1
|
Shao Y, Mei Y, Liu T, Li Z, Zhang Y, Liu S, Liu Y. Enhanced electrochemical stability and ion transfer rate: A polymer/ceramic composite electrolyte for high-performance all-solid-state lithium-sulfur batteries. J Colloid Interface Sci 2025; 678:682-689. [PMID: 39307057 DOI: 10.1016/j.jcis.2024.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/27/2024]
Abstract
All-solid-state (ASS) lithium-sulfur (LiS) batteries utilizing composite polymer electrolytes (CPEs) represent a promising avenue in the domain of electric vehicles and large-scale energy storage systems, leveraging the combined benefits of polymer electrolytes (PEs) and ceramic electrolytes (CEs). However, the inherent weak interface compatibility between PEs and CEs often leads to phase separation, thereby impeding the transposition of Li+. In this study, the trimethoxy-[3-(2-methoxyethoxy)propyl]silane (TM-MES) is introduced as a chemical agent to form bonds with polyethylene oxide (PEO) and Li10GeP2S12 (LGPS), resulting in the development of a novel composite polymer electrolyte (CPETM-MES). This innovative approach mitigates phase separation between PEs and CEs while concurrently enhancing the protective capabilities of LGPS against decomposition at the interfaces of both the Li anode and sulfur cathode. Moreover, the CPETM-MES exhibits superior mechanical toughness, an expanded electrochemical window, and elevated ionic conductivity. In the symmetric cell, it demonstrates an extended operational lifespan exceeding 1800 h, and the current density can reach up to 1.05 mA/cm2. Furthermore, the initial discharge capacity of ASS LiS batteries utilizing CPETM-MES attains 1227 mAh/g and maintains a capacity of 904 mAh/g after 100 cycles. Notably, a high-energy-density of 2454 Wh/kg is achieved based on the sulfur cathode.
Collapse
Affiliation(s)
- Yaxin Shao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuhan Mei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Tao Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Zhenhu Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yulin Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Shuangyi Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China
| | - Yuping Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China; University of Chinese Academy of Sciences, Beijing 10049, PR China.
| |
Collapse
|
2
|
Jiang Y, Chen K, He J, Sun Y, Zhang X, Yang X, Xie H, Liu J. A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J Colloid Interface Sci 2025; 678:200-209. [PMID: 39293364 DOI: 10.1016/j.jcis.2024.09.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Composite solid electrolytes (CSEs), which combine the advantages of solid polymer electrolytes and inorganic solid electrolytes, are considered to be promising electrolytes for all-solid-state lithium metal batteries. However, the current CSEs suffer from defects such as poor inorganic/organic interface compatibility, lithium dendrite growth, and easy damage of electrolyte membrane, which hinder the practical application of CSEs. Herein, a CSE (PBHL@LLZTO@DDB) with polyurethane (PBHL) as the polymer matrix and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) modified by silane coupling agent (DDB) as inorganic fillers (LLZTO@DDB) has been prepared. Disulfide bond exchange reactions between PBHL and LLZTO@DDB enable PBHL@LLZTO@DDB to form a dynamic three-dimensional (3D) inorganic/organic hybrid network, which promotes the uniform dispersion of LLZTO in PBHL@LLZTO@DDB, improves the Li+ conductivity (1.24 ± 0.08 × 10-4 S cm-1 at 30 ℃), and broadens the electrochemical stability window (5.16 V vs. Li+/Li). Moreover, a combination of hydrogen bonds and disulfide bonds endows PBHL@LLZTO@DDB with excellent self-healing properties. As such, both all-solid-state symmetric and full cells exhibit excellent cycle performance at ambient temperature. More importantly, the healed PBHL@LLZTO@DDB can almost completely restore its original electrochemical properties, indicating its application potential in flexible electronic products.
Collapse
Affiliation(s)
- Ying Jiang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kai Chen
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jinping He
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuxue Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaorong Zhang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxing Yang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Jun Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
3
|
Wu X, Hong Y, Li Z, Wang J, Zhang H, Qiao Y, Yue H, Jiang C. Protecting Li-metal anode with LiF-enriched solid electrolyte interphase derived from a fluorinated graphene additive. NANOSCALE 2024; 16:19633-19641. [PMID: 39373782 DOI: 10.1039/d4nr02877e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
As the holy-grail material, the Li-metal anode has been considered the potential anode of the next generation of Li-metal batteries (LMBs). However, issues of undesirable dendrite growth and unsatisfactory reversibility of the Li-plating/stripping process during the electrochemical cycling impede further application of LMBs. Herein, we innovatively introduce fluorinated graphene (F-Gr) species as a sacrificial effective electrolyte additive into EC/EMC-based electrolyte, which effectively triggers LiF-enriched (composition) and organic/inorganic species uniform-distributed (structure) SEI film architecture that features robustness and denseness, as well as good stability. With the F-Gr additive, efficient Li-metal anode protection (dendrite-free morphology on Li-metal surface and improved Li plating/stripping reversibility during electrochemical cycling) and significantly enhanced long-term lifespan of LMBs is achieved. Remarkably, classical electrochemical techniques, combined with the surface-sensitive characterizations (XPS and TOF-SIMS), comprehensively and systematically highlight critical structure-activity relationships between the SEI architecture (both composition and structure) and electrochemical performance. These techniques provide deep insights into the optimal electrolyte designation of Li-metal anode in LMBs.
Collapse
Affiliation(s)
- Xiaohong Wu
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China.
| | - Yuhao Hong
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361024, P. R. China
| | - Zhengang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Junhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Haitang Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Hongjun Yue
- CAS key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China.
| | - Chunhai Jiang
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Institute of Advanced Energy Materials, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China.
| |
Collapse
|
4
|
Wu K, Li A, Tan J, Zhou F, Yan H, Wang P, Xie T, Zeng Q, Han C, Liu Q, Li B. SnF 2-Catalyzed Lithiophilic-Lithiophobic Gradient Interface for High-Rate PEO-Based All-Solid-State Batteries. Angew Chem Int Ed Engl 2024; 63:e202410347. [PMID: 39091135 DOI: 10.1002/anie.202410347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Polyethylene oxide (PEO)-based all-solid-state lithium metal batteries (ASSLMBs) are strongly hindered by the fast dendrite growth at the Li metal/electrolyte interface, especially under large rates. The above issue stems from the suboptimal interfacial chemistry and poor Li+ transport kinetics during cycling. Herein, a SnF2-catalyzed lithiophilic-lithiophobic gradient solid electrolyte interphase (SCG-SEI) of LixSny/LiF-Li2O is in situ formed. The superior ionic LiF-Li2O rich upper layer (17.1 nm) possesses high interfacial energy and fast Li+ diffusion channels, wherein lithiophilic LixSny alloy layer (8.4 nm) could highly reduce the nucleation overpotential with lower diffusion barrier and promote rapid electron transportation for reversible Li+ plating/stripping. Simultaneously, the insoluble SnF2-coordinated PEO promotes the rapid Li+ ion transport in the bulk phase. As a result, an over 46.7 and 3.5 times improvements for lifespan and critical current density of symmetrical cells are achieved, respectively. Furthermore, LiFePO4-based ASSLMBs deliver a recorded cycling performance at 5 C (over 1000 cycles with a capacity retention of 80.0 %). More importantly, impressive electrochemical performances and safety tests with LiNi0.8Mn0.1Co0.1O2 and pouch cell with LiFePO4, even under extreme conditions (i.e., 100 °C), are also demonstrated, reconfirmed the importance of lithiophilic-lithiophobic gradient interfacial chemistry in the design of high-rate ASSLMBs for safety applications.
Collapse
Affiliation(s)
- Kai Wu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China
| | - Ao Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jin Tan
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Fu Zhou
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Hanbing Yan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Pengcheng Wang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Ting Xie
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Qing Zeng
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha, 410114, China
| | - Cuiping Han
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
| | - Qi Liu
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, China
| | - Baohua Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Zhang X, Cheng S, Fu C, Yin G, Wang L, Wu Y, Huo H. Advancements and Challenges in Organic-Inorganic Composite Solid Electrolytes for All-Solid-State Lithium Batteries. NANO-MICRO LETTERS 2024; 17:2. [PMID: 39302512 DOI: 10.1007/s40820-024-01498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024]
Abstract
To address the limitations of contemporary lithium-ion batteries, particularly their low energy density and safety concerns, all-solid-state lithium batteries equipped with solid-state electrolytes have been identified as an up-and-coming alternative. Among the various SEs, organic-inorganic composite solid electrolytes (OICSEs) that combine the advantages of both polymer and inorganic materials demonstrate promising potential for large-scale applications. However, OICSEs still face many challenges in practical applications, such as low ionic conductivity and poor interfacial stability, which severely limit their applications. This review provides a comprehensive overview of recent research advancements in OICSEs. Specifically, the influence of inorganic fillers on the main functional parameters of OICSEs, including ionic conductivity, Li+ transfer number, mechanical strength, electrochemical stability, electronic conductivity, and thermal stability are systematically discussed. The lithium-ion conduction mechanism of OICSE is thoroughly analyzed and concluded from the microscopic perspective. Besides, the classic inorganic filler types, including both inert and active fillers, are categorized with special emphasis on the relationship between inorganic filler structure design and the electrochemical performance of OICSEs. Finally, the advanced characterization techniques relevant to OICSEs are summarized, and the challenges and perspectives on the future development of OICSEs are also highlighted for constructing superior ASSLBs.
Collapse
Affiliation(s)
- Xueyan Zhang
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Shichao Cheng
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Chuankai Fu
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Geping Yin
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Yongmin Wu
- State Key Laboratory of Space Power-Sources, 2965 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Hua Huo
- State Key Laboratory of Space Power-Sources, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
6
|
Sharma SK, Mor J. Free Volume Mediated Decoupling of Ionic Conduction from Segmental Relaxation Leading to Enhancement in Ionic Conductivity of Polymer Electrolytes at Low Temperatures. ACS Macro Lett 2024; 13:1211-1217. [PMID: 39225260 DOI: 10.1021/acsmacrolett.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Coupling between segmental relaxation and ionic conduction has limited the ionic conductivity of flexible polymers like poly(ethylene oxide), PEO, based electrolytes especially at low temperatures where segmental relaxation becomes extremely slow. In the present study, we show that ionic conduction becomes decoupled from segmental relaxation in PEO-based electrolytes simply by loading succinonitrile (SN). As a result of SN interactions induced rigid chain packing of PEO, the semicrystalline morphology of PEO is completely altered along with the enhancement in number density of free volumes having smaller size and narrower size distribution. These free volumes provide additional pathways for ionic diffusion independent of segmental relaxations of PEO leading to decoupling of ionic diffusion from the segmental relaxation process. The decoupling finally leads to nearly two orders higher ionic conductivity (∼10-11 Scm-1)at glass transition temperature (Tg ∼ 210 K), than what is expected in the case of complete coupling.
