1
|
Chen TH, Ni CS, Lai CY, Gull S, Chu YC, Jao WY, Hu CC, Liu SF, Chi CC, Chen TY, Lee JF, Pao CW, Chen JL, Chen HY, Huang JH. Enhanced oxygen evolution and power density of Co/Zn@NC@MWCNTs for the application of zinc-air batteries. J Colloid Interface Sci 2025; 679:119-131. [PMID: 39357222 DOI: 10.1016/j.jcis.2024.09.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Rechargeable zinc-air batteries (ZABs) are viewed as a promising solution for electric vehicles due to their potential to provide a clean, cost-effective, and sustainable energy storage system for the next generation. Nevertheless, sluggish kinetics of the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR) at the air electrode, and low power density are significant challenges that hinder the practical application of ZABs. The key to resolving the development of ZABs is developing an affordable, efficient, and stable catalyst with bifunctional catalytic. In this study, we present a series of bifunctional catalysts composed of Co/Zn nanoparticles uniformly embedded in nitrogen-doped carbon (NC) and multi-walled carbon nanotubes (MWCNTs) denoted as Co/Zn@NC@MWCNTs. The incorporation of MWCNTs using a facile and non-toxic method significantly decreased the overpotential of the OER from 570 to 430 mV at 10 mA cm-2 and the peak power density from 226 to 263 mW cm-2. Besides, the electrochemical surface area measurements and electrochemical impedance spectroscopy indicate that the three-dimensional (3D) network structure of MWCNTs facilitates mass transport for ORR and reduces electron transfer resistance during OER, leading to a small potential gap of 0.86 V between OER and ORR, high electron transfer number (3.92-3.98) of the ORR, and lowest Tafel slope (47.8 mV dec-1) of the OER in aqueous ZABs. In addition, in-situ Raman spectroscopy revealed a notable decrease in the ID/IG ratio for the optimally configured Co/Zn@NC@MWCNTs (75:25), indicating a reduction in defect density and improved structural ordering during the electrochemical process, which directly contributes to enhanced ORR activity. Hence, this study provides an excellent strategy for constructing a bifunctional catalyst material with a 3D MWCNTs conductive network for the development of advanced ZAB systems for sustainable energy applications.
Collapse
Affiliation(s)
- Tien-Hung Chen
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chung-Sheng Ni
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Yu Lai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sanna Gull
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Chen Chu
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Yang Jao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Chang Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shih-Fu Liu
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chong-Chi Chi
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Yi Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Han-Yi Chen
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Jin-Hua Huang
- Department of Material Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
2
|
Hu Z, Li C, Lin Y, Shao Y, Ai Y, Feng F, Li W, Wu Z. Assembly-foaming synthesis of hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts for efficient oxygen reduction. J Colloid Interface Sci 2025; 684:52-63. [PMID: 39823731 DOI: 10.1016/j.jcis.2025.01.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/01/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
High-performance electrocatalysts are highly concerned in oxygen reduction reaction (ORR) related energy applications. However, facile synthesis of hierarchically porous structures with highly exposed active sites and improved mass transfer is challenging. Herein, we develop a novel assembly-foaming strategy for synthesizing hierarchically porous nitrogen-doped carbon supported single-atom iron catalysts. Incorporation of a Fe3+/histidine complex into the block copolymer F127/resol assembly system not only enables an assembly-foaming process forming hierarchical pores, but also promotes the creation of abundant nitrogen-coordinated single-atom Fe (FeNX) sites on well-graphitized carbon skeletons. The obtained materials possess interconnected macropores (1.5-11.5 µm), large mesopores (5-30 nm) and rich micropores, high surface areas (534-970 m2 g-1), large pore volumes (0.68-1.04 cm3 g-1) and rich FeNX sites. The optimized sample exhibits a superior ORR activity (onset potential 1.03 V and half-wave potential 0.89 V) to the commercial 20 wt% Pt/C catalyst, a high kinetic current density and excellent stability and methanol tolerance.The prominent performance stems from the coeffects of the hierarchical pore structure and the rich accessible FeNX sites. The significance of the pore structure is revealed by the positive linear relationship between the double-layer capacitances of the obtained materials and their ORR activities.
Collapse
Affiliation(s)
- Zeyu Hu
- Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Cancan Li
- Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Yaqian Lin
- Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Ying Shao
- Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Yan Ai
- Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, PR China
| | - Feiyan Feng
- Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China
| | - Wei Li
- Department of Chemistry and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, PR China.
| | - Zhangxiong Wu
- Particle Engineering Laboratory (China Petroleum and Chemical Industry Federation), School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 Jiangsu, PR China.
| |
Collapse
|
3
|
Li RJ, Niu WJ, Zhao WW, Yu BX, Cai CY, Xu LY, Wang FM. Achievements and Challenges in Surfactants-Assisted Synthesis of MOFs-Derived Transition Metal-Nitrogen-Carbon as a Highly Efficient Electrocatalyst for ORR, OER, and HER. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408227. [PMID: 39463060 DOI: 10.1002/smll.202408227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) are excellent precursors for preparing transition metal and nitrogen co-doped carbon catalysts, which have been widely utilized in the field of electrocatalysis since their initial development. However, the original MOFs derived catalysts have been greatly limited in their development and application due to their disadvantages such as metal atom aggregation, structural collapse, and narrow pore channels. Recently, surfactants-assisted MOFs derived catalysts have attracted much attention from researchers due to their advantages such as hierarchical porous structure, increased specific surface area, and many exposed active sites. This review mainly focuses on the synthesis methods of surfactants-assisted MOFs derived catalysts and comprehensively introduces the action of surfactants in MOFs derived materials and the structure-activity relationship between the catalysts and the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction performance. Apparently, the aims of this review not only introduce the status of surfactants-assisted MOFs derived catalysts in the field of electrocatalysis but also contribute to the rational design and synthesis of MOFs derived catalysts for fuel cells, metal-air cells, and electrolysis of water toward hydrogen production.
Collapse
Affiliation(s)
- Ru-Ji Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wen-Jun Niu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Wei-Wei Zhao
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Bing-Xin Yu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Chen-Yu Cai
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Li-Yang Xu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| | - Fu-Ming Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, P. R. China
| |
Collapse
|
4
|
Xu M, Cao R, Hao B, Wang D, Luo D, Dou H, Chen Z. Single-Anion Conductive Solid-State Electrolytes with Hierarchical Ionic Highways for Flexible Zinc-Air Battery. Angew Chem Int Ed Engl 2024; 63:e202407380. [PMID: 38887170 DOI: 10.1002/anie.202407380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/20/2024]
Abstract
Flexible zinc-air batteries are leading power sources for next-generation smart wearable electronics. However, flexible zinc-air batteries suffer from the highly-corrosive safety risk and limited lifespan due to the absence of reliable solid-state electrolytes (SSEs). Herein, a single-anion conductive SSE with high-safety is constructed by incorporating a highly amorphous dual-cation ionomer into a robust hybrid matrix of functional carbon nanotubes and polyacrylamide polymer. The as-fabricated SSE obtains dual-penetrating ionomer-polymer networks and hierarchical ionic highways, which contribute to mechanical robustness with 1200 % stretchability, decent water uptake and retention, and superhigh ion conductivity of 245 mS ⋅ cm-1 and good Zn anode reversibility. Remarkably, the flexible solid-state zinc-air batteries delivers a high specific capacity of 764 mAh ⋅ g-1 and peak power density of 152 mW ⋅ cm-2 as well as sustains excellent cycling stability for 1050 cycles (350 hours). This work offers a new paradigm of OH- conductors and broadens the definition and scope of OH- conductors.
Collapse
Affiliation(s)
- Mi Xu
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Rui Cao
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Boying Hao
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Dongdong Wang
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Dan Luo
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Haozhen Dou
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
| | - Zhongwei Chen
- State Key Laboratory of Catalysis, Power Battery & System Research Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 110623, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
5
|
Li N, Sun M, Xiao J, Ma X, Huang L, Li H, Xie C, Yang Y, Jiang H, Huang B, Zhang W. Highly Active CoNi-CoN 3 Composite Sites Synergistically Accelerate Oxygen Electrode Reactions in Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401506. [PMID: 38431925 DOI: 10.1002/smll.202401506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Reaching rapid reaction kinetics of oxygen reduction (ORR) and oxygen evolution reactions (OER) is critical for realizing efficient rechargeable zinc-air batteries (ZABs). Herein, a novel CoNi-CoN3 composite site containing CoNi alloyed nanoparticles and CoN3 moieties is first constructed in N-doped carbon nanosheet matrix (CoNi-CoN3/C). Benefiting from the high electroactivity of CoNi-CoN3 composite sites and large surface area, CoNi-CoN3/C shows a superior half-wave potential (0.88 V versus RHE) for ORR and a small overpotential (360 mV) for OER at 10 mA cm-2. Theoretical calculations have demonstrated that the introduction of CoNi alloys has modulated the electronic distributions near the CoN3 moiety, inducing the d-band center of CoNi-CoN3 composite site to shift down, thus stabilizing the valence state of Co active sites and balancing the adsorption of OER/ORR intermediates. Accordingly, the reaction energy trends exhibit optimized overpotentials for OER/ORR, leading to superior battery performances. For aqueous and flexible quasi-solid-state rechargeable ZABs with CoNi-CoN3/C as catalyst, a large power density (250 mW cm-2) and high specific capacity (804 mAh g-1) are achieved. The in-depth understanding of the electroactivity enhancement mechanism of interactive metal nanoparticles and metal coordinated with nitrogen (MNx) moieties is crucial for designing novel high-performance metal/nitrogen-doped carbon (M─N─C) catalysts.
