inaccurate relative quantification. Herein, we report a computer-aided design of DNA self-limited assembly (CAD-SLA) technology and apply it for relative quantification of membrane proteins, a concept proposed for the first time. CAD-SLA can achieve exponential cascade signal amplification in one pot and terminate at any desired level. By conjugating CAD-SLA with immunofluorescence, in situ imaging of cell membrane proteins is achieved with a controllable amplification level. Besides, comprehensive fluorescence intensity information from fluorescent images can be obtained, accurately showing relative quantitative information. Slight protein expression differences previously indistinguishable by immunofluorescence or Western blotting can now be discriminated, making fluorescence imaging-based relative quantification a promising tool for membrane protein analysis. From the perspectives of both DNA self-assembly technology and immunofluorescence technology, this work has solved difficult problems and provided important reference for future development.
Collapse
Affiliation(s)
- Dongsheng Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Cuicui Lu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Liucun Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yuchen Song
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Qianqian Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Tianshu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang 310022, P. R. China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
16
|
Huang J, Chen X, Jiang Y, Zhang C, He S, Wang H, Pu K. Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection. NATURE MATERIALS 2022; 21:598-607. [PMID: 35422505 DOI: 10.1038/s41563-022-01224-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Optical nanoparticles are promising diagnostic tools; however, their shallow optical imaging depth and slow clearance from the body have impeded their use for in vivo disease detection. To address these limitations, we develop activatable polyfluorophore nanosensors with biomarker-triggered nanoparticle-to-molecule pharmacokinetic conversion and near-infrared fluorogenic turn-on response. Activatable polyfluorophore nanosensors can accumulate at the disease site and react with disease-associated proteases to undergo in situ enzyme-catalysed depolymerization. This disease-specific interaction liberates renal-clearable fluorogenic fragments from activatable polyfluorophore nanosensors for non-invasive longitudinal urinalysis and outperforms the gold standard blood and urine assays, providing a level of sensitivity and specificity comparable to those of invasive biopsy and flow cytometry analysis. In rodent models, activatable polyfluorophore nanosensors enable ultrasensitive detection of tumours (1.6 mm diameter) and early diagnosis of acute liver allograft rejection. We anticipate that our modular nanosensor platform may be applied for early diagnosis of a range of diseases via a simple urine test.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaona Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, P. R. China
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Chi Zhang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shasha He
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine; NHC Key Laboratory of Combined Multi-Organ Transplantation; Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
17
|
Min X, Huang S, Yuan C. Dual-color quantum dots nanobeads based suspension microarray for simultaneous detection of dual prostate specific antigens. Anal Chim Acta 2022; 1204:339704. [DOI: 10.1016/j.aca.2022.339704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
|
18
|
Davis B, Shi P, Gaddes E, Lai J, Wang Y. Bidirectional Supramolecular Display and Signal Amplification on the Surface of Living Cells. Biomacromolecules 2022; 23:1403-1412. [PMID: 35189058 DOI: 10.1021/acs.biomac.1c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability to display exogenous molecules or nanomaterials on the surface of cells holds great potential for biomedical applications such as cell imaging and delivery. Numerous methods have been well established to enhance the display of biomolecules and nanomaterials on the cell surface. However, it is challenging to remove these biomolecules or nanomaterials from the cell surface. The purpose of this study was to investigate the reversible display of supramolecular nanomaterials on the surface of living cells. The data show that DNA initiators could induce the self-assembly of DNA-alginate conjugates to form supramolecular nanomaterials and amplify the fluorescence signals on the cell surface. Complementary DNA (cDNA), DNase, and alginase could all trigger the reversal of the signals from the cell surface. However, these three molecules exhibited different triggering efficiencies in the order cDNA > alginase > DNase. The combination of cDNA and alginase led to the synergistic reversal of nanomaterials and fluorescent signals from the cell surface. Thus, this study has successfully demonstrated a method for the bidirectional display of supramolecular nanomaterials on the surface of living cells. This method may find its application in numerous fields such as intact cell imaging and separation.