Collapse
Affiliation(s)
- S K Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - J Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
7
|
Zou Y, Zhao W, Liu S, Fang H, Gao L, Wang Y, Su Y, Chen L, Liu Z. In-Situ Synthesized Gel Polymer Electrolyte Enable High Capacity and Long-Cycle-Life Lithium Metal Batteries. CHEMSUSCHEM 2024:e202401139. [PMID: 39239772 DOI: 10.1002/cssc.202401139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Indexed: 09/07/2024]
Abstract
Solid-state lithium-metal batteries (SSLMBs) have attracted great attention due to their outstanding advantages in safety, electrochemical stability and interfacial compatibility. However, the low ionic conductivity and narrow electrochemical window restrict their practical application. Herein, in-situ polymerization electrolytes (IPEs) crosslinked by acrylonitrile (AN) and ethylene glycol dimethacrylate (EGDMA) exhibit the superior ionic conductivity of 1.77×10-3 S cm-1 at 25 °C, the ultrahigh lithium transference number (tLi+) of 0.784 and the wider electrochemical stable window (ESW) of 5.65 V. The IPEs make the symmetrical Li||Li cells achieve the highly stable lithium stripping/plating cycling for over 3000 h at 0.1 mA cm-2. Meanwhile, IPE endows the solid-state LiFePO4||Li batteries with an excellent long-cycle performance over 700 cycles at 2.5 C with a capacity retention ratio over 95 %, as well as 1000 cycles at 1 C and superior capacity retention of 85 %. More importantly, the in-situ polymerized electrolytes containing polyacrylonitrile (PAN) open up a new frontier to promote the practical application of solid-state batteries with high safety and high energy density via in-situ solidification technology.
Collapse
Affiliation(s)
- Yi Zou
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Wentao Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Shixin Liu
- Instrument Analysis and Testing Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hui Fang
- Instrument Analysis and Testing Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lvjin Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Yinli Su
- Tianjin Multi-Power Co., Ltd., Tianjin, 300392, China
| | - Li Chen
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zhaolin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
8
|
Xu Y, Chen Z, Wang J, Li B, Li J, He Z, Li L, Gao L, Han S, Bian J, Zhu J, Wang L, Zhao Y, Xu Q, Zhao R. Design of Quasi-Metal-Organic Frameworks for Solid Polymer Electrolytes Enabling an Ultra-Stable Interface with Li Metal Anode. Angew Chem Int Ed Engl 2024:e202416170. [PMID: 39235148 DOI: 10.1002/anie.202416170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Solid polymer electrolytes (SPEs) are crucial in the development of lithium metal batteries. Recently, metal-organic frameworks (MOFs) with open metal sites (OMSs) have shown promise as solid fillers to improve the performance of SPEs. However, the number of OMS-containing MOFs is quite limited, comprising less than 5% of the total MOFs. When considering yield, cost, and processability, the commonly used OMS-containing MOFs are no more than 10 types, causing great limitations. Herein, we reported a simple and universal methodology that converted OMS-free MOFs to OMS-rich quasi-MOFs for developing high-performance SPEs, and explored the underlying mechanism. The "OMS-polymer" and "OMS-ion" interactions were investigated in detail to elucidate the role of quasi-MOFs on battery performance. It was found that quasi-MOFs, functioning as ion sieves, can effectively regulate ion migration, thus promoting uniform Li deposition and enabling an ultra-stable interface. As a result, the Li symmetric cell stably ran over 3000 h at 0.3 mA cm-2, while the full cell retained 85 % of its initial capacity after 1500 cycles at 1.0 C. Finally, universal testing was performed using other MOFs, confirming the generalizability and effectiveness of our design concept.
Collapse
Affiliation(s)
- Yifan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyu Chen
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiaqi Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bai Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiangnan Li
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zijian He
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China
| | - Lei Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Songbai Han
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Juncao Bian
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518100, China
| | - Jinlong Zhu
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liping Wang
- Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yusheng Zhao
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials, SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruo Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
9
|
Huang ZX, Zhang T, Zhang ZP, Rong MZ, Zhang MQ. Highly Ionic Conductive, Self-Healing, Li 10GeP 2S 12-Filled Composite Solid Electrolytes Based on Reversibly Interlocked Macromolecule Networks for Lithium Metal Batteries with Improved Cycling Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42736-42747. [PMID: 39082474 DOI: 10.1021/acsami.4c09099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Ceramic-polymer composite solid electrolytes (CSEs) have attracted great attention by combining the advantages of polymer electrolytes and inorganic ceramic electrolytes. Herein, Li10GeP2S12 (LGPS) particles are incorporated into poly(ethylene oxide) (PEO)-based reversibly interlocked polymer networks (RILNs) derived from the topological rearrangement of two PEO networks cross-linked by reversible imine bonds and disulfide linkages. A series of highly ionic conductive, self-healing CSEs are obtained accordingly. The interlocking architecture successfully inhibits PEO crystallization, increasing the amorphous phase for Li ion transportation, and stabilizes the conductive pathways of LGPS particles by its unique confinement effect. Meanwhile, the LGPS particles cooperate with the RILN matrix, forming a filler-polymer interfacial phase for additional Li ion transportation and strengthening and toughening the resultant CSEs via the strong intermolecular Li+-O2- interactions. Furthermore, the dynamic characteristics of the included reversible bonds ensure a multiple intrinsic self-healing capability. Consequently, the CSEs containing 15 wt % LGPS deliver a high ionic conductivity (1.06 × 10-3 S cm-1) and high Li ion transference number (∼0.6) at 25 °C, a wide electrochemical stability window (>4.9 V), good mechanical properties (0.63 MPa, 377%), and a stable CSE/Li anode interface. The integrated Li/CSE/LiFePO4 battery exhibits a specific discharge capacity of 110.8 mAh g-1 at 1 C (25 °C) and a capacity retention of 76.9% after 200 cycles. Thanks to the healability, the damaged CSEs can regain the structural integrity, ion conductive capability, and cycling performance of the assembled cells. The present work provides an effective strategy to fabricate CSEs for lithium metal batteries that are workable at ambient temperature.
Collapse
Affiliation(s)
- Zi Xin Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ting Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
10
|
Kim D, Hu X, Yu B, Chen YI. Small Additives Make Big Differences: A Review on Advanced Additives for High-Performance Solid-State Li Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401625. [PMID: 38934341 DOI: 10.1002/adma.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Solid-state lithium (Li) metal batteries, represent a significant advancement in energy storage technology, offering higher energy densities and enhanced safety over traditional Li-ion batteries. However, solid-state electrolytes (SSEs) face critical challenges such as lower ionic conductivity, poor stability at the electrode-electrolyte interface, and dendrite formation, potentially leading to short circuits and battery failure. The introduction of additives into SSEs has emerged as a transformative approach to address these challenges. A small amount of additives, encompassing a range from inorganic and organic materials to nanostructures, effectively improve ionic conductivity, drawing it nearer to that of their liquid counterparts, and strengthen mechanical properties to prevent cracking of SSEs and maintain stable interfaces. Importantly, they also play a critical role in inhibiting the growth of dendritic Li, thereby enhancing the safety and extending the lifespan of the batteries. In this review, the wide variety of additives that have been investigated, is comprehensively explored, emphasizing how they can be effectively incorporated into SSEs. By dissecting the operational mechanisms of these additives, the review hopes to provide valuable insights that can help researchers in developing more effective SSEs, leading to the creation of more efficient and reliable solid-state Li metal batteries.
Collapse
Affiliation(s)
- Donggun Kim
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Xin Hu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Baozhi Yu
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Ying Ian Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC, 3216, Australia
| |
Collapse
|
11
|
Wang X, Huang S, Peng Y, Min Y, Xu Q. Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries. CHEMSUSCHEM 2024; 17:e202301262. [PMID: 38415928 DOI: 10.1002/cssc.202301262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
In the current challenging energy storage and conversion landscape, solid-state lithium metal batteries with high energy conversion efficiency, high energy density, and high safety stand out. Due to the limitations of material properties, it is difficult to achieve the ideal requirements of solid electrolytes with a single-phase electrolyte. A composite solid electrolyte is composed of two or more different materials. Composite electrolytes can simultaneously offer the advantages of multiple materials. Through different composite methods, the merits of various materials can be incorporated into the most essential part of the battery in a specific form. Currently, more and more researchers are focusing on composite methods for combining components in composite electrolytes. The ion transport capacity, interface stability, machinability, and safety of electrolytes can be significantly improved by selecting appropriate composite methods. This review summarizes the composite methods used for the components of composite electrolytes, such as filler blending, embedded framework, and multilayer bonding. It also discusses the future development trends of all-solid-state lithium batteries (ASSLBs).
Collapse
Affiliation(s)
- Xu Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- China Three Gorges Corporation Science and Technology Research Institute, Beijing, 101100, P. R. China
| | - Sipeng Huang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yiting Peng
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse Shanghai, Institute of Pollution Control and Ecological Security College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qunjie Xu
- Shanghai Key Laboratory of Materials Protection and Advanced Materials Electric Power, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse Shanghai, Institute of Pollution Control and Ecological Security College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
12
|
Feng D, Zheng R, Qiao L, Li S, Xu F, Ye C, Zhang J, Li Y. Metal-Organic Framework-Derived Co 9S 8 Nanowall Array Embellished Polypropylene Separator for Dendrite-Free Lithium Metal Anodes. Polymers (Basel) 2024; 16:1924. [PMID: 39000779 PMCID: PMC11244197 DOI: 10.3390/polym16131924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024] Open
Abstract
Developing a reasonable design of a lithiophilic artificial solid electrolyte interphase (SEI) to induce the uniform deposition of Li+ ions and improve the Coulombic efficiency and energy density of batteries is a key task for the development of high-performance lithium metal anodes. Herein, a high-performance separator for lithium metal anodes was designed by the in situ growth of a metal-organic framework (MOF)-derived transition metal sulfide array as an artificial SEI on polypropylene separators (denoted as Co9S8-PP). The high ionic conductivity and excellent morphology provided a convenient transport path and fast charge transfer kinetics for lithium ions. The experimental data illustrate that, compared with commercial polypropylene separators, the Li//Cu half-cell with a Co9S8-PP separator can be cycled stably for 2000 h at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, a Li//LiFePO4 full cell with a Co9S8-PP separator exhibits ultra-long cycle stability at 0.2 C with an initial capacity of 148 mAh g-1 and maintains 74% capacity after 1000 cycles. This work provides some new strategies for using transition metal sulfides to induce the uniform deposition of lithium ions to create high-performance lithium metal batteries.