Collapse
Affiliation(s)
- Nan Li
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Jiaxiang Xiao
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Xiaoyu Ma
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Lijuan Huang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Hongyu Li
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yahui Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Hao Jiang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
6
|
Huang L, Niu H, Xia C, Li FM, Shahid Z, Xia BY. Integration Construction of Hybrid Electrocatalysts for Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404773. [PMID: 38829366 DOI: 10.1002/adma.202404773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 06/05/2024]
Abstract
There is notable progress in the development of efficient oxygen reduction electrocatalysts, which are crucial components of fuel cells. However, these superior activities are limited by imbalanced mass transport and cannot be fully reflected in actual fuel cell applications. Herein, the design concepts and development tracks of platinum (Pt)-nanocarbon hybrid catalysts, aiming to enhance the performance of both cathodic electrocatalysts and fuel cells, are presented. This review commences with an introduction to Pt/C catalysts, highlighting the diverse architectures developed to date, with particular emphasis on heteroatom modification and microstructure construction of functionalized nanocarbons based on integrated design concepts. This discussion encompasses the structural evolution, property enhancement, and catalytic mechanisms of Pt/C-based catalysts, including rational preparation recipes, superior activity, strong stability, robust metal-support interactions, adsorption regulation, synergistic pathways, confinement strategies, ionomer optimization, mass transport permission, multidimensional construction, and reactor upgrading. Furthermore, this review explores the low-barrier or barrier-free mass exchange interfaces and channels achieved through the impressive multidimensional construction of Pt-nanocarbon integrated catalysts, with the goal of optimizing fuel cell efficiency. In conclusion, this review outlines the challenges associated with Pt-nanocarbon integrated catalysts and provides perspectives on the future development trends of fuel cells and beyond.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- School of Chemical Sciences, The University of Auckland (UOA), Auckland, 1010, New Zealand
| | - Huiting Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Fu-Min Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Zaman Shahid
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
7
|
Noh S, Oh H, Kim J, Jung S, Shim JH. Cobalt-Copper-Embedded Nitrogen-Doped Carbon Nanostructures Derived from Zeolite Imidazolate Frameworks as Electrocatalysts for the Oxygen Reduction Reaction. ACS OMEGA 2024; 9:29431-29441. [PMID: 39005836 PMCID: PMC11238306 DOI: 10.1021/acsomega.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
In recent years, researchers have focused on developing zeolite imidazolate frameworks (ZIFs) as an alternative to Pt electrocatalysts for various applications, including water splitting, lithium-air batteries, zinc-air batteries, and fuel cells. In this study, we synthesized CoCu-ZIF to be used as a precursor in the development of cathode catalysts for the oxygen reduction reaction (ORR) in fuel cells. Hydrazine played a crucial role in maintaining uniformity in the development and particle size of the ZIF-67 structures. Moreover, it facilitated the rapid formation of the ZIF-67 structures at higher temperatures. A unique pseudorhombic dodecahedral morphology was obtained at a Co/Cu molar ratio of 7:3. Among all the synthesized N-doped carbon nanostructures embedded with Co and Cu nanoparticles, CoCu@NC-750, pyrolyzed at 750 °C, showed superior ORR catalytic performance. This catalyst exhibited a notably higher half-wave potential of 0.816 V and demonstrated a clear 4-electron transfer mechanism. The overpotential of CoCu@NC-750 shifted by only 11 mV over 10,000 cyclic voltammetry cycles, whereas a 55 mV shift was observed for Pt/C. CoCu@NC-750 exhibited a ∼0.8% decrease in current density during a 12-h ORR, in contrast to the 8.3% decline shown by Pt/C. This superior catalytic activity and stability can be attributed to factors such as higher oxygen adsorption induced by the N-doped carbon layer due to the localized changes in electron density and the enhanced stability of the bimetallic core. Our findings suggest that CoCu@NC-750 is a promising alternative to Pt/C in fuel cell cathodes.
Collapse
Affiliation(s)
- Sunguk Noh
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Hyejin Oh
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Jihyun Kim
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Sojin Jung
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
| | - Jun Ho Shim
- Department
of Chemistry, Daegu University, Gyeongsan 38453, Republic of Korea
- Department
of Chemistry Education, Daegu University, Gyeongsan 38453, Republic of Korea
| |
Collapse
|
8
|
Song X, Wang X, Wei J, Zhou S, Wang H, Lou J, Zhang Y, Liu Y, Zou L, Zhao Y, Wei X, Osman SM, Li X, Yamauchi Y. 2D arrays of hollow carbon nanoboxes: outward contraction-induced hollowing mechanism in Fe-N-C catalysts. Chem Sci 2024; 15:10110-10120. [PMID: 38966354 PMCID: PMC11220593 DOI: 10.1039/d4sc01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/07/2024] [Indexed: 07/06/2024] Open
Abstract
Maximizing the utilization efficiency of monatomic Fe sites in Fe-N-C catalysts poses a significant challenge for their commercial applications. Herein, a structural and electronic dual-modulation is achieved on a Fe-N-C catalyst to substantially enhance its catalytic performance. We develop a facile multi-component ice-templating co-assembly (MIC) strategy to construct two-dimensional (2D) arrays of monatomic Fe-anchored hollow carbon nanoboxes (Fe-HCBA) via a novel dual-outward interfacial contraction hollowing mechanism. The pore engineering not only enlarges the physical surface area and pore volume but also doubles the electrochemically active specific surface area. Additionally, the unique 2D carbon array structure reduces interfacial resistance and promotes electron/mass transfer. Consequently, the Fe-HCBA catalysts exhibit superior oxygen reduction performance with a six-fold enhancement in both mass activity (1.84 A cm-2) and turnover frequency (0.048 e- site-1 s-1), compared to microporous Fe-N-C catalysts. Moreover, the incorporation of phosphorus further enhances the total electrocatalytic performance by three times by regulating the electron structure of Fe-N4 sites. Benefitting from these outstanding characteristics, the optimal 2D P/Fe-HCBA catalyst exhibits great applicability in rechargeable liquid- and solid-state zinc-air batteries with peak power densities of 186 and 44.5 mW cm-2, respectively.
Collapse
Affiliation(s)
- Xiaokai Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Xiaoke Wang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Jiamin Wei
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Shenghua Zhou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Jiali Lou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Yaqi Zhang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Yuhai Liu
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology Changzhou 213001 China
| | - Luyao Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Xiaoqian Wei
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
| | - Sameh M Osman
- Chemistry Department, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University Shanghai 201620 China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8603 Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| |
Collapse
|
9
|
Li X, Wu XT, Xu Q, Zhu QL. Hierarchically Ordered Pore Engineering of Metal-Organic Framework-Based Materials for Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401926. [PMID: 38631691 DOI: 10.1002/adma.202401926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/19/2024]
Abstract
Ordered pore engineering that embeds uniform pores with periodic alignment in electrocatalysts opens up a new avenue for achieving further performance promotion. Hierarchically ordered porous metal-organic frameworks (HOP-MOFs) possessing multilevel pores with ordered distribution are the promising precursors for the exploration of ordered porous electrocatalysts, while the scalable acquisition of HOP-MOFs with editable components and adjustable pore size regimes is critical. This review presents recent progress on hierarchically ordered pore engineering of MOF-based materials for enhanced electrocatalysis. The synthetic strategies of HOP-MOFs with different pore size regimes, including the self-assembly guided by reticular chemistry, surfactant, nanoemulsion, and nanocasting, are first introduced. Then the applications of HOP-MOFs as the precursors for exploring hierarchically ordered porous electrocatalysts are summarized, selecting representatives to highlight the boosted performance. Especially, the intensification of molecule and ion transport integrated with optimized electron transfer and site exposure over the hierarchically ordered porous derivatives are emphasized to clarify the directional transfer and integration effect endowed by ordered pore engineering. Finally, the remaining scientific challenges and an outlook of this field are proposed. It is hoped that this review will guide the hierarchically ordered pore engineering of nanocatalysts for boosting the catalytic performance and promoting the practical applications.