Collapse
Affiliation(s)
- Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Erin Gaddes
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jinping Lai
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Liang Z, Hao C, Chen C, Ma W, Sun M, Xu L, Xu C, Kuang H. Ratiometric FRET Encoded Hierarchical ZrMOF @ Au Cluster for Ultrasensitive Quantifying MicroRNA In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107449. [PMID: 34647652 DOI: 10.1002/adma.202107449] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Here, Zirconium metal-organic frameworks @ gold (ZrMOF @ Au) cluster architectures have been fabricated and then functionalized with two fluorescent dyes (Quasar [QS] and Cyanine5.5 [Cy5.5]) through deoxyribonucleic acid hybridization, to form a fluorescence resonance energy transfer (FRET) encoded ZrMOF @ Au-QS/Cy5.5 complex. In the presence of the target intracellular microRNA (miR)-21, the fluorescence of Cy5.5 at 705 nm (F705 ) decreases and the fluorescence of QS at 665 nm (F665 ) increases when Cy5.5 is released from the surface of ZrMOF @ Au-QS/Cy5.5. The change in the fluorescence ratio (F705 /F665 ) shows an outstanding linear range of 0.006-67.9 amol/ngRNA , and the limit of detection is 4.51 zmol/ngRNA in living cells. The high ratio loading of nucleic acid on surface of ZrMOF @ Au cluster and two fluorescence encoded signal enables better sensitivity and reliability. Zeptomolar sensitivity and good linearity against target affords distinct imaging-based monitoring of the cancer marker miR-21 both in living cells and in vivo. At the same time, the architecture displays remarkable photothermal conversion efficiency (53.7%) and gives rise to outstanding therapy ability in vivo. This strategy offers new avenues for the intelligent quantification of miRNAs for simultaneous diagnoses and treatments of early-stage cancers.
Collapse
Affiliation(s)
- Zichen Liang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
20
|
|
21
|
Black S, Phillips D, Hickey JW, Kennedy-Darling J, Venkataraaman VG, Samusik N, Goltsev Y, Schürch CM, Nolan GP. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat Protoc 2021; 16:3802-3835. [PMID: 34215862 PMCID: PMC8647621 DOI: 10.1038/s41596-021-00556-8] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Advances in multiplexed imaging technologies have drastically improved our ability to characterize healthy and diseased tissues at the single-cell level. Co-detection by indexing (CODEX) relies on DNA-conjugated antibodies and the cyclic addition and removal of complementary fluorescently labeled DNA probes and has been used so far to simultaneously visualize up to 60 markers in situ. CODEX enables a deep view into the single-cell spatial relationships in tissues and is intended to spur discovery in developmental biology, disease and therapeutic design. Herein, we provide optimized protocols for conjugating purified antibodies to DNA oligonucleotides, validating the conjugation by CODEX staining and executing the CODEX multicycle imaging procedure for both formalin-fixed, paraffin-embedded (FFPE) and fresh-frozen tissues. In addition, we describe basic image processing and data analysis procedures. We apply this approach to an FFPE human tonsil multicycle experiment. The hands-on experimental time for antibody conjugation is ~4.5 h, validation of DNA-conjugated antibodies with CODEX staining takes ~6.5 h and preparation for a CODEX multicycle experiment takes ~8 h. The multicycle imaging and data analysis time depends on the tissue size, number of markers in the panel and computational complexity.
Collapse
Affiliation(s)
- Sarah Black
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Darci Phillips
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - John W Hickey
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia Kennedy-Darling
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Akoya Biosciences, Menlo Park, CA, USA
| | - Vishal G Venkataraaman
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nikolay Samusik
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Becton Dickinson, San Jose, CA, USA
| | - Yury Goltsev
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Schürch
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany.
| | - Garry P Nolan
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Yin F, Cao N, Xiang X, Feng H, Li F, Li M, Xia Q, Zuo X. DNA Framework-based Topological Aptamer for Differentiating Subtypes of Hepatocellular Carcinoma Cells. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1159-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Kennedy‐Darling J, Bhate SS, Hickey JW, Black S, Barlow GL, Vazquez G, Venkataraaman VG, Samusik N, Goltsev Y, Schürch CM, Nolan GP. Highly multiplexed tissue imaging using repeated oligonucleotide exchange reaction. Eur J Immunol 2021; 51:1262-1277. [PMID: 33548142 PMCID: PMC8251877 DOI: 10.1002/eji.202048891] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/21/2020] [Accepted: 02/04/2021] [Indexed: 01/04/2023]
Abstract
Multiparameter tissue imaging enables analysis of cell-cell interactions in situ, the cellular basis for tissue structure, and novel cell types that are spatially restricted, giving clues to biological mechanisms behind tissue homeostasis and disease. Here, we streamlined and simplified the multiplexed imaging method CO-Detection by indEXing (CODEX) by validating 58 unique oligonucleotide barcodes that can be conjugated to antibodies. We showed that barcoded antibodies retained their specificity for staining cognate targets in human tissue. Antibodies were visualized one at a time by adding a fluorescently labeled oligonucleotide complementary to oligonucleotide barcode, imaging, stripping, and repeating this cycle. With this we developed a panel of 46 antibodies that was used to stain five human lymphoid tissues: three tonsils, a spleen, and a LN. To analyze the data produced, an image processing and analysis pipeline was developed that enabled single-cell analysis on the data, including unsupervised clustering, that revealed 31 cell types across all tissues. We compared cell-type compositions within and directly surrounding follicles from the different lymphoid organs and evaluated cell-cell density correlations. This sequential oligonucleotide exchange technique enables a facile imaging of tissues that leverages pre-existing imaging infrastructure to decrease the barriers to broad use of multiplexed imaging.