Collapse
Affiliation(s)
- Deshi Feng
- Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ruiling Zheng
- Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Digital Media and Animation, Shandong Communication & Media College, Jinan 250200, China
| | - Li Qiao
- Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- SVOLT Energy Technology Co., Ltd., Changzhou 213299, China
| | - Shiteng Li
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150006, China
| | - Fengzhao Xu
- Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chuangen Ye
- Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Zhang
- Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yong Li
- Advanced Materials Institute, School of Materials Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
13
|
Ding X, He Z, Li J, Xu X, Li Z. Carbon carrier-based rapid Joule heating technology: a review on the preparation and applications of functional nanomaterials. NANOSCALE 2024; 16:12309-12328. [PMID: 38874095 DOI: 10.1039/d4nr01510j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Compared to conventional heating techniques, the carbon carrier-based rapid Joule heating (CJH) method is a new class of technologies that offer significantly higher heating rates and ultra-high temperatures. Over the past few decades, CJH technology has spawned several techniques with similar principles for different application scenarios, including ultra-fast high temperature sintering (UHS), carbon thermal shock (CTS), and flash Joule heating (FJH), which have been widely used in material preparation research studies. Functional nanomaterials are a popular direction of research today, mainly including nanometallic materials, nanosilica materials, nanoceramic materials and nanocarbon materials. These materials exhibit unique physical, chemical, and biological properties, including a high specific surface area, strength, thermal stability, and biocompatibility, making them ideal for diverse applications across various fields. The CJH method is a remarkable approach to producing functional nanomaterials that has attracted attention for its significant advantages. This paper aims to delve into the fundamental principles of CJH and elucidate the efficient preparation of functional nanomaterials with superior properties using this technique. The paper is organized into three sections, each dedicated to introducing the process and characteristics of CJH technology for the preparation of three distinct material types: carbon-based nanomaterials, inorganic non-metallic materials, and metallic materials. We discuss the distinctions and merits of the CJH method compared to alternative techniques in the preparation of these materials, along with a thorough examination of their properties. Furthermore, the potential applications of these materials are highlighted. In conclusion, this paper concludes with a discussion on the future research trends and development prospects of CJH technology.
Collapse
Affiliation(s)
- Xinrui Ding
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zihan He
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Jiasheng Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| | - Xiaolin Xu
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
| | - Zongtao Li
- National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology, Guangzhou 510641, China.
- Guangdong Provincial Key Laboratory of Semiconductor Micro Display, Foshan Nationstar Optoelectronics Company Ltd, Foshan 528000, China
| |
Collapse
|
14
|
Wei L, Xu X, Xi K, Lei Y, Cheng X, Shi X, Wu H, Gao Y. Ultralong Cycling and Interfacial Regulation of Bilayer Heterogeneous Composite Solid-State Electrolytes in Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33578-33589. [PMID: 38905020 DOI: 10.1021/acsami.4c06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Under the background of "carbon neutral", lithium-ion batteries (LIB) have been widely used in portable electronic devices and large-scale energy storage systems, but the current commercial electrolyte is mainly liquid organic compounds, which have serious safety risks. In this paper, a bilayer heterogeneous composite solid-state electrolyte (PLPE) was constructed with the 3D LiX zeolite nanofiber (LiX-NF) layer and in-situ interfacial layer, which greatly extends the life span of lithium metal batteries (LMB). LiX-NF not only offers a continuous fast path for Li+, but also zeolite's Lewis acid-base interaction can immobilize large anions, which significantly improves the electrochemical performance of the electrolyte. In addition, the in-situ interfacial layer at the electrode-electrolyte interface can effectively facilitate the uniform deposition of Li+ and inhibit the growth of lithium dendrites. As a result, the Li/Li battery assembled with PLPE can be stably cycled for more than 2500 h at 0.1 mA cm-2. Meanwhile, the initial discharge capacity of the LiFePO4/PLPE/Li battery can be 162.43 mAh g-1 at 0.5 C, and the capacity retention rate is 82.74% after 500 cycles. These results emphasize that this bilayer heterogeneous composite solid-state electrolyte has distinct properties and shows excellent potential for application in LMB.
Collapse
Affiliation(s)
- Lai Wei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Kang Xi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiang Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiaobei Shi
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Haihua Wu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
15
|
Deng Y, Zhao S, Chen Y, Wan S, Chen S. Wide-Temperature and High-Rate Operation of Lithium Metal Batteries Enabled by an Ionic Liquid Functionalized Quasi-Solid-State Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310534. [PMID: 38326097 DOI: 10.1002/smll.202310534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Indexed: 02/09/2024]
Abstract
The development of high-energy-density solid-state lithium metal battery has been hindered by the unstable cycling of Ni-rich cathodes at high rate and limited wide-temperatures adoptability. In this study, an ionic liquid functionalized quasi-solid-state electrolyte (FQSE) is prepared to address these challenges. The FQSE features a semi-immobilized ionic liquid capable of anchoring solvent molecules through electrostatic interactions, which facilitates Li+ desolvation and reduces deleterious solvent-cathode reactions. The FQSE exhibits impressive electrochemical characteristics, including high ionic conductivity (1.9 mS cm-1 at 30 °C and 0.2 mS cm-1 at -30 °C) and a Li+ transfer number of 0.7. Consequently, Li/NCM811 cells incorporating FQSE demonstrate exceptional stability during high-rate cycling, enduring 700 cycles at 1 C. Notably, the Li/LFP cells with FQSE maintain high capacity across a wide temperature range, from -30 to 60 °C. This research provides a new way to promote the practical application of high-energy lithium metal batteries.
Collapse
Affiliation(s)
- Yonghui Deng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shunshun Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yong Chen
- UTS School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Shuang Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shimou Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
16
|
Yang B, Deng C, Chen N, Zhang F, Hu K, Gui B, Zhao L, Wu F, Chen R. Super-Ionic Conductor Soft Filler Promotes Li + Transport in Integrated Cathode-Electrolyte for Solid-State Battery at Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403078. [PMID: 38583072 DOI: 10.1002/adma.202403078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Composite polymer solid electrolytes (CPEs), possessing good rigid flexible, are expected to be used in solid-state lithium-metal batteries. The integration of fillers into polymer matrices emerges as a dominant strategy to improve Li+ transport and form a Li+-conducting electrode-electrolyte interface. However, challenges arise as traditional fillers: 1) inorganic fillers, characterized by high interfacial energy, induce agglomeration; 2) organic fillers, with elevated crystallinity, impede intrinsic ionic conductivity, both severely hindering Li+ migration. Here, a concept of super-ionic conductor soft filler, utilizing a Li+ conductivity nanocellulose (Li-NC) as a model, is introduced which exhibits super-ionic conductivity. Li-NC anchors anions, and enhances Li+ transport speed, and assists in the integration of cathode-electrolyte electrodes for room temperature solid-state batteries. The tough dual-channel Li+ transport electrolyte (TDCT) with Li-NC and polyvinylidene fluoride (PVDF) demonstrates a high Li+ transfer number (0.79) due to the synergistic coordination mechanism in Li+ transport. Integrated electrodes' design enables stable performance in LiNi0.5Co0.2Mn0.3O2|Li cells, with 720 cycles at 0.5 C, and 88.8% capacity retention. Furthermore, the lifespan of Li|TDCT|Li cells over 4000 h and Li-rich Li1.2Ni0.13Co0.13Mn0.54O2|Li cells exhibits excellent performance, proving the practical application potential of soft filler for high energy density solid-state lithium-metal batteries at room temperature.
Collapse
Affiliation(s)
- Binbin Yang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chenglong Deng
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Nan Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
| | - Fengling Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Kaikai Hu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Boshun Gui
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Liyuan Zhao
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Wu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| | - Renjie Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250300, China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, China
| |
Collapse
|
17
|
Mor J, Sharma SK. Decoupling of ion-transport from polymer segmental relaxation and higher ionic-conductivity in poly(ethylene oxide)/succinonitrile composite-based electrolytes having low lithium salt doping. Phys Chem Chem Phys 2024; 26:13306-13315. [PMID: 38639464 DOI: 10.1039/d4cp00735b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Only limited enhancement in room-temperature ionic-conductivity for poly(ethylene oxide), PEO, based electrolytes is possible due to coupling between ionic-conductivity and segmental relaxation. In the present study, we have achieved ionic-conductivity of 1.07 × 10-3 and 6.20 × 10-4 S cm-1 at 313 and 298 K, respectively, by adding 45 wt% of succinonitrile (SN) in PEO having low LiTFSI loading (Li : EO = 1 : 20). This enhancement in the ionic-conductivity is attributed to faster ion transport (diffusion coefficient, D = 3.63 × 10-5 cm2 s-1) occurring through the ion-transport channels as confirmed by positron annihilation lifetime spectroscopy. The ionic-transport through these channels is observed to be highly decoupled from the segmental relaxations as confirmed using broadband dielectric spectroscopy through Ratner's approach. The observed decoupling of ionic-conductivity from PEO segmental relaxation in PEO-SN composite-based electrolytes would be useful to design rather inexpensive all solid-state polymer electrolytes for Li ion batteries.
Collapse
Affiliation(s)
- J Mor
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - S K Sharma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
18
|
Gicha BB, Tufa LT, Nwaji N, Hu X, Lee J. Advances in All-Solid-State Lithium-Sulfur Batteries for Commercialization. NANO-MICRO LETTERS 2024; 16:172. [PMID: 38619762 PMCID: PMC11018734 DOI: 10.1007/s40820-024-01385-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/24/2024] [Indexed: 04/16/2024]
Abstract
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies. Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility. In particular, all-solid-state lithium-sulfur batteries (ASSLSBs) that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system, surpassing conventional lithium-ion batteries. This can be attributed predominantly to their exceptional energy density, extended operational lifespan, and heightened safety attributes. Despite these advantages, the adoption of ASSLSBs in the commercial sector has been sluggish. To expedite research and development in this particular area, this article provides a thorough review of the current state of ASSLSBs. We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs, explore the fundamental scientific principles involved, and provide a comprehensive evaluation of the main challenges faced by ASSLSBs. We suggest that future research in this field should prioritize plummeting the presence of inactive substances, adopting electrodes with optimum performance, minimizing interfacial resistance, and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
Collapse
Affiliation(s)
- Birhanu Bayissa Gicha
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Lemma Teshome Tufa
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Njemuwa Nwaji
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, 200444, Shanghai, People's Republic of China
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
19
|
Wang Q, Xu H, Fan Y, Chi SS, Han B, Ke R, Wang R, Wang J, Wang C, Xu X, Zheng Z, Deng Y, Chang J. Insight into Multiple Intermolecular Coordination of Composite Solid Electrolytes via Cryo-Electron Microscopy for High-Voltage All-Solid-State Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314063. [PMID: 38444248 DOI: 10.1002/adma.202314063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Polymer/ceramic-based composite solid electrolytes (CSE) are promising candidates for all-solid-state lithium metal batteries (SLBs), benefiting from the combined mechanical robustness of polymeric electrolytes and the high ionic conductivity of ceramic electrolytes. However, the interfacial instability and poorly understood interphases of CSE hinder their application in high-voltage SLBs. Herein, a simple but effective CSE that stabilizes high-voltage SLBs by forming multiple intermolecular coordination interactions between polyester and ceramic electrolytes is discovered. The multiple coordination between the carbonyl groups in poly(ε-caprolactone) and the fluorosulfonyl groups in anions with Li6.5 La3 Zr1.5 Ta0.5 O12 nanoparticles is directly visualized by cryogenic transmission electron microscopy and further confirmed by theoretical calculation. Importantly, the multiple coordination in CSE not only prevents the continuous decomposition of polymer skeleton by shielding the vulnerable carbonyl sites but also establishes stable inorganic-rich interphases through preferential decomposition of anions. The stable CSE and its inorganic-rich interphases enable Li||Li symmetric cells with an exceptional lifespan of over 4800 h without dendritic shorting at 0.1 mA cm-2 . Moreover, the high-voltage SLB with LiNi0.5 Co0.2 Mn0.3 O2 cathode displays excellent cycling stability over 1100 cycles at a 1C charge/discharge rate. This work reveals the underlying mechanism behind the excellent stability of coordinating composite electrolytes and interfaces in high-voltage SLBs.