Collapse
Affiliation(s)
- Xiaofang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
| | - Xin-Tao Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou, 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
10
|
Zhang P, Liu S, Zhou J, Zhou L, Li B, Li S, Wu X, Chen Y, Li X, Sheng X, Liu Y, Jiang J. Co-Adjusting d-Band Center of Fe to Accelerate Proton Coupling for Efficient Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307662. [PMID: 38072770 DOI: 10.1002/smll.202307662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Indexed: 05/18/2024]
Abstract
The problem in d-band center modulation of transition metal-based catalysts for the rate-determining steps of oxygen conversion is an obstacle to boost the electrocatalytic activity by accelerating proton coupling. Herein, the Co doping to FeP is adopted to modify the d-band center of Fe. Optimized Fe sites accelerate the proton coupling of oxygen reduction reaction (ORR) on N-doped wood-derived carbon through promoting water dissociation. In situ generated Fe sites optimize the adsorption of oxygen-related intermediates of oxygen evolution reaction (OER) on CoFeP NPs. Superior catalytic activity toward ORR (half-wave potential of 0.88 V) and OER (overpotential of 300 mV at 10 mA cm-2) express an unprecedented level in carbon-based transition metal-phosphide catalysts. The liquid zinc-air battery presents an outstanding cycling stability of 800 h (2400 cycles). This research offers a newfangled perception on designing highly efficient carbon-based bifunctional catalysts for ORR and OER.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuqi Li
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Xin Li
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Xia Sheng
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, 210042, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, 210042, P. R. China
| |
Collapse
|
11
|
Zhang Y, Lan J, Xu Y, Yan Y, Liu W, Liu X, Gu S, Zhou J, Wang M. Ultrafine PtCo alloy by pyrolysis etching-confined pyrolysis for enhanced hydrogen evolution. J Colloid Interface Sci 2024; 660:997-1009. [PMID: 38290326 DOI: 10.1016/j.jcis.2024.01.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Zeolitic imidazolate framework-67 (ZIF-67) has been widely used as a precursor to developing efficient PtCo alloy catalysts for hydrogen evolution reaction (HER). However, traditional in-situ pyrolysis strategies involve complicated interface structure modulating processes between ZIF-67 and Pt precursors, challenging large-scale synthesis. Herein, a "pyrolysis etching-confined pyrolysis" approach is developed to design confined PtCo alloy in porous frameworks of onion carbon derived from ZIF-67. The confined PtCo alloy with Pt content of only 5.39 wt% exhibits a distinct HER activity in both acid (η10: 5 mV and Tafel: 9 mV dec-1) and basic (η10: 33 mV and Tafel: 51 mV dec-1) media and a drastic enhancement in stability. Density functional theory calculations reveal that the strong electronic interaction between Pt and Co allows favorable electron redistribution, which affords a favorable hydrogen spillover on PtCo alloy compared with that of pristine Pt(111). Operational electrochemical impedance spectroscopy demonstrates that the Faraday reaction process is facilitated under acidic conditions, while the transfer of intermediates through the electric double-layer region under alkaline conditions is accelerated. This work not only offers a universal route for high-performance Pt-based alloy catalysts with metal-organic framework (MOF) precursors but also provides experimental evidence for the role of the electric double layer in electrocatalysis reactions.
Collapse
Affiliation(s)
- Yi Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jianhong Lan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yike Xu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuanyuan Yan
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Weifeng Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xuguang Liu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Meiling Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Ma Y, Yang Q, Qi J, Zhang Y, Gao Y, Zeng Y, Jiang N, Sun Y, Qu K, Fang W, Li Y, Lu X, Zhi C, Qiu J. Surface atom knockout for the active site exposure of alloy catalyst. Proc Natl Acad Sci U S A 2024; 121:e2319525121. [PMID: 38564637 PMCID: PMC11009663 DOI: 10.1073/pnas.2319525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
The fine regulation of catalysts by the atomic-level removal of inactive atoms can promote the active site exposure for performance enhancement, whereas suffering from the difficulty in controllably removing atoms using current micro/nano-scale material fabrication technologies. Here, we developed a surface atom knockout method to promote the active site exposure in an alloy catalyst. Taking Cu3Pd alloy as an example, it refers to assemble a battery using Cu3Pd and Zn as cathode and anode, the charge process of which proceeds at about 1.1 V, equal to the theoretical potential difference between Cu2+/Cu and Zn2+/Zn, suggesting the electricity-driven dissolution of Cu atoms. The precise knockout of Cu atoms is confirmed by the linear relationship between the amount of the removed Cu atoms and the battery cumulative specific capacity, which is attributed to the inherent atom-electron-capacity correspondence. We observed the surface atom knockout process at different stages and studied the evolution of the chemical environment. The alloy catalyst achieves a higher current density for oxygen reduction reaction compared to the original alloy and Pt/C. This work provides an atomic fabrication method for material synthesis and regulation toward the wide applications in catalysis, energy, and others.
Collapse
Affiliation(s)
- Yi Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jun Qi
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yong Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Yuliang Gao
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - You Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Na Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang110036, China
| | - Keqi Qu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenhui Fang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ying Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xuejun Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong999077, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
13
|
Zhang JY, Xia C, Su Y, Zu L, Zhao Z, Li P, Lv Z, Wang J, Mei B, Lan K, Zhao T, Zhang P, Chen W, Zaman S, Liu Y, Peng L, Xia BY, Elzatahry A, Li W, Zhao D. Boosted Oxygen Kinetics of Hierarchically Mesoporous Mo 2C/C for High-current-density Zn-air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307378. [PMID: 38009801 DOI: 10.1002/smll.202307378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Indexed: 11/29/2023]
Abstract
The high-current-density Zn-air battery shows big prospects in next-generation energy technologies, while sluggish O2 reaction and diffusion kinetics barricade the applications. Herein, the sequential assembly is innovatively demonstrated for hierarchically mesoporous molybdenum carbides/carbon microspheres with a tunable thickness of mesoporous carbon layers (Meso-Mo2C/C-x, where x represents the thickness). The optimum Meso-Mo2C/C-14 composites (≈2 µm in diameter) are composed of mesoporous nanosheets (≈38 nm in thickness), which possess bilateral mesoporous carbon layers (≈14 nm in thickness), inner Mo2C/C layers (≈8 nm in thickness) with orthorhombic Mo2C nanoparticles (≈2 nm in diameter), a high surface area of ≈426 m2 g-1, and open mesopores (≈6.9 nm in size). Experiments and calculations corroborate the hierarchically mesoporous Mo2C/C can enhance hydrophilicity for supplying sufficient O2, accelerate oxygen reduction kinetics by highly-active Mo2C and N-doped carbon sites, and facilitate O2 diffusion kinetics over hierarchically mesopores. Therefore, Meso-Mo2C/C-14 outputs a high half-wave potential (0.88 V vs RHE) with a low Tafel slope (51 mV dec-1) for oxygen reduction. More significantly, the Zn-air battery delivers an ultrahigh power density (272 mW cm-2), and an unprecedented 100 h stability at a high-current-density condition (100 mA cm-2), which is one of the best performances.
Collapse
Affiliation(s)
- Jun-Ye Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lianhai Zu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Zaiwang Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Peng Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Jiazheng Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Shanghai Synchrotron Radiation Facility, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Kun Lan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Pengfei Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Weinan Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yi Liu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Liang Peng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Ahmed Elzatahry
- Department of Physics and Materials Science, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, 2713, Qatar
| | - Wei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Peng Y, Li S, Wang M, Xiong X, Dang J, Zhang W, Cao R, Zheng H. Facet engineering of a two-dimensional metal-organic framework with uniquely oriented layered-structure for electrocatalytic oxygen reduction reaction. J Colloid Interface Sci 2024; 658:518-527. [PMID: 38128195 DOI: 10.1016/j.jcis.2023.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
The properties of metal-organic framework (MOF) nanocrystals are highly dependent on their sizes, morphologies, and exposed facets. Facet engineering of MOFs offers an efficient strategy to tailor the active sites and optimize the catalytic activity of both MOFs and their derivatives. In this study, we prepared 1D zeolitic imidazolate framework-nanorod (ZIF-NR) through facet engineering of the parental 2D ZIF-L. The introduction of cetyltrimethylammonium bromide (CTABr) surfactant into the synthesis solution hindered the crystal growth along the c-axis of leaf-like ZIF-L, resulting in the formation of 1D ZIF-NR. The derived Co nanoparticle encapsulated N doped carbon nanorod (denoted as Co-NCR) exhibited high activity and stability for electrocatalytic oxygen reduction reactions and Zn-air batteries. Facet engineering of a 2D MOF with a uniquely oriented layered structure demonstrates the possibility of designing novel electrocatalysts.
Collapse
Affiliation(s)
- Yuxin Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Mengying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xueqin Xiong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jingshuang Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
15
|
Yang L, Ma J, Liu Y, Ma C, Yu X, Chen Z. Low platinum loading electrocatalyst supported on a carrier derived from carbon dots doped ZIF-67 for the ORR and zinc-air batteries. NANOSCALE 2024; 16:5433-5440. [PMID: 38385907 DOI: 10.1039/d3nr06245g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The development of economical and efficient platinum-based catalysts for the oxygen reduction reaction (ORR) is considered the most promising strategy for the widespread application of clean energy conversion devices. Herein, Co nanoparticles encapsulated in N-doped carbon carriers, CoCN(CDs-X), were constructed by pyrolyzing carbon dots (CDs) doped ZIF-67 and further used to anchor Pt to prepare low Pt loading catalysts, PtCoCN(CDs-X). The introduction of CDs not only improves the conductivity for efficient electron transfer, but also regulates the interaction between Pt and the CoCN(CDs-X) support and alleviates the oxidation of Pt. The optimized PtCoCN(CDs-0.10) displays decent ORR behavior with onset and half-wave potentials of 0.95 V and 0.83 V, respectively, in alkaline media and superior catalytic stability and methanol tolerance. While employing PtCoCN(CDs-0.10) as a cathode catalyst for an as-assembled zinc-air battery (ZAB), it delivers an excellent power density of 194.2 mW cm-2 and exceptional operation stability, which is indicated by a voltage efficiency loss of only 7.7% after a long cycle life of 100 h, demonstrating its great potential applications.