Collapse
Affiliation(s)
- Julia Kennedy‐Darling
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Akoya Biosciences1505 O'Brien DriveMenlo ParkCAUSA
| | - Salil S. Bhate
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- Department of BioengineeringStanford UniversityStanfordCAUSA
| | - John W. Hickey
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Sarah Black
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Graham L. Barlow
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Gustavo Vazquez
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Vishal G. Venkataraaman
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Nikolay Samusik
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Becton DickinsonSan JoseCAUSA
| | - Yury Goltsev
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Christian M. Schürch
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- Department of Pathology and NeuropathologyUniversity Hospital and Comprehensive Cancer Center TübingenTübingenGermany
| | - Garry P. Nolan
- Department of Microbiology & ImmunologyStanford University School of MedicineStanfordCAUSA
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
24
|
Li C, Zou Z, Liu H, Jin Y, Li G, Yuan C, Xiao Z, Jin M. Synthesis of polystyrene-based fluorescent quantum dots nanolabel and its performance in H5N1 virus and SARS-CoV-2 antibody sensing. Talanta 2021; 225:122064. [PMID: 33592783 PMCID: PMC7831906 DOI: 10.1016/j.talanta.2020.122064] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 11/25/2022]
Abstract
Quantum dots (QDs) based fluorescent nanobeads are considered as promising materials for next generation point-of-care diagnosis systems. In this study, we carried out, for the first time, the synthesis of QDs nanobeads using polystyrene (PS) nanobead as the template. QDs loading on PS nanobead surface in this method can be readily achieved by the use of polyelectrolyte, avoiding the time-consuming and uncontrollable silane reagents-involved functionalization procedure that conventional synthesis of silica-based QDs nanobeads often suffer from. Notably, the application of QDs nanobeads in suspension microarray for H5N1 virus detection leads to a sensitivity lower than 25 PFU/mL. In addition, QDs nanobead was also incorporated into lateral flow assay for SARS-CoV-2 antibody detection, leading to more than one order of magnitude detection sensitivity as compared to that of commercial one based on colloid gold.
Collapse
Affiliation(s)
- Chengfei Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, 430070, PR China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, 430070, PR China
| | - Huiqin Liu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Jin
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangqiang Li
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yuan
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhidong Xiao
- College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, 430070, PR China.
| |
Collapse
|
25
|
Chen F, Bai M, Cao X, Xue J, Zhao Y, Wu N, Wang L, Zhang D, Zhao Y. Cellular macromolecules-tethered DNA walking indexing to explore nanoenvironments of chromatin modifications. Nat Commun 2021; 12:1965. [PMID: 33785750 PMCID: PMC8009891 DOI: 10.1038/s41467-021-22284-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
Exploring spatial organization and relationship of diverse biomolecules within cellular nanoenvironments is important to elucidate the fundamental processes of life. However, it remains methodologically challenging. Herein, we report a molecular recognition mechanism cellular macromolecules-tethered DNA walking indexing (Cell-TALKING) to probe the nanoenvironments containing diverse chromatin modifications. As an example, we characterize the nanoenvironments of three DNA modifications around one histone posttranslational modification (PTM). These DNA modifications in fixed cells are labeled with respective DNA barcoding probes, and then the PTM site is tethered with a DNA walking probe. Cell-TALKING can continuously produce cleavage records of any barcoding probes nearby the walking probe. New 3'-OH ends are generated on the cleaved barcoding probes to induce DNA amplification for downstream detections. Combining fluorescence imaging, we identify various combinatorial chromatin modifications and investigate their dynamic changes during cell cycles. We also explore the nanoenvironments in different cancer cell lines and clinical specimens. In principle, using high-throughput sequencing instead of fluorescence imaging may allow the detection of complex cellular nanoenvironments containing tens of biomolecules such as transcription factors.
Collapse
Affiliation(s)
- Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, PR China
| | - Dexin Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|