Collapse
Affiliation(s)
- Qingrong Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongli Xu
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanchen Fan
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shang-Sen Chi
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bing Han
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruohong Ke
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruo Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jun Wang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxiong Xu
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yonghong Deng
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian Chang
- Department of Materials Science and Engineering, School of Innovation and Entrepreneurship, Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| |
Collapse
|
20
|
Pan J, Wang Z, Deng M, Zhang J, He H, Wang B, Liu X, Fu F. Construction of Janus structures on thin silk fabrics via misting for wet-thermal comfort and antimicrobial activity. J Colloid Interface Sci 2024; 656:587-596. [PMID: 37996256 DOI: 10.1016/j.jcis.2023.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Owing to their small fiber diameter (10-15 μm), silk fabrics are always thin (32-90 g m-2). Therefore, construction of the Janus surfaces of silk fabrics that possess excellent multifunctionality remains a formidable challenge. Herein, first, silk fabrics were grafted using glycidyltrimethylammonium chloride to form a superhydrophilic surface (G-side). Then, a unilateral hydrophobic surface (O-side) was readily fabricated by mist coating octadecyltrichlorosilane-functionalized SiO2 nanoparticles (NPs) to produce hierarchical surface textures. To prevent NP penetration from the G-side to the O-side, a "fireproof isolation" method was employed. Consequently, Janus silk fabrics (JanSFs) bearing asymmetric wettability were prepared, and their wetting gradient could be conveniently regulated. With the mist time ranging from 4 to 7 min, the unidirectional transport index and efficiency of the unidirectional water transport increased and decreased by 13.2 and 10.4 times, respectively. Sweat could be effectively drained away from human skin to ensure that the skin was dry and comfortable. Compared with the surface temperature of the raw fabric, the raw fabric of JanSFs increased by 2.7 °C. Furthermore, the breathability of JanSF was negligibly affected, and the outer O-side of the JanSF showed substantial antibacterial activity. This study is important for designing JanSFs that exhibit unidirectional water transport.
Collapse
Affiliation(s)
- Jiana Pan
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhengfeng Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mingxiu Deng
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jie Zhang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hongfan He
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bing Wang
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China
| | - Xiangdong Liu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Feiya Fu
- School of Materials Science and Engineering and Institute of Composite Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China; Project Promotion Department, Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, China.
| |
Collapse
|
21
|
Tian J, Ji J, Zhu Y, He Y, Li H, Li Y, Luo D, Xing J, Qie L, Sessler JL, Chi X. Phenylboronic Acid Functionalized Calix[4]pyrrole-Based Solid-State Supramolecular Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308507. [PMID: 37885345 DOI: 10.1002/adma.202308507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Solid-state polymer electrolytes (SPEs) suffer from the low ionic conductivity and poor capability of suppressing lithium (Li) dendrites, which limits their utility in the preparation of all solid-state Li-metal batteries (LMBs). It is reported here a flexible solid supramolecular electrolyte that incorporates a new anion capture agent, namely a phenylboronic acid functionalized calix[4]pyrrole (C4P), into a poly(ethylene oxide) (PEO) matrix. The resulting solid-state supramolecular electrolyte demonstrates high ionic conductivity (1.9 × 10-3 S cm-1 at 60 °C) and a high Li+ transference number (t Li + ${t}_{{\mathrm{Li}}^{\mathrm{ + }}}$ = 0.70). Furthermore, the assembled Li|C4P-PEO-LiTFSI|LiFePO4 cell allows for stable cycling over 1200 cycles at 1 C at 60 °C, as well as good rate performance. The favorable performance of the C4P-PEO-LiTFSI SPE leads to suggest it can prove useful in the creation of high energy density solid-state LMBs.
Collapse
Affiliation(s)
- Jinya Tian
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jie Ji
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yaling Zhu
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanlei He
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbing Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Li
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dan Luo
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiapeng Xing
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Qie
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712-1224, USA
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
22
|
Hu J, Wang W, Zhou B, Sun J, Chin WS, Lu L. Click Chemistry in Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306622. [PMID: 37806765 DOI: 10.1002/smll.202306622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Lithium-metal batteries (LMBs) are considered the "holy grail" of the next-generation energy storage systems, and solid-state electrolytes (SSEs) are a kind of critical component assembled in LMBs. However, as one of the most important branches of SSEs, polymer-based electrolytes (PEs) possess several native drawbacks including insufficient ionic conductivity and so on. Click chemistry is a simple, efficient, regioselective, and stereoselective synthesis method, which can be used not only for preparing PEs with outstanding physical and chemical performances, but also for optimizing the stability of solid electrolyte interphase (SEI) layer and elevate the cycling properties of LMBs effectively. Here it is primarily focused on evaluating the merits of click chemistry, summarizing its existing challenges and outlining its increasing role for the designing and fabrication of advanced PEs. The fundamental requirements for reconstructing artificial SEI layer through click chemistry are also summarized, with the aim to offer a thorough comprehension and provide a strategic guidance for exploring the potentials of click chemistry in the field of LMBs.
Collapse
Affiliation(s)
- Ji Hu
- School of Materials Science and Engineering, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Wanhui Wang
- School of Materials Science and Engineering, School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Binghua Zhou
- Institute of Advanced Materials, State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Jianguo Sun
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
| | - Wee Shong Chin
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| | - Li Lu
- Department of Mechanical Engineering, Department of Chemistry, National University of Singapore, Singapore, 117575, Singapore
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, China
| |
Collapse
|
23
|
Dai D, Zhou X, Yan P, Zhang Z, Wang L, Qiao Y, Wu C, Li H, Li W, Jia M, Li B, Liu DH. Interconnected Three-Dimensional Porous Alginate-Based Gel Electrolytes for Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2428-2437. [PMID: 38166369 DOI: 10.1021/acsami.3c17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Lithium batteries have been widely used in our daily lives for their high energy density and long-term stability. However, their safety problems are of paramount concern for consumers, which restricts their scale applications. Gel polymer electrolytes (GPEs) compensate for the defects of liquid leakage and lower ionic conductivity of solid electrolytes, which have attracted a lot of attention. Herein, a 3D interconnected highly porous structural gel electrolyte was prepared with alginate dressing as a host material, poly(ethylene oxide) (PEO), and a commercial liquid electrolyte. With rich polar functional groups and (CH2-CH2-O) segments on the polymer matrix, the transportation of Li+ is faster and uniform; thus, the formations of lithium dendrite were significantly inhibited. The cycle stability of symmetrical Li||Li batteries with modified composite electrolytes (SAA) is greatly improved, and the overpotential remains stable after more than 1000 h. Meanwhile, under the same conditions, the cycle performance of batteries with unmodified electrolytes is inferior and overpotentials are nearly 1 V after 100 h. Additionally, the capacity retention of Li||LiFePO4 with SAA is more than 95% after 200 cycles, while those of the others declined sharply. The alginate dressing-based GPEs can greatly enhance the mechanical and thermal stability of PEO-based GPEs, which provides an environmentally friendly avenue for gel electrolytes' applications in lithium batteries.
Collapse
Affiliation(s)
- Dongmei Dai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinxin Zhou
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pengyao Yan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhuangzhuang Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Liang Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yaru Qiao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Canhui Wu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Haowen Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Weitao Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengmin Jia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bao Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dai-Huo Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
24
|
Wei L, Xu X, Xi K, Shi X, Cheng X, Lei Y, Gao Y. Polydopamine-Induced Metal-Organic Framework Network-Enhanced High-Performance Composite Solid-State Electrolytes for Dendrite-Free Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:878-888. [PMID: 38114416 DOI: 10.1021/acsami.3c16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Due to the high safety, flexibility, and excellent compatibility with lithium metals, composite solid-state electrolytes (CSEs) are the best candidates for next-generation lithium metal batteries, and the construction of fast and uniform Li+ transport is a critical part of the development of CSEs. In this paper, a stable three-dimensional metal-organic framework (MOF) network was obtained using polydopamine as a medium, and a high-performance CSE reinforced by the three-dimensional MOF network was constructed, which not only provides a continuous channel for Li+ transport but also restricts large anions and releases more mobile Li+ through a Lewis acid-base interaction. This strategy endows our CSEs with an ionic conductivity (7.1 × 10-4 S cm-1 at 60 °C), a wide electrochemical window (5.0 V), and a higher Li+ transfer number (0.54). At the same time, the lithium symmetric batteries can be stably cycled for 2000 h at 0.1 mA cm-2, exhibiting excellent electrochemical stability. The LiFePO4/Li cells have a high initial discharge specific capacity of 153.9 mAh g-1 at 1C, with a capacity retention of 80% after 915 cycles. This paper proposes an approach for constructing three-dimensional MOF network-enhanced CSEs, which provides insights into the design and development of MOFs for the positive effects of high-performance CSEs.