Collapse
Affiliation(s)
- Lijing Yang
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Junhong Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Yuemei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Chaoyun Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Xue Yu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| | - Zhaohui Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, PR China.
| |
Collapse
|
16
|
Wang Y, Yang T, Fan X, Bao Z, Tayal A, Tan H, Shi M, Liang Z, Zhang W, Lin H, Cao R, Huang Z, Zheng H. Anchoring Fe Species on the Highly Curved Surface of S and N Co-Doped Carbonaceous Nanosprings for Oxygen Electrocatalysis and a Flexible Zinc-Air Battery. Angew Chem Int Ed Engl 2024; 63:e202313034. [PMID: 38097503 DOI: 10.1002/anie.202313034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 01/03/2024]
Abstract
Oxygen reduction reaction (ORR) is of critical significance in the advancement of fuel cells and zinc-air batteries. The iron-nitrogen (Fe-Nx ) sites exhibited exceptional reactivity towards ORR. However, the task of designing and controlling the local structure of Fe species for high ORR activity and stability remains a challenge. Herein, we have achieved successful immobilization of Fe species onto the highly curved surface of S, N co-doped carbonaceous nanosprings (denoted as FeNS/Fe3 C@CNS). The induction of this twisted configuration within FeNS/Fe3 C@CNS arose from the assembly of chiral templates. For electrocatalytic ORR tests, FeNS/Fe3 C@CNS exhibits a half-wave potential (E1/2 ) of 0.91 V in alkaline medium and a E1/2 of 0.78 V in acidic medium. The Fe single atoms and Fe3 C nanoparticles are coexistent and play as active centers within FeNS/Fe3 C@CNS. The highly curved surface, coupled with S substitution in the coordination layer, served to reduce the energy barrier for ORR, thereby enhancing the intrinsic catalytic activity of the Fe single-atom sites. We also assembled a wearable flexible Zn-air battery using FeNS/Fe3 C@CNS as electrocatalysts. This work provides new insights into the construction of highly curved surfaces within carbon materials, offering high electrocatalytic efficacy and remarkable performance for flexible energy conversion devices.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Taimin Yang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Xing Fan
- Research Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, 100871, Beijing, China
| | - Zijia Bao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Akhil Tayal
- Deutsches Elektronon Synchrotron, 85 Notkestrasse, 22607, Hamburg, Germany
| | - Huang Tan
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China
| | - Mengke Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, 710119, Xi'an, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| | - Zhehao Huang
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
- Electron Microscopy Center, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710119, Xi'an, China
| |
Collapse
|
17
|
Li Q, Li Q, Wang Z, Zheng X, Cai S, Wu J. Recent Advances in Hierarchical Porous Engineering of MOFs and Their Derived Materials for Catalytic and Battery: Methods and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303473. [PMID: 37840383 DOI: 10.1002/smll.202303473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/05/2023] [Indexed: 10/17/2023]
Abstract
Hierarchical porous materials have attracted the attention of researchers due to their enormous specific surface area, maximized active site utilization efficiency, and unique structure and properties. In this context, metal-organic frameworks (MOFs) offer a unique mix of properties that make them particularly appealing as tunable porous substrates containing highly active sites. This review focuses on recent advances in the types and synthetic strategies of hierarchical porous MOFs and their derived materials. Furthermore, it highlights the relationship between the mass diffusion and transport of hierarchical porous structures and the pore size with examples and simulations, while identifying their potential and limitations. On this basis, how the synthesis conditions affect the structure and electrochemical properties of MOFs based hierarchical porous materials with different structures is discussed, highlighting the prospects and challenges for the synthetization, as well as further scientific research and practical applications. Finally, some insights into current research and future design ideas for advanced MOFs based hierarchical porous materials are presented.
Collapse
Affiliation(s)
- Qian Li
- Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, College of Physics and Information Science, Hunan Normal University, Changsha, 410081, China
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qun Li
- National Center for Nanoscience and Technology, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, Beijing, 100190, China
| | - Zhewei Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobo Zheng
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shichang Cai
- School of Material Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Chen J, Qian J. Insights on MOF-derived metal-carbon nanostructures for oxygen evolution. Dalton Trans 2024. [PMID: 38269643 DOI: 10.1039/d3dt04263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Electrochemical water splitting has been regarded a promising method for the production of green hydrogen, addressing the need for efficient energy conversion and storage. However, it is severely hindered by the oxygen evolution reaction (OER) because of its multi-step four-electron transfer pathway with sluggish reaction kinetics. Microporous metal-organic-frameworks (MOFs), by virtue of large specific surface area, high porosity, tunable composition and morphology, find widespread use as precursors of metal-carbon nanostructures. The resulting carbon nanomaterials can well inherit the characteristics and advantages of the crystalline MOF precursors, and exhibit versatile application prospects in the fields of environment and energy, particularly in OER. Herein, a meticulous overview of the synthesis strategy for MOF-derived metal-carbon nanostructures and the origins of their enhanced OER properties has been demonstrated. We comprehensively illustrate these aspects across three dimensions: MOF selection, metal introduction, and carbon structures. Finally, the challenges and future prospects for this emerging field will be presented.
Collapse
Affiliation(s)
- Junliang Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| |
Collapse
|
19
|
Cao S, Lu Y, Tang Y, Sun Y, Zhou H, Zhang G, Lin X, Pang H. Constructing ion-transport blockchain by polypyrrole to link CoTi-ZIF-9 derived carbon materials for high-performance seawater desalination. J Colloid Interface Sci 2024; 654:466-475. [PMID: 37862798 DOI: 10.1016/j.jcis.2023.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The instability and poor electronic conductivity of carbon materials derived from bimetallic zeolite imidazolate frameworks (ZIFs) pose significant challenges for utilizing these carbon materials as direct electrodes for achieving rapid electron transfer and high-performance capacitive deionization (CDI). However, modifying ZIFs through conductive polymers is a wise tool to enhance the target characteristics of ZIFs. Herein, a strategy is proposed to use polypyrrole (PPy) to interlink the carbon units derived from CoTi-ZIF-9 to construct a blockchain network system with high capacity and fast electrochemical kinetics for high performance CDI. In this system, PPy serves as a branched link connecting each carbon unit, so that the ions in the electrolyte can achieve low barrier and fast transmission in the three-dimensional network structure between the unit structures. As expected, with the improved charge transfer efficiency between electrode materials and electrolyte, the CDI cell exhibits excellent desalination capacity (77.3 mg g-1). In addition, density functional theory calculations also indicate that the introduction of PPy results in a higher electron density near the fermi surface of carbon material, which is conducive to electron transport and reaction kinetics. This work may provide important concepts for the design of CDI electrodes with high-conductivity and high-performance.
Collapse
Affiliation(s)
- Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yibo Lu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huijie Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xinyi Lin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
20
|
Xu K, Zhang S, Zhuang X, Zhang G, Tang Y, Pang H. Recent progress of MOF-functionalized nanocomposites: From structure to properties. Adv Colloid Interface Sci 2024; 323:103050. [PMID: 38086152 DOI: 10.1016/j.cis.2023.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/29/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024]
Abstract
Metal-organic frameworks (MOFs) are novel crystalline porous materials assembled from metal ions and organic ligands. The adaptability of their design and the fine-tuning of the pore structures make them stand out in porous materials. Furthermore, by integrating MOF guest functional materials with other hosts, the novel composites have synergistic benefits in numerous fields such as batteries, supercapacitors, catalysis, gas storage and separation, sensors, and drug delivery. This article starts by examining the structural relationship between the host and guest materials, providing a comprehensive overview of the research advancements in various types of MOF-functionalized composites reported to date. The review focuses specifically on four types of spatial structures, including MOFs being (1) embedded in nanopores, (2) immobilized on surface, (3) coated as shells and (4) assembled into hybrids. In addition, specific design ideas for these four MOF-based composites are presented. Some of them involve in situ synthesis method, solvothermal method, etc. The specific properties and applications of these materials are also mentioned. Finally, a brief summary of the advantages of these four types of MOF composites is given. Hopefully, this article will help researchers in the design of MOF composite structures.
Collapse
Affiliation(s)
- Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
21
|
Lei Y, Chen H, Shu C, Chen C. Fe- and S-Modified BiOI as Catalysts to Oxygen Evolution and Hydrogen Evolution Reactions in Overall Photoelectrochemical Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 17:6. [PMID: 38203860 PMCID: PMC10780252 DOI: 10.3390/ma17010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Developing catalysts with superior activity to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is equally important to the overall photoelectrochemical water splitting to produce hydrogen. In this work, bismuth oxyiodide (BiOI), iron-modified bismuth iodide Fe/BiOI, and the sulfurized S-Fe/BiOI were prepared using the solvothermal method. The three materials all have good absorption ability for visible light. The photoelectrochemical catalytic activity of BiOI to oxygen evolution reaction (OER) is significantly enhanced after iron modification, while the sulfurized product S-Fe/BiOI exhibits better catalytic activity to hydrogen evolution reaction (HER). Hence, OER and HER can be simultaneously catalyzed by using Fe/BiOI and S-Fe/BiOI as anodic and cathodic catalysts to facilitate the overall photoelectrochemical water splitting process.
Collapse
Affiliation(s)
- Yu Lei
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.C.); (C.S.)
| | - Hongdian Chen
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.C.); (C.S.)
| | - Chenyang Shu
- Chongqing Key Laboratory of Materials Surface & Interface Science, Chongqing University of Arts and Sciences, Chongqing 402160, China; (H.C.); (C.S.)
| | - Changguo Chen
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
22
|
Liu M, Zhang J, Ye G, Peng Y, Guan S. Zn/N/S Co-doped hierarchical porous carbon as a high-efficiency oxygen reduction catalyst in Zn-air batteries. Dalton Trans 2023; 52:16773-16779. [PMID: 37902958 DOI: 10.1039/d3dt03172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Zn-N-C catalysts have garnered attention as potential electrocatalysts for the oxygen reduction reaction (ORR). However, their intrinsic limitations, including poor activity and a low density of active sites, continue to hinder their electrocatalytic performance. In this study, we have devised a dual-template strategy for the synthesis of Zn, N, S co-doped nanoporous carbon-based catalysts (Zn-N/S-C(S, Z)) with a substantial specific surface area and a graded pore structure. The introduction of S enhances electron localization around the Zn-Nx active centers, facilitating interactions with oxygen-containing substances. The resulting Zn-N/S-C(S, Z) sample exhibits outstanding performance in an alkaline solution, demonstrating a half-wave potential of 0.89 V. This value surpasses that of commercial Pt/C by 40 mV. Furthermore, when combined with RuO2 (Zn-N/S-C(S, Z) + RuO2), the catalyst demonstrates exceptional performance in a Zn-air battery, offering an open-circuit voltage (OCV) of 1.47 V and a peak power density of 290.8 mW cm-2. This study paves the way for the development of highly dispersed and highly active Zn-metal site catalysts, potentially replacing traditional Pt-based catalysts in various electrochemical devices.