Collapse
Affiliation(s)
- Lai Wei
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Xin Xu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Kang Xi
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Xiaobei Shi
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Xiang Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Yue Lei
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| | - Yunfang Gao
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, P. R. China
| |
Collapse
|
25
|
Liu R, Lai X, Xue J, Chen H, Xie L, Qiu Y, Yin W. Anionic Anchoring Enhanced Quasi Solid Composite Polymer Electrolytes for High Performance Lithium Metal Battery. Polymers (Basel) 2023; 15:4716. [PMID: 38139967 PMCID: PMC10748324 DOI: 10.3390/polym15244716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Herein, ZIF-8 inorganic particles with different sized reinforced poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) solid composite polymer electrolytes (PVDF-HFP/10%ZIF-8) were prepared via a facile blade-coating approach, and free-standing quasi solid-state composite electrolytes (PVDF-HFP/10%ZIF-8(0.6)/Plasticizer, abbreviated as PH/10%ZIF-8(0.6)/P), were further obtained through the introduction of plasticizer. Optimized PH/10%ZIF-8(0.6)/P exhibited a high ionic conductivity of 2.8 × 10-4 S cm-1 at 30 °C, and superior Li+ transfer number of 0.89 with an ultrathin thickness (26 µm). Therefore, PH/10%ZIF-8(0.6)/P could effectively inhibit the growth of lithium dendrites, and the assembled Li/LiFePO4 cell delivered good cycling stability with a capacity retention rate of 89.1% after 100 cycles at 0.5 C.
Collapse
Affiliation(s)
- Ruliang Liu
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China; (X.L.); (J.X.); (H.C.); (Y.Q.); (W.Y.)
| | | | | | | | - Lijun Xie
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China; (X.L.); (J.X.); (H.C.); (Y.Q.); (W.Y.)
| | | | | |
Collapse
|
26
|
Chen Y, Yin J, Jiang S, Zhu X, Lei Y, Xu X, Gao Y. Poly-1,3-dioxolane anchoring graphitic carbon nitride to achieve high-energy-density solid-state Li metal batteries. J Colloid Interface Sci 2023; 652:490-499. [PMID: 37604060 DOI: 10.1016/j.jcis.2023.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
Solid-state Li metal batteries (SSLMBs) are promising solutions for the next-generation energy storage devices with high energy densities and safety. Accordingly, the advanced solid-state electrolytes are further needed to address the challenges-low ionic conductivity, poor interfacial compatibility and uncontrollably Li dendrites, boosting the electrochemical and safety performances of SSLMBs. Herein, a "flexible and rigid" strategy is proposed to enhance the electrochemical and mechanical properties of polyethylene oxide (PEO)-based electrolytes. Specifically, the flexible poly-1,3-dioxolane (poly-DOL) and rigid graphitic carbon nitride (g-C3N4) are coordinated by a coupling reaction to prepare g-C3N4-poly-DOL, which is further employed as the filler for the PEO matrix to fabricate a composite polymer electrolyte g-C3N4-pDOL-PEO. The flexible poly-DOL and rigid g-C3N4 together endow the PEO-based electrolyte with good interfacial stability, high ion-conductivity and strong mechanical strength. Consequently, the Li/g-C3N4-pDOL-PEO/LiFePO4 cell delivers high cyclability with a capacity retention ratio of 89.7 % after 150 cycles and an average Coulombic efficiency over 99.9 %, and, the Li/g-C3N4-pDOL-PEO/Li cell can stably cycle beyond 300 h at 0.2 mAh cm-2 with small polarization (13 mV). The "flexible and rigid" strategy coupling the polymer with the filler provides an effective electrolyte design for high-performance SSLMBs.
Collapse
Affiliation(s)
- Yu Chen
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, PR China; Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, Binzhou Key Laboratory of Applied Electrochemistry, College of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, PR China
| | - Junying Yin
- Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, Binzhou Key Laboratory of Applied Electrochemistry, College of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, PR China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Sen Jiang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xuequan Zhu
- Sunyes Shanshan Advanced Materials Technology (Quzhou) Co. Ltd., Quzhou 324012, PR China
| | - Yue Lei
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xin Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yunfang Gao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
27
|
Su Y, Mu Z, Qiu Y, Jiang G, Shenouda A, Zhang X, Xu F, Wang H. Embedding of Laser Generated TiO 2 in Poly(ethylene oxide) with Boosted Li + Conduction for Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55713-55722. [PMID: 38058104 DOI: 10.1021/acsami.3c12265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Poly(ethylene oxide) (PEO)-based solid polymer electrolytes are considered promising materials for realizing high-safety and high-energy-density lithium metal batteries. However, the high crystallinity of PEO at room temperature triggers low ionic conductivity and Li+ transference number, critically hindering practical applications in solid-state lithium metal batteries. Herein, we prepared nanosized TiO2 with enriched oxygen vacancies down to 13 nm as fillers by laser irradiation, which can be coated by in situ generated polyacetonitrile, ensuring good dispersibility in PEO. The electrolytes with nanosized TiO2 show a combination of high ionic conductivity, high Li+ transference number, superior electrochemical stability, and enhanced mechanical robustness. Accordingly, the lithium symmetric batteries with nanosized TiO2 composite solid electrolytes exhibit a stable cycling life up to 590 h at 0.25 mA cm-2. The full Li metal batteries paired with a LiFePO4 cathode deliver superior durability for 550 cycles. Moreover, the proof-of-concept pouch cells demonstrate excellent safety performance under various harsh conditions. This work provides a realistic guide in designing novel fillers to achieve stable operation of high-safety and energy-dense solid-state lithium metal batteries.
Collapse
Affiliation(s)
- Yanxia Su
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Zheshen Mu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Yuqian Qiu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Guangshen Jiang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Atef Shenouda
- Batteries Technology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, 11911 Helwan, Cairo, Egypt
| | - Xinren Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, P.R. China
| |
Collapse
|
28
|
Sang J, Pan K, Tang B, Zhang Z, Liu Y, Zhou Z. One Stone, Three Birds: An Air and Interface Stable Argyrodite Solid Electrolyte with Multifunctional Nanoshells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304117. [PMID: 37750447 PMCID: PMC10646260 DOI: 10.1002/advs.202304117] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Li6 PS5 Cl (LPSC) solid electrolytes, based on Argyrodite, have shown potential for developing high energy density and safe all-solid-state lithium metal batteries. However, challenges such as interfacial reactions, uneven Li deposition, and air instability remain unresolved. To address these issues, a simple and effective approach is proposed to design and prepare a solid electrolyte with unique structural features: Li6 PS4 Cl0.75 -OF0.25 (LPSC-OF0.25 ) with protective LiF@Li2 O nanoshells and F and O-rich internal units. The LPSC-OF0.25 electrolyte exhibits high ionic conductivity and the capability of "killing three birds with one stone" by improving the moist air tolerance, as well as the interface compatibility between the anode or cathode and the solid electrolyte. The improved performance is attributed to the peculiar morphology and the self-generating and self-healing interface coupling capability. When coupled with bare LiCoO2 , the LPSC-OF0.25 electrolyte enables stable operation under high cutoff voltage (≈4.65 V vs Li/Li+ ), thick cathodes (25 mg cm-2 ), and large current density (800 cycles at 2 mA cm-2 ). This rationally designed solid electrolyte offers promising prospects for solid-state batteries with high energy and power density for future long-range electric vehicles and aircrafts.
Collapse
Affiliation(s)
- Junwu Sang
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE)School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Kecheng Pan
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE)School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Bin Tang
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE)School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhang Zhang
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE)School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Yiyang Liu
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE)School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhen Zhou
- Interdisciplinary Research Center for Sustainable Energy Science and Engineering (IRC4SE)School of Chemical EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
29
|
Cheng Y, Liu X, Guo Y, Dong G, Hu X, Zhang H, Xiao X, Liu Q, Xu L, Mai L. Monodispersed Sub-1 nm Inorganic Cluster Chains in Polymers for Solid Electrolytes with Enhanced Li-Ion Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303226. [PMID: 37632842 DOI: 10.1002/adma.202303226] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Indexed: 08/28/2023]
Abstract
The organic-inorganic interfaces can enhance Li+ transport in composite solid-state electrolytes (CSEs) due to the strong interface interactions. However, Li+ non-conductive areas in CSEs with inert fillers will hinder the construction of efficient Li+ transport channels. Herein, CSEs with fully active Li+ conductive networks are proposed to improve Li+ transport by composing sub-1 nm inorganic cluster chains and organic polymer chains. The inorganic cluster chains are monodispersed in polymer matrix by a brief mixed-solvent strategy, their sub-1 nm diameter and ultrafine dispersion state eliminate Li+ non-conductive areas in the interior of inert fillers and filler-agglomeration, respectively, providing rich surface areas for interface interactions. Therefore, the 3D networks connected by the monodispersed cluster chains finally construct homogeneous, large-scale, continuous Li+ fast transport channels. Furthermore, a conjecture about 1D oriented distribution of organic polymer chains along the inorganic cluster chains is proposed to optimize Li+ pathways. Consequently, the as-obtained CSEs possess high ionic conductivity at room temperature (0.52 mS cm-1 ), high Li+ transference number (0.62), and more mobile Li+ (50.7%). The assembled LiFePO4 /Li cell delivers excellent stability of 1000 cycles at 0.5 C and 700 cycles at 1 C. This research provides a new strategy for enhancing Li+ transport by efficient interfaces.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaowei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yaqing Guo
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
| | - Guangyao Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xinkuan Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Hong Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xidan Xiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Qin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Lin Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
- Hainan Institute, Wuhan University of Technology, Sanya, 572000, China
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
30
|
Xu Z, Liu H, Wu F, Cheng L, Yu J, Liu YT, Ding B. Inhibited Grain Growth Through Phase Transition Modulation Enables Excellent Mechanical Properties in Oxide Ceramic Nanofibers up to 1700 °C. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305336. [PMID: 37611152 DOI: 10.1002/adma.202305336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Oxide ceramics are widely used as thermal protection materials due to their excellent structural properties and earth abundance. However, in extremely high-temperature environments (above 1500 °C), the explosive growth of grain size causes irreversible damage to the microstructure of oxide ceramics, thus exhibiting poor thermomechanical stability. This problem, which may lead to catastrophic accidents, remains a great challenge for oxide ceramic materials. Here, a novel strategy of phase transition modulation is proposed to control the grain growth at high temperatures in oxide ceramic nanofibers, realizing effective regulation of the crystalline forms as well as the size uniformity of primary grains, and thus suppressing the malignant growth of the grains. The resulting oxide ceramic nanofibers have excellent mechanical strength and flexibility, delivering an average tensile strength as high as 1.02 GPa after being exposed to 1700 °C for 30 min, and can withstand thousands of flexural cycles without obvious damage. This work may provide new insight into the development of advanced oxide ceramic materials that can serve in extremely high-temperature environments with long-term durability.
Collapse
Affiliation(s)
- Zhen Xu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Hualei Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fan Wu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Longdi Cheng
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
31
|
Naren T, Jiang R, Qing P, Huang S, Ling C, Lin J, Wei W, Ji X, Chen Y, Zhang Q, Kuang GC, Chen L. Stabilizing Lithium Metal Batteries by Synergistic Effect of High Ionic Transfer Separator and Lithium-Boron Composite Material Anode. ACS NANO 2023; 17:20315-20324. [PMID: 37787661 DOI: 10.1021/acsnano.3c06336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
The development of lithium (Li) metal batteries (LMBs) has been limited by problems, such as severe dendrite growth, drastic interfacial reactions, and large volume change. Herein, an LMB (8AP@LiB) combining agraphene oxide-poly(ethylene oxide) (PEO) functionalized polypropylene separator (8AP) with a lithium-boron (LiB) anode is designed to overcome these problems. Raman results demonstrate that the PEO chain on 8AP can influence the Li+ solvation structure in the electrolyte, resulting in Li+ homogeneous diffusion and Li+ deposition barrier reduction. 8AP exhibits good ionic conductivity (4.9 × 10-4 S cm-1), a high Li+ migration number (0.88), and a significant electrolyte uptake (293%). The 3D LiB skeleton can significantly reduce the anode volume changes and local current density during the charging/discharging process. Therefore, 8AP@LiB effectively regulates the Li+ flux and promotes the uniform Li deposition without dendrites. The Li||Li symmetrical cells of 8AP@LiB exhibit a high electrochemical stability of up to 1000 h at 1 mA cm-2 and 5 mAh cm-2. Importantly, the Li||LiFePO4 full cells of 8AP@LiB achieve an impressive 2000 cycles at 2C, while maintaining a high-capacity retention of 86%. The synergistic effect of the functionalized separator and LiB anode might provide a direction for the development of high-performance LMBs.
Collapse
Affiliation(s)
- Tuoya Naren
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
- Department of Materials Science and Engineering, City Universityof Hong Kong, Hong Kong, SAR 999077, People's Republic of China
| | - Ruheng Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Piao Qing
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Shaozhen Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Canhui Ling
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Jialin Lin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Weifeng Wei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Yuejiao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City Universityof Hong Kong, Hong Kong, SAR 999077, People's Republic of China
| | - Gui-Chao Kuang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
32
|
Bao W, Zhang Y, Cao L, Jiang Y, Zhang H, Zhang N, Liu Y, Yan P, Wang X, Liu Y, Li H, Zhao Y, Xie J. An H 2 O-Initiated Crosslinking Strategy for Ultrafine-Nanoclusters-Reinforced High-Toughness Polymer-In-Plasticizer Solid Electrolyte. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304712. [PMID: 37435622 DOI: 10.1002/adma.202304712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Incorporating plasticizers is an effective way to facilitate conduction of ions in solid polymer electrolytes (SPEs). However, this conductivity enhancement often comes at the cost of reduced mechanical properties, which can make the electrolyte membrane more difficult to process and increase safety hazards. Here, a novel crosslinking strategy, wherein metal-alkoxy-terminated polymers can be crosslinked by precisely controlling the content of H2 O as an initiator, is proposed. As a proof-of-concept, trimethylaluminum (TMA)-functionalized poly(ethylene oxide) (PEO) is used to demonstrate that ultrafine Al-O nanoclusters can serve as nodes to crosslink PEO chains with a wide range of molecular weights from 10 000 to 8 000 000 g mol-1 . The crosslinked polymer network can incorporate a high concentration of plasticizers, with a total weight percentage over 75%, while still maintaining excellent stretchability (4640%) and toughness (3.87 × 104 kJ m-3 ). The resulting electrolyte demonstrates high ionic conductivity (1.41 mS cm-1 ), low interfacial resistance toward Li metal (48.1 Ω cm2 ), and a wide electrochemical window (>4.8 V vs Li+ /Li) at 30 °C. Furthermore, the LiFePO4 /Li battery shows stable cycle performance with a capacity retention of 98.6% (146.3 mAh g-1 ) over 1000 cycles at 1C (1C = 170 mAh g-1 ) at 30 °C.
Collapse
Affiliation(s)
- Wenda Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yue Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lei Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yilan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Nian Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ying Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Pu Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xingzhi Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yixiao Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Haoyuan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jin Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
33
|
Li H, Hua R, Xu Y, Ke D, Yang C, Ma Q, Zhang L, Zhou T, Zhang C. A liquid metal-fluoropolymer artificial protective film enables robust lithium metal batteries at sub-zero temperatures. Chem Sci 2023; 14:10147-10154. [PMID: 37772126 PMCID: PMC10530669 DOI: 10.1039/d3sc03884j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Batteries that are both high-energy-density and durable at sub-zero temperatures are highly desirable for deep space and subsea exploration and military defense applications. Our design incorporates a casting membrane technology to prepare a gallium indium liquid metal (LM)/fluoropolymer hybrid protective film on a lithium metal anode. The LM not only spontaneously forms a passivation alloy layer with lithium but also reduces the nucleation potential barrier and homogenizes the Li+ flux on the surface of the lithium anode. The fluoropolymer's polar functional groups (-C-F-) effectively induce targeted dispersion of gallium indium seeds, and the unique pit structure on the surface provides oriented sites for lithium plating. By implementing these strategies optimally, the protected lithium metal anode remains in operation at a current density of 20 mA cm-2 with an over-potential of about 50.4 mV after 500 h, and the full cells have a high capacity retention rate of up to 98.5% at a current density of 0.5 C after 100 cycles. Furthermore, the battery shows improved low temperature performance at -30 °C, validating the potential of the protective film to enable battery operation at sub-zero temperatures.
Collapse
Affiliation(s)
- Hongbao Li
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Rong Hua
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Yang Xu
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Da Ke
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Chenyu Yang
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Quanwei Ma
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Leibniz Joint Research Center of Materials Sciences, Anhui Graphene Engineering Laboratory, Key Laboratory of Structure and Functional Regulation of Hybrid Material (Ministry of Education), Anhui University Hefei 230601 China
| |
Collapse
|
34
|
Bai X, Zhao G, Yang G, Wang M, Chen Z, Zhang N. Titanium-Oxygen Clusters Brazing Li with Li 6.5La 3Zr 1.5Ta 0.5O 12 for High-Performance All-Solid-State Li Batteries. NANO LETTERS 2023; 23:7934-7940. [PMID: 37624088 DOI: 10.1021/acs.nanolett.3c01731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Garnet-based solid-state electrolytes are considered crucial candidates for solid-state Li batteries due to their high Li+ conductivity and nonflammability; however, poor interfacial contact with the Li anode and growth of Li dendrites limit their application. Herein, a high-activity titanium-oxygen cluster is used as a brazing filler to braze the Li6.5La3Zr1.5Ta0.5O12 (LLZTO) with an Li anode into the whole unit. The brazing layer leads to a significantly lower interfacial impedance of 8.32 Ω cm2. Furthermore, the brazing layer is an isotropic amorphous ion-electron hybrid conductive layer, which significantly promotes Li+ transport and regulates the distribution of the electric field, therefore inhibiting the growth of Li dendrites. The cell exhibits an ultrahigh critical current density of 2.3 mA cm-2 and stable cycling of over 4000 h at 0.5 mA cm-2 (25 °C).
Collapse
Affiliation(s)
- Xiaoming Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Guangyu Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Guiye Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ming Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Zhaoyu Chen
- Space Environment Simulation Research Infrastructure, Harbin Institute of Technology, Harbin 150006, People's Republic of China
| | - Naiqing Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
35
|
Yu J, Zhou G, Li Y, Wang Y, Chen D, Ciucci F. Improving Room-Temperature Li-Metal Battery Performance by In Situ Creation of Fast Li + Transport Pathways in a Polymer-Ceramic Electrolyte. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302691. [PMID: 37279776 DOI: 10.1002/smll.202302691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Composite polymer-ceramic electrolytes have shown considerable potential for high-energy-density Li-metal batteries as they combine the benefits of both polymers and ceramics. However, low ionic conductivity and poor contact with electrodes limit their practical usage. In this study, a highly conductive and stable composite electrolyte with a high ceramic loading is developed for high-energy-density Li-metal batteries. The electrolyte, produced through in situ polymerization and composed of a polymer called poly-1,3-dioxolane in a poly(vinylidene fluoride)/ceramic matrix, exhibits excellent room-temperature ionic conductivity of 1.2 mS cm-1 and high stability with Li metal over 1500 h. When tested in a Li|electrolyte|LiFePO4 battery, the electrolyte delivers excellent cycling performance and rate capability at room temperature, with a discharge capacity of 137 mAh g-1 over 500 cycles at 1 C. Furthermore, the electrolyte not only exhibits a high Li+ transference number of 0.76 but also significantly lowers contact resistance (from 157.8 to 2.1 Ω) relative to electrodes. When used in a battery with a high-voltage LiNi0.8 Mn0.1 Co0.1 O2 cathode, a discharge capacity of 140 mAh g-1 is achieved. These results show the potential of composite polymer-ceramic electrolytes in room-temperature solid-state Li-metal batteries and provide a strategy for designing highly conductive polymer-in-ceramic electrolytes with electrode-compatible interfaces.
Collapse
Affiliation(s)
- Jing Yu
- Department of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 000000, China
| | - Guodong Zhou
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 000000, China
| | - Yueqing Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 000000, China
| | - Dengjie Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, 000000, China
- Chair of Electrode Design for Electrochemical Energy Systems, University of Bayreuth, 95447, Bayreuth, Bavaria, Germany
- Bavarian Center for Battery Technology (BayBatt), 95447, Bayreuth, Bavaria, Germany
| |
Collapse
|
36
|
Chen Q, Pan P, Zhang M, Hu Y, Fu K. A Three-Dimensional Fiber-Network-Reinforced Composite Solid-State Electrolyte from Waste Acrylic Fibers for Flexible All-Solid-State Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38507-38521. [PMID: 37551008 DOI: 10.1021/acsami.3c08335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The large amount of waste chemical fiber textiles that exists has posed pressure on the sustainable development of the natural environment and of society. Therefore, it is of great importance to increase the added value of waste chemical fiber textiles and expand their applications in other fields. Herein, acrylic yarn from waste clothing is used as the raw material to construct a three-dimensional (3D) acrylic-based ceramic composite nanofiber solid electrolyte. The electrochemical properties of batteries based on this solid electrolyte are also investigated. We found that the fabricated composite electrolyte has good performance in lithium ion conduction and electrochemical stability because of its 3D acrylic-based ceramic composite fiber framework. The introduction of this composite electrolyte to a lithium symmetric battery enabled the battery to circulate stably for 2350 h at 50 °C without short-circuiting. In addition, all-solid-state batteries using a LiFePO4 cathode exhibited high reversible capacity. Lastly, a flexible lithium metal pouch battery was able to operate safely and stably under extreme conditions. This work demonstrates a strategy for upcycling waste textiles into ion-conducting polymers for energy storage applications.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Peng Pan
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengmeng Zhang
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yi Hu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Engineering Research Center for Eco-Dying & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Engineering Research Center for Green and Low-Carbon Dyeing & Finishing, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kun Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Composite Materials, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
37
|
Wang D, Jin B, Huang J, Yao X, Ren Y, Xu X, Han X, Li F, Zhan X, Zhang Q. Laponite-Supported Gel Polymer Electrolyte with Multiple Lithium-Ion Transport Channels for Stable Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37365916 DOI: 10.1021/acsami.3c04309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Lithium metal batteries have emerged as a promising candidate for next-generation power systems. However, the high reactivity of lithium metal with liquid electrolytes has resulted in decreased battery safety and stability, which poses a significant challenge. Herein, we present a modified laponite-supported gel polymer electrolyte (LAP@PDOL GPE) that was fabricated using in situ polymerization initiated by a redox-initiating system at ambient temperature. The LAP@PDOL GPE effectively facilitates the dissociation of lithium salts via electrostatic interaction and simultaneously constructs multiple lithium-ion transport channels within the gel polymer network. This hierarchical GPE demonstrates a remarkable ionic conductivity of 5.16 × 10-4 S cm-1 at 30 °C. Furthermore, the robust laponite component of the LAP@PDOL GPE forms a barrier against Li dendrite growth while also participating in the establishment of a stable electrode/electrolyte interface with Si-rich components. The in situ polymerization process further improves the interfacial contact, enabling the LiFePO4/LAP@PDOL GPE/Li cell to exhibit an impressive capacity of 137 mAh g-1 at 1C, with a capacity retention of 98.5% even after 400 cycles. In summary, the developed LAP@PDOL GPE shows great potential in addressing the critical issues of safety and stability associated with lithium metal batteries while also delivering improved electrochemical performance.