Collapse
Affiliation(s)
- Mincong Liu
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Jing Zhang
- College of Sciences&Institute for Sustainable Energy, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China
| | - Guohua Ye
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Yan Peng
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Shiyou Guan
- Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| |
Collapse
|
23
|
Sun Y, Liu Z, Liu H, Li F, Li L, Du C, Li J, Xie D, Han G. Enhancing the bifunctional oxygen reduction and evolution activity of CoNC by introducing a trace amount of Fe. Phys Chem Chem Phys 2023; 25:27885-27890. [PMID: 37815353 DOI: 10.1039/d3cp04012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The potential application of zinc air batteries to tackle the energy shortage and environmental crisis has proposed new requirements of bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Utilizing the special spatial structure of zeolitic imidazolate framework-67 (ZIF-67) as an ideal research platform, the effect of a trace amount of Fe on the composition and structure of as-obtained Fe-CoNC catalysts was investigated. It was revealed that, due to the increased exposed pore structure and metal species located at the near surface, the active sites for the ORR/OER on Fe-CoNC are highly exposed, greatly boosting the activity to the reduction and evolution of oxygen in alkaline media. ZABs with Fe-CoNC have the highest maximum power density of 200 mW cm-2 when operated at current densities as high as 328 mA cm-2, better than not only Fe-free CoNC, but also precious metal-based references with the same catalyst loading.
Collapse
Affiliation(s)
- Yongrong Sun
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Zhikai Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hailu Liu
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Fayong Li
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Lingfeng Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Chunyu Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Jia Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
- College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Dong Xie
- Biomaterials Engineering Technology Research Center, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.
| | - Guokang Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
24
|
Li L, Tang X, Wu B, Huang B, Yuan K, Chen Y. Advanced Architectures of Air Electrodes in Zinc-Air Batteries and Hydrogen Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308326. [PMID: 37823716 DOI: 10.1002/adma.202308326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The air electrode is an essential component of air-demanding energy storage/conversion devices, such as zinc-air batteries (ZABs) and hydrogen fuel cells (HFCs), which determines the output power and stability of the devices. Despite atom-level modulation in catalyst design being recently achieved, the air electrodes have received much less attention, causing a stagnation in the development of air-demanding equipment. Herein, the evolution of air electrodes for ZABs and HFCs from the early stages to current requirements is reviewed. In addition, the operation mechanism and the corresponding electrocatalytic mechanisms of ZABs are summarized. In particular, by clarifying the air electrode interfaces of ZABs at different scales, several approaches to improve the air electrode in rechargeable ZABs are reviewed, including innovative electrode structures and bifunctional oxygen catalysts. Afterward, the operating mechanisms of proton-exchange-membrane fuel cells (PEMFCs) and anion-exchange-membrane fuel cells (AEMFCs) are explained. Subsequently, the strategies employed to enhance the efficiency of the membrane electrode assembly (MEA) in PEMFCs and AEMFCs, respectively, are highlighted and discussed in detail. Last, the prospects for air electrodes in ZABs and HFCs are considered by discussing the main challenges. The aim of this review is to facilitate the industrialization of ZABs and HFCs.
Collapse
Affiliation(s)
- Longbin Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Xiannong Tang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Bing Wu
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| | - Bingyu Huang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
25
|
Zhu W, Liu H, Pei Y, Liu T, Zhang J, Liu X, Wang L, Feng Y, Yin Y, Guiver MD. Defect-Engineered ZIF-Derived Non-Pt Cathode Catalyst at 1.5 mg cm -2 Loading for Proton Exchange Membrane Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302090. [PMID: 37376859 DOI: 10.1002/smll.202302090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/11/2023] [Indexed: 06/29/2023]
Abstract
Due to the sluggish kinetics of the oxygen reduction reaction (ORR) by non-Pt based catalyst, high loading of catalyst is required to achieve satisfactory fuel cell performance, which inevitably leads to the increase of the catalyst layer thickness with serious mass transport resistance. Herein, a defective zeolitic imidazolate framework (ZIF) derived Co/Fe-N-C catalyst with small mesopores (2-4 nm) and high density of CoFe atomic active sites are prepared by regulating the Fe dosage and pyrolysis temperature. Molecular dynamics simulation and electrochemical tests indicate that > 2 nm mesopores show insignificant influence on the diffusion process of O2 and H2 O molecules, leading to the high utilization of active sites and low mass transport resistance. The proton exchange membrane fuel cell (PEMFC) shows a high-power density of 755 mW cm-2 with only 1.5 mg cm-2 of non-Pt catalyst in the cathode. No apparent performance loss caused by concentration difference can be observed, in particular in the high current density region (1 A cm-2 ). This work emphasizes the importance of small mesopore design in the Co/Fe-N-C catalyst, which is anticipated to provide essential guidance for the application of non-Pt catalysts.
Collapse
Affiliation(s)
- Weikang Zhu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Haotian Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yabiao Pei
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Tao Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, P. R. China
| | - Xin Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Lianqin Wang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing, 100013, P. R. China
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, P. R. China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, P. R. China
- HaiHe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| |
Collapse
|
26
|
Huang H, Huang A, Liu D, Han W, Kuo CH, Chen HY, Li L, Pan H, Peng S. Tailoring Oxygen Reduction Reaction Kinetics on Perovskite Oxides via Oxygen Vacancies for Low-Temperature and Knittable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303109. [PMID: 37247611 DOI: 10.1002/adma.202303109] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Indexed: 05/31/2023]
Abstract
High kinetics oxygen reduction reaction (ORR) electrocatalysts under low temperature are critical and highly desired for temperature-tolerant energy conversion and storage devices, but remain insufficiently investigated. Herein, oxygen vacancy-rich porous perovskite oxide (CaMnO3 ) nanofibers coated with reduced graphene oxide coating (V-CMO/rGO) are developed as the air electrode catalyst for low-temperature and knittable Zn-air batteries. V-CMO/rGO exhibits top-level ORR activity among perovskite oxides and shows impressive kinetics under low temperature. Experimental and theoretical calculation results reveal that the synergistic effect between metal atoms and oxygen vacancies, as well as the accelerated kinetics and enhanced electric conductivity and mass transfer over the rGO coated nanofiber 3D network contribute to the enhanced catalytic activity. The desorption of ORR intermediate is promoted by the regulated electron filling. The V-CMO/rGO drives knittable and flexible Zn-air batteries under a low temperature of -40 °C with high peak power density of 56 mW cm-2 and long cycle life of over 80 h. This study provides insight of kinetically active catalyst and facilitates the ZABs application in harsh environment.
Collapse
Affiliation(s)
- Hongjiao Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Aoming Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Wentao Han
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
27
|
Wang Q, Kaushik S, Xiao X, Xu Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem Soc Rev 2023; 52:6139-6190. [PMID: 37565571 DOI: 10.1039/d2cs00684g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sustainable zinc-air batteries (ZABs) are considered promising energy storage devices owing to their inherent safety, high energy density, wide operating temperature window, environmental friendliness, etc., showing great prospect for future large-scale applications. Thus, tremendous efforts have been devoted to addressing the critical challenges associated with sustainable ZABs, aiming to significantly improve their energy efficiency and prolong their operation lifespan. The growing interest in sustainable ZABs requires in-depth research on oxygen electrocatalysts, electrolytes, and Zn anodes, which have not been systematically reviewed to date. In this review, the fundamentals of ZABs, oxygen electrocatalysts for air cathodes, physicochemical properties of ZAB electrolytes, and issues and strategies for the stabilization of Zn anodes are systematically summarized from the perspective of fundamental characteristics and design principles. Meanwhile, significant advances in the in situ/operando characterization of ZABs are highlighted to provide insights into the reaction mechanism and dynamic evolution of the electrolyte|electrode interface. Finally, several critical thoughts and perspectives are provided regarding the challenges and opportunities for sustainable ZABs. Therefore, this review provides a thorough understanding of the advanced sustainable ZAB chemistry, hoping that this timely and comprehensive review can shed light on the upcoming research horizons of this prosperous area.
Collapse
Affiliation(s)
- Qichen Wang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Shubham Kaushik
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
| |
Collapse
|
28
|
Zaman S, Wang M, Asif M, Hu L. Editorial: 2D nanostructures for electrocatalysis and electrochemical sensing. Front Chem 2023; 11:1263648. [PMID: 37601913 PMCID: PMC10437126 DOI: 10.3389/fchem.2023.1263648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Shahid Zaman
- Institut d’Innovations en Écomatériaux, Écoproduits et Écoénergies, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Min Wang
- College of New Energy, China University of Petroleum (East China), Qingdao, China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, China
| | - Leiming Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Sun C, He Y, Alharbi NS, Yang S, Chen C. Three-dimensional ordered macroporous molybdenum doped NiCoP honeycomb electrode for two-step water electrolysis. J Colloid Interface Sci 2023; 642:13-22. [PMID: 37001452 DOI: 10.1016/j.jcis.2023.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/06/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Two-step alkaline water electrolysis is considered a safe and efficient method for producing hydrogen from renewable energy. Reversal of the current polarity in a bifunctional electrocatalyst used as a gas evolution electrode (GEE) in two-step water electrolysis can generate H2/O2 at different times and in different spaces. The design of a bifunctional electrocatalyst with high durability and excellent activity is imperative to achieving continuous, safe, and pure H2 generation via two-step alkaline water electrolysis. Here, we present for the first time a novel 3D Mo-doped NiCo phosphide honeycomb electrocatalyst that was grown on nickel foam (3D Mo-NiCoP/NF) and fabricated using polystyrene as a template. The electrocatalyst exhibited extremely low overpotentials in both the hydrogen evolution reaction (HER; 117 mV at 10 mA/cm2) and the oxygen evolution reaction (OER; 344 mV at 100 mA/cm2). As a bifunctional electrocatalyst for two-step alkaline water electrolysis, the device had a 1.784 V cell voltage at 10 mA/cm2, 95% decoupling efficiency, and ∼83% energy conversion efficiency. Taken together, the use of 3D Mo-NiCoP/NF as a GEE reduced the complexity and lowered the cost of the electrolyzer. The latter could be used to construct highly competitive water-splitting systems for continuous H2 production and green energy harvesting.
Collapse
|
30
|
Zhong L, Pan W, Shi Z, Mao C, Peng J, Huang J. Hollow Nitrogen-Doped porous carbon spheres decorated with atomically dispersed Ni-N 3 sites for efficient electrocatalytic CO 2 reduction. J Colloid Interface Sci 2023; 649:571-580. [PMID: 37364457 DOI: 10.1016/j.jcis.2023.06.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Hollow nitrogen-doped porous carbon spheres (HNCS) with plentiful coordination N sites, high surface area, and superior electrical conductivity are ideal catalyst supports due to their easily access of reactants to active sites and excellent stability. To date, nevertheless, little has been reported on HNCS as supports to metal-single-atomic sites for CO2 reduction (CO2R). Here we report our findings in preparation of nickel-single-atom catalysts anchored on HNCS (Ni SAC@HNCS) for highly efficient CO2R. The obtained Ni SAC@HNCS catalyst exhibits excellent activity and selectivity for the electrocatalytic CO2-to-CO conversion, achieving a Faradaic efficiency (FE) of 95.2% and a partial current density of 20.2 mA cm-2. When applied to a flow cell, the Ni SAC@HNCS delivers above 95% FECO over a wide potential range and a peak FECO of 99%. Further, there is no obvious degradation in FECO and the current for CO production during continuous electrocatalysis of 9 h, suggesting good stability of Ni SAC@HNCS.
Collapse
Affiliation(s)
- Lei Zhong
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Wenhao Pan
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhikai Shi
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Chengwei Mao
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Jiayao Peng
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Jianlin Huang
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
31
|
Shi W, Li Z, Gong Z, Liang Z, Liu H, Han YC, Niu H, Song B, Chi X, Zhou J, Wang H, Xia BY, Yao Y, Tian ZQ. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nat Commun 2023; 14:2294. [PMID: 37085505 PMCID: PMC10121605 DOI: 10.1038/s41467-023-38023-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/11/2023] [Indexed: 04/23/2023] Open
Abstract
Carbon-supported nanoparticles are indispensable to enabling new energy technologies such as metal-air batteries and catalytic water splitting. However, achieving ultrasmall and high-density nanoparticles (optimal catalysts) faces fundamental challenges of their strong tendency toward coarsening and agglomeration. Herein, we report a general and efficient synthesis of high-density and ultrasmall nanoparticles uniformly dispersed on two-dimensional porous carbon. This is achieved through direct carbothermal shock pyrolysis of metal-ligand precursors in just ~100 ms, the fastest among reported syntheses. Our results show that the in situ metal-ligand coordination (e.g., N → Co2+) and local ordering during millisecond-scale pyrolysis play a crucial role in kinetically dominated fabrication and stabilization of high-density nanoparticles on two-dimensional porous carbon films. The as-obtained samples exhibit excellent activity and stability as bifunctional catalysts in oxygen redox reactions. Considering the huge flexibility in coordinated precursors design, diversified single and multielement nanoparticles (M = Fe, Co, Ni, Cu, Cr, Mn, Ag, etc) were generally fabricated, even in systems well beyond traditional crystalline coordination chemistry. Our method allows for the transient and general synthesis of well-dispersed nanoparticles with great simplicity and versatility for various application schemes.
Collapse
Affiliation(s)
- Wenhui Shi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100091, Beijing, China
| | - Zhihao Gong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, 311200, Hangzhou, China
| | - Zihui Liang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hanwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Ye-Chuang Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005, Xiamen, China
| | - Huiting Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Bo Song
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaodong Chi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100091, Beijing, China
| | - Hua Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, 311200, Hangzhou, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Yonggang Yao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, 361005, Xiamen, China.
| |
Collapse
|
32
|
Wang S, Wang M, Zhang Y, Wang H, Fei H, Liu R, Kong H, Gao R, Zhao S, Liu T, Wang Y, Ni M, Ciucci F, Wang J. Metal Oxide-Supported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. SMALL METHODS 2023:e2201714. [PMID: 37029582 DOI: 10.1002/smtd.202201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The sluggish kinetics of the oxygen reduction reaction (ORR) with complex multielectron transfer steps significantly limits the large-scale application of electrochemical energy devices, including metal-air batteries and fuel cells. Recent years witnessed the development of metal oxide-supported metal catalysts (MOSMCs), covering single atoms, clusters, and nanoparticles. As alternatives to conventional carbon-dispersed metal catalysts, MOSMCs are gaining increasing interest due to their unique electronic configuration and potentially high corrosion resistance. By engineering the metal oxide substrate, supported metal, and their interactions, MOSMCs can be facilely modulated. Significant progress has been made in advancing MOSMCs for ORR, and their further development warrants advanced characterization methods to better understand MOSMCs and precise modulation strategies to boost their functionalities. In this regard, a comprehensive review of MOSMCs for ORR is still lacking despite this fast-developing field. To eliminate this gap, advanced characterization methods are introduced for clarifying MOSMCs experimentally and theoretically, discuss critical methods of boosting their intrinsic activities and number of active sites, and systematically overview the status of MOSMCs based on different metal oxide substrates for ORR. By conveying methods, research status, critical challenges, and perspectives, this review will rationally promote the design of MOSMCs for electrochemical energy devices.
Collapse
Affiliation(s)
- Siyuan Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Miao Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunze Zhang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hongsheng Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Hao Fei
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Ruoqi Liu
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hui Kong
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Siyuan Zhao
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, HKUST, New Territories, Hong Kong SAR, 999077, P. R. China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, 518048, P. R. China
| | - Jian Wang
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
33
|
Li H, Xu C, Wang W, Li G, Huang J, Chen L, Hou Z. Construction of high–loading 3D Co N C catalyst for oxygen reduction reaction in Zn–air batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
34
|
Sun Z, Zhang H, Cao L, Liu X, Wu D, Shen X, Zhang X, Chen Z, Ru S, Zhu X, Xia Z, Luo Q, Xu F, Yao T. Understanding Synergistic Catalysis on Cu-Se Dual Atom Sites via Operando X-ray Absorption Spectroscopy in Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202217719. [PMID: 36692894 DOI: 10.1002/anie.202217719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
The construction and understanding of synergy in well-defined dual-atom active sites is an available avenue to promote multistep tandem catalytic reactions. Herein, we construct a dual-hetero-atom catalyst that comprises adjacent Cu-N4 and Se-C3 active sites for efficient oxygen reduction reaction (ORR) activity. Operando X-ray absorption spectroscopy coupled with theoretical calculations provide in-depth insights into this dual-atom synergy mechanism for ORR under realistic device operation conditions. The heteroatom Se modulator can efficiently polarize the charge distribution around symmetrical Cu-N4 moieties, and serve as synergistic site to facilitate the second oxygen reduction step simultaneously, in which the key OOH*-(Cu1 -N4 ) transforms to O*-(Se1 -C2 ) intermediate on the dual-atom sites. Therefore, this designed catalyst achieves satisfied alkaline ORR activity with a half-wave potential of 0.905 V vs. RHE and a maximum power density of 206.5 mW cm-2 in Zn-air battery.
Collapse
Affiliation(s)
- Zhiguo Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xinyi Shen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xue Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zihang Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Sen Ru
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiangyu Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhiyuan Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Faqiang Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
35
|
Zheng H, Zhong J, Liu X, Zhu Y, Hou B, Zhao L, Sun C, Wang X, Su Z. Co-modified polyoxovanadoborates derived Co/BN-CNT/VN based bifunctional electrocatalysts for rechargeable zinc-air batteries. J Colloid Interface Sci 2023; 634:675-683. [PMID: 36563424 DOI: 10.1016/j.jcis.2022.12.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Rational design of high-performance bifunctional electrocatalysts to accelerate the sluggish oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) in rechargeable Zn-air batteries remain an enduring challenge. The construction of multicomponent catalysts is a promising solution to achieve this goal. Herein, B and N co-doped interconnecting graphite carbon and carbon nanotube with the decoration of Co and vanadium nitride (VN) nanoparticles (Co/BN-CNT/VN) are synthesized using Co-modified polyoxovanadoborates as precursors. The optimized composite achieves superior bifunctional oxygen electrocatalytic activity and stability, which is comparable to noble metal catalysts and reported bifunctional electrocatalysts. Specifically, the half-potential of ORR reaches 0.85 V, and the overpotential of OER is low to 296 mV at a current density of 10 mA cm-2. Strikingly, zinc-air batteries assembled based on Co/BN-CNT/VN demonstrate a small charge-discharge voltage gap of 0.873 V, a remarkable peak-power density of 156.3 mW cm-2, and outstanding cycling durability (∼1000 cycles at 10 mA cm-2). This work affords a new alternative strategy to create cost-effective and high-potency bifunctional oxygen electrocatalysts for advanced air batteries.