Collapse
Affiliation(s)
- Dongyun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Biyu Jin
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiao Huang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Xinyu Yao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
| | - Yongyuan Ren
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiao Xu
- Wanxiang A123 Systems Asia Com., Ltd., Hangzhou 311215, China
| | - Xiao Han
- Wanxiang A123 Systems Asia Com., Ltd., Hangzhou 311215, China
| | - Fanqun Li
- Wanxiang A123 Systems Asia Com., Ltd., Hangzhou 311215, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310030, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
38
|
Yin X, Feng W, Cheng S, Huang Q, Zou X, Wang Z, Yang X, Lu S, Lu X, Zhao Y. Chemically bonding inorganic fillers with polymer to achieve ultra-stable solid-state sodium batteries. J Colloid Interface Sci 2023; 648:855-864. [PMID: 37327628 DOI: 10.1016/j.jcis.2023.06.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Inorganic/organic composite solid electrolytes (CSEs) have attracted ever-increasing attentions due to their outstanding mechanical stability and processibility. However, the inferior inorganic/organic interface compatibility limits their ionic conductivity and electrochemical stability, which hinders their application in solid-state batteries. Herein, we report a homogeneously distributed inorganic fillers in polymer by in-situ anchoring SiO2 particles in polyethylene oxide (PEO) matrix (I-PEO-SiO2). Compared with ex-situ CSEs (E-PEO-SiO2), SiO2 particles and PEO chains in I-PEO-SiO2 CSEs are closely welded by strong chemical bonds, thus addressing the issue of interfacial compatibility and realizing excellent dendrite-suppression ability. In addition, the Lewis acid-base interactions between SiO2 and salts facilitate the dissociation of sodium salts and increase the concentration of free Na+. Consequently, the I-PEO-SiO2 electrolyte demonstrates an improved Na+ conductivity (2.3 × 10-4 S cm-1 at 60 °C) and Na+ transference number (0.46). The as constructed Na3V2(PO4)3 ‖ I-PEO-SiO2 ‖ Na full-cell demonstrates a high specific capacity of 90.5 mAh g-1 at 3C and an ultra-long cycling stability (>4000 cycles at 1C), outperforming the state-of-the-art literatures. This work provides an effective way to solve the issue of interfacial compatibility, which can enlighten other CSEs to overcome their interior compatibility.
Collapse
Affiliation(s)
- Xuemin Yin
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China; Hebei Key Laboratory of Green Development of Rock and Mineral Materials, Hebei GEO University, Shijiazhuang 050031, China
| | - Wuliang Feng
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Shuling Cheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qiuan Huang
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Xingli Zou
- Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Zhenwei Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xinxin Yang
- Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Shigang Lu
- Department of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Xionggang Lu
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Yufeng Zhao
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
39
|
Li C, Deng S, Feng W, Cao Y, Bai J, Tian X, Dong Y, Xia F. A Universal Room-Temperature 3D Printing Approach Towards porous MOF Based Dendrites Inhibition Hybrid Solid-State Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300066. [PMID: 36823284 DOI: 10.1002/smll.202300066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Indexed: 05/25/2023]
Abstract
Hybrid solid-state electrolytes (HSSEs) provide new opportunities and inspiration for the realization of safer, higher energy-density metal batteries. The innovative application of 3-dimensional printing in the electrochemical field, especially in solid-state electrolytes, endows energy storage devices with fascinating characteristics. In this paper, effective dendrite-inhibited PEO/MOFs HSSEs is innovatively developed through universal room-temperature 3-dimensional printing (RT-3DP) strategy. The prepared HSSEs display enhanced dendrite inhibition due to the porous MOF filler promoting homogeneity of lithium deposition and the formation of C-OCO3 Li, ROLi, LiF mesophases, which further improve the migration of Li+ in PEO chain and comprehensive performances. This universal strategy realizes the fabrication of different slurry components (PEO with ZIF-67, MOF-74, UIO-66, ZIF-8 fillers) HSSEs at RT environment, providing new inspirations for the exploration of next-generation advanced solid-state batteries.
Collapse
Affiliation(s)
- Changgang Li
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Shuolei Deng
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Wenhao Feng
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yaowen Cao
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jiaxuan Bai
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiaocong Tian
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yifan Dong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
40
|
Yuan Y, Wang B, Xue K, Ma Y, Liu X, Peng X, Liu M, Lu H. High-Voltage Solid-State Lithium Metal Batteries with Stable Anodic and Cathodic Interfaces by a Laminated Solid Polymer Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17144-17151. [PMID: 36951603 DOI: 10.1021/acsami.2c23058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Solid polymer electrolyte (SPE) is quite an attractive candidate for constructing high-voltage Li metal batteries (LMBs) with high energy density and excellent safety. However, sim ultaneous achievement of high-voltage stability against the cathode and good compatibility with the Li anode remains challenging for the current SPE technology. Herein, a dual-layered solid electrolyte (DLSE) consisting of an oxidation-resistant poly(acrylonitrile) (PAN) layer facing a high-potential cathode and a reduction-compatible poly(vinylidene fluoride) (PVDF) layer incorporated by Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and an ionic liquid plasticizer in contact with a Li anode was fabricated. The uniquely designed DLSE holds favorable overall properties in ionic conductivity, Li+ transference number, and mechanical strength. Moreover, the combined advantages of two polymer electrolyte layers greatly address the interface issues on both the cathode and anode. Consequently, the high-voltage LMBs employing the DLSE exhibit excellent room-temperature performances including high rate capacity and long cycle life.
Collapse
Affiliation(s)
- Yan Yuan
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Bin Wang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kesi Xue
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Ma
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xuyi Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiuping Peng
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Manbo Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hai Lu
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
41
|
Su Y, Xu F, Zhang X, Qiu Y, Wang H. Rational Design of High-Performance PEO/Ceramic Composite Solid Electrolytes for Lithium Metal Batteries. NANO-MICRO LETTERS 2023; 15:82. [PMID: 37002362 PMCID: PMC10066058 DOI: 10.1007/s40820-023-01055-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Composite solid electrolytes (CSEs) with poly(ethylene oxide) (PEO) have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li+ solvating capability, flexible processability and low cost. However, unsatisfactory room-temperature ionic conductivity, weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress. Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture, spatial distribution and content, which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes. Unfortunately, a comprehensive review exclusively discussing the design, preparation and application of PEO/ceramic-based CSEs is largely lacking, in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics. Consequently, this review targets recent advances in PEO/ceramic-based CSEs, starting with a brief introduction, followed by their ionic conduction mechanism, preparation methods, and then an emphasis on resolving ionic conductivity and interfacial compatibility. Afterward, their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized. Finally, a summary and outlook on existing challenges and future research directions are proposed.
Collapse
Affiliation(s)
- Yanxia Su
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Fei Xu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
| | - Xinren Zhang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Yuqian Qiu
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China
| | - Hongqiang Wang
- State Key Laboratory of Solidification Processing, Centre for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, People's Republic of China.
| |
Collapse
|
42
|
Xu K, Zhou X, Ge M, Qiu Z, Mao Y, Wang H, Qin Y, Zhou J, Liu Y, Guo B. Effect of LLZO on the in situ polymerization of acrylate solid-state electrolytes on cathodes. RSC Adv 2023; 13:8130-8135. [PMID: 36922949 PMCID: PMC10009652 DOI: 10.1039/d2ra07861a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The comprehensive performance of the state-of-the-art solid-state electrolytes (SSEs) cannot match the requirements of commercial applications, and constructing an organic-inorganic composite electrolyte in situ on a porous electrode is an effective coping strategy. However, there are few studies focused on the influence of inorganic ceramics on the polymerization of multi-organic components. In this study, it was found that the addition of Li6.4La3Zr1.4Ta0.6O12 (LLZO) weakens the interaction between different polymers and makes organic and inorganic components contact directly in the solid electrolyte. These suppress the segregation of components in the in situ polymerized composite SSE, leading to a decrease in the polymer crystallization and improvement of electrolyte properties such as electrochemical stability window and mechanical properties. The composite solid-state electrolyte can be in situ constructed on different porous electrodes, which can establish close contact with active material particles, showing an ionic conductivity 4.4 × 10-5 S cm-1 at 25 °C, and afford the ternary cathode stability for 100 cycles.
Collapse
Affiliation(s)
- Kaiyun Xu
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| | - Xiaoyu Zhou
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| | - Menghan Ge
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| | - Ziwen Qiu
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| | - Ya Mao
- Shanghai Institute of Space Power Sources Shanghai 200245 China
| | - Hefeng Wang
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| | - Yinping Qin
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| | - Jingjing Zhou
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| | - Yang Liu
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China .,A Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University Tianjin 300071 China.,Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University No. 8, Sanjiaohu Rd. Wuhan Hubei 430056 P. R. China
| | - Bingkun Guo
- Materials Genome Institute, Shanghai University 99 Shangda Road, Baoshan District Shanghai China
| |
Collapse
|
43
|
Chang X, Zhao YM, Yuan B, Fan M, Meng Q, Guo YG, Wan LJ. Solid-state lithium-ion batteries for grid energy storage: opportunities and challenges. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
44
|
Kondori A, Esmaeilirad M, Harzandi AM, Amine R, Saray MT, Yu L, Liu T, Wen J, Shan N, Wang HH, Ngo AT, Redfern PC, Johnson CS, Amine K, Shahbazian-Yassar R, Curtiss LA, Asadi M. A room temperature rechargeable Li 2O-based lithium-air battery enabled by a solid electrolyte. Science 2023; 379:499-505. [PMID: 36730408 DOI: 10.1126/science.abq1347] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12 nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion-electron-conducting discharge product and its interface with air.