Collapse
Affiliation(s)
- Haiyan Zheng
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Jun Zhong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123 Jiangsu, China
| | - Xinyan Liu
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Ying Zhu
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Baoshan Hou
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Liang Zhao
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China.
| | - Chunyi Sun
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China.
| | - Xinlong Wang
- Key Laboratory of National & Local United Engineering Laboratory for Power Battery Institution, Northeast Normal University, 5268 Renmin Street, Changchun, 130024 Jilin, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
36
|
Li C, Pan Y, Xiao T, Xiang L, Li Q, Tian F, Manners I, Mai Y. Metal Organic Framework Cubosomes. Angew Chem Int Ed Engl 2023; 62:e202215985. [PMID: 36647212 DOI: 10.1002/anie.202215985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
We demonstrate a general strategy for the synthesis of ordered bicontinuous-structured metal organic frameworks (MOFs) by using polymer cubosomes (PCs) with a double primitive structure (Im 3 ‾ ${\bar{3}}$ m symmetry) as the template. The filling of MOF precursors in the open channel of PCs, followed by their coordination and removal of the template, generates MOF cubosomes with a single primitive topology (Pm 3 ‾ ${\bar{3}}$ m) and average mesopore diameters of 60-65 nm. Mechanism study reveals that the formation of ZIF-8 cubosomes undergoes a new MOF growth process, which involves the formation of individual MOF seeds in the template, their growth and eventual fusion into the cubosomes. Their growth kinetics follows the Avrami equation with an Avrami exponent of n=3 and a growth rate of k=1.33×10-4 , indicating their fast 3D heterogeneous growth mode. Serving as a bioreactor, the ZIF-8 cubosomes show high loading of trypsin enzyme, leading to a high catalytic activity in the proteolysis of bovine serum albumin.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tianyu Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luoxing Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Feng Tian
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Ian Manners
- Department of Chemistry, Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Road, Victoria, BC, V8P 5C2, Canada
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
37
|
Fan C, Zhu H, Zhang J, Jiang H, Chen R. Hollow Co@HCN Derived from ZIF-67 as a Highly Efficient Catalyst for Hydrogenation of o-Cresol to o-Methyl Cyclohexanol. Catal Letters 2023. [DOI: 10.1007/s10562-023-04304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Liu Z, Du Y, Yu R, Zheng M, Hu R, Wu J, Xia Y, Zhuang Z, Wang D. Tuning Mass Transport in Electrocatalysis Down to Sub-5 nm through Nanoscale Grade Separation. Angew Chem Int Ed Engl 2023; 62:e202212653. [PMID: 36399050 DOI: 10.1002/anie.202212653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Nano and single-atom catalysis open new possibilities of producing green hydrogen (H2 ) by water electrolysis. However, for the hydrogen evolution reaction (HER) which occurs at a characteristic reaction rate proportional to the potential, the fast generation of H2 nanobubbles at atomic-scale interfaces often leads to the blockage of active sites. Herein, a nanoscale grade-separation strategy is proposed to tackle mass-transport problem by utilizing ordered three-dimensional (3d) interconnected sub-5 nm pores. The results reveal that 3d criss-crossing mesopores with grade separation allow efficient diffusion of H2 bubbles along the interconnected channels. After the support of ultrafine ruthenium (Ru), the 3d mesopores are on a superior level to two-dimensional system at maximizing the catalyst performance and the obtained Ru catalyst outperforms most of the other HER catalysts. This work provides a potential route to fine-tuning few-nanometer mass transport during water electrolysis.
Collapse
Affiliation(s)
- Zhenhui Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yue Du
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, P. R. China
| | - Ruohan Yu
- Wuhan University of Technology, Nanostructure Research Centre, Wuhan, 430070, P. R. China
| | - Mingbo Zheng
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Rui Hu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jingsong Wu
- Wuhan University of Technology, Nanostructure Research Centre, Wuhan, 430070, P. R. China
| | - Yongyao Xia
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.,Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
39
|
Wang J, Zhang Y, Guo X, Liao S, Lv P, Wei Q. FeCo/N-co-doped 3D carbon nanofibers as efficient bifunctional oxygen electrocatalyst for Zn-air batteries. NANOSCALE 2023; 15:625-630. [PMID: 36504045 DOI: 10.1039/d2nr05432a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Flexible zinc-air batteries (ZABs) are expected to become a promising candidate in energy storage equipment for wearable electronic devices. However, the sluggish kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have impeded the development of ZABs. Herein, an FeCo- and N-codoped bifunctional electrocatalyst (FeCoNCF) is fabricated by simple one-pot and pyrolysis strategies. Concretely, the bacterial cellulose (BC) and Prussian blue analogue (PBA) derived transition metal and nitrogen doped carbon (M-N-C) composites provide ORR and OER active sites. FeCoNCF exhibits outstanding ORR and OER activities. It displays a favorable high half-wave potential (0.81 V) and a low overpotential at 10 mA cm-2 (341 mV), which are on a par with commercial Pt/C and RuO2, and shows outstanding stability. The sandwich-type flexible zinc-air battery containing FeCoNCF shows a favorable power density (49.29 mW cm-2) and superior cycling stability.
Collapse
Affiliation(s)
- Jiangbo Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Yanan Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Xue Guo
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China.
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China
| |
Collapse
|
40
|
Jin T, Nie J, Dong M, Chen B, Nie J, Ma G. 3D Interconnected Honeycomb-Like Multifunctional Catalyst for Zn-Air Batteries. NANO-MICRO LETTERS 2022; 15:26. [PMID: 36586003 PMCID: PMC9805485 DOI: 10.1007/s40820-022-00959-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Developing high-performance and low-cost electrocatalysts is key to achieve the clean-energy target. Herein, a dual regulation method is proposed to prepare a 3D honeycomb-like carbon-based catalyst with stable Fe/Co co-dopants. Fe atoms are highly dispersed and fixed to the polymer microsphere, followed by a high-temperature decomposition, for the generation of carbon-based catalyst with a honeycomb-like structure. The as-prepared catalyst contains a large number of Fe/Co nanoparticles (Fe/Co NPs), providing the excellent catalytic activity and durability in oxygen reduction reaction, oxygen evolution reaction and hydrogen evolution reaction. The Zn-air battery assembled by the as-prepared catalyst as air cathode shows a good charge and discharge capacity, and it exhibits an ultra-long service life by maintaining a stable charge and discharge platform for a 311-h cycle. Further X-ray absorption fine structure characterization and density functional theory calculation confirms that the Fe doping optimizes the intermediate adsorption process and electron transfer of Co.
Collapse
Affiliation(s)
- Tianxu Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Junli Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Mei Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Binling Chen
- College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter, EX4 4QF, UK.
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Guiping Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
41
|
Wang A, Zhang X, Gao S, Zhao C, Kuang S, Lu S, Niu J, Wang G, Li W, Chen D, Zhang H, Zhou X, Zhang S, Zhang B, Wang W. Fast-Charging Zn-Air Batteries with Long Lifetime Enabled by Reconstructed Amorphous Multi-Metallic Sulfide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204247. [PMID: 36177691 DOI: 10.1002/adma.202204247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Developing fast-charging Zn-air batteries is crucial for widening their application but remains challenging owing to the limitation of sluggish oxygen evolution reaction (OER) kinetics and insufficient active sites of electrocatalysts. To solve this issue, a reconstructed amorphous FeCoNiSx electrocatalyst with high density of efficient active sites, yielding low OER overpotentials of 202, 255, and 323 mV at 10, 100, and 500 mA cm-2 , respectively, is developed for fast-charging Zn-air batteries with low charging voltages at 100-400 mA cm-2 . Furthermore, the fabricated 3241.8 mAh (20 mA cm-2 , 25 °C) quasi-solid Zn-air battery shows long lifetime of 500 h at -10 and 25 °C as well as 150 h at 40 °C under charging 100 mA cm-2 . The detailed characterizations combine with density functional theory calculations indicate that the defect-rich crystalline/amorphous ternary metal (oxy)hydroxide forms by the reconstruction of amorphous multi-metallic sulfide, where the electron coupling effect among multi-active sites and migration of intermediate O* from Ni site to the Fe site breaks the scaling relationship to lead to a low theoretical OER overpotential of 170 mV, accounting for the outstanding fast-charging property. This work not only provides insights into designing advanced OER catalysts by the self-reconstruction of the pre-catalyst but also pioneers a pathway for practical fast-charging Zn-air batteries.