Collapse
Affiliation(s)
- Alireza Kondori
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Mohammadreza Esmaeilirad
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Ahmad Mosen Harzandi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Rachid Amine
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mahmoud Tamadoni Saray
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Lei Yu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nannan Shan
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hsien-Hau Wang
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Anh T Ngo
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Paul C Redfern
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Christopher S Johnson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.,Material Science and Engineering, Stanford University, Stanford, CA 94305, USA.,Institute for Research&Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Larry A Curtiss
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mohammad Asadi
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
45
|
Ye S, Tian F, Shi K, Lei D, Wang C. Directional Ion Transport Enabled by Self-Luminous Framework for High-Performance Quasi-Solid-State Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205108. [PMID: 36507601 PMCID: PMC9896055 DOI: 10.1002/advs.202205108] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/08/2022] [Indexed: 06/18/2023]
Abstract
Composite gel polymer electrolyte (CGPE), derived from ceramic fillers has emerged as one of the most promising candidates to improve the safety and cycling stability of lithium metal batteries. However, the poor interface compatibility between the ceramic phase and polymer phase in CGPE severely deteriorates lithium-ion pathways and cell performances. In this work, a fluorescent ceramic nanowire network that can palliate the energy barrier of photoinitiators and contribute to preferential nucleation and growth of polymer monomers is developed, thus inducing polymer segment orderly arrangement and tightly combination. A proof-of-concept study lies on fabrications of poly(ethylene oxide) closely coating on the ceramic nanowires, thus dividing the matrix into mesh units that contribute to directional lithium-ion flux and dendrite-free deposition on the metallic anode. The CGPE, based on the state-of-the-art self-luminous framework, facilitates high-performance quasi-solid-state Li||LiFePO4 cell, registering a high capacity of 143.3 mAh g-1 after 120 cycles at a mass loading of 12 mg cm-2 . X-ray computed tomography provides an insight into the relationship between directional lithium-ion diffusion and lithium deposition behavior over the electrochemical processes. The results open a door to improve the electrochemical performances of composite electrolytes in various applications.
Collapse
Affiliation(s)
- Siyang Ye
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen (Zhongshan) UniversityGuangzhou510275P. R. China
| | - Fei Tian
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen (Zhongshan) UniversityGuangzhou510275P. R. China
| | - Kaiyuan Shi
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen (Zhongshan) UniversityGuangzhou510275P. R. China
| | - Danni Lei
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen (Zhongshan) UniversityGuangzhou510275P. R. China
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen (Zhongshan) UniversityGuangzhou510275P. R. China
| |
Collapse
|
46
|
Li J, Li F, Li D, Cheng D, Wang Z, Liu X, Wang H, Zeng X, Huang Y, Xu H. Negatively Charged Laponite Sheets Enhanced Solid Polymer Electrolytes for Long-Cycling Lithium-Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4044-4052. [PMID: 36630422 DOI: 10.1021/acsami.2c19157] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid polymer electrolytes suffer from the low ionic conductivity and poor capability of suppressing lithium dendrites, which have greatly hindered the practical application of solid-state lithium-metal batteries. Here, we report a novel laponite sheet (LS) with a large negatively charged surface as an additive in a solid composite electrolyte (poly(ethylene oxide)-LS) to rearrange the lithium-ion environment and enhance the mechanical strength of the electrolytes (PEO-LS). The strong electrostatic regulation of laponite sheets assists the dissociation of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and constructs multiple transport channels for free lithium ions, achieving a high ionic conductivity of 1.1 × 10-3 S cm-1 at 60 °C. Furthermore, LS facilitates the in situ formation of a LiF-rich interface because of the boosting TFSI- anion concentration, which significantly suppresses lithium dendrites and prevents short circuit. As a result, the assembled LiFePO4|PEO-LS|Li battery demonstrates a long cycle life of over 800 cycles and a high Coulombic efficiency of 99.9% at 1C and 60 °C. When paired with a high-voltage NCM811 cathode, the battery also demonstrates excellent cycling stability and rate capability.
Collapse
Affiliation(s)
- Junhong Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Faqiang Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Dinggen Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Dongming Cheng
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Zhiyan Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Xueting Liu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Haonan Wang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Xianwei Zeng
- Zhejiang Kelei New Material Co., Ltd., Huzhou313300, P. R. China
| | - Yunhui Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| | - Henghui Xu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, P. R. China
| |
Collapse
|
47
|
Jia M, Khurram Tufail M, Guo X. Insight into the Key Factors in High Li + Transference Number Composite Electrolytes for Solid Lithium Batteries. CHEMSUSCHEM 2023; 16:e202201801. [PMID: 36401564 DOI: 10.1002/cssc.202201801] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Solid lithium batteries (SLBs) have received much attention due to their potential to achieve secondary batteries with high energy density and high safety. The solid electrolyte (SE) is believed to be the essential material for SLBs. Among the recent SEs, composite electrolytes have good interfacial compatibility and customizability, which have been broadly investigated as promising contenders for commercial SLBs. The high Li+ transference number (t Li + ${{_{{\rm Li}{^{+}}}}}$ ) of composite electrolytes is critically important concerning the power/energy density and cycling life of SLBs, however, which is often overlooked. This Review presents a current opinion on the key factors in high t Li + ${{_{{\rm Li}{^{+}}}}}$ composite electrolytes, including polymers, Li-salts, inorganic fillers, and additives. Various strategies concerning providing a continuous pathway for Li-ions and immobilizing anions via component interaction are discussed. This Review highlights the major obstacles hindering the development of high t Li + ${{_{{\rm Li}{^{+}}}}}$ composite electrolytes and proposes future research directions for developing composite electrolytes with high t Li + ${{_{{\rm Li}{^{+}}}}}$ .
Collapse
Affiliation(s)
- Mengyang Jia
- College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Muhammad Khurram Tufail
- College of Physics, Qingdao University, Qingdao, 266071, P. R. China
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiangxin Guo
- College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
48
|
Zhou J, Dong L, Zeng X, Chen L, Wei X, Shi L, Fu J. An Asymmetric Cross-Linked Ionic Copolymer Hybrid Solid Electrolyte with Super Stretchability for Lithium-Ion Batteries. Macromol Rapid Commun 2023; 44:e2200648. [PMID: 36153838 DOI: 10.1002/marc.202200648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Indexed: 01/26/2023]
Abstract
Composite solid electrolytes are recommended to be the most promissing strategy for solid-state batteries because they combine the advantages of inorganic ceramics and polymers. However, the huge interfacial resistance between the inorganic ceramic and polymer results in low ionic conductivity, which is still the major impediment that limits their applications. Herein, a novel highly elastic and weakly coordinated ionic copolymer hybrid electrolyte with asymmetric structure based on surface-modified Li1.5 Al0.5 Ge1.5 (PO4 )3 by "in situ" polymerization is proposed to improve ionic conductivity and mechanical properties simultaneously. The all-solid hybrids electrolytes exhibit room-temperature ionic conductivity up to 2.61 × 10-4 S cm-1 and lithium-ion transference number of 0.41. The hybrids electrolytes can be repeatedly stretching-releasing-stretching, showing a super stretchability with the elongation at break up to 496%. The Li symmetrical cells assembled with the hybrid electrolytes can continuously operate for 800 h at 0.1 mA cm-2 without discernable dendrites, indicating good interfacial compatibility between the hybrid electrolytes and lithium electrodes. The Li|LiFePO4 batteries assembled with the hybrid electrolytes deliver an initial discharge specific capacity of 165.5 mAh g-1 with an initial coulombic efficiency of 94.8% and 154 mAh g-1 after 100 cycles at 0.1 C, and maintain 95.4% capacity retention after 100 cycles at 0.5 C.
Collapse
Affiliation(s)
- Jia Zhou
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Linna Dong
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xingfa Zeng
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Liya Chen
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Xiangrong Wei
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Liyi Shi
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China.,Emerging Industries Institute, Shanghai University, Jiaxing, Zhejiang, 314006, P. R. China
| | - Jifang Fu
- Nano-Science and Technology Research Center, College of Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
49
|
He W, Ding H, Chen X, Yang W. Three-dimensional LLZO/PVDF-HFP fiber network-enhanced ultrathin composite solid electrolyte membrane for dendrite-free solid-state lithium metal batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Liu S, Liu W, Ba D, Zhao Y, Ye Y, Li Y, Liu J. Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2110423. [PMID: 35949194 DOI: 10.1002/adma.202110423] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Composite polymer electrolytes (CPEs) utilizing fillers as the promoting component bridge the gap between solid polymer electrolytes and inorganic solid electrolytes. The integration of fillers into the polymer matrices is demonstrated as a prevailing strategy to enhance Li-ion transport and assist in constructing Li+ -conducting electrode-electrolyte interface layer, which addresses the two key barriers of solid-state lithium batteries (SSLBs): low ionic conductivity of electrolyte and high interfacial impedance. Recent review articles have largely focused on the performance of a broad spectrum of CPEs and the general effects of fillers on SSLBs device. Recognizing this, in this review, after briefly presenting the categories of fillers (traditional and emerged) and the promoted ionic conducting mechanisms in CPEs, the progress in the interfacial structure design principle, with the emphasis on the crucial influence of filler size, concentration, and hybridization strategies on filler-polymer interface that is the most critical to Li-ion transport is assessed. The latest exciting advances on filler-enabled in situ generation of a Li+ -conductive layer at the electrode-electrolyte interface to greatly reduce the interfacial impedance are further elaborated. Finally, this review discusses the challenges to be addressed, outlines research directions, and provides a future vision for developing advanced CPEs for high-performing SSLBs.
Collapse
Affiliation(s)
- Shuailei Liu
- School of Chemistry, Chemical Engineering and Life Science, and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Wenyi Liu
- School of Chemistry, Chemical Engineering and Life Science, and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Deliang Ba
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yongzhi Zhao
- School of Chemistry, Chemical Engineering and Life Science, and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Yihua Ye
- School of Chemistry, Chemical Engineering and Life Science, and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Yuanyuan Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jinping Liu
- School of Chemistry, Chemical Engineering and Life Science, and, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials and School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|