Collapse
Affiliation(s)
- Ansheng Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Xilin Zhang
- School of Physic, Henan Normal University, Henan Key Laboratory of Photovoltaic Materials, Xinxiang, 453007, China
| | - Shan Gao
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Chunning Zhao
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| | - Siyu Kuang
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Shanshan Lu
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Juntao Niu
- Department of Otorhinolaryngology, Head and Neck Surgery, the Second Hospital, Tianjin Medical University, Tianjin, 300211, China
| | - Geng Wang
- Tianjin Academy of Eco-environment Sciences, State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin, 300191, China
| | - Weifang Li
- Tianjin Academy of Eco-environment Sciences, State Environmental Protection Key Laboratory of Odor Pollution Control, Tianjin, 300191, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Haijun Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin, 300300, China
| | - Sheng Zhang
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Bin Zhang
- School of Science, Tianjin University, Tianjin, 300072, China
| | - Weichao Wang
- Integrated Circuits and Smart System Lab (Shenzhen), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300071, China
| |
Collapse
|
42
|
Wang Z, Hou X, Dekyvere S, Mousavi B, Chaemchuen S. Single-thermal synthesis of bimetallic Co/Zn@NC under solvent-free conditions as an efficient dual-functional oxygen electrocatalyst in Zn-air batteries. NANOSCALE 2022; 14:16683-16694. [PMID: 36331371 DOI: 10.1039/d2nr03997d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A straightforward in situ thermal (IST) method is developed to synthesize bimetallic Co/Zn embedded in nitrogen-doped three-dimensional carbon (CoZn@NC_IST). The facile IST process is a single-step thermal treatment of a mixture of metals (Co/Zn) and 2-methylimidazole precursors under solvent-free conditions. This straightforward method is advantageous over the traditional synthesis derived from CoZn-ZIF (CoZn@NC_Solv). During the IST method, the bimetallic Co/Zn bridged with 2-methylimidazole forming zeolitic-imidazole frameworks (ZIFs) under low-temperature (<200 °C) conditions before being de-coordinated and sacrificed their structure into a carbon material at high temperature (>500 °C). Loading zinc into the mixture of precursors contributed to the metal distribution and increased the surface area compared with the sample without zinc (Co@NC_IST). CoZn@NC_IST exhibits a bifunctional electrocatalytic ability for the ORR (0.855 V@E1/2) and OER (overpotential of 325 mV@10 mA cm-2). Applying CoZn@NC_IST in a zinc-air battery confirmed its excellent and effective dual-function electrocatalytic performance. Herein, using the advanced single-step method of IST in the absence of any solvent, we provide a powerful and green synthesis of an electrocatalyst that is a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Zechen Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiaotong Hou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Sander Dekyvere
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Bibimaryam Mousavi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
| | - Somboon Chaemchuen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
| |
Collapse
|
43
|
Dong Q, Ji S, Wang H, Linkov V, Wang R. Oxygen Spillover Effect at Cu/Fe 2O 3 Heterointerfaces to Enhance Oxygen Electrocatalytic Reactions for Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51222-51233. [PMID: 36326106 DOI: 10.1021/acsami.2c15769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rational design and synthesis of high-performance electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are critical for practical application of Zn-air batteries (ZABs). In this work, the bifunctional composite Cu-Fe2O3/PNC was prepared by a simple and effective wet-hydrothermal coupled dry-annealing synthesis strategy. The Cu-Fe2O3/PNC displayed excellent catalytic activity in ORR and OER with a potential difference of 0.63 V. More importantly, the ZAB assembled with Cu-Fe2O3/PNC exhibited a high-power density of 138.00 mW cm-2 and an excellent long-term cyclability. X-ray photoelectron spectroscopy (XPS) demonstrated that the excellent performance is due to the strong electronic interaction between Cu and Fe2O3 that arises as a result of the fast electron transfer through the Cu-O-Fe bond and the higher concentration of surface oxygen vacancies. Meanwhile, the spillover factor Bsp/2zF of Cu/PNC and Cu-Fe2O3/PNC obtained by the rotating disk experiment was 1.00 × 10-7 and 1.10 × 10-7 cm2·s-1, respectively, indicating that the oxygen spillover effect between Cu and Fe2O3 lowers the energy barrier, increases the number of active sites, and alters the rate-determining reaction step. This work demonstrated the significant potential of Cu-Fe2O3/PNC in energy conversion and storage applications, providing a new perspective for the rational design of bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Qing Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing314001, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Vladimir Linkov
- South African Institute for Advanced Material Chemistry, University of the Western Cape, Cape Town7535, South Africa
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| |
Collapse
|
44
|
Huang L, Wei M, Qi R, Dong CL, Dang D, Yang CC, Xia C, Chen C, Zaman S, Li FM, You B, Xia BY. An integrated platinum-nanocarbon electrocatalyst for efficient oxygen reduction. Nat Commun 2022; 13:6703. [PMID: 36344552 PMCID: PMC9640595 DOI: 10.1038/s41467-022-34444-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Efficient and robust platinum-carbon electrocatalysts are of great significance for the long-term service of high-performance fuel cells. Here, we report a Pt alloy integrated in a cobalt-nitrogen-nanocarbon matrix by a multiscale design principle for efficient oxygen reduction reaction. This Pt integrated catalyst demonstrates an increased mass activity, 11.7 times higher than that of commercial Pt catalyst, and retains a stability of 98.7% after 30,000 potential cycles. Additionally, this integrated catalyst delivers a current density of 1.50 A cm-2 at 0.6 V in the hydrogen-air fuel cell and achieves a power density of 980 mW cm-2. Comprehensive investigations demonstrate that the synergistic contribution of components and structure in the platinum-carbon integrated catalyst is responsible for the high-efficiency ORR in fuel cells.
Collapse
Affiliation(s)
- Lei Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Min Wei
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Rd, Wuhan, 430072, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, 151 Yingzhuan Road, New Taipei City, 25137, Taiwan, China
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cheng-Chieh Yang
- Department of Physics, Tamkang University, 151 Yingzhuan Road, New Taipei City, 25137, Taiwan, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Chao Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Fu-Min Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Bo You
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China.
| |
Collapse
|
45
|
Designing cactus-like Fe-P doped CoNi-S arrays as highly efficient electrocatalyst for overall water splitting. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Fan M, Cui L, He X, Zou X. Emerging Heterogeneous Supports for Efficient Electrocatalysis. SMALL METHODS 2022; 6:e2200855. [PMID: 36070422 DOI: 10.1002/smtd.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Electrocatalysis plays a fundamental role in many fields, such as metallurgy, medicine, chemical industry, and energy conversion. Anchoring active electrocatalysts with controllable loading and uniform dispersion onto suitable supports has become an attractive topic. This is because the supports can not only have the potential to improve catalytic activity and stability through the interaction between support and catalytic center, but also can reduce precious metal consumption by improving atomic utilization. Herein, recent theoretical and experimental progresses concerning the development of supports to anchor electrocatalytic materials are first reviewed. Next, their controllable syntheses, characterization techniques, metal-support electronic interactions, and structure-performance relationships are presented. Some representative carbon supports and non-carbonaceous supports, as well as recently reported star supports such as 2D supports, single atom catalysts, and self-supported catalysts are also summarized. In addition, the significant role of support in stabilizing and regulating catalytic active sites is particularly emphasized. Finally, challenges, opportunities, key problems, and further promising solutions for supported catalysts are proposed.
Collapse
Affiliation(s)
- Meihong Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Lili Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xingquan He
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
47
|
Flower-like MOF-74 nanocomposites directed by selenylation towards high-efficient oxygen evolution. J Colloid Interface Sci 2022; 623:552-560. [DOI: 10.1016/j.jcis.2022.04.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/30/2022] [Indexed: 01/01/2023]
|
48
|
Zhao J, Tian L, Liang H, Du B, Li Y, Wei Q, Wu D. Defects engineering on CrOOH by Ni doping for boosting electrochemical oxygen evolution reaction. NANOTECHNOLOGY 2022; 33:445402. [PMID: 35882215 DOI: 10.1088/1361-6528/ac842f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The design and construction of active centres are key to exploring advanced electrocatalysts for oxygen evolution reaction (OER). In this work, we demonstrate thein situconstruction of point defects on CrOOH by Ni doping (Ni-CrOOH/NF). Compared with pure CrOOH/NF, Ni-CrOOH/NF showed enhanced OER activity. The effect of the amount of Ni introduced on the OER performance was investigated. Ni0.2-CrOOH/NF, the best introduction of Ni, uses a low overpotential of 253 mV to achieve a current density of 10 mA cm-2with a high turnover frequency of 0.27 s-1in 1.0 M NaOH. In addition, the electrocatalytic performance of Ni0.2-CrOOH/NF showed little deterioration after 1000-cycle cyclic voltammetry scanning. In the potentiostatic test, activity was stable for at least 20 h.
Collapse
Affiliation(s)
- Jinxiu Zhao
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Liang Tian
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Huixin Liang
- Institute for the Control of Angrochemicals, Ministry of Agriculture and Rural Affairs (ICAMA), Beijing, 100125, People's Republic of China
| | - Bing Du
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yuyang Li
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Dan Wu
- Collaborative Innovation Centre for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
49
|
Wang Y, Chen A, Fang C, Yi Q. Nitrogen/Phosphorus/Boron-Codoped Hollow Carbon Spheres as Highly Efficient Electrocatalysts for Zn–Air Batteries. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuebing Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 Hunan, P.R. China
| | - Aling Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 Hunan, P.R. China
| | - Can Fang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 Hunan, P.R. China
| | - Qingfeng Yi
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 Hunan, P.R. China
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Xiangtan 411201, P. R. China
| |
Collapse
|
50
|
Zaman S, Wang M, Liu H, Sun F, Yu Y, Shui J, Chen M, Wang H. Carbon-based catalyst supports for oxygen reduction in proton-exchange membrane fuel cells. